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Some words on smooth convenient calculus

Traditional differential calculus works well for finite dimensional
vector spaces and for Banach spaces.

Beyond Banach spaces, the main difficulty is that composition of
linear mappings stops to be jointly continuous at the level of
Banach spaces, for any compatible topology.

For more general locally convex spaces we sketch here the
convenient approach as explained in [Frölicher-Kriegl 1988] and
[Kriegl-Michor 1997].



The c∞-topology

Let E be a locally convex vector space. A curve c : R→ E is
called smooth or C∞ if all derivatives exist and are continuous. Let
C∞(R,E ) be the space of smooth functions. It can be shown that
the set C∞(R,E ) does not depend entirely on the locally convex
topology of E , only on its associated bornology (system of
bounded sets). The final topologies with respect to the following
sets of mappings into E coincide:

1. C∞(R,E ).

2. The set of all Lipschitz curves (so that

{ c(t)−c(s)
t−s : t 6= s, |t|, |s| ≤ C} is bounded in E , for each C ).

3. The set of injections EB → E where B runs through all
bounded absolutely convex subsets in E , and where EB is the
linear span of B equipped with the Minkowski functional
‖x‖B := inf{λ > 0 : x ∈ λB}.

4. The set of all Mackey-convergent sequences xn → x (there
exists a sequence 0 < λn ↗∞ with λn(xn − x) bounded).



The c∞-topology. II

This topology is called the c∞-topology on E and we write c∞E
for the resulting topological space.

In general (on the space D of test functions for example) it is finer
than the given locally convex topology, it is not a vector space
topology, since scalar multiplication is no longer jointly continuous.

The finest among all locally convex topologies on E which are
coarser than c∞E is the bornologification of the given locally
convex topology. If E is a Fréchet space, then c∞E = E .



Convenient vector spaces

A locally convex vector space E is said to be a convenient vector
space if one of the following holds (called c∞-completeness):

1. For any c ∈ C∞(R,E ) the (Riemann-) integral
∫ 1

0 c(t)dt
exists in E .

2. Any Lipschitz curve in E is locally Riemann integrable.

3. A curve c : R→ E is C∞ if and only if λ ◦ c is C∞ for all
λ ∈ E ∗, where E ∗ is the dual of all cont. lin. funct. on E .

I Equiv., for all λ ∈ E ′, the dual of all bounded lin. functionals.
I Equiv., for all λ ∈ V, where V is a subset of E ′ which

recognizes bounded subsets in E .

4. Any Mackey-Cauchy-sequence (i. e. tnm(xn − xm)→ 0 for
some tnm →∞ in R) converges in E . This is visibly a mild
completeness requirement.



Convenient vector spaces. II

5. If B is bounded closed absolutely convex, then EB is a Banach
space.

6. If f : R→ E is scalarwise Lipk , then f is Lipk , for k > 1.

7. If f : R→ E is scalarwise C∞ then f is differentiable at 0.

Here a mapping f : R→ E is called Lipk if all derivatives up to
order k exist and are Lipschitz, locally on R. That f is scalarwise
C∞ means λ ◦ f is C∞ for all continuous (equiv., bounded) linear
functionals on E .



Smooth mappings

Let E , and F be convenient vector spaces, and let U ⊂ E be
c∞-open. A mapping f : U → F is called smooth or C∞, if
f ◦ c ∈ C∞(R,F ) for all c ∈ C∞(R,U).

If E is a Fréchet space, then this notion coincides with all other
reasonable notions of C∞-mappings. Beyond Fréchet mappings, as
a rule, there are more smooth mappings in the convenient setting
than in other settings, e.g., C∞c .



Main properties of smooth calculus

1. For maps on Fréchet spaces this coincides with all other
reasonable definitions. On R2 this is non-trivial [Boman,1967].

2. Multilinear mappings are smooth iff they are bounded.

3. If E ⊇ U
f−−→ F is smooth then the derivative

df : U × E → F is smooth, and also df : U → L(E ,F ) is
smooth where L(E ,F ) denotes the space of all bounded linear
mappings with the topology of uniform convergence on
bounded subsets.

4. The chain rule holds.

5. The space C∞(U,F ) is again a convenient vector space where
the structure is given by the obvious injection

C∞(U,F )
C∞(c,`)−−−−−−→

∏
c∈C∞(R,U),`∈F∗

C∞(R,R), f 7→ (` ◦ f ◦ c)c,`,

where C∞(R,R) carries the topology of compact convergence
in each derivative separately.



Main properties of smooth calculus, II

6. The exponential law holds: For c∞-open V ⊂ F ,

C∞(U,C∞(V ,G )) ∼= C∞(U × V ,G )

is a linear diffeomorphism of convenient vector spaces.
Note that this is the main assumption of variational calculus.
Here it is a theorem.

7. A linear mapping f : E → C∞(V ,G ) is smooth (by (2)
equivalent to bounded) if and only if

E
f−−→ C∞(V ,G )

evv−−−→ G is smooth for each v ∈ V .

(Smooth uniform boundedness theorem,
see [KM97], theorem 5.26).



Main properties of smooth calculus, III

8. The following canonical mappings are smooth.

ev : C∞(E ,F )× E → F , ev(f , x) = f (x)

ins : E → C∞(F ,E × F ), ins(x)(y) = (x , y)

( )∧ : C∞(E ,C∞(F ,G ))→ C∞(E × F ,G )

( )∨ : C∞(E × F ,G )→ C∞(E ,C∞(F ,G ))

comp : C∞(F ,G )× C∞(E ,F )→ C∞(E ,G )

C∞( , ) : C∞(F ,F1)× C∞(E1,E )→
→ C∞(C∞(E ,F ),C∞(E1,F1))

(f , g) 7→ (h 7→ f ◦ h ◦ g)∏
:
∏

C∞(Ei ,Fi )→ C∞(
∏

Ei ,
∏

Fi )



This ends our review of the standard results of convenient calculus.

Convenient calculus (having properties 6 and 7) exists also for:

I Real analytic mappings [Kriegl,M,1990]

I Holomorphic mappings [Kriegl,Nel,1985] (notion of
[Fantappié, 1930-33])

I Many classes of Denjoy Carleman ultradifferentible functions,
both of Beurling type and of Roumieu-type
[Kriegl,M,Rainer, 2009, 2011, 2013]



Manifolds of mappings

Let M be a compact (for simplicity’s sake) fin. dim. manifold and
N a manifold. We use an auxiliary Riemann metric ḡ on N. Then

0N_�
��

zero section

{{
N� _
��

diagonal

%%
TN V N? _

open
oo (πN ,expḡ )

∼=
// V N×N � �

open
// N × N

C∞(M,N), the space of smooth mappings M → N, has the
following manifold structure. Chart, centered at f ∈ C∞(M,N), is:

C∞(M,N) ⊃ Uf = {g : (f , g)(M) ⊂ V N×N} uf−−−→ Ũf ⊂ Γ(f ∗TN)

uf (g) = (πN , expḡ )−1 ◦ (f , g), uf (g)(x) = (expḡf (x))−1(g(x))

(uf )−1(s) = expḡf ◦ s, (uf )−1(s)(x) = expḡf (x)(s(x))



Manifolds of mappings II

Lemma: C∞(R, Γ(M; f ∗TN)) = Γ(R×M; pr2
∗ f ∗TN)

By Cartesian Closedness (I am lying a little).

Lemma: Chart changes are smooth (C∞)
Ũf1 3 s 7→ (πN , expḡ ) ◦ s 7→ (πN , expḡ )−1 ◦ (f2, expḡ

f1
◦ s)

since they map smooth curves to smooth curves.

Lemma: C∞(R,C∞(M,N)) ∼= C∞(R×M,N).
By Cartesian closedness.

Lemma: Composition C∞(P,M)× C∞(M,N)→ C∞(P,N),
(f , g) 7→ g ◦ f , is smooth, since it maps smooth curves to smooth
curves

Corollary (of the chart structure):

TC∞(M,N) = C∞(M,TN)
C∞(M,πN)−−−−−−−−→ C∞(M,N).



Regular Lie groups

We consider a smooth Lie group G with Lie algebra g = TeG
modelled on convenient vector spaces. The notion of a regular Lie
group is originally due to Omori et al. for Fréchet Lie groups, was
weakened and made more transparent by Milnor, and then carried
over to convenient Lie groups; see [KM97], 38.4.
A Lie group G is called regular if the following holds:

I For each smooth curve X ∈ C∞(R, g) there exists a curve
g ∈ C∞(R,G ) whose right logarithmic derivative is X , i.e.,{

g(0) = e

∂tg(t) = Te(µg(t))X (t) = X (t).g(t)

The curve g is uniquely determined by its initial value g(0), if
it exists.

I Put evolrG
(X ) = g(1) where g is the unique solution required

above. Then evolrG : C∞(R, g)→ G is required to be C∞

also. We have EvolXt := g(t) = evolG (tX ).



Diffeomorphism group of compact M

Theorem: For each compact manifold M, the diffeomorphism
group is a regular Lie group.

Proof: Diff(M)
open−−−−→ C∞(M,M). Composition is smooth by

restriction. Inversion is smooth: If t 7→ f (t, ) is a smooth curve
in Diff(M), then f (t, )−1 satisfies the implicit equation
f (t, f (t, )−1(x)) = x , so by the finite dimensional implicit
function theorem, (t, x) 7→ f (t, )−1(x) is smooth. So inversion
maps smooth curves to smooth curves, and is smooth.
Let X (t, x) be a time dependent vector field on M (in
C∞(R,X(M))). Then Fl∂t×Xs (t, x) = (t + s,EvolX (t, x)) satisfies
the ODE ∂t Evol(t, x) = X (t,Evol(t, x)). If
X (s, t, x) ∈ C∞(R2,X(M)) is a smooth curve of smooth curves in
X(M), then obviously the solution of the ODE depends smoothly
also on the further variable s, thus evol maps smooth curves of
time dependant vector fields to smooth curves of diffeomorphism.
QED.



Groups of smooth diffeomorphisms on Rn

If we consider the group of all orientation preserving
diffeomorphisms Diff(Rn) of Rn, it is not an open subset of
C∞(Rn,Rn) with the compact C∞-topology. So it is not a smooth
manifold in the usual sense, but we may consider it as a Lie group
in the cartesian closed category of Frölicher spaces, see [KM97],
section 23, with the structure induced by the injection
f 7→ (f , f −1) ∈ C∞(Rn,Rn)× C∞(Rn,R).

We shall now describe regular Lie groups in Diff(Rn) which are
given by diffeomorphisms of the form f = IdR +g where g is in
some specific convenient vector spaces of bounded functions in
C∞(Rn,Rn). Now we discuss these spaces on Rn, we describe the
smooth curves in them, and we describe the corresponding groups.



The group DiffB(Rn)

The space B(Rn) (called DL∞(Rn) by [L.Schwartz 1966]) consists
of all smooth functions which have all derivatives (separately)
bounded. It is a Fréchet space. By [Vogt 1983], the space B(Rn)
is linearly isomorphic to `∞⊗̂ s for any completed tensor-product
between the projective one and the injective one, where s is the
nuclear Fréchet space of rapidly decreasing real sequences. Thus
B(Rn) is not reflexive, not nuclear, not smoothly paracompact.
The space C∞(R,B(Rn)) of smooth curves in B(Rn) consists of
all functions c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ Nn
≥0 and each t ∈ R the expression

∂kt ∂
α
x c(t, x) is uniformly bounded in x ∈ Rn, locally in t.

Here ∂αx = ∂|α|

∂xα .
Diff+

B (Rn) =
{

f = Id +g : g ∈ B(Rn)n, det(In + dg) ≥ ε > 0
}

denotes the corresponding group, see below.



The group DiffH∞(Rn)

The space H∞(Rn) =
⋂

k≥1 Hk(Rn) is the intersection of all
Sobolev spaces which is a reflexive Fréchet space. It is called
DL2(Rn) in [L.Schwartz 1966]. By [Vogt 1983], the space H∞(Rn)
is linearly isomorphic to `2⊗̂ s. Thus it is not nuclear, not
Schwartz, not Montel, but still smoothly paracompact.
The space C∞(R,H∞(Rn)) of smooth curves in H∞(Rn) consists
of all functions c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ Nn
≥0 the expression ‖∂kt ∂αx f (t, )‖L2(Rn)

is locally bounded near each t ∈ R.

Diff+
H∞(R) =

{
f = Id +g : g ∈ H∞(R), det(In + dg) > 0

}
denotes

the correponding group.



The group DiffS(Rn)

The algebra S(Rn) of rapidly decreasing functions is a reflexive
nuclear Fréchet space.
The space C∞(R,S(Rn)) of smooth curves in S(Rn) consists of
all functions c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ,m ∈ N≥0 and α ∈ Nn
≥0, the expression

(1 + |x |2)m∂kt ∂
α
x c(t, x) is uniformly bounded in x ∈ Rn,

locally uniformly bounded in t ∈ R.

Diff+
S (Rn) =

{
f = Id +g : g ∈ S(Rn)n, det(In + dg) > 0

}
is the

correponding group.



The group Diffc(Rn)

The algebra C∞c (Rn) of all smooth functions with compact
support is a nuclear (LF)-space.
The space C∞(R,C∞c (Rn)) of smooth curves in C∞c (Rn) consists
of all functions f ∈ C∞(Rn+1,R) satisfying the following property:

• For each compact interval [a, b] in R there exists a compact
subset K ⊂ Rn such that f (t, x) = 0 for
(t, x) ∈ [a, b]× (Rn \ K ).

Diffc(Rn) =
{

f = Id +g : g ∈ C∞c (Rn)n, det(In + dg) > 0
}

is the
correponding group.



Diffeomorphism groups on Rn

The function spaces are boundedly mapped into each other:

C∞c (Rn) // S(Rn) // H∞(Rn) // B(Rn)

and each space is a bounded locally convex algebra and a bounded
B(Rn)-module. Thus each space is an ideal in each larger space.

Theorem. The sets of diffeomorphisms Diffc(Rn), DiffS(Rn),
DiffH∞(Rn), and DiffB(Rn) are all smooth regular Lie groups. We
have the following smooth injective group homomorphisms

Diffc(Rn) // DiffS(Rn) // DiffH∞(Rn) // DiffB(Rn) .

Each group is a normal subgroup in any other in which it is
contained, in particular in DiffB(Rn).

Corollary. DiffB(Rn) acts on Γc , ΓS and ΓH∞ of any tensorbundle
over Rn by pullback. The infinitesimal action of the Lie algebra
XB(Rn) on these spaces by the Lie derivative thus maps each of
these spaces into itself. A fortiori, DiffH∞(Rn) acts on ΓS of any
tensor bundle by pullback.



EPDiff

On the Lie algebra of VF XH∞(Rn) = H∞(Rn)n we consider a
weak inner product of the form

‖v‖2
L =

∫
Rn

〈Lv , v〉 dx

where L is a positive L2-symmetric (pseudo-) differential operator
(inertia operator). Leads to a right invariant metric on DiffH∞(Rn)
whose geodesic equation is

∂tϕ = u ◦ ϕ, ∂tu = − ad>
u u, where∫

〈L(ad>
u u), v〉 dx =

∫
〈L(u),−[u, v ]〉 dx

Condsider the momentum m = L(v) of a vector field, so that
〈v ,w〉L =

∫
〈m,w〉dx . Then the geodesic equation is of the form:

∂tm = −(v · ∇)m − div(v)m −m · (Dv)t

∂tmi = −
∑
j

(vj∂xj mi + ∂xj vj ·mi + mj∂xi vj)

v = K ∗m, where K is the matrix-valued Green function of L.



Suppose, the time dependent vector field v integrates to a flow ϕ
via

∂tϕ(x , t) = v(ϕ(x , t), t)

and we describe the momentum by a measure-valued 1-form

m̃ =
∑
i

midxi ⊗ (dx1 ∧ · · · ∧ dxn)

so that ‖v‖2
L =

∫
(v , m̃) makes intrinsic sense. Then the geodesic

equation is equivalent to: m̃ is invariant under the flow ϕ, that is,

m̃(·, t) = ϕ(·, t)∗m̃(·, 0),

whose infinitesimal version is the following, using the Lie derivative:

∂tm̃(·, t) = −Lv(·,t)m̃(·, t).



Because of this invariance, if a geodesic begins with momentum of
compact support, its momentum will always have compact
support; and if it begins with momentum which, along with all its
derivatives, has ‘rapid’ decay at infinity, that is it is in O(‖x‖−n)
for every n, this too will persist, because DiffS(Rn)DiffH∞(Rn) is a
normal subgroup.

Moreover this invariance gives us a Lagrangian form of EPDiff:

∂tϕ(x , t) =

∫
Kϕ(·,t)(x , y)(ϕ(y , t)∗m̃(y , 0))

= Kϕ(·,t) ∗ (ϕ(·, t)∗m̃(·, 0))

where Kϕ(x , y) = K (ϕ(x), ϕ(y))



Aim of this talk: Solutions of Euler’s equation are limits of
solutions of equations in the EPDiff class with the operator:

Lε,η = (I − η2

p 4)p ◦ (I − 1
ε2∇ ◦ div), for any ε > 0, η ≥ 0.

All solutions of Euler’s equation are limits of solutions of these
much more regular EPDiff equations and give a bound on their
rate of convergence. In fact, so long as p > n/2 + 1, these EPDiff
equations have a well-posed initial value problem with unique
solutions for all time. Moreover, although L0,η does not make
sense, the analog of its Green’s function K0,η does make sense as
do the geodesic equations in momentum form. These are, in fact,
geodesic equations on the group of volume preserving
diffeomorphisms SDiff and become Euler’s equation for η = 0. An
important point is that so long as η > 0, the equations have
soliton solutions (called vortons) in which the momentum is a sum
of delta functions.



Relation to Euler’s equ. Oseledetz 1988

We use the kernel

Kij(x) = δijδ0(x) + ∂xi∂xj H

where H is the Green’s function of −∆. But K now has a rather
substantial pole at the origin. If Vn = Vol(Sn−1),

H(x) =

{
1

(n−2)Vn
(1/|x |n−2) if n > 2,

1
V2

log(1/|x |) if n = 2

so that, as a function

(M0)ij(x) := ∂xi∂xj H(x) =
1

Vn
·

nxixj − δij |x |2

|x |n+2
, if x 6= 0.

Convolution with any (M0)ij is still a Calderon-Zygmund singular
integral operator defined by the limit as ε→ 0 of its value outside
an ε-ball, so it is reasonably well behaved. As a distribution there
is another term:

∂xi∂xj H
distribution

= (M0)ij −
1

n
δijδ0



Pdiv=0 : m 7→ v =
(
m + ∂2(H)distr

)
=
(
n−1
n ·m + M0 ∗m

)
is the orthogonal projection of the space of vector fields m onto
the subspace of divergence free vector fields v , orthogonal in each
Sobolev space Hp, p ∈ Z≥0. (Hodge alias Helmholtz projection).

The matrix M0(x) has Rx as an eigenspace with eigenvalue
(n − 1)/Vn|x |n and Rx⊥ as an eigenspace with eigenvalue
−1/Vn|x |n. Let PRx and PRx⊥ be the orthonormal projections
onto the eigenspaces, then

Pdiv=0(m)(x) = n−1
n ·m(x)+

+
1

Vn
· lim
ε→0

∫
|y |≥ε

1

|y |n
(
(n − 1)PRy (m(x − y))− PRy⊥(m(x − y)

)
dy .



With this K , EPDiff in the variables (v ,m) is the Euler equation in
v with pressure a function of (v ,m). Oseledets’s form for Euler:

v = Pdiv=0(m)

∂tm = −(v · ∇)m −m · (Dv)t

Let m̃ =
∑

i midxi be the 1-form associated to m. Since div v = 0,
we can use m̃ instead of

∑
i midxi ⊗ dx1 ∧ . . . dxn. Integrated form:

∂tϕ = Pdiv=0(m) ◦ ϕ
m̃(·, t) = ϕ(·, t)∗m̃(·, 0)

This uses the variables v ,m instead of v and pressure.
Advantage: m, like vorticity, is constant when transported by the
flow. m determines the vorticity the 2-form ω = d(

∑
i vidxi ),

because v and m differ by a gradient, so ω = dm̃ also. Thus:
vorticity is constant along flows follows from the same fact for
momentum 1-form m̃.



However, these equ. are not part of the true EPDiff framework
because the operator K = Pdiv=0 is not invertible and there is no
corresponding differential operator L.

In fact, v does not determine m as we have rewritten Euler’s
equation using extra non-unique variables m, albeit ones which
obey a conservation law so they may be viewed simply as extra
parameters.



Approximationg Euler by EPDiff

Replace the Green’s function H of −∆ by the Green’s function Hε

of the positive ε2I −4 for ε > 0 (whose dimension is length−1).
The Green’s function is be given explicitly using the ‘K’ Bessel
function via the formula

Hε(x) = cnε
n−2|εx |1−n/2Kn/2−1(|εx |)

for a suitable constant cn independent of ε. Then we get the
modified kernel

(Kε)ij = δijδ0 + (∂xi∂xj Hε)distr

This has exactly the same highest order pole at the origin as K did
and the second derivative is again a Calderon-Zygmund singular
integral operator minus the same delta function. The main
difference is that this kernel has exponential decay at infinity, not
polynomial decay. By weakening the requirement that the velocity
be divergence free, the resulting integro-differential equation
behaves much more locally, more like a hyperbolic equation rather
than a parabolic one.



The corresponding inverse is the differential operator

Lε = I − 1
ε2∇ ◦ div

v = Kε ∗m, m = Lε(v)

‖v‖2
Lε =

∫
〈v , v〉+ div(v). div(v)dx

Geodesic equation:

∂t(vi ) = (Kε)ij ∗ ∂t(mj)

= −(Kε)ij ∗ (vkvj ,k)− vi div(v)− 1
2 (Kε)ij ∗

(
|v(x)|2 + ( div(v)

ε )2
)
,j

Curiously though, the parameter ε can be scaled away. That is, if
v(x , t),m(x , t) is a solution of EPDiff for the kernel K1, then
v(εx , εt),m(εx , εt) is a solution of EPDiff for Kε.



Regularizing more

Compose Lε with a scaled version of the standard regularizing
kernel (I −4)p to get

Lε,η = (I − η2

p 4)p ◦ (I − 1
ε2∇ ◦ div)

Kε,η : = Lε,η
−1 = G (p)

η ∗ Kε

where G
(p)
η is the Green’s function of (I − η2

p 4)p and is again given

explicitly by a ‘K’-Bessel function dp,nη
−n|x |p−n/2Kp−n/2(|x |/η).

For p � 0, the kernel converges to a Gaussian with variance
depending only on η, namely (2

√
πη)−ne−|x |

2/4η2
. This follows

because the Fourier transform takes G
(p)
η to

(
1 + η2|ξ|2

p

)−p
, whose

limit, as p →∞, is e−η
2|ξ|2 . These approximately Gaussian kernels

lie in Cq if q ≤ p − (n + 1)/2.

So long as the kernel is in C 1, it is known that EPDiff has
solutions for all time, as noted first by A.Trouve and L.Younes.



Theorem

Let F (x) = f (|x |) be any integrable C 2 radial function on Rn.
Assume n ≥ 3. Define:

HF (x) =

∫
Rn

min
(

1
|x |n−2 ,

1
|y |n−2

)
F (y)dy

=
1

|x |n−2

∫
|y |≤|x |

F (y)dy +

∫
|y |≥|x |

F (y)

|y |n−2
dy

Then HF is the convolution of F with 1
|x |n−2 , is in C 4 and:

∂i (HF )(x) = −(n − 2)
xi
|x |n

∫
|y |≤|x |

F (y)dy

∂i∂j(HF )(x) = (n − 2)

(
nxixj − δij |x |2

|x |n+2

∫
|y |≤|x |

F (y)dy − Vn
xixj
|x |2

F (x)

)

If n = 2, the same holds if you replace 1/|x |n−2 by log(1/|x |) and
omit the factors (n − 2) in the derivatives.



no L K0,0 = Pdiv=0 = δijδ0 + (∂i∂jH)distr

no L K0,η = G
(p)
η ∗ Pdiv=0 – see above

Lε,0 = I − 1
ε2∇ ◦ div Kε,0 = δijδ0 + ∂i∂jHε

Lε,η =
(

I − η2

p 4
)p
◦ Kε,η = δijG

(p)
η + ∂i∂j(G

(p)
η ∗ Hε)

◦
(
I − 1

ε2∇ ◦ div
)

Theorem: Let ε ≥ 0, η > 0, p ≥ (n + 3)/2 and K = Kε,η be the
corresponding kernel. For any vector-valued distribution m0 whose
components are finite signed measures, consider the Lagrangian
equation for a time varying C 1-diffeomorphism ϕ(·, t) with
ϕ(x , 0) ≡ x:

∂tϕ(x , t) =

∫
K (ϕ(x , t)− ϕ(y , t))(Dϕ(y , t))−1,>m0(y)dy .

Here Dϕ is the spatial derivative of ϕ. This equation has a unique
solution for all time t.



Proof: The Eulerian velocity at ϕ is:

Vϕ(x) =

∫
K (x − ϕ(y))(Dϕ(y))−1,>m0(y)dy

and Wϕ(x) = Vϕ(ϕ(x)) is the velocity in ‘material’ coordinates.
Note that because of our assumption on m0, if ϕ is a
C 1-diffeomorphism, then Vϕ and Wϕ are C 1 vector fields on Rn; in
fact, they are as differentiable as K is, for suitably decaying m.
The equation can be viewed as a the flow equation for the vector
field ϕ 7→Wϕ on the union of the open sets

Uc =
{
ϕ ∈ C 1(Rn)n : ‖ Id−ϕ‖C1 < 1/c , det(Dϕ) > c

}
,

where c > 0. The union of all Uc is the group DiffC1
b
(Rn) of all

C 1-diffeomorphisms which, together with their inverses, differ from
the identity by a function in C 1(Rn)n with bounded C 1-norm. We
claim this vector field is locally Lipschitz on each Uc :

‖Wϕ1 −Wϕ2‖C1 ≤ C .‖ϕ1 − ϕ2‖C1

where C depends only on c : Use that K is uniformly continuous
and use ‖Dϕ−1‖ ≤ ‖Dϕ‖n−1/| det(Dϕ)|.



As a result we can integrate the vector field for short times in
DiffC1

b
(Rn). But since (Dϕ(y , t))−1,>m0(y) is then again a signed

finite Rn-valued measure,∫
Vϕ(·,t)(x)(Dϕ(y , t))−1,>m0(y)dx = ‖Vϕ(·,t)‖Lε,η

is actually finite for each t. Using the fact that in EPDiff the
Lε,η-energy ‖Vϕ(·,t)‖Lε,η of the Lε,η-geodesic is constant in t, we
get a bound on the norm ‖Vϕ(·,t)‖Hp , depending of course on η
but independent of t, hence a bound on ‖Vϕ(·,t)‖C1 . Thus
‖ϕ(·, t)‖C0 grows at most linearly in t. But
∂tDϕ = DWϕ = DVϕ ·Dϕ which shows us that Dϕ grows at most
exponentially in t. Hence det Dϕ can shrink at worst exponentially
towards zero, because ∂t det(Dϕ) = Tr(Adj(Dϕ).∂tDϕ). Thus for
all finite t, the solution ϕ(·, t) stays in a bounded subset of our
Banach space and the ODE can continue to be solved. QED.



Lemma: If η ≥ 0 and ε > 0 are bounded above, then the norm

‖v‖2
k,ε,η =

∑
|α|≤k

∫
〈DαLε,ηv ,Dαv〉dx

is bounded above and below by the metric, with constants
independent of ε and η:

‖v‖2
Hk + 1

ε2 ‖div(v)‖2
Hk +

∑
k+1≤|α|≤k+p

η2(|α|−k)

∫
|Dαv |2+ 1

ε2 |Dαdiv(v)|2

Main estimate: Assume k is sufficiently large, for instance
k ≥ (n + 2p + 4) works, then the velocity field of a solution
satisfies:

|∂t
(
‖v‖2

k,ε,η

)
| ≤ C .‖v‖3

k,ε,η

where, so long ε and η are bounded above, the constant C is
independent of ε and η.



Theorem: Fix k , p, n with p > n/2 + 1, k ≥ n + 2p + 4 and
assume (ε, η) ∈ [0,M]2 for some M > 0. Then there are constants
t0,C such that for all initial v0 ∈ Hk+p+1, there is a unique
solution vε,η(x , t) of EPDiff (including the limiting Euler case) for
t ∈ [0, t0]. The solution vε,η(·, t) ∈ Hk+p+1 depends continuously
on ε, η ∈ [0,M]2 and satisfies ‖vε,η(·, t)‖k,ε,η < C for all t ∈ [0, t0].

Theorem: Take any k and M and any smooth initial velocity
v(·, 0). Then there are constants t0,C such that Euler’s equation
and (ε, 0)-EPDiff have solutions v0 and vε respectively for
t ∈ [0, t0] and all ε < M and these satisfy:

‖v0(·, t)− vε(·, t)‖Hk ≤ Cε.

Theorem: Let ε > 0. Take any k and M and any smooth initial
velocity v(·, 0). Then there are constants t0,C such that
(ε, 0)-EPDiff and (ε, η)-EPDiff have solutions v0 and vη
respectively for t ∈ [0, t0] and all ε, η < M and these satisfy:

‖v0(·, t)− vη(·, t)‖Hk ≤ Cη2.



Vortons: Soliton-like solutions via landmark theory

We have a C 1 kernel, so we can consider solutions in which
momentum m is supported in a finite set {P1, · · · ,PN}, so that
the components of the momentum field are given by
mi (x) =

∑
a maiδ(x − Pa). The support is called the set of

landmark points and in this case, EPDiff reduces to a set of
Hamiltonian ODE’s based on the kernel K = Kε,η, ε ≥ 0, η > 0:

Energy E =
∑
a,b

maiKij(Pa − Pb)mjb

dPai

dt
=
∑
b,j

Kij(Pa − Pb)mbj

dmai

dt
= −

∑
b,j ,k

∂xi Kjk(Pa − Pb)majmbk

where a, b enumerate the points and i , j , k the dimensions in Rn.
These are essentially Roberts’ equations from 1972.



One landmark point

Its momentum must be constant hence so is its velocity. Therefore
the momentum moves uniformly in a straight line ` from −∞ to
+∞.
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Momentum is tranformed to vortex-like velocity field by
kernel K0,ε

The dipole given by the kernel K0,η in dimension 2.



Streamlines and MatLab’s ‘coneplot’ to visualize the vector field
given by the x1-derivative of the kernel K0,1 times the vector
(1, 2, 0).



Two landmark points
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ρ
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Level sets of energy for the collision of two vortons with m = 0,
η = 1, ω = 1. The coordinates are ρ = |δP| and |δm|, and the
state space is the double cover of the area above and right of the
heavy black line, the two sheets being distinguished by the sign of
〈δm, δP〉. The heavy black line which is the curve ρ · |δm| = ω
where 〈δm, δP〉 = 0. Each level set is a geodesic. If they hit the
black line, they flip to the other sheet and retrace their path.
Otherwise ρ goes to zero at one end of the geodesic.



Geodesics in the δP plane all starting at the point marked by an X
but with m = m1 + m2 =const. along the y -axis varying from 0 to
10. Here η = 1, the initial point is (5, 0) and the initial momentum
is (−3, .5). Note how the two vortons repel each other on some
geodesics and attract on others. A blow up shows the spiraling
behavior as they collapse towards each other.



The generalized Euler flow on the space immersions

Let now (N, ḡ) be a Riemannian manifold (of bounded geometry),
and Imm(M,N) the space of all immersions M → N. For f ∈ Imm
we have:

I Tf Imm = Γ(f ∗TN) = {h : M → TN : πN ◦ h = f }.
I Tf Imm 3 h = Tf .h> + h⊥ ∈ Tf .X(M)⊕ Γ(Nor(f ))

I g = f ∗ḡ be the induced metric on M.

I vol(g) = vol(f ∗ḡ) the induced volume form.

I ∇g , ∇ḡ , S = S f ∈ Γ(S2T ∗M ⊗ Nor(f )) second fund. form.

I Trg (S) ∈ Γ(Nor(f )) mean curvature.



The differential of the pullback metric

Imm→ Γ(S2
>0T ∗M), f 7→ g = f ∗ḡ , is given by

D(f ,h)g = 2 Sym ḡ(∇h,Tf ) = −2ḡ(h⊥,S) + 2 Sym∇(h>)[

= −2ḡ(h⊥, S) + Lh>g .

The differential of the volume density

Imm→ Vol(M), f 7→ vol(g) = vol(f ∗ḡ) is given by

D(f ,h)vol(g) = Trg
(
ḡ(∇h,Tf )

)
vol(g)

=
(

divg (h>)− ḡ
(
h⊥,Trg (S)

))
vol(g).



Let us fix a volume density on M.

Theorem. [Mathieu Molitor 2012, for embeddings] The space

Immµ,Tr(S)(M,N) =

= {f ∈ Emb(M,N) : vol(f ∗ḡ) = µ,Tr(S f ) nowhere 0}

of volume preserving immersions with nowhere vanishing mean
curvature is a tame Fréchet submanifold of Imm(M,N).

The proof uses the Hamilton-Nash-Moser implicit function
theorem.



Some weak Riemannian metrics on spaces of immersions

For f ∈ Imm(M,N) and h, k, · · · ∈ Tf Imm(M,N);

G 0
f (h, k) =

∫
M

ḡ(h, k)vol(f ∗ḡ), the L2 −metric.

Geodesic distance vanishes for G 0.

G ε
f (h, h) =

∫
M

(
ḡ(h, h) +

1

ε2

(
divg (h>)− ḡ(h⊥,Trg S)

)2
)

vol(f ∗ḡ)

or =

∫
M

(
ḡ(h, h) +

1

ε2
ḡ(h⊥,Trg S)2 +

1

ε2
divg (h>)2

)
vol(f ∗ḡ)

=

∫
M

ḡ
(

Lε,0h, h
)

vol(f ∗ḡ), where

Lε,0 = 1 +
1

ε2
Trg (S)⊗ ḡ(Trg S) +

1

ε2
Tf . gradg divg ( )>

is a linear differential operator Tf Imm(M,N)→ Tf Imm(M,N) of
order 2 which depends smoothly on f . It is not elliptic.

Theorem G ε on Imm(M,N) has positive geodesic distance.
Proof not yet written.



Now we add a regularizing term of order 2p to the metric, using a
parameter η > 0,

G ε,η
f (h, h) =

∫
M

ḡ
(

Lε,ηh, h
)

vol(f ∗ḡ), where

Lε,η = 1 +
1

ε2
Trg (S)⊗ ḡ(Trg S) +

1

ε2
Tf . gradg divg ( )> +

η2p

pp
(∆g )p

For p ≥ 2 the differential operator Lε,η is elliptic.

Let Kε and Kε,η be the kernels (inverses) for the operators Lε and
Lε,η.



Theorem. [Mathieu Molitor 2012, for embeddings] For
f ∈ Imm(M,N) and g = f ∗ḡ let us denote by

Tf ,vol(g)Imm(M,N) :=

= {h ∈ Tf Imm(M,N) : divg (h>)− ḡ(h⊥,Tr(S)) = 0}.

Then for each h ∈ Tf Imm(M,N) there exist unique
hvol(g) ∈ Tf ,vol(g)Imm(M,N) and p = ph ∈ C∞(M) such that

h = hvol(g) + Tf . gradg (ph) + ph.Tr(S).

Moreover, the mapping K f
0 : h→ hvol(g) and K̄ f

0 h 7→ ph is
bounded linear in h and smooth on f .

If M = N and f = Id this is the Helmholtz decomposition of vector
fields X(M) = Xdivg=0(M)⊕ gradg (C∞(M)).



Theorem. Geodesic distance is positive for the weak Riemannian
metric G ε,0 on each connected component of Imm(M,N).
Theorem: Let ε ≥ 0, η > 0, p ≥ (dim(M) + 3)/2. Then the
geodesic equation for the metric G ε,η on Imm(M,N) is globally
wellposed: exp : T Imm→ Imm is everywhere defined and induces
a diffeomorphisms (πImm, exp) : T Imm→ Imm× Imm from a
neighbourhood of the zero section to a neighbourhood of the
diagonal.
Local wellposedness follows from [BHM2012]. Global
wellposedness is NOT yet proved in general, only for the case
Imm(S1,R2), in [BMM2013].

Theorem: Let ε ≥ 0 > 0. Then the geodesic equation for the
metric G ε on Imm(M,N) is locally wellposed:
Not yet proved.



Thank you for listening.


