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Abstract. A section of a Riemannian G-manifold M is a closed submanifold Σ
which meets each orbit orthogonally. It is shown that the algebra of G-invariant

differential forms on M which are horizontal in the sense that they kill every vector

which is tangent to some orbit, is isomorphic to the algebra of those differential forms
on Σ which are invariant with respect to the generalized Weyl group of Σ, under some

condition.

1. Introduction

A section of a Riemannian G-manifold M is a closed submanifold Σ which meets
each orbit orthogonally. This notion was introduced by Szenthe [26], [27], in slightly
different form by Palais and Terng in [19], [20]. The case of linear representations
was considered by Bott and Samelson [4], Conlon [9], and then by Dadok [10]
who called representations admitting sections polar representations and completely
classified all polar representations of connected compact Lie groups. Conlon [8]
considered Riemannian manifolds admitting flat sections. We follow here the notion
of Palais and Terng.

If M is a Riemannian G-manifold which admits a section Σ then the trace on Σ
of the G-action is a discrete group action by the generalized Weyl group W (Σ) =
NG(Σ)/ZG(Σ). Palais and Terng [19] showed that then the algebras of invariant
smooth functions coincide, C∞(M,R)G ∼= C∞(Σ,R)W (Σ).

In this paper we will extend this result to the algebras of differential forms. Our
aim is to show that pullback along the embedding Σ→M induces an isomorphism
Ωphor(M)G ∼= Ωp(Σ)W (Σ) for each p, where a differential form ω on M is called
horizontal if it kills each vector tangent to some orbit. For each point x in M , the
slice representation of the isotropy group Gx on the normal space Tx(G.x)⊥ to the
tangent space to the orbit through x is a polar representation. The first step is to
show that the result holds for polar representations. This is done in theorem 3.7 for
polar representations whose generalized Weyl group is really a Coxeter group, i.e.,
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is generated by reflections. Every polar representation of a connected compact Lie
group has this property. The method used there is inspired by Solomon [25]. Then
the general result is proved under the assumption that each slice representation
has a Coxeter group as a generalized Weyl group. The last sections gives some
perspective to the result.

I want to thank D. Alekseevsky for introducing me to the beautiful results of
Palais and Terng. I also thank A. Onishchik and D. Alekseevsky for many discus-
sions about this and related topics, and the editor and the referees for much care
and some hints.

2. Basic differential forms

2.1. Basic differential forms. Let G be a Lie group with Lie algebra g, multi-
plication µ : G × G → G, and for g ∈ G let µg, µg : G → G denote the left and
right translation.

Let ` : G×M →M be a left action of the Lie group G on a smooth manifold M .
We consider the partial mappings `g : M →M for g ∈ G and `x : G→M for x ∈M
and the fundamental vector field mapping ζ : g→ X(M) given by ζX(x) = Te(`x)X.
Since ` is a left action, the negative −ζ is a Lie algebra homomorphism.

A differential form ϕ ∈ Ωp(M) is called G-invariant if (`g)∗ϕ = ϕ for all g ∈ G
and horizontal if ϕ kills each vector tangent to a G-orbit: iζX

ϕ = 0 for all X ∈ g.
We denote by Ωphor(M)G the space of all horizontal G-invariant p-forms on M . They
are also called basic forms.

2.2. Lemma. Under the exterior differential Ωhor(M)G is a subcomplex of Ω(M).

Proof. If ϕ ∈ Ωhor(M)G then the exterior derivative dϕ is clearly G-invariant. For
X ∈ g we have

iζX
dϕ = iζX

dϕ+ diζX
ϕ = LζX

ϕ = 0,

so dϕ is also horizontal. �

2.3. Sections. Let M be a connected complete Riemannian manifold and let G
be a Lie group which acts isometrically on M from the left. A connected closed
smooth submanifold Σ of M is called a section for the G-action, if it meets all
G-orbits orthogonally.

Equivalently we require that G.Σ = M and that for each x ∈ Σ and X ∈ g the
fundamental vector field ζX(x) is orthogonal to TxΣ.

We only remark here that each section is a totally geodesic submanifold and is
given by exp(Tx(x.G)⊥) if x lies in a principal orbit.

If we put NG(Σ) := {g ∈ G : g.Σ = Σ} and ZG(Σ) := {g ∈ G : g.s = s for all s ∈
Σ}, then the quotient W (Σ) := NG(Σ)/ZG(Σ) turns out to be a discrete group
acting properly on Σ. It is called the generalized Weyl group of the section Σ.

See [19] or [20] for more information on sections and their generalized Weyl
groups.

2.4. Main Theorem. Let M × G → M be a proper isometric right action of a
Lie group G on a smooth Riemannian manifold M , which admits a section Σ. Let
us assume that

(1) For each x ∈ Σ the slice representation Gx → O(Tx(G.x)⊥) has a general-
ized Weyl group which is a reflection group (see section 3).
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Then the restriction of differential forms induces an isomorphism

Ωphor(M)G
∼=−→ Ωp(Σ)W (Σ)

between the space of horizontal G-invariant differential forms on M and the space
of all differential forms on Σ which are invariant under the action of the generalized
Weyl group W (Σ) of the section Σ.

The proof of this theorem will take up the rest of this paper. According to Dadok
[10], remark after Proposition 6, for any polar representation of a connected com-
pact Lie group the generalized Weyl group W (Σ) is a reflection group, so condition
(1) holds if we assume that:

(2) Each isotropy group Gx is connected.

Proof of injectivity. Let i : Σ → M be the embedding of the section. We claim
that i∗ : Ωphor(M)G → Ωp(Σ)W (Σ) is injective. Let ω ∈ Ωphor(M)G with i∗ω = 0.
For x ∈ Σ we have iXωx = 0 for X ∈ TxΣ since i∗ω = 0, and also for X ∈ Tx(G.x)
since ω is horizontal. Let x ∈ Σ∩Mreg be a regular point, then TxΣ = (Tx(G.x))⊥

and so ωx = 0. This holds along the whole orbit through x since ω is G-invariant.
Thus ω|Mreg = 0, and since Mreg is dense in M , ω = 0.

So it remains to show that i∗ is surjective. This will be done in 4.2 below. �

3. Representations

3.1. Invariant functions. Let G be a reductive Lie group and let ρ : G→ GL(V )
be a representation in a finite dimensional real vector space V .

According to a classical theorem of Hilbert (as extended by Nagata [15], [16]), the
algebra of G-invariant polynomials R[V ]G on V is finitely generated (in fact finitely
presented), so there are G-invariant homogeneous polynomials f1, . . . , fm on V such
that each invariant polynomial h ∈ R[V ]G is of the form h = q(f1, . . . , fm) for a
polynomial q ∈ R[Rm]. Let f = (f1, . . . , fm) : V → Rm, then this means that the
pullback homomorphism f∗ : R[Rm]→ R[V ]G is surjective.

D. Luna proved in [14], that the pullback homomorphism f∗ : C∞(Rm,R) →
C∞(V,R)G is also surjective onto the space of all smooth functions on V which are
constant on the fibers of f . Note that the polynomial mapping f in this case may
not separate the G-orbits.

G. Schwarz proved already in [23], that if G is a compact Lie group then the
pullback homomorphism f∗ : C∞(Rm,R)→ C∞(V,R)G is actually surjective onto
the space of G-invariant smooth functions. This result implies in particular that f
separates the G-orbits.

3.2. Lemma. Let ` ∈ V ∗ be a linear functional on a finite dimensional vector
space V , and let f ∈ C∞(V,R) be a smooth function which vanishes on the kernel
of `, so that f |`−1(0) = 0. Then there is a unique smooth function g such that
f = `.g

Proof. Choose coordinates x1, . . . , xn on V with ` = x1. Then f(0, x2, . . . , xn) = 0
and we have f(x1, . . . , xn) =

∫ 1

0
∂1f(tx1, x2, . . . , xn)dt.x1 = g(x1, . . . , xn).x1. �
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3.3. Lemma. Let W be a finite reflection group acting on a finite dimensional
vector space Σ. Let f = (f1, . . . , fn) : Σ → Rn be the polynomial map whose
components f1, . . . , fn are a minimal set of homogeneous generators of the algebra
R[Σ]W of W -invariant polynomials on Σ. Then the pullback homomorphism f∗ :
Ωp(Rn) → Ωp(Σ) is surjective onto the space Ωp(Σ)W of W -invariant differential
forms on Σ.

For polynomial differential forms and more general reflection groups this is the
main theorem of Solomon [25]. We adapt his proof to our needs.

Proof. The polynomial generators fi form a set of algebraically independent poly-
nomials, n = dim Σ, and their degrees d1, . . . , dn are uniquely determined up to
order. We even have (see [12]):

(1) d1 . . . dn = |W |, the order of W .
(2) d1 + · · ·+ dn = n+N , where N is the number of reflections in W .

Let us consider the mapping f = (f1, . . . , fn) : Σ → Rn and its Jacobian J(x) =
det(df(x)). Let x1, . . . , xn be coordinate functions in Σ. Then for each σ ∈ W we
have

J.dx1 ∧ · · · ∧ dxn = df1 ∧ · · · ∧ dfn = σ∗(df1 ∧ · · · ∧ dfn)

= (J ◦ σ)σ∗(dx1 ∧ · · · ∧ dxn) = (J ◦ σ) det(σ)(dx1 ∧ · · · ∧ dxn),

J ◦ σ = det(σ−1)J.(3)

The generators f1, . . . , fn are algebraically independent over R, thus J 6= 0. Since
J is a polynomial of degree (d1− 1) + · · ·+ (dn− 1) = N (see (2)), the W -invariant
set U = Σ \ J−1(0) is open and dense in Σ; by the inverse function theorem f is a
local diffeomorphism on U , thus the 1-forms df1, . . . , dfn are a coframe on U .

Now let (σα)α=1,...,N be the set of reflections in W , with reflection hyperplanes
Hα. Let `α ∈ Σ∗ be linear functionals with Hα = `−1(0). If x ∈ Hα we have
J(x) = det(σα)J(σα.x) = −J(x), so that J |Hα = 0 for each α, and by lemma 3.2
we have

(4) J = c.`1 . . . `N .

Since J is a polynomial of degree N , c must be a constant. Repeating the last
argument for an arbitrary function g and using (4), we get:

(5) If g ∈ C∞(Σ,R) satisfies g◦σ = det(σ−1)g for each σ ∈W , we have g = J.h
for h ∈ C∞(Σ,R)W .

After these preparations we turn to the assertion of the lemma. Let ω ∈ Ωp(Σ)W .
Since the 1-forms dfj form a coframe on U , we have

ω|U =
∑

j1<···<jp

gj1...jpdfj1 |U ∧ · · · ∧ dfjp |U

for gj1...jp ∈ C∞(U,R). Since ω and all dfi are W -invariant, we may replace gj1...jp
by their averages over W , or assume without loss that gj1...jp ∈ C∞(U,R)W .
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Let us choose now a form index i1 < · · · < ip with {ip+1 < · · · < in} =
{1, . . . , n} \ {i1 < · · · < ip}. Then for some sign ε = ±1 we have

ω|U ∧ dfip+1 ∧ · · · ∧ dfin = ε.gi1...ip .df1 ∧ · · · ∧ dfn = ε.gi1...ip .J.dx
1 ∧ · · · ∧ dxn,

ω ∧ dfip+1 ∧ · · · ∧ dfin = ε.ki1...ipdx
1 ∧ · · · ∧ dxn(6)

for a function ki1...ip ∈ C∞(Σ,R). Thus

(7) ki1...ip |U = gi1...ip .J |U.

Since ω and each dfi is W -invariant, from (6) we get ki1...ip ◦ σ = det(σ−1)ki1...ip
for each σ ∈ W . But then by (5) we have ki1...ip = ωi1...ip .J for unique ωi1...ip ∈
C∞(Σ,R)W , and (7) then implies ωi1...ip |U = gi1...ip , so that the lemma follows
since U is dense. �

3.4. Question. Let ρ : G→ GL(V ) be a representation of a compact Lie group in
a finite dimensional vector space V . Let f = (f1, . . . , fm) : V → Rm be the polyno-
mial mapping whose components fi are a minimal set of homogeneous generators
for the algebra R[V ]G of invariant polynomials.

We consider the pullback homomorphism f∗ : Ωp(Rm)→ Ωp(V ). Is it surjective
onto the space Ωphor(V )G of G-invariant horizontal smooth p-forms on V ?

The proof of theorem 3.7 below will show that the answer is yes for polar repre-
sentations of compact Lie groups if the corresponding generalized Weyl group is a
reflection group.

In general the answer is no. A counter example is the following: Let the cyclic
group Zn = Z/nZ of order n, viewed as the group of n-th roots of unity, act on
C = R2 by complex multiplication. A generating system of polynomials consists of
f1 = |z|2, f2 = Re(zn), f3 = Im(zn). But then each dfi vanishes at 0 and there is
no chance to have the horizontal invariant volume form dx ∧ dy in f∗Ω(R3).

3.5. Polar representations. Let G be a compact Lie group and let ρ : G →
GL(V ) be an orthogonal representation in a finite dimensional real vector space V
which admits a section Σ. Then the section turns out to be a linear subspace and
the representation is called a polar representation, following Dadok [10], who gave
a complete classification of all polar representations of connected Lie groups. They
were called variationally complete representations by Conlon [9] before.

3.6. Theorem. (Terng [28], theorem D or [19], 4.12). Let ρ : G → GL(V ) be
a polar representation of a compact Lie group G, with section Σ and generalized
Weyl group W = W (Σ). Then the algebra R[V ]G of G-invariant polynomials on V
is isomorphic to the algebra R[Σ]W of W -invariant polynomials on the section Σ,
via the restriction mapping f 7→ f |Σ.

3.7. Theorem. Let ρ : G → GL(V ) be a polar representation of a compact Lie
group G, with section Σ and generalized Weyl group W = W (Σ). Let us suppose
that W = W (Σ) is generated by reflections (a reflection group or Coxeter group).
Then the pullback to Σ of differential forms induces an isomorphism

Ωphor(V )G
∼=−→ Ωp(Σ)W (Σ).



6 PETER W. MICHOR

According to Dadok [10], remark after proposition 6, for any polar representation
of a connected compact Lie group the generalized Weyl group W (Σ) is a reflection
group. This theorem is true for polynomial differential forms, and also for real
analytic differential forms, by essentially the same proof.

Proof. Let i : Σ→ V be the embedding. By the first part of the proof of theorem
2.4 the pullback mapping i∗ : Ωphor(V )G → Ωphor(Σ)W is injective, and we shall show
that it is also surjective. Let f1, . . . , fn be a minimal set of homogeneous generators
of the algebra R[Σ]W of W -invariant polynomials on Σ. Then by lemma 3.3 each
ω ∈ Ωp(Σ)W is of the form

ω =
∑

j1<···<jp

ωj1...jpdfj1 ∧ · · · ∧ dfjp ,

where ωj1...jp ∈ C∞(Σ,R)W . By theorem 3.6 the algebra R[V ]G of G-invariant
polynomials on V is isomorphic to the algebra R[Σ]W ofW -invariant polynomials on
the section Σ, via the restriction mapping i∗. Choose polynomials f̃1, . . . f̃n ∈ R[V ]G

with f̃i ◦ i = fi for all i. Put f̃ = (f̃1, . . . , f̃n) : V → Rn. Then we use the theorem
of G. Schwarz (see 3.1) to find hi1,...,ip ∈ C∞(Rn,R) with hi1,...,ip ◦ f = ωi1,...,ip
and consider

ω̃ =
∑

j1<···<jp

(hj1...jp ◦ f̃)df̃j1 ∧ · · · ∧ df̃jp ,

which is in Ωphor(V )G and satisfies i∗ω̃ = ω. �

Sketch of another proof avoiding 3.3 (suggested by a referee). Let R = C∞(V )G =
C∞(Σ)W and let ΩpR be its module of Kähler p-forms (see Kunz [13] for the notion
of Kähler forms). Also let S = R[V ]G = R[Σ]W (using 3.6). Then the canonical
mapping ΩpR → Ωp(Σ)W is surjective. This follows for the canonical mapping from
ΩpS into the space of forms with polynomial coefficients from the result of Solomon
[25] by using 3.6 again as in the proof of 3.7; and it can be extended to smooth
coefficients by theorem 1.4 of Ronga [22], which says that equivariant stability
and infinitesimal equivariant stability are equivalent, in a way which is similar to
the argument of Proposition 6.8 of Schwarz [24]. So we see that the composition
ΩpR → Ωp(V )G → Ωp(Σ)W is surjective, thus also the right hand side mapping has
to be surjective. �

3.8. Corollary. Let ρ : G→ O(V, 〈 , 〉) be an orthogonal polar representation
of a compact Lie group G, with section Σ and generalized Weyl group W = W (Σ).
Let us suppose that W = W (Σ) is generated by reflections (a reflection group or
Coxeter group). Let B ⊂ V be an open ball centered at 0.

Then the restriction of differential forms induces an isomorphism

Ωphor(B)G
∼=−→ Ωp(Σ ∩B)W (Σ).

Proof. Check the proof of 3.7 or use the following argument. Suppose that B =
{v ∈ V : |v| < 1} and consider a smooth diffeomorphism f : [0, 1) → [0,∞) with
f(t) = t near 0. Then g(v) := f(|v|)

|v| v is a G-equivariant diffeomorphism B → V

and by 3.7 we get:

Ωphor(B)G
(g−1)∗−−−−→ Ωphor(V )G

∼=−→ Ωp(Σ)W (Σ) g∗−→ Ωp(Σ ∩B)W (Σ). �
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4. Proof of the main theorem

Let us assume that we are in the situation of the main theorem 2.4, for the rest
of this section.

4.1. For x ∈ M let Sx be a (normal) slice and Gx the isotropy group, which acts
on the slice. Then G.Sx is open in M and G-equivariantly diffeomorphic to the
associated bundle G→ G/Gx via

G× Sx
q−−−−→ G×Gx

Sx
∼=−−−−→ G.Sxy yr

G/Gx
∼=−−−−→ G.x,

where r is the projection of a tubular neighborhood. Since q : G×Sx → G×Gx Sx is
a principal Gx-bundle with principal right action (g, s).h = (gh, h−1.s), we have an
isomorphism q∗ : Ω(G×Gx

Sx)→ ΩGx−hor(G×Sx)Gx . Since q is also G-equivariant
for the left G-actions, the isomorphism q∗ maps the subalgebra Ωphor(G.Sx)G ∼=
Ωphor(G×Gx Sx)G of Ω(G×Gx Sx) to the subalgebra ΩpGx−hor(Sx)Gx of ΩGx−hor(G×
Sx)Gx . So we have proved:

Lemma. In this situation there is a canonical isomorphism

Ωphor(G.Sx)G
∼=−→ ΩpGx−hor(Sx)Gx

which is given by pullback along the embedding Sx → G.Sx.

4.2. Rest of the proof of theorem 2.4. Now let us consider ω ∈ Ωp(Σ)W (Σ).
We want to construct a form ω̃ ∈ Ωphor(M)G with i∗ω̃ = ω. This will finish the
proof of theorem 2.4.

Choose x ∈ Σ and an open ball Bx with center 0 in TxM such that the Riemann-
ian exponential mapping expx : TxM →M is a diffeomorphism on Bx. We consider
now the compact isotropy group Gx and the slice representation ρx : Gx → O(Vx),
where Vx = Norx(G.x) = (Tx(G.x))⊥ ⊂ TxM is the normal space to the orbit. This
is a polar representation with section TxΣ, and its generalized Weyl group is given
by W (TxΣ) ∼= NG(Σ)∩Gx/ZG(Σ) = W (Σ)x (see [19]) and it is a Coxeter group by
assumption (1) in 2.4. Then expx : Bx ∩ Vx → Sx is a diffeomorphism onto a slice
and expx : Bx ∩ TxΣ → Σx ⊂ Σ is a diffeomorphism onto an open neighborhood
Σx of x in the section Σ.

Let us now consider the pullback (exp |Bx ∩ TxΣ)∗ω ∈ Ωp(Bx ∩ TxΣ)W (TxΣ).
By corollary 3.8 there exists a unique form ϕx ∈ ΩpGx−hor(Bx ∩ Vx)Gx such that
i∗ϕx = (exp |Bx ∩ TxΣ)∗ω, where ix is the embedding. Then we have

((exp |Bx ∩ Vx)−1) ∗ ϕx ∈ ΩpGx−hor(Sx)Gx

and by lemma 4.1 this form corresponds uniquely to a differential form ωx ∈
Ωphor(G.Sx)G which satisfies (i|Σx)∗ωx = ω|Σx, since the exponential mapping com-
mutes with the respective restriction mappings. Now the intersection G.Sx ∩ Σ is
the disjoint union of all the open sets wj(Σx) where we pick one wj in each left
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coset of the subgroup W (Σ)x in W (Σ). If we choose gj ∈ NG(Σ) projecting on wj
for all j, then

(i|wj(Σx))∗ωx = (`gj ◦ i|Σx ◦ w−1
j )∗ωx

= (w−1
j )∗(i|Σx)∗`∗gj

ωx

= (w−1
j )∗(i|Σx)∗ωx = (w−1

j )∗(ω|Σx) = ω|wj(Σx),

so that (i|G.Sx ∩ Σ)∗ωx = ω|G.Sx ∩ Σ. We can do this for each point x ∈ Σ.
Using the method of Palais ([18], proof of 4.3.1) we may find a sequence of

points (xn)n∈N in Σ such that the π(Σxn) form a locally finite open cover of the
orbit space M/G ∼= Σ/W (Σ), and a smooth partition of unity fn consisting of
G-invariant functions with supp(fn) ⊂ G.Sxn

. Then ω̃ :=
∑
n fnω

xn ∈ Ωphor(M)G

has the required property i∗ω̃ = ω. �

5. Basic versus equivariant cohomology

5.1. Basic cohomology. For a Lie group G and a smooth G-manifold M , by 2.2
we may consider the basic cohomology Hp

G−basic(M) = Hp(Ω∗hor(M)G, d).
The best known application of basic cohomology is the case of a compact con-

nected Lie group G acting on itself by left translations, see e.g. [11] and papers cited
therein: By homotopy invariance and integration we get H(G) = HG−basic(G) =
H(Λ(g∗)), and the latter space turns out as the space Λ(g∗)g of ad(g)-invariant
forms, using the inversion. This is the theorem of Chevalley and Eilenberg. More-
over Λ(g∗)g = Λ(P ) where P is the graded subspace of primitive elements, using
the Weil map and transgression, whose determination in all concrete cases by Borel
and Hirzebruch is a beautiful part of modern mathematics.

In more general cases the determination of basic cohomology was more difficult.
A replacement for it is equivariant cohomology, which comes in two guises:

5.2. Equivariant cohomology, Borel model. For a topological group and
a topological G-space the equivariant cohomology was defined as follows, see [3]:
Let EG → BG be the classifying G-bundle, and consider the associated bundle
EG ×GM with standard fiber the G-space M . Then the equivariant cohomology
is given by Hp(EG×GM ; R).

5.3. Equivariant cohomology, Cartan model. For a Lie groupG and a smooth
G-manifold M we consider the space

(Skg∗ ⊗ Ωp(M))G

of all homogeneous polynomial mappings α : g→ Ωp(M) of degree k from the Lie
algebra g of G to the space of p-forms, which are G-equivariant: α(Ad(g−1)X) =
`∗gα(X) for all g ∈ G. The mapping

dg : AqG(M)→ Aq+1
G (M)

AqG(M) :=
⊕

2k+p=q

(Skg∗ ⊗ Ωp(M))G

(dgα)(X) := d(α(X))− iζX
α(X)

satisfies dg ◦ dg = 0 and the following result holds.
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Theorem. Let G be a compact connected Lie group and let M be a smooth G-
manifold. Then

Hp(EG×GM ; R) = Hp(A∗G(M), dg).

This result is stated in [1] together with some arguments, and it is attributed to
[5], [6] in chapter 7 of [2]. I was unable to find a satisfactory published proof.

5.4. Let M be a smooth G-manifold. Then the obvious embedding j(ω) = 1 ⊗ ω
gives a mapping of graded differential algebras

j : Ωphor(M)G → (S0g∗ ⊗ Ωp(M))G →
⊕
k

(Skg∗ ⊗ Ωp−2k(M))G = ApG(M).

On the other hand evaluation at 0 ∈ g defines a homomorphism of graded differen-
tial algebras ev0 : A∗G(M) → Ω∗(M)G, and ev0 ◦j is the embedding Ω∗hor(M)G →
Ω∗(M)G. Thus we get canonical homomorphisms in cohomology

Hp(Ω∗hor(M)G) J∗−−−−→ Hp(A∗G(M), dg) −−−−→ Hp(Ω∗(M)G, d)∥∥∥ ∥∥∥ ∥∥∥
Hp
G−basic(M) −−−−→ Hp

G(M) −−−−→ Hp(M)G.

If G is compact and connected we have Hp(M)G = Hp(M), by integration and
homotopy invariance.
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22. Ronga, F., Stabilité locale des applications equivariantes, Differential Topology and Geometry,

Dijon 1974, Lecture Notes in Math. 484, Springer-Verlag, 1975, pp. 23–35.

23. Schwarz, G. W., Smooth functions invariant under the action of a compact Lie group, Topol-
ogy 14 (1975), 63–68.

24. Schwarz, G. W., Lifting smooth homotopies of orbit spaces, Publ. Math. IHES 51 (37–136),
1980.

25. Solomon, L., Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57–64.

26. Szenthe, J., A generalization of the Weyl group, Acta Math. Hungarica 41 (1983), 347–357.
27. Szenthe, J., Orthogonally transversal submanifolds and the generalizations of the Weyl group,

Period. Math. Hungarica 15 (1984), 281–299.

28. Terng, C. L., Isoparametric submanifolds and their Coxeter groups, J. Diff. Geom. 1985 (21),
79–107.

P. W. Michor: Institut für Mathematik, Universität Wien, Strudlhofgasse 4,

A-1090 Wien, Austria
E-mail address: MICHOR@ESI.AC.AT


