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EPDiff

On the space of vector fields XH∞(Rn) = H∞(Rn)n we consider a
weak inner product of the form

‖v‖2
L =

∫
Rn

〈Lv , v〉 dx

where L is a positive L2-symmetric (pseudo-) differential operator.
This gives rise to a right invariant metric on DiffH∞(Rn) whose
geodesic equation was discussed a lot already.

Condsider the momentum m = L(v) of a vector, so that
〈v ,w〉L =

∫
〈m,w〉dx . Then the geodesic equation is of the form:

∂tm = −(v · ∇)m − div(v)m −m · (Dv)t

∂tmi = −
∑
j

(vj∂xj mi + ∂xj vj ·mi + mj∂xi vj)

v = K ∗m, where K is the matrix-valued Green function of L.



Suppose, the time dependent vector field v integrates to a flow ϕ
via

∂tϕ(x , t) = v(ϕ(x , t), t)

and we describe the momentum by a measure-valued 1-form

m̃ =
∑
i

midxi ⊗ (dx1 ∧ · · · ∧ dxn)

so that ‖v‖2
L =

∫
(v , m̃) makes intrinsic sense. Then the geodesic

equation is equivalent to: m̃ is invariant under the flow ϕ, that is,

m̃(·, t) = ϕ(·, t)∗m̃(·, 0),

whose infinitesimal version is the following, using the Lie derivative:

∂tm̃(·, t) = −Lv(·,t)m̃(·, t).



Because of this invariance, if a geodesic begins with momentum of
compact support, it will always have compact support; and if it
begins with momentum which, along with all its derivatives, has
‘rapid’ decay at infinity, that is it is in O(‖x‖−n) for every n, this
too will persist. This comes from the lemma:

Lemma: [1. lecture] If ϕ ∈ DiffH∞(Rn) and T is any smooth
tensor on Rn with rapid decay at infinity, then ϕ∗(T ) is again
smooth with rapid decay at infinity.

Moreover this invariance gives us a Lagrangian form of EPDiff:

∂tϕ(x , t) =

∫
Kϕ(·,t)(x , y)(ϕ(y , t)∗m̃(y , 0))

= Kϕ(·,t) ∗ (ϕ(·, t)∗m̃(·, 0))

where Kϕ(x , y) = K (ϕ(x), ϕ(y))



Aim: Solutions of Euler’s equation are limits of solutions of
equations in the EPDiff class with the operator:

Lε,η = (I − η2

p 4)p ◦ (I − 1
ε2∇ ◦ div), for any ε > 0, η ≥ 0.

All solutions of Euler’s equation are limits of solutions of these
much more regular EPDiff equations and give a bound on their
rate of convergence. In fact, so long as p > n/2 + 1, these EPDiff
equations have a well-posed initial value problem with unique
solutions for all time. Moreover, although L0,η does not make
sense, the analog of its Green’s function K0,η does make sense as
do the geodesic equations in momentum form. These are, in fact,
geodesic equations on the group of volume preserving
diffeomorphisms SDiff and become Euler’s equation for η = 0. An
important point is that so long as η > 0, the equations have
soliton solutions (called vortons) in which the momentum is a sum
of delta functions.



Relation to Euler’s equ. Oseledetz 1988

We use the kernel

Kij(x) = δijδ0(x) + ∂xi∂xj H

where H is the Green’s function of −∆. But K now has a rather
substantial pole at the origin. If Vn = Vol(Sn−1),

H(x) =

{
1

(n−2)Vn
(1/|x |n−2) if n > 2,

1
V2

log(1/|x |) if n = 2

so that, as a function

(M0)ij(x) := ∂xi∂xj H(x) =
1

Vn
·

nxixj − δij |x |2

|x |n+2
, if x 6= 0.

Convolution with any (M0)ij is still a Calderon-Zygmund singular
integral operator defined by the limit as ε→ 0 of its value outside
an ε-ball, so it is reasonably well behaved. As a distribution there
is another term:

∂xi∂xj H
distribution

= (M0)ij −
1

n
δijδ0



Pdiv=0 : m 7→ v =
(
m + ∂2(H)distr

)
=
(
n−1
n ·m + M0 ∗m

)
is the orthogonal projection of the space of vector fields m onto
the subspace of divergence free vector fields v , orthogonal in each
Sobolev space Hp, p ∈ Z≥0. (Hodge alias Helmholtz projection).

The matrix M0(x) has Rx as an eigenspace with eigenvalue
(n − 1)/Vn|x |n and Rx⊥ as an eigenspace with eigenvalue
−1/Vn|x |n. Let PRx and PRx⊥ be the orthonormal projections
onto the eigenspaces, then

Pdiv=0(m)(x) = n−1
n ·m(x)+

+
1

Vn
· lim
ε→0

∫
|y |≥ε

1

|y |n
(
(n − 1)PRy (m(x − y))− PRy⊥(m(x − y)

)
dy .



With this K , EPDiff in the variables (v ,m) is the Euler equation in
v with pressure a function of (v ,m). Oseledets’s form for Euler:

v = Pdiv=0(m)

∂tm = −(v · ∇)m −m · (Dv)t

Let m̃ =
∑

i midxi be the 1-form associated to m. Since div v = 0,
we can use m̃ instead of

∑
i midxi ⊗ dx1 ∧ . . . dxn. Integrated form:

∂tϕ = Pdiv=0(m) ◦ ϕ
m̃(·, t) = ϕ(·, t)∗m̃(·, 0)

This uses the variables v ,m instead of v and pressure.
Advantage: m, like vorticity, is constant when transported by the
flow. m determines the vorticity the 2-form ω = d(

∑
i vidxi ),

because v and m differ by a gradient, so ω = dm̃ also. Thus:
vorticity is constant along flows follows from the same fact for
momentum 1-form m̃.



However, these equ. are not part of the true EPDiff framework
because the operator K = Pdiv=0 is not invertible and there is no
corresponding differential operator L.

In fact, v does not determine m as we have rewritten Euler’s
equation using extra non-unique variables m, albeit ones which
obey a conservation law so they may be viewed simply as extra
parameters.



Approximationg Euler by EPDiff

Replace the Green’s function H of −∆ by the Green’s function Hε

of the positive ε2I −4 for ε > 0 (whose dimension is length−1).
The Green’s function is be given explicitly using the ‘K’ Bessel
function via the formula

Hε(x) = cnε
n−2|εx |1−n/2Kn/2−1(|εx |)

for a suitable constant cn independent of ε. Then we get the
modified kernel

(Kε)ij = δijδ0 + (∂xi∂xj Hε)distr

This has exactly the same highest order pole at the origin as K did
and the second derivative is again a Calderon-Zygmund singular
integral operator minus the same delta function. The main
difference is that this kernel has exponential decay at infinity, not
polynomial decay. By weakening the requirement that the velocity
be divergence free, the resulting integro-differential equation
behaves much more locally, more like a hyperbolic equation rather
than a parabolic one.



The corresponding inverse is the differential operator

Lε = I − 1
ε2∇ ◦ div

v = Kε ∗m, m = Lε(v)

‖v‖2
Lε =

∫
〈v , v〉+ div(v). div(v)dx

Geodesic equation:

∂t(vi ) = (Kε)ij ∗ ∂t(mj)

= −(Kε)ij ∗ (vkvj ,k)− vi div(v)− 1
2 (Kε)ij ∗

(
|v(x)|2 + ( div(v)

ε )2
)
,j

Curiously though, the parameter ε can be scaled away. That is, if
v(x , t),m(x , t) is a solution of EPDiff for the kernel K1, then
v(εx , εt),m(εx , εt) is a solution of EPDiff for Kε.



Regularizing more

Compose Lε with a scaled version of the standard regularizing
kernel (I −4)p to get

Lε,η = (I − η2

p 4)p ◦ (I − 1
ε2∇ ◦ div)

Kε,η : = Lε,η
−1 = G (p)

η ∗ Kε

where G
(p)
η is the Green’s function of (I − η2

p 4)p and is again given

explicitly by a ‘K’-Bessel function dp,nη
−n|x |p−n/2Kp−n/2(|x |/η).

For p � 0, the kernel converges to a Gaussian with variance
depending only on η, namely (2

√
πη)−ne−|x |

2/4η2
. This follows

because the Fourier transform takes G
(p)
η to

(
1 + η2|ξ|2

p

)−p
, whose

limit, as p →∞, is e−η
2|ξ|2 . These approximately Gaussian kernels

lie in Cq if q ≤ p − (n + 1)/2.

So long as the kernel is in C 1, it is known that EPDiff has
solutions for all time, as noted first by A.Trouve and L.Younes.



Theorem

Let F (x) = f (|x |) be any integrable C 2 radial function on Rn.
Assume n ≥ 3. Define:

HF (x) =

∫
Rn

min
(

1
|x |n−2 ,

1
|y |n−2

)
F (y)dy

=
1

|x |n−2

∫
|y |≤|x |

F (y)dy +

∫
|y |≥|x |

F (y)

|y |n−2
dy

Then HF is the convolution of F with 1
|x |n−2 , is in C 4 and:

∂i (HF )(x) = −(n − 2)
xi
|x |n

∫
|y |≤|x |

F (y)dy

∂i∂j(HF )(x) = (n − 2)

(
nxixj − δij |x |2

|x |n+2

∫
|y |≤|x |

F (y)dy − Vn
xixj
|x |2

F (x)

)

If n = 2, the same holds if you replace 1/|x |n−2 by log(1/|x |) and
omit the factors (n − 2) in the derivatives.



no L K0,0 = Pdiv=0 = δijδ0 + (∂i∂jH)distr

no L K0,η = G
(p)
η ∗ Pdiv=0 – see above

Lε,0 = I − 1
ε2∇ ◦ div Kε,0 = δijδ0 + ∂i∂jHε

Lε,η =
(

I − η2

p 4
)p
◦ Kε,η = δijG

(p)
η + ∂i∂j(G

(p)
η ∗ Hε)

◦
(
I − 1

ε2∇ ◦ div
)

Theorem: Let ε ≥ 0, η > 0, p ≥ (n + 3)/2 and K = Kε,η be the
corresponding kernel. For any vector-valued distribution m0 whose
components are finite signed measures, consider the Lagrangian
equation for a time varying C 1-diffeomorphism ϕ(·, t) with
ϕ(x , 0) ≡ x:

∂tϕ(x , t) =

∫
K (ϕ(x , t)− ϕ(y , t))(Dϕ(y , t))−1,>m0(y)dy .

Here Dϕ is the spatial derivative of ϕ. This equation has a unique
solution for all time t.



Proof: The Eulerian velocity at ϕ is:

Vϕ(x) =

∫
K (x − ϕ(y))(Dϕ(y))−1,>m0(y)dy

and Wϕ(x) = Vϕ(ϕ(x)) is the velocity in ‘material’ coordinates.
Note that because of our assumption on m0, if ϕ is a
C 1-diffeomorphism, then Vϕ and Wϕ are C 1 vector fields on Rn; in
fact, they are as differentiable as K is, for suitably decaying m.
The equation can be viewed as a the flow equation for the vector
field ϕ 7→Wϕ on the union of the open sets

Uc =
{
ϕ ∈ C 1(Rn)n : ‖ Id−ϕ‖C1 < 1/c , det(Dϕ) > c

}
,

where c > 0. The union of all Uc is the group DiffC1
b
(Rn) of all

C 1-diffeomorphisms which, together with their inverses, differ from
the identity by a function in C 1(Rn)n with bounded C 1-norm. We
claim this vector field is locally Lipschitz on each Uc :

‖Wϕ1 −Wϕ2‖C1 ≤ C .‖ϕ1 − ϕ2‖C1

where C depends only on c : Use that K is uniformly continuous
and use ‖Dϕ−1‖ ≤ ‖Dϕ‖n−1/| det(Dϕ)|.



As a result we can integrate the vector field for short times in
DiffC1

b
(Rn). But since (Dϕ(y , t))−1,>m0(y) is then again a signed

finite Rn-valued measure,∫
Vϕ(·,t)(x)(Dϕ(y , t))−1,>m0(y)dx = ‖Vϕ(·,t)‖Lε,η

is actually finite for each t. Using the fact that in EPDiff the
Lε,η-energy ‖Vϕ(·,t)‖Lε,η of the Lε,η-geodesic is constant in t, we
get a bound on the norm ‖Vϕ(·,t)‖Hp , depending of course on η
but independent of t, hence a bound on ‖Vϕ(·,t)‖C1 . Thus
‖ϕ(·, t)‖C0 grows at most linearly in t. But
∂tDϕ = DWϕ = DVϕ ·Dϕ which shows us that Dϕ grows at most
exponentially in t. Hence det Dϕ can shrink at worst exponentially
towards zero, because ∂t det(Dϕ) = Tr(Adj(Dϕ).∂tDϕ). Thus for
all finite t, the solution ϕ(·, t) stays in a bounded subset of our
Banach space and the ODE can continue to be solved. QED.



Lemma: If η ≥ 0 and ε > 0 are bounded above, then the norm

‖v‖2
k,ε,η =

∑
|α|≤k

∫
〈DαLε,ηv ,Dαv〉dx

is bounded above and below by the metric, with constants
independent of ε and η:

‖v‖2
Hk + 1

ε2 ‖div(v)‖2
Hk +

∑
k+1≤|α|≤k+p

η2(|α|−k)

∫
|Dαv |2+ 1

ε2 |Dαdiv(v)|2

Main estimate: Assume k is sufficiently large, for instance
k ≥ (n + 2p + 4) works, then the velocity field of a solution
satisfies:

|∂t
(
‖v‖2

k,ε,η

)
| ≤ C .‖v‖3

k,ε,η

where, so long ε and η are bounded above, the constant C is
independent of ε and η.



Theorem: Fix k , p, n with p > n/2 + 1, k ≥ n + 2p + 4 and
assume (ε, η) ∈ [0,M]2 for some M > 0. Then there are constants
t0,C such that for all initial v0 ∈ Hk+p+1, there is a unique
solution vε,η(x , t) of EPDiff (including the limiting Euler case) for
t ∈ [0, t0]. The solution vε,η(·, t) ∈ Hk+p+1 depends continuously
on ε, η ∈ [0,M]2 and satisfies ‖vε,η(·, t)‖k,ε,η < C for all t ∈ [0, t0].

Theorem: Take any k and M and any smooth initial velocity
v(·, 0). Then there are constants t0,C such that Euler’s equation
and (ε, 0)-EPDiff have solutions v0 and vε respectively for
t ∈ [0, t0] and all ε < M and these satisfy:

‖v0(·, t)− vε(·, t)‖Hk ≤ Cε.

Theorem: Let ε > 0. Take any k and M and any smooth initial
velocity v(·, 0). Then there are constants t0,C such that
(ε, 0)-EPDiff and (ε, η)-EPDiff have solutions v0 and vη
respectively for t ∈ [0, t0] and all ε, η < M and these satisfy:

‖v0(·, t)− vη(·, t)‖Hk ≤ Cη2.



Vortons: Soliton-like solutions via landmark theory

We have a C 1 kernel, so we can consider solutions in which
momentum m is supported in a finite set {P1, · · · ,PN}, so that
the components of the momentum field are given by
mi (x) =

∑
a maiδ(x − Pa). The support is called the set of

landmark points and in this case, EPDiff reduces to a set of
Hamiltonian ODE’s based on the kernel K = Kε,η, ε ≥ 0, η > 0:

Energy E =
∑
a,b

maiKij(Pa − Pb)mjb

dPai

dt
=
∑
b,j

Kij(Pa − Pb)mbj

dmai

dt
= −

∑
b,j ,k

∂xi Kjk(Pa − Pb)majmbk

where a, b enumerate the points and i , j , k the dimensions in Rn.
These are essentially Roberts’ equations from 1972.



One landmark point

Its momentum must be constant hence so is its velocity. Therefore
the momentum moves uniformly in a straight line ` from −∞ to
+∞.
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Momentum is tranformed to vortex-like velocity field by
kernel K0,ε

The dipole given by the kernel K0,η in dimension 2.



Streamlines and MatLab’s ‘coneplot’ to visualize the vector field
given by the x1-derivative of the kernel K0,1 times the vector
(1, 2, 0).



Two landmark points
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Level sets of energy for the collision of two vortons with m = 0,
η = 1, ω = 1. The coordinates are ρ = |δP| and |δm|, and the
state space is the double cover of the area above and right of the
heavy black line, the two sheets being distinguished by the sign of
〈δm, δP〉. The heavy black line which is the curve ρ · |δm| = ω
where 〈δm, δP〉 = 0. Each level set is a geodesic. If they hit the
black line, they flip to the other sheet and retrace their path.
Otherwise ρ goes to zero at one end of the geodesic.



Geodesics in the δP plane all starting at the point marked by an X
but with m = m1 + m2 =const. along the y -axis varying from 0 to
10. Here η = 1, the initial point is (5, 0) and the initial momentum
is (−3, .5). Note how the two vortons repel each other on some
geodesics and attract on others. A blow up shows the spiraling
behavior as they collapse towards each other.



Thank you for listening.

Many thanks to the organizers Irina Markina and Aleksander
Vasiliev for this interesting school and a lot of fish and sun.


