On the Hunter-Saxton equation on $\text{Diff}_{\mathcal{A}}(\mathbb{R})$

Peter W. Michor

Norwegian Summer School on Analysis and Geometry Bergen, Norway.

Based on [Martin Bauer, Martins Bruveris, M: The homogeneous Sobolev metric of order one on diffeomorphism groups on the real line. 2012].

June 24-28, 2013

Groups related to $\text{Diff}_c(\mathbb{R})$

The reflexive nuclear (LF) space $C_c^{\infty}(\mathbb{R})$ of smooth functions with compact support leads to the well-known regular Lie group $\text{Diff}_{c}(\mathbb{R})$. We will now define an extension of this group which will play a major role in the later parts of this article. Define $C_{c,2}^{\infty}(\mathbb{R}) = \{f : f' \in C_c^{\infty}(\mathbb{R})\}$ to be the space of antiderivatives of smooth functions with compact support. It is a reflexive nuclear (LF) space. We also define the space $C^\infty_{c,1}(\mathbb{R}) = \left\{ f \in C^\infty_{c,2}(\mathbb{R}) \ : \ f(-\infty) = 0
ight\}$ of antiderivatives of the form $x \mapsto \int_{-\infty}^{x} g \, dy$ with $g \in C_{c}^{\infty}(\mathbb{R})$. $\operatorname{Diff}_{c,2}(\mathbb{R}) = \{ \varphi = \operatorname{Id} + f : f \in C^{\infty}_{c,2}(\mathbb{R}), f' > -1 \}$ is the corresponding group. Define the two functionals Shift_{ℓ} , Shift_{r} : $\text{Diff}_{c,2}(\mathbb{R}) \to \mathbb{R}$ by

Shift_{$$\ell$$}(φ) = ev _{$-\infty$} (f) = $\lim_{x \to -\infty} f(x)$, Shift _{r} (φ) = ev _{∞} (f) = $\lim_{x \to \infty} f(x)$
for $\varphi(x) = x + f(x)$.

Then the short exact sequence of smooth homomorphisms of Lie groups

$$\operatorname{Diff}_{c}(\mathbb{R}) \longrightarrow \operatorname{Diff}_{c,2}(\mathbb{R}) \xrightarrow{(\operatorname{Shift}_{\ell},\operatorname{Shift}_{r})} \gg (\mathbb{R}^{2},+)$$

describes a semidirect product, where a smooth homomorphic section $s : \mathbb{R}^2 \to \text{Diff}_{c,2}(\mathbb{R})$ is given by the composition of flows $s(a,b) = \text{Fl}_a^{X_\ell} \circ \text{Fl}_b^{X_r}$ for the vectorfields $X_\ell = f_\ell \partial_x$, $X_r = f_r \partial_x$ with $[X_\ell, X_r] = 0$ where $f_\ell, f_r \in C^\infty(\mathbb{R}, [0, 1])$ satisfy

$$f_{\ell}(x) = \begin{cases} 1 & \text{for } x \leq -1 \\ 0 & \text{for } x \geq 0, \end{cases} \qquad f_r(x) = \begin{cases} 0 & \text{for } x \leq 0 \\ 1 & \text{for } x \geq 1. \end{cases}$$
(1)

The normal subgroup $\text{Diff}_{c,1}(\mathbb{R}) = \text{ker}(\text{Shift}_{\ell}) = \{\varphi = \text{Id} + f : f \in C^{\infty}_{c,1}(\mathbb{R}), f' > -1\}$ of diffeomorphisms which have no shift at $-\infty$ will play an important role later on.

Some diffeomorphism groups on $\ensuremath{\mathbb{R}}$

We have the following smooth injective group homomorphisms:

Each group is a normal subgroup in any other in which it is contained, in particular in $\text{Diff}_{\mathcal{B}}(\mathbb{R})$.

For S this works the same as for C_c^{∞} . For H^{∞} it is slightly mote subtle.

The setting

We will denote by $\mathcal{A}(\mathbb{R})$ any of the spaces $C_c^{\infty}(\mathbb{R})$, $\mathcal{S}(\mathbb{R})$ or $H^{\infty}(\mathbb{R})$ and by $\text{Diff}_{\mathcal{A}}(\mathbb{R})$ the corresponding groups $\text{Diff}_c(\mathbb{R})$, $\text{Diff}_{\mathcal{S}}(\mathbb{R})$ or $\text{Diff}_{H^{\infty}}(\mathbb{R})$ as defined in Sections ??, ?? and ??.

Similarly $\mathcal{A}_1(\mathbb{R})$ will denote any of the spaces $C_{c,1}^{\infty}(\mathbb{R})$, $\mathcal{S}_1(\mathbb{R})$ or $H_1^{\infty}(\mathbb{R})$ and $\text{Diff}_{\mathcal{A}|1}(\mathbb{R})$ the corresponding groups $\text{Diff}_{c,1}(\mathbb{R})$, $\text{Diff}_{\mathcal{S}_1}(\mathbb{R})$ or $\text{Diff}_{\mathcal{H}_1^{\infty}}(\mathbb{R})$ as defined in Sections ??, ?? and ??.

The \dot{H}^1 -metric. For $\text{Diff}_{\mathcal{A}}(\mathbb{R})$ and $\text{Diff}_{\mathcal{A}_1}(\mathbb{R})$ the homogeneous H^1 -metric is given by

$$G_{\varphi}(X \circ \varphi, Y \circ \varphi) = G_{\mathsf{Id}}(X, Y) = \int_{\mathbb{R}} X'(x) Y'(x) \ dx \ ,$$

where X, Y are elements of the Lie algebra $\mathcal{A}(\mathbb{R})$ or $\mathcal{A}_1(\mathbb{R})$. We shall also use the notation

$$\langle \cdot, \cdot \rangle_{\dot{H}^1} := G(\cdot, \cdot)$$

Theorem

On $\text{Diff}_{\mathcal{A} 1}(\mathbb{R})$ the geodesic equation is the Hunter-Saxton equation

$$(\varphi_t)\circ \varphi^{-1}=u \qquad u_t=-uu_x+\frac{1}{2}\int_{-\infty}^x (u_x(z))^2 dz ,$$

and the induced geodesic distance is positive.

On the other hand the geodesic equation does not exist on the subgroups $\text{Diff}_{\mathcal{A}}(\mathbb{R})$, since the adjoint $\operatorname{ad}(X)^*\check{G}_{\text{Id}}(X)$ does not lie in $\check{G}_{\text{Id}}(\mathcal{A}(\mathbb{R}))$ for all $X \in \mathcal{A}(\mathbb{R})$.

One obtains the classical form of the Hunter-Saxton equation by differentiating:

$$u_{tx}=-uu_{xx}-\frac{1}{2}u_x^2,$$

Note that $\text{Diff}_{\mathcal{A}}(\mathbb{R})$ is a natural example of a non-robust Riemannian manifold.

Proof

Note that $\check{G}_{\mathsf{Id}} : \mathcal{A}_1(\mathbb{R}) \to \mathcal{A}_1(\mathbb{R})^*$ is given by $\check{G}_{\mathsf{Id}}(X) = -X''$ if we use the L^2 -pairing $X \mapsto (Y \mapsto \int XYdx)$ to embed functions into the space of distributions. We now compute the adjoint of $\mathsf{ad}(X)$:

$$ig\langle \operatorname{ad}(X)^*\check{G}_{\mathsf{ld}}(Y),Z ig
angle = \check{G}_{\mathsf{ld}}(Y,\operatorname{ad}(X)Z) = G_{\mathsf{ld}}(Y,-[X,Z])$$

= $\int_{\mathbb{R}} Y'(x) (X'(x)Z(x) - X(x)Z'(x))' dx$
= $\int_{\mathbb{R}} Z(x) (X''(x)Y'(x) - (X(x)Y'(x))'') dx$.

Therefore the adjoint as an element of \mathcal{A}_1^* is given by

$$\operatorname{\mathsf{ad}}(X)^*\check{G}_{\operatorname{\mathsf{Id}}}(Y)=X''Y'-(XY')''$$
 .

For X = Y we can rewrite this as

$$\mathsf{ad}(X)^* \check{G}_{\mathsf{Id}}(X) = \frac{1}{2} ((X'^2)' - (X^2)''') = \frac{1}{2} \Big(\int_{-\infty}^x X'(y)^2 \, dy - (X^2)' \Big)''$$

= $\frac{1}{2} \check{G}_{\mathsf{Id}} \Big(- \int_{-\infty}^x X'(y)^2 \, dy + (X^2)' \Big) .$

If $X \in \mathcal{A}_1(\mathbb{R})$ then the function $-\frac{1}{2} \int_{-\infty}^{x} X'(y)^2 dy + \frac{1}{2}(X^2)'$ is again an element of $\mathcal{A}_1(\mathbb{R})$. This follows immediately from the definition of $\mathcal{A}_1(\mathbb{R})$. Therefore the geodesic equation exists on Diff $_{\mathcal{A}}_1(\mathbb{R})$ and is as given.

However if $X \in \mathcal{A}(\mathbb{R})$, a neccessary condition for $\int_{-\infty}^{x} (X'(y))^2 dy \in \mathcal{A}(\mathbb{R})$ would be $\int_{-\infty}^{\infty} X'(y)^2 dy = 0$, which would imply X' = 0. Thus the geodesic equation does not exist on $\mathcal{A}(\mathbb{R})$.

The positivity of geodesic distance will follow from the explicit formula for geodesic distance below. QED.

Theorem

We define the R-map by:

$$R: \left\{ egin{array}{l} \mathsf{Diff}_{\mathcal{A}_1}(\mathbb{R}) o \mathcal{A}ig(\mathbb{R},\mathbb{R}_{>-2}ig) \subset \mathcal{A}(\mathbb{R},\mathbb{R}) \ arphi \mapsto 2 \left((arphi')^{1/2}-1
ight) \,. \end{array}
ight.$$

The R-map is invertible with inverse

$$R^{-1}: \begin{cases} \mathcal{A}(\mathbb{R}, \mathbb{R}_{>-2}) \to \mathsf{Diff}_{\mathcal{A}_1}(\mathbb{R}) \\ \gamma \mapsto x + \frac{1}{4} \int_{-\infty}^x \gamma^2 + 4\gamma \ dx \ . \end{cases}$$

The pull-back of the flat L^2 -metric via R is the \dot{H}^1 -metric on $\text{Diff}_{\mathcal{A}}(\mathbb{R})$, *i.e.*,

$$R^*\langle \cdot, \cdot \rangle_{L^2} = \langle \cdot, \cdot \rangle_{\dot{H}^1}$$
.

Thus the space $(\text{Diff}_{\mathcal{A}_1}(\mathbb{R}), \dot{H}^1)$ is a flat space in the sense of Riemannian geometry.

Here $\langle \cdot, \cdot \rangle_{L^2}$ denotes the L^2 -inner product on $\mathcal{A}(\mathbb{R})$ with constant volume dx.

Proof

To compute the pullback of the L^2 -metric via the *R*-map we first need to calculate its tangent mapping. For this let $h = X \circ \varphi \in T_{\varphi} \text{Diff}_{\mathcal{A}_1}(\mathbb{R})$ and let $t \mapsto \psi(t)$ be a smooth curve in $\text{Diff}_{\mathcal{A}_1}(\mathbb{R})$ with $\psi(0) = \text{Id}$ and $\partial_t|_0\psi(t) = X$. We have:

$$\begin{split} T_{\varphi}R.h &= \partial_t|_0 R(\psi(t) \circ \varphi) = \partial_t|_0 2\Big(((\psi(t) \circ \varphi)_x)^{1/2} - 1\Big) \\ &= \partial_t|_0 2((\psi(t)_x \circ \varphi) \varphi_x)^{1/2} \\ &= 2(\varphi_x)^{1/2} \partial_t|_0 ((\psi(t)_x)^{1/2} \circ \varphi) = (\varphi_x)^{1/2} (\frac{\psi_{tx}(0)}{(\psi(0)_x)^{-1/2}} \circ \varphi) \\ &= (\varphi_x)^{1/2} (X' \circ \varphi) = (\varphi')^{1/2} (X' \circ \varphi) \,. \end{split}$$

/

Using this formula we have for $h = X_1 \circ \varphi, k = X_2 \circ \varphi$:

$$R^*\langle h,k\rangle_{L^2} = \langle T_{\varphi}R.h, T_{\varphi}R.k\rangle_{L^2} = \int_{\mathbb{R}} X_1'(x)X_2'(x)\,dx = \langle h,k\rangle_{\dot{H}^1} \,\,QED$$

Corollary

Given $\varphi_0, \varphi_1 \in \text{Diff}_{\mathcal{A}_1}(\mathbb{R})$ the geodesic $\varphi(t, x)$ connecting them is given by

$$\varphi(t,x) = R^{-1} \Big((1-t)R(\varphi_0) + tR(\varphi_1) \Big)(x)$$

and their geodesic distance is

$$d(\varphi_0,\varphi_1)^2 = 4 \int_{\mathbb{R}} \left((\varphi_1')^{1/2} - (\varphi_0')^{1/2} \right)^2 \, dx \; .$$

The methods of Boris and my lecture give local well-posedness of the geodesic equation in $\operatorname{Diff}_{H_1^{\infty}}(\mathbb{R})$ only. But this construction shows much more: For \mathcal{S}_1 , C_1^{∞} , and even for many kinds of Denjoy-Carleman ultradifferentiable model spaces (not explained here). This shows that Sobolev space methods for treating nonlinear PDEs is not the only method.

Corollary: The metric space $(\text{Diff}_{\mathcal{A}_1}(\mathbb{R}), \dot{H}^1)$ is path-connected and geodesically convex but not geodesically complete. In particular, for every $\varphi_0 \in \text{Diff}_{\mathcal{A}_1}(\mathbb{R})$ and $h \in T_{\varphi_0} \text{Diff}_{\mathcal{A}_1}(\mathbb{R})$, $h \neq 0$ there exists a time $T \in \mathbb{R}$ such that $\varphi(t, \cdot)$ is a geodesic for |t| < |T| starting at φ_0 with $\varphi_t(0) = h$, but $\varphi_x(T, x) = 0$ for some $x \in \mathbb{R}$.

Theorem: The square root representation on the diffeomorphism group $\text{Diff}_{\mathcal{A}}(\mathbb{R})$ is a bijective mapping, given by:

$$R: \begin{cases} \mathsf{Diff}_{\mathcal{A}}(\mathbb{R}) \to \big(\mathsf{Im}(R), \|\cdot\|_{L^2}\big) \subset \big(\mathcal{A}\big(\mathbb{R}, \mathbb{R}_{>-2}\big), \|\cdot\|_{L^2}\big) \\ \varphi \mapsto 2\left((\varphi')^{1/2} - 1\right). \end{cases}$$

The pull-back of the restriction of the flat L^2 -metric to Im(R) via R is again the homogeneous Sobolev metric of order one. The image of the R-map is the splitting submanifold of $\mathcal{A}(\mathbb{R}, \mathbb{R}_{>-2})$ given by:

$$\operatorname{Im}(R) = \left\{ \gamma \in \mathcal{A}(\mathbb{R}, \mathbb{R}_{>-2}) : F(\gamma) := \int_{\mathbb{R}} \gamma(\gamma + 4) \, dx = 0 \right\} \, .$$

On the space $\text{Diff}_{\mathcal{A}}(\mathbb{R})$ the geodesic equation does not exist. Still: **Corollary:** The geodesic distance $d^{\mathcal{A}}$ on $\text{Diff}_{\mathcal{A}}(\mathbb{R})$ coincides with the restriction of $d^{\mathcal{A}_1}$ to $\text{Diff}_{\mathcal{A}}(\mathbb{R})$, i.e., for $\varphi_0, \varphi_1 \in \text{Diff}_{\mathcal{A}}(\mathbb{R})$ we have

$$d^{\mathcal{A}}(\varphi_0,\varphi_1)=d^{\mathcal{A}_1}(\varphi_0,\varphi_1)$$
 .