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Groups related to Diff(IR)

The reflexive nuclear (LF) space C2°(R) of smooth functions with
compact support leads to the well-known regular Lie group
Diffc(R). We will now define an extension of this group which will
play a major role in the later parts of this article.

Define C25(R) = {f : f' € C2°(R)} to be the space of
antiderivatives of smooth functions with compact support. It is a
reflexive nuclear (LF) space. We also define the space

S(R) = {f € C3(R) @ f(—o0) = 0} of antiderivatives of the
form x — [*_ g dy with g € C°(R).
Diffc 2(R) = { = Id+f : f € CZ%(R), f' > —1} is the
corresponding group.
Define the two functionals Shifty, Shift, : Diff. 2(R) — R by

Shifty(¢) = ev_oo(f) = lim f(x), Shift,(p) = evoo(f) = lim f(x)

X—>—00 X—00

for o(x) = x + f(x).



Then the short exact sequence of smooth homomorphisms of Lie
groups

(Shifty,Shift, )

Diff ((R) = Diffc2(R) (R?,+4)
describes a semidirect product, where a smooth homomorphic
section s : R? — Diff. »(R) is given by the composition of flows
s(a, b) = FlfZ ) Flff’ for the vectorfields X, = £,0x, X, = f,0x with
[Xe, Xi] = 0 where f;, f, € C*(R, [0, 1]) satisfy

fg(x):{l for x < —1 ﬁ(x):{o for x <0 (1)

0 forx>0, 1 forx>1.

The normal subgroup

Diff¢ 1(R) = ker(Shift;) = {¢ = ld+f : f € C2(R), f’ > —1} of
diffeomorphisms which have no shift at —oco will play an important
role later on.



Some diffeomorphism groups on R
We have the following smooth injective group homomorphisms:

Diff o0 (R)

—

Diffc(R) — Diffs(R) — Diff = (R)

| |

Diff¢,1(R) — Diffs, (R) — Diff o< (R)

| |

Diff 2(R) — Diffs, (R) — Diff ygo (R) —> Diff(R)

Each group is a normal subgroup in any other in which it is
contained, in particular in Diffz(RR).

For S this works the same as for CZ°. For H* it is slightly mote
subtle.



The setting

We will denote by A(R) any of the spaces C2°(R), S(R) or
H>(R) and by Diff 4(R) the corresponding groups Diff(R),
Diffs(R) or Diff y(R) as defined in Sections ??, ?? and ?7?.
Similarly A1 (R) will denote any of the spaces C29(R), S1(R) or
H°(R) and Diff 4 1(R) the corresponding groups Diff. 1(R),
Diffs, (R) or Diff g (R) as defined in Sections 77, 7? and ?7.

The H'-metric. For Diff 4(R) and Diff 4,(R) the homogeneous
H'-metric is given by

Gy(Xop,Yop)=Gy(X,Y)= /RX’(X)Y'(X) dx ,

where X, Y are elements of the Lie algebra A(R) or A;(R). We
shall also use the notation



Theorem

On Diff 4 1(R) the geodesic equation is the Hunter-Saxton equation

_ 1 [~
(pe) o 1_y U = —Uuuy + 2/ (ux(z))2 dz ,

and the induced geodesic distance is positive.

On the other hand the geodesic equation does not exist on the
subgroups Diff 4(R), since the adjoint ad(X)*G4(X) does not lie
in Gig(A(R)) for all X € A(R).

One obtains the classical form of the Hunter-Saxton equation by
differentiating:
L5
Uty = —UlUxx — Eux y
Note that Diff 4(R) is a natural example of a non-robust
Riemannian manifold.



Proof

Note that Gig : A1(R) — A1 (R)* is given by Gig(X) = —X" if we
use the L2-pairing X — (Y + [ XYdx) to embed functions into
the space of distributions. We now compute the adjoint of ad(X):
{ad(X)*Ga(Y), Z) = Gia(Y,ad(X)Z) = Ga(Y, —[X, Z])
_ / Y'(x) (X' (x)Z(x) — X(x)Z'(x))’ dx
R
_ / Z() (X" () Y'(x) — (X(x)Y'(x))") dx .
R
Therefore the adjoint as an element of Aj is given by

ad(X)*Gg(Y) = X"Y' — (XY')".



For X = Y we can rewrite this as

((X/2) X2 /// _ / X (X2) )
1 / 2y/

=56 XOPdy o+ (X7) )

1

V.

ad(X)"Gia(X) =

N~

If X € A1(R) then the function —% [*_ X'(y)?dy + 3(X?) is
again an element of A;(R). This foIIows |mmed|ately from the
definition of A;(R). Therefore the geodesic equation exists on
Diff 4 1(R) and is as given.

However if X € A(R), a neccessary condition for
(X (¥))?dy € A(R) would be [*°_ X'(y)*dy = 0, which would
imply X’ = 0. Thus the geodesic equation does not exist on A(R).

The positivity of geodesic distance will follow from the explicit
formula for geodesic distance below. QED.



Theorem

We define the R-map by:
R Diff 4, (R) — A(R,R>_2) c A(R,R)
- o2 ((@’)1/2—1) .
The R-map is invertible with inverse
A(R,R>_2) — Diff 4,(R)
R~L: 1M~ ,
’y|—>x+4/ v- 4+ 4y dx.

The pull-back of the flat L?-metric via R is the H -metric on
Diff 4(R), i.e.,

R*<-, ‘>L2 = <', ‘>/—'/1 .
Thus the space (DifFAl(R), Hl) is a flat space in the sense of
Riemannian geometry.

Here (-,-);2 denotes the L?-inner product on A(R) with constant
volume dx.



Proof

To compute the pullback of the L2-metric via the R-map we first
need to calculate its tangent mapping. For this let

h= Xo¢ € T,Diff 4, (R) and let t — ¢(t) be a smooth curve in
Diff 4, (R) with 1(0) = Id and J¢|oy(t) = X. We have:

TR.h = OrloR(u(e) © @) = o2 ((((t) © 9))"? 1)
= Oelo2((¥()x © @) 0x)"?
= 2 AU © ) = (oA o )
= (p)VP(X 0 9) = ()X 0 ).

Using this formula we have for h = Xj o p, k = X5 o ¢:

R*(h, k)2 = (T R.h, T,R.K) 2 = / X{(x)X5(x) dx = (h, k) ;n QED
R



Corollary

Given g, p1 € Diff 4,(R) the geodesic p(t, x) connecting them is
given by

o(t.x) = R7H((1 = D)R(p0) + tR(1) ) (x)

and their geodesic distance is

dlgo.or) =4 [ (A4 = (50)/%)? o

The methods of Boris and my lecture give local well-posedness of
the geodesic equation in Diff o (IR) only. But this construction
shows much more: For S;, C7°, and even for many kinds of
Denjoy-Carleman ultradifferentiable model spaces (not explained
here). This shows that Sobolev space methods for treating
nonlinear PDEs is not the only method.



Corollary: The metric space (Diff 4,(R), H') is path-connected
and geodesically convex but not geodesically complete. In
particular, for every pqo € Diff 4,(R) and h € Ty, Diff 4,(R), h #0
there exists a time T € R such that ¢(t,-) is a geodesic for

|t| < |T| starting at po with p(0) = h, but px(T,x) = 0 for some
x € R.

Theorem: The square root representation on the diffeomorphism
group Diff 4(R) is a bijective mapping, given by:

R Diff 4(R) — (Im(R), [ - [l2) € (A(R,Rs>2),[| - [l12)
. 2 ((gol)l/z—l) .
The pull-back of the restriction of the flat L?-metric to Im(R) via R

is again the homogeneous Sobolev metric of order one. The image
of the R-map is the splitting submanifold of A(R,R~_») given by:

Im(R) = {7 € AR, R=. ) : F(3) = /

R7(7+4) dx:O} .



On the space Diff 4(R) the geodesic equation does not exist. Still:

Corollary: The geodesic distance d* on Diff 4(R) coincides with
the restriction of d41 to Diff 4(R), i.e., for g, p1 € Diff 4(R) we
have

d (o, p1) = d (o, 1) -



