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Groups related to Diffc(R)

The reflexive nuclear (LF) space C∞c (R) of smooth functions with
compact support leads to the well-known regular Lie group
Diffc(R). We will now define an extension of this group which will
play a major role in the later parts of this article.
Define C∞c,2(R) = {f : f ′ ∈ C∞c (R)} to be the space of
antiderivatives of smooth functions with compact support. It is a
reflexive nuclear (LF) space. We also define the space

C∞c,1(R) =
{
f ∈ C∞c,2(R) : f (−∞) = 0

}
of antiderivatives of the

form x 7→
∫ x
−∞ g dy with g ∈ C∞c (R).

Diffc,2(R) =
{
ϕ = Id +f : f ∈ C∞c,2(R), f ′ > −1

}
is the

corresponding group.
Define the two functionals Shift`,Shiftr : Diffc,2(R)→ R by

Shift`(ϕ) = ev−∞(f ) = lim
x→−∞

f (x), Shiftr (ϕ) = ev∞(f ) = lim
x→∞

f (x)

for ϕ(x) = x + f (x).



Then the short exact sequence of smooth homomorphisms of Lie
groups

Diffc(R) // // Diffc,2(R)
(Shift`,Shiftr ) // // (R2,+)

describes a semidirect product, where a smooth homomorphic
section s : R2 → Diffc,2(R) is given by the composition of flows
s(a, b) = FlX`

a ◦ FlXr
b for the vectorfields X` = f`∂x , Xr = fr∂x with

[X`,Xr ] = 0 where f`, fr ∈ C∞(R, [0, 1]) satisfy

f`(x) =

{
1 for x ≤ −1

0 for x ≥ 0,
fr (x) =

{
0 for x ≤ 0

1 for x ≥ 1.
(1)

The normal subgroup
Diffc,1(R) = ker(Shift`) = {ϕ = Id +f : f ∈ C∞c,1(R), f ′ > −1} of
diffeomorphisms which have no shift at −∞ will play an important
role later on.



Some diffeomorphism groups on R
We have the following smooth injective group homomorphisms:

DiffH∞(R)

��
Diffc(R) //

��

DiffS(R)

��

88

// DiffH∞
0

(R)

��
Diffc,1(R) //

��

DiffS1(R) //

��

DiffH∞
1

(R)

��
Diffc,2(R) // DiffS2(R) // DiffH∞

2
(R) // DiffB(R)

Each group is a normal subgroup in any other in which it is
contained, in particular in DiffB(R).

For S this works the same as for C∞c . For H∞ it is slightly mote
subtle.



The setting

We will denote by A(R) any of the spaces C∞c (R), S(R) or
H∞(R) and by DiffA(R) the corresponding groups Diffc(R),
DiffS(R) or DiffH∞(R) as defined in Sections ??, ?? and ??.

Similarly A1(R) will denote any of the spaces C∞c,1(R), S1(R) or
H∞1 (R) and DiffA 1(R) the corresponding groups Diffc,1(R),
DiffS1(R) or DiffH∞

1
(R) as defined in Sections ??, ?? and ??.

The Ḣ1-metric. For DiffA(R) and DiffA1(R) the homogeneous
H1-metric is given by

Gϕ(X ◦ ϕ,Y ◦ ϕ) = GId(X ,Y ) =

∫
R
X ′(x)Y ′(x) dx ,

where X ,Y are elements of the Lie algebra A(R) or A1(R). We
shall also use the notation

〈·, ·〉Ḣ1 := G (·, ·) .



Theorem

On DiffA 1(R) the geodesic equation is the Hunter-Saxton equation

(ϕt) ◦ ϕ−1 = u ut = −uux +
1

2

∫ x

−∞
(ux(z))2 dz ,

and the induced geodesic distance is positive.

On the other hand the geodesic equation does not exist on the
subgroups DiffA(R), since the adjoint ad(X )∗ǦId(X ) does not lie
in ǦId(A(R)) for all X ∈ A(R).

One obtains the classical form of the Hunter-Saxton equation by
differentiating:

utx = −uuxx −
1

2
u2
x ,

Note that DiffA(R) is a natural example of a non-robust
Riemannian manifold.



Proof

Note that ǦId : A1(R)→ A1(R)∗ is given by ǦId(X ) = −X ′′ if we
use the L2-pairing X 7→ (Y 7→

∫
XYdx) to embed functions into

the space of distributions. We now compute the adjoint of ad(X ):〈
ad(X )∗ǦId(Y ),Z

〉
= ǦId(Y , ad(X )Z ) = GId(Y ,−[X ,Z ])

=

∫
R
Y ′(x)

(
X ′(x)Z (x)− X (x)Z ′(x)

)′
dx

=

∫
R
Z (x)

(
X ′′(x)Y ′(x)− (X (x)Y ′(x))′′

)
dx .

Therefore the adjoint as an element of A∗1 is given by

ad(X )∗ǦId(Y ) = X ′′Y ′ − (XY ′)′′ .



For X = Y we can rewrite this as

ad(X )∗ǦId(X ) = 1
2

(
(X ′2)′ − (X 2)′′′

)
=

1

2

(∫ x

−∞
X ′(y)2 dy − (X 2)′

)′′
=

1

2
ǦId

(
−
∫ x

−∞
X ′(y)2 dy + (X 2)′

)
.

If X ∈ A1(R) then the function −1
2

∫ x
−∞ X ′(y)2 dy + 1

2 (X 2)′ is
again an element of A1(R). This follows immediately from the
definition of A1(R). Therefore the geodesic equation exists on
DiffA 1(R) and is as given.

However if X ∈ A(R), a neccessary condition for∫ x
−∞(X ′(y))2dy ∈ A(R) would be

∫∞
−∞ X ′(y)2dy = 0, which would

imply X ′ = 0. Thus the geodesic equation does not exist on A(R).

The positivity of geodesic distance will follow from the explicit
formula for geodesic distance below. QED.



Theorem

We define the R-map by:

R :

{
DiffA1(R)→ A

(
R,R>−2

)
⊂ A(R,R)

ϕ 7→ 2
(
(ϕ′)1/2 − 1

)
.

The R-map is invertible with inverse

R−1 :


A
(
R,R>−2

)
→ DiffA1(R)

γ 7→ x +
1

4

∫ x

−∞
γ2 + 4γ dx .

The pull-back of the flat L2-metric via R is the Ḣ1-metric on
DiffA(R), i.e.,

R∗〈·, ·〉L2 = 〈·, ·〉Ḣ1 .

Thus the space
(
DiffA1(R), Ḣ1

)
is a flat space in the sense of

Riemannian geometry.

Here 〈·, ·〉L2 denotes the L2-inner product on A(R) with constant
volume dx .



Proof

To compute the pullback of the L2-metric via the R-map we first
need to calculate its tangent mapping. For this let
h = X ◦ ϕ ∈ TϕDiffA1(R) and let t 7→ ψ(t) be a smooth curve in
DiffA1(R) with ψ(0) = Id and ∂t |0ψ(t) = X . We have:

TϕR.h = ∂t |0R(ψ(t) ◦ ϕ) = ∂t |02
(

((ψ(t) ◦ ϕ)x)1/2 − 1
)

= ∂t |02((ψ(t)x ◦ ϕ)ϕx)1/2

= 2(ϕx)1/2∂t |0((ψ(t)x)1/2 ◦ ϕ) = (ϕx)1/2
( ψtx(0)

(ψ(0)x)−1/2
◦ ϕ
)

= (ϕx)1/2(X ′ ◦ ϕ) = (ϕ′)1/2(X ′ ◦ ϕ) .

Using this formula we have for h = X1 ◦ ϕ, k = X2 ◦ ϕ:

R∗〈h, k〉L2 = 〈TϕR.h,TϕR.k〉L2 =

∫
R
X ′1(x)X ′2(x) dx = 〈h, k〉Ḣ1 QED



Corollary

Given ϕ0, ϕ1 ∈ DiffA1(R) the geodesic ϕ(t, x) connecting them is
given by

ϕ(t, x) = R−1
(

(1− t)R(ϕ0) + tR(ϕ1)
)

(x)

and their geodesic distance is

d(ϕ0, ϕ1)2 = 4

∫
R

(
(ϕ′1)1/2 − (ϕ′0)1/2

)2
dx .

The methods of Boris and my lecture give local well-posedness of
the geodesic equation in DiffH∞

1
(R) only. But this construction

shows much more: For S1, C∞1 , and even for many kinds of
Denjoy-Carleman ultradifferentiable model spaces (not explained
here). This shows that Sobolev space methods for treating
nonlinear PDEs is not the only method.



Corollary: The metric space
(
DiffA1(R), Ḣ1

)
is path-connected

and geodesically convex but not geodesically complete. In
particular, for every ϕ0 ∈ DiffA1(R) and h ∈ Tϕ0 DiffA1(R), h 6= 0
there exists a time T ∈ R such that ϕ(t, ·) is a geodesic for
|t| < |T | starting at ϕ0 with ϕt(0) = h, but ϕx(T , x) = 0 for some
x ∈ R.

Theorem: The square root representation on the diffeomorphism
group DiffA(R) is a bijective mapping, given by:

R :

{
DiffA(R)→

(
Im(R), ‖ · ‖L2

)
⊂
(
A
(
R,R>−2

)
, ‖ · ‖L2

)
ϕ 7→ 2

(
(ϕ′)1/2 − 1

)
.

The pull-back of the restriction of the flat L2-metric to Im(R) via R
is again the homogeneous Sobolev metric of order one. The image
of the R-map is the splitting submanifold of A(R,R>−2) given by:

Im(R) =
{
γ ∈ A(R,R>−2) : F (γ) :=

∫
R
γ
(
γ + 4

)
dx = 0

}
.



On the space DiffA(R) the geodesic equation does not exist. Still:

Corollary: The geodesic distance dA on DiffA(R) coincides with
the restriction of dA1 to DiffA(R), i.e., for ϕ0, ϕ1 ∈ DiffA(R) we
have

dA(ϕ0, ϕ1) = dA1(ϕ0, ϕ1) .


