On the Hunter-Saxton equation on $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$

Peter W. Michor

Norwegian Summer School on Analysis and Geometry
Bergen,
Norway.
Based on [Martin Bauer, Martins Bruveris, M: The homogeneous Sobolev metric of order one on diffeomorphism groups on the real line. 2012].

June 24-28, 2013

Groups related to $\operatorname{Diff}_{c}(\mathbb{R})$

The reflexive nuclear (LF) space $C_{c}^{\infty}(\mathbb{R})$ of smooth functions with compact support leads to the well-known regular Lie group $\operatorname{Diff}_{c}(\mathbb{R})$. We will now define an extension of this group which will play a major role in the later parts of this article.
Define $C_{c, 2}^{\infty}(\mathbb{R})=\left\{f: f^{\prime} \in C_{c}^{\infty}(\mathbb{R})\right\}$ to be the space of antiderivatives of smooth functions with compact support. It is a reflexive nuclear (LF) space. We also define the space $C_{c, 1}^{\infty}(\mathbb{R})=\left\{f \in C_{c, 2}^{\infty}(\mathbb{R}): f(-\infty)=0\right\}$ of antiderivatives of the form $x \mapsto \int_{-\infty}^{x} g d y$ with $g \in C_{c}^{\infty}(\mathbb{R})$.
$\operatorname{Diff}_{c, 2}(\mathbb{R})=\left\{\varphi=\mathrm{Id}+f: f \in C_{c, 2}^{\infty}(\mathbb{R}), f^{\prime}>-1\right\}$ is the corresponding group.
Define the two functionals Shift $_{\ell}$, Shift $_{r}:$ Diff $_{c, 2}(\mathbb{R}) \rightarrow \mathbb{R}$ by
$\operatorname{Shift}_{\ell}(\varphi)=\mathrm{ev}_{-\infty}(f)=\lim _{x \rightarrow-\infty} f(x), \quad \operatorname{Shift}_{r}(\varphi)=\mathrm{ev}_{\infty}(f)=\lim _{x \rightarrow \infty} f(x)$
for $\varphi(x)=x+f(x)$.

Then the short exact sequence of smooth homomorphisms of Lie groups

$$
\operatorname{Diff}_{c}(\mathbb{R}) \longrightarrow \operatorname{Diff}_{c, 2}(\mathbb{R}) \xrightarrow{\left(\text { Shift }_{e}, \text { Shift }_{r}\right)}\left(\mathbb{R}^{2},+\right)
$$

describes a semidirect product, where a smooth homomorphic section $s: \mathbb{R}^{2} \rightarrow \operatorname{Diff}_{c, 2}(\mathbb{R})$ is given by the composition of flows $s(a, b)=\mathrm{Fl}_{a}^{X_{\ell}} \circ \mathrm{Fl}_{b}^{X_{r}}$ for the vectorfields $X_{\ell}=f_{\ell} \partial_{x}, X_{r}=f_{r} \partial_{x}$ with $\left[X_{\ell}, X_{r}\right]=0$ where $f_{\ell}, f_{r} \in C^{\infty}(\mathbb{R},[0,1])$ satisfy

$$
f_{\ell}(x)=\left\{\begin{array}{ll}
1 & \text { for } x \leq-1 \tag{1}\\
0 & \text { for } x \geq 0,
\end{array} \quad f_{r}(x)= \begin{cases}0 & \text { for } x \leq 0 \\
1 & \text { for } x \geq 1\end{cases}\right.
$$

The normal subgroup $\operatorname{Diff}_{c, 1}(\mathbb{R})=\operatorname{ker}\left(\right.$ Shift $\left._{\ell}\right)=\left\{\varphi=\mathrm{Id}+f: f \in C_{c, 1}^{\infty}(\mathbb{R}), f^{\prime}>-1\right\}$ of diffeomorphisms which have no shift at $-\infty$ will play an important role later on.

Some diffeomorphism groups on \mathbb{R}

We have the following smooth injective group homomorphisms:

$$
\operatorname{Diff}_{c, 2}(\mathbb{R}) \longrightarrow \operatorname{Diff}_{\mathcal{S}_{2}}(\mathbb{R}) \longrightarrow \operatorname{Diff}_{H_{2}^{\infty}}(\mathbb{R}) \longrightarrow \operatorname{Diff}_{\mathcal{B}}(\mathbb{R})
$$

Each group is a normal subgroup in any other in which it is contained, in particular in $\operatorname{Diff}_{\mathcal{B}}(\mathbb{R})$.

For \mathcal{S} this works the same as for C_{c}^{∞}. For H^{∞} it is slightly mote subtle.

The setting

We will denote by $\mathcal{A}(\mathbb{R})$ any of the spaces $C_{c}^{\infty}(\mathbb{R}), \mathcal{S}(\mathbb{R})$ or $H^{\infty}(\mathbb{R})$ and by $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$ the corresponding groups $\operatorname{Diff}_{c}(\mathbb{R})$, Diff $_{\mathcal{S}}(\mathbb{R})$ or Diff $_{H^{\infty}}(\mathbb{R})$ as defined in Sections ??, ?? and ??.

Similarly $\mathcal{A}_{1}(\mathbb{R})$ will denote any of the spaces $C_{c, 1}^{\infty}(\mathbb{R}), \mathcal{S}_{1}(\mathbb{R})$ or $H_{1}^{\infty}(\mathbb{R})$ and $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$ the corresponding groups $\operatorname{Diff}_{c, 1}(\mathbb{R})$, Diff $_{\mathcal{S}_{1}}(\mathbb{R})$ or Diff $_{H_{1}^{\infty}}(\mathbb{R})$ as defined in Sections ??, ?? and ??.

The \dot{H}^{1}-metric. For $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$ and $\operatorname{Diff}_{\mathcal{A}_{1}}(\mathbb{R})$ the homogeneous H^{1}-metric is given by

$$
G_{\varphi}(X \circ \varphi, Y \circ \varphi)=G_{\mathrm{ld}}(X, Y)=\int_{\mathbb{R}} X^{\prime}(x) Y^{\prime}(x) d x
$$

where X, Y are elements of the Lie algebra $\mathcal{A}(\mathbb{R})$ or $\mathcal{A}_{1}(\mathbb{R})$. We shall also use the notation

$$
\langle\cdot, \cdot\rangle_{\dot{H}^{1}}:=G(\cdot, \cdot) .
$$

Theorem

On $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$ the geodesic equation is the Hunter-Saxton equation

$$
\left(\varphi_{t}\right) \circ \varphi^{-1}=u \quad u_{t}=-u u_{x}+\frac{1}{2} \int_{-\infty}^{x}\left(u_{x}(z)\right)^{2} d z
$$

and the induced geodesic distance is positive.
On the other hand the geodesic equation does not exist on the subgroups $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$, since the adjoint $\operatorname{ad}(X)^{*} \check{G}_{\mathrm{ld}}(X)$ does not lie in $\breve{G}_{\mathrm{ld}}(\mathcal{A}(\mathbb{R}))$ for all $X \in \mathcal{A}(\mathbb{R})$.

One obtains the classical form of the Hunter-Saxton equation by differentiating:

$$
u_{t x}=-u u_{x x}-\frac{1}{2} u_{x}^{2}
$$

Note that $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$ is a natural example of a non-robust Riemannian manifold.

Proof

Note that $\check{G}_{\mathrm{ld}}: \mathcal{A}_{1}(\mathbb{R}) \rightarrow \mathcal{A}_{1}(\mathbb{R})^{*}$ is given by $\check{G}_{\mathrm{ld}}(X)=-X^{\prime \prime}$ if we use the L^{2}-pairing $X \mapsto\left(Y \mapsto \int X Y d x\right)$ to embed functions into the space of distributions. We now compute the adjoint of $\operatorname{ad}(X)$:

$$
\begin{aligned}
\left\langle\operatorname{ad}(X)^{*}\right. & \left.\check{G}_{\mathrm{ld}}(Y), Z\right\rangle=\check{G}_{\mathrm{ld}}(Y, \operatorname{ad}(X) Z)=G_{\mathrm{ld}}(Y,-[X, Z]) \\
& =\int_{\mathbb{R}} Y^{\prime}(x)\left(X^{\prime}(x) Z(x)-X(x) Z^{\prime}(x)\right)^{\prime} d x \\
& =\int_{\mathbb{R}} Z(x)\left(X^{\prime \prime}(x) Y^{\prime}(x)-\left(X(x) Y^{\prime}(x)\right)^{\prime \prime}\right) d x
\end{aligned}
$$

Therefore the adjoint as an element of \mathcal{A}_{1}^{*} is given by

$$
\operatorname{ad}(X)^{*} \check{G}_{\mathrm{Id}}(Y)=X^{\prime \prime} Y^{\prime}-\left(X Y^{\prime}\right)^{\prime \prime}
$$

For $X=Y$ we can rewrite this as

$$
\begin{aligned}
\operatorname{ad}(X)^{*} \check{G}_{\mathrm{ld}}(X) & =\frac{1}{2}\left(\left(X^{\prime 2}\right)^{\prime}-\left(X^{2}\right)^{\prime \prime \prime}\right)=\frac{1}{2}\left(\int_{-\infty}^{x} X^{\prime}(y)^{2} d y-\left(X^{2}\right)^{\prime}\right)^{\prime \prime} \\
& =\frac{1}{2} \check{G}_{\mathrm{ld}}\left(-\int_{-\infty}^{x} X^{\prime}(y)^{2} d y+\left(X^{2}\right)^{\prime}\right)
\end{aligned}
$$

If $X \in \mathcal{A}_{1}(\mathbb{R})$ then the function $-\frac{1}{2} \int_{-\infty}^{x} X^{\prime}(y)^{2} d y+\frac{1}{2}\left(X^{2}\right)^{\prime}$ is again an element of $\mathcal{A}_{1}(\mathbb{R})$. This follows immediately from the definition of $\mathcal{A}_{1}(\mathbb{R})$. Therefore the geodesic equation exists on $\operatorname{Diff}_{\mathcal{A} 1}(\mathbb{R})$ and is as given.

However if $X \in \mathcal{A}(\mathbb{R})$, a neccessary condition for $\int_{-\infty}^{x}\left(X^{\prime}(y)\right)^{2} d y \in \mathcal{A}(\mathbb{R})$ would be $\int_{-\infty}^{\infty} X^{\prime}(y)^{2} d y=0$, which would imply $X^{\prime}=0$. Thus the geodesic equation does not exist on $\mathcal{A}(\mathbb{R})$.

The positivity of geodesic distance will follow from the explicit formula for geodesic distance below.

QED.

Theorem

We define the R-map by:

$$
R:\left\{\begin{aligned}
\operatorname{Diff}_{\mathcal{A}_{1}}(\mathbb{R}) & \rightarrow \mathcal{A}\left(\mathbb{R}, \mathbb{R}_{>-2}\right) \subset \mathcal{A}(\mathbb{R}, \mathbb{R}) \\
\varphi & \mapsto 2\left(\left(\varphi^{\prime}\right)^{1 / 2}-1\right)
\end{aligned}\right.
$$

The R-map is invertible with inverse

$$
R^{-1}:\left\{\begin{aligned}
\mathcal{A}\left(\mathbb{R}, \mathbb{R}_{>-2}\right) & \rightarrow \operatorname{Diff}_{\mathcal{A}_{1}}(\mathbb{R}) \\
\gamma & \mapsto x+\frac{1}{4} \int_{-\infty}^{x} \gamma^{2}+4 \gamma d x
\end{aligned}\right.
$$

The pull-back of the flat L^{2}-metric via R is the \dot{H}^{1}-metric on $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$, i.e.,

$$
R^{*}\langle\cdot, \cdot\rangle_{L^{2}}=\langle\cdot, \cdot\rangle_{\dot{H}^{1}} .
$$

Thus the space $\left(\operatorname{Diff}_{\mathcal{A}_{1}}(\mathbb{R}), \dot{H}^{1}\right)$ is a flat space in the sense of Riemannian geometry.

Here $\langle\cdot, \cdot\rangle_{L^{2}}$ denotes the L^{2}-inner product on $\mathcal{A}(\mathbb{R})$ with constant volume $d x$.

Proof

To compute the pullback of the L^{2}-metric via the R-map we first need to calculate its tangent mapping. For this let $h=X \circ \varphi \in T_{\varphi} \operatorname{Diff}_{\mathcal{A}_{1}}(\mathbb{R})$ and let $t \mapsto \psi(t)$ be a smooth curve in Diff $_{\mathcal{A}_{1}}(\mathbb{R})$ with $\psi(0)=\mathrm{Id}$ and $\left.\partial_{t}\right|_{0} \psi(t)=X$. We have:

$$
\begin{aligned}
T_{\varphi} R . h & =\left.\partial_{t}\right|_{0} R(\psi(t) \circ \varphi)=\left.\partial_{t}\right|_{0} 2\left(\left((\psi(t) \circ \varphi)_{x}\right)^{1 / 2}-1\right) \\
& =\left.\partial_{t}\right|_{0} 2\left(\left(\psi(t)_{x} \circ \varphi\right) \varphi_{x}\right)^{1 / 2} \\
& =\left.2\left(\varphi_{x}\right)^{1 / 2} \partial_{t}\right|_{0}\left(\left(\psi(t)_{x}\right)^{1 / 2} \circ \varphi\right)=\left(\varphi_{x}\right)^{1 / 2}\left(\frac{\psi_{t x}(0)}{\left(\psi(0)_{x}\right)^{-1 / 2}} \circ \varphi\right) \\
& =\left(\varphi_{x}\right)^{1 / 2}\left(X^{\prime} \circ \varphi\right)=\left(\varphi^{\prime}\right)^{1 / 2}\left(X^{\prime} \circ \varphi\right) .
\end{aligned}
$$

Using this formula we have for $h=X_{1} \circ \varphi, k=X_{2} \circ \varphi$:
$R^{*}\langle h, k\rangle_{L^{2}}=\left\langle T_{\varphi} R . h, T_{\varphi} R . k\right\rangle_{L^{2}}=\int_{\mathbb{R}} X_{1}^{\prime}(x) X_{2}^{\prime}(x) d x=\langle h, k\rangle_{\dot{H}^{1}} Q E D$

Corollary

Given $\varphi_{0}, \varphi_{1} \in \operatorname{Diff}_{\mathcal{A}_{1}}(\mathbb{R})$ the geodesic $\varphi(t, x)$ connecting them is given by

$$
\varphi(t, x)=R^{-1}\left((1-t) R\left(\varphi_{0}\right)+t R\left(\varphi_{1}\right)\right)(x)
$$

and their geodesic distance is

$$
d\left(\varphi_{0}, \varphi_{1}\right)^{2}=4 \int_{\mathbb{R}}\left(\left(\varphi_{1}^{\prime}\right)^{1 / 2}-\left(\varphi_{0}^{\prime}\right)^{1 / 2}\right)^{2} d x
$$

The methods of Boris and my lecture give local well-posedness of the geodesic equation in $\operatorname{Diff}_{H_{1}^{\infty}}(\mathbb{R})$ only. But this construction shows much more: For $\mathcal{S}_{1}, C_{1}^{\infty}$, and even for many kinds of Denjoy-Carleman ultradifferentiable model spaces (not explained here). This shows that Sobolev space methods for treating nonlinear PDEs is not the only method.

Corollary: The metric space $\left(\operatorname{Diff}_{\mathcal{A}_{1}}(\mathbb{R}), \dot{H}^{1}\right)$ is path-connected and geodesically convex but not geodesically complete. In particular, for every $\varphi_{0} \in \operatorname{Diff}_{\mathcal{A}_{1}}(\mathbb{R})$ and $h \in T_{\varphi_{0}} \operatorname{Diff}_{\mathcal{A}_{1}}(\mathbb{R}), h \neq 0$ there exists a time $T \in \mathbb{R}$ such that $\varphi(t, \cdot)$ is a geodesic for $|t|<|T|$ starting at φ_{0} with $\varphi_{t}(0)=h$, but $\varphi_{x}(T, x)=0$ for some $x \in \mathbb{R}$.

Theorem: The square root representation on the diffeomorphism group $^{\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})}$ is a bijective mapping, given by:

$$
R:\left\{\begin{aligned}
\operatorname{Diff}_{\mathcal{A}}(\mathbb{R}) & \rightarrow\left(\operatorname{Im}(R),\|\cdot\|_{L^{2}}\right) \subset\left(\mathcal{A}\left(\mathbb{R}, \mathbb{R}_{>-2}\right),\|\cdot\|_{L^{2}}\right) \\
\varphi & \mapsto 2\left(\left(\varphi^{\prime}\right)^{1 / 2}-1\right)
\end{aligned}\right.
$$

The pull-back of the restriction of the flat L^{2}-metric to $\operatorname{Im}(R)$ via R is again the homogeneous Sobolev metric of order one. The image of the R-map is the splitting submanifold of $\mathcal{A}\left(\mathbb{R}, \mathbb{R}_{>-2}\right)$ given by:

$$
\operatorname{Im}(R)=\left\{\gamma \in \mathcal{A}\left(\mathbb{R}, \mathbb{R}_{>-2}\right): F(\gamma):=\int_{\mathbb{R}} \gamma(\gamma+4) d x=0\right\}
$$

On the space $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$ the geodesic equation does not exist. Still:
Corollary: The geodesic distance $d^{\mathcal{A}}$ on Diff $_{\mathcal{A}}(\mathbb{R})$ coincides with the restriction of $d^{\mathcal{A}_{1}}$ to $\operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$, i.e., for $\varphi_{0}, \varphi_{1} \in \operatorname{Diff}_{\mathcal{A}}(\mathbb{R})$ we have

$$
d^{\mathcal{A}}\left(\varphi_{0}, \varphi_{1}\right)=d^{\mathcal{A}_{1}}\left(\varphi_{0}, \varphi_{1}\right) .
$$

