CHARACTERISTIC CLASSES FOR G-STRUCTURES

D. V. ALEKSEEVSKY PETER W. MICHOR

Center 'Sophus Lie', Moscow Institut für Mathematik, Universität Wien, Austria

April 10, 2008

ABSTRACT. Let $G \subset GL(V)$ be a linear Lie group with Lie algebra \mathfrak{g} and let $A(\mathfrak{g})^G$ be the subalgebra of G-invariant elements of the associative supercommutative algebra $A(\mathfrak{g}) = S(\mathfrak{g}^*) \otimes \Lambda(V^*)$. To any G-structure $\pi: P \to M$ with a connection ω we associate a homomorphism $\mu_{\omega}: A(\mathfrak{g})^G \to \Omega(M)$. The differential forms $\mu_{\omega}(f)$ for $f \in A(\mathfrak{g})^G$ which are associated to the G-structure π can be used to construct Lagrangians. If ω has no torsion the differential forms $\mu_{\omega}(f)$ are closed and define characteristic classes of a G-structure. The induced homomorphism $\mu'_{\omega}: A(\mathfrak{g})^G \to H^*(M)$ does not depend on the choice of the torsionfree connection ω and it is the natural generalization of the Chern Weil homomorphism.

1. G-STRUCTURES

1.1. G-structures. By a G-structure on a smooth finite dimensional manifold M we mean a principal fiber bundle $\pi:P\to M$ together with a representation $\rho:G\to GL(V)$ of the structure group in a real vector space V of dimension dim M and a 1-form σ (called the soldering form) on M with values in the associated bundle $P[V,\rho]=P\times_G V$ which is fiber wise an isomorphism and identifies T_xM with $P[V]_x$ for each $x\in M$. Then σ corresponds uniquely to a G-equivariant 1-form $\theta\in\Omega^1_{\mathrm{hor}}(P;V)^G$ which is strongly horizontal in the sense that its kernel is exactly the vertical bundle VP. The form θ is called the displacement form of the G-structure. A G-structure is called 1-integrable if it admits torsionfree connections, see 1.4 below.

We fix this setting $((P, p, M, G), (V, \rho), \theta)$ from now on.

1.2. Invariant forms. We consider a multilinear form $f \in \bigotimes^k V^* = L^k(V)$ which is invariant in the sense that $f \circ (\bigotimes^k \rho(g)) = f$ for each $g \in G$. Let us denote by

 $^{1991\} Mathematics\ Subject\ Classification.\ 53C10,\ 57R20.$

Key words and phrases. G-structures, characteristic classes.

Supported by Project P 7724 PHY of 'Fonds zur Förderung der wissenschaftlichen Forschung'.

 $L^k(V)^G$ the space of all these invariant forms. For each $f \in L^k(V)^G$ we have for any $X \in \mathfrak{g}$, the Lie algebra of G,

$$0 = \frac{d}{dt}|_{0} f(\rho(\exp(tX))v_{1}, \dots, \rho(\exp(tX))v_{k}),$$

$$= \sum_{i=1}^{k} f(v_{1}, \dots, \rho'(X)v_{i}, \dots, v_{k}),$$

where $\rho' = T_e \rho : \mathfrak{g} \to \mathfrak{gl}(V)$ is the differential of the representation ρ .

1.3 Products of differential forms. For $\varphi \in \Omega^p(P; \mathfrak{g})$ and $\Psi \in \Omega^q(P; V)$ let us define the form $\rho'_{\wedge}(\varphi)\Psi \in \Omega^{p+q}(P; V)$ by

$$(\rho'_{\wedge}(\varphi)\Psi)(X_1,\ldots,X_{p+q}) =$$

$$= \frac{1}{p!\,q!} \sum_{\sigma} \operatorname{sign}(\sigma) \rho'(\varphi(X_{\sigma 1},\ldots,X_{\sigma p})) \Psi(X_{\sigma(p+1)},\ldots,X_{\sigma(p+q)}).$$

Then $\rho'_{\wedge}(\varphi): \Omega^*(P;V) \to \Omega^{*+p}(P;V)$ is a graded $\Omega(P)$ -module homomorphism of degree p. Recall also that $\Omega(P;\mathfrak{g})$ is a graded Lie algebra with the bracket

$$[\varphi, \psi]_{\wedge}(X_1, \dots, X_{p+q}) =$$

$$= \frac{1}{p! \, q!} \sum_{\sigma} \operatorname{sign}\sigma \left[\varphi(X_{\sigma 1}, \dots, X_{\sigma p}), \psi(X_{\sigma(p+1)}, \dots, X_{\sigma(p+q)})\right]_{\mathfrak{g}}.$$

One may easily check that for the graded commutator in $\operatorname{End}(\Omega(P;V))$ we have

$$\rho_{\wedge}'([\varphi,\psi]_{\wedge}) = [\rho_{\wedge}'(\varphi),\rho_{\wedge}'(\psi)] = \rho_{\wedge}'(\varphi) \circ \rho_{\wedge}'(\psi) - (-1)^{pq}\rho_{\wedge}'(\psi) \circ \rho_{\wedge}'(\varphi)$$

so that $\rho'_{\wedge}: \Omega^*(P; \mathfrak{g}) \to \operatorname{End}^*(\Omega(P; V))$ is a homomorphism of graded Lie algebras. Let $\bigotimes V$ be the tensoralgebra generated by V. For $\Phi, \Psi \in \Omega(P; \bigotimes V)$ we will use the associative bigraded product

$$(\Phi \otimes_{\wedge} \Psi)(X_{1}, \dots, X_{p+q}) =$$

$$= \frac{1}{p!} \sum_{\sigma} \operatorname{sign}(\sigma) \Phi(X_{\sigma 1}, \dots, X_{\sigma p}) \otimes \Psi(X_{\sigma(p+1)}, \dots, X_{\sigma(p+q)})$$

1.4. The covariant exterior derivative. Let $\omega \in \Omega^1(P;\mathfrak{g})^G$ be a principal connection on the principal bundle (P, p, M, G). Let $\chi : TP \to HP$ denote the corresponding projection onto the horizontal bundle $HP := \ker \omega$. The covariant exterior derivative $d_\omega : \Omega^k(P;V) \to \Omega^{k+1}_{\mathrm{hor}}(P;V)$ is then given as usual by $d_\omega \Psi = \chi^* d\Psi = (d\Psi) \circ \Lambda^{k+1}(\chi)$.

Lemma. For $\Psi \in \Omega_{\text{hor}}(P; V)^G$ the covariant exterior derivative is given by $d_{\omega}\Psi = d\Psi + \rho'_{\wedge}(\omega)\Psi$.

Proof. If we insert one vertical vector field, say the fundamental vector field ζ_X for $X \in \mathfrak{g}$, into $d_{\omega}\Psi$, we get 0 by definition. For the right hand side we use $i_{\zeta_X}\Psi = 0$ and

 $\mathcal{L}_{\zeta_X} \Psi = \frac{\partial}{\partial t} \Big|_0 (\mathrm{Fl}_t^{\zeta_X})^* \Psi = \frac{\partial}{\partial t} \Big|_0 \Psi \circ \Lambda^p (r^{\exp tX}) = \frac{\partial}{\partial t} \Big|_0 \rho (\exp(-tX)) \Psi = -\rho'(X) \Psi$ to get

$$i_{\zeta_X}(d\Psi + \rho'_{\wedge}(\omega)\Psi) = i_{\zeta_X}d\Psi + di_{\zeta_X}\Psi + \rho'_{\wedge}(i_{\zeta_X}\omega)\Psi - \rho'_{\wedge}(\omega)i_{\zeta_X}\Psi$$
$$= \mathcal{L}_{\zeta_X}\Psi + \rho'_{\wedge}(X)\Psi = 0.$$

Let now all vector fields ξ_i be horizontal, then we get

$$(d_{\omega}\Psi)(\xi_0,\ldots,\xi_k) = (\chi^*d\Psi)(\xi_0,\ldots,\xi_k) = d\Psi(\xi_0,\ldots,\xi_k),$$

$$(d\Psi + \rho'_{\wedge}(\omega)\Psi)(\xi_0,\ldots,\xi_k) = d\Psi(\xi_0,\ldots,\xi_k). \quad \Box$$

1.5. Definition. If $\theta \in \Omega^1_{\text{hor}}(P;V)^G$ is the displacement form of a G-structure then the *torsion* of the connection ω with respect to the G-structure is $\tau := d_\omega \theta = d\theta + \rho'_{\wedge}(\omega)\theta$.

Recall that a G-structure is called 1-integrable if it admits a connection without torsion. This notion has also been investigated in [Kolář, Vadovičová] where it was called prolongable.

1.6. Chern-Weil forms. For differential forms $\psi_i \in \Omega^{p_i}(P; V)$ and $f \in L^k(V) = (\bigotimes^k V)^*$ we can construct the following differential forms:

$$\psi_1 \otimes_{\wedge} \cdots \otimes_{\wedge} \psi_k \in \Omega^{p_1 + \cdots + p_k}(P; V \otimes \cdots \otimes V),$$

$$f^{\psi_1, \dots, \psi_k} := f \circ (\psi_1 \otimes_{\wedge} \cdots \otimes_{\wedge} \psi_k) \in \Omega^{p_1 + \cdots + p_k}(P).$$

The exterior derivative of the latter one is clearly given by

$$d(f \circ (\psi_1 \otimes_{\wedge} \cdots \otimes_{\wedge} \psi_k)) = f \circ d(\psi_1 \otimes_{\wedge} \cdots \otimes_{\wedge} \psi_k) =$$

$$= f \circ \left(\sum_{i=1}^k (-1)^{p_1 + \cdots + p_{i-1}} \psi_1 \otimes_{\wedge} \cdots \otimes_{\wedge} d\psi_i \otimes_{\wedge} \cdots \otimes_{\wedge} \psi_k \right).$$

We also set $f^{\psi} := f^{\psi,\dots,\psi} = \text{alt } f(\psi,\dots,\psi)$ for $\psi \in \Omega^p(P;V)$. Note that the form f^{ψ_1,\dots,ψ_k} is G-invariant and horizontal if all $\psi_i \in \Omega^{p_i}_{\text{hor}}(P;V)^G$ and $f \in L^k(V)^G$. It is then the pullback of a form on M.

1.7. Lemma. Let $0 \neq \psi \in \Omega^p(P; V)$ and $f \in L^k(V)$. Then we have:

$$f^{\psi} \neq 0 \iff \begin{cases} \text{alt } f \neq 0, & \text{if } p \text{ is odd,} \\ \text{sym } f \neq 0, & \text{if } p \text{ is even,} \end{cases}$$

where alt and sym are the natural projections onto $\Lambda(V^*)$ and $S(V^*)$, respectively. \square

1.8. Lemma. If $f \in L^k(V)^G$ is invariant then we have

$$f \circ \left(\sum_{i=1}^{k} (-1)^{p_1 + \dots + p_{i-1}} \psi_1 \otimes_{\wedge} \dots \otimes_{\wedge} \rho'_{\wedge}(\omega) \psi_i \otimes_{\wedge} \dots \otimes_{\wedge} \psi_k \right) = 0.$$

Proof. This follows from the infinitesimal condition of invariance for f given in 1.2 by applying the alternator. \square

2. Obstructions to 1-integrability of G-structures

2.1. Proposition. Let $\pi: P \to M$ be a G-structure and let $f \in L^k(V)^G$ be an invariant tensor. For arbitrary G-equivariant horizontal V-valued forms $\psi_i \in \Omega^{p_i}_{\text{hor}}(P;V)^G$ we consider the $(p_1 + \cdots + p_k)$ -form f^{ψ_1,\dots,ψ_k} on M as above. If there is a connection ω for the G-structure π such that $d_\omega \psi_i = 0$ for all i, then the form f^{ψ_1,\dots,ψ_k} is closed.

Proof. We use $d_{\omega}\psi_i = d\psi_i + \rho'_{\wedge}(\omega)\psi_i$ from lemma 1.4, and lemma 1.8, to obtain

$$df^{\psi_1,\dots,\psi_k} = f \circ \left(\sum_{i=1}^k (-1)^{p_1+\dots+p_{i-1}} \psi_1 \otimes_{\wedge} \dots \otimes_{\wedge} d_{\omega} \psi_i \otimes_{\wedge} \dots \otimes_{\wedge} \psi_k\right) = 0. \quad \Box$$

2.2. Corollary. 1. For a G-structure $\pi: P \to M$ with displacement form θ we have a natural homomorphism of associative algebras

$$\nu : \Lambda(V^*)^G \to \Omega(M),$$

$$f \mapsto f^\theta = f(\theta, \dots, \theta).$$

2. If the G-structure is 1-integrable then the image of ν consists of closed forms and we get an induced homomorphism

$$u^*: \Lambda(V^*)^G \to H^*(M).$$

If M and G are compact then ν^* is injective.

Proof. If the G-structure is 1-integrable then there is a connection ω with vanishing torsion $\tau = d_{\omega}\theta = 0$. Then the result follows from proposition 2.1.

If G is compact, any torsionfree connection ω for $\pi: P \to M$ is the Levi-Civita connection for some Riemannian metric. Any form f^{θ} , which is parallel with respect to to ω , is harmonic and can thus not be exact for compact M. So ν^* is injective. \square

Problem. Is the homomorphism ν^* injective for compact M but noncompact G?

- **2.3. Remark.** Given a principal connection ω on P there is the induced covariant exterior derivative $\nabla: \Omega^p(M; P[V]) \to \Omega^{p+1}(M; P[V])$ on the associated vector bundle P[V]. The soldering form (see 1.1) $\sigma: TM \to P[V]$ is an isomorphism of vector bundles and we may consider the pull back covariand derivative $\sigma^*\nabla$ on TM. Next we consider the 'combined' covariant derivative $D^{\sigma^*\nabla,\nabla}$ on the vector bundle L(TM, P[V]) given by $D_X^{\sigma^*\nabla,\nabla}A = \nabla_X \circ A A \circ (\sigma^*\nabla)_X$. Obviously we have $D^{\sigma^*\nabla,\nabla}\sigma = 0$. Consequently for any $f \in L^k(V)^G$ we have that $f^\theta \in \Omega^k(M)$ is parallel for the connection induced on Λ^kT^*M from $\sigma^*\nabla$ on TM.
 - 3. The generalized Chern-Weil homomorphism for G-structures
- **3.1. The Chern-Weil homomorphism.** Let ω be a connection for a G-structure $\pi: P \to M$ with curvature form $\Omega \in \Omega^2_{\mathrm{hor}}(P,\mathfrak{g})$. Then the Bianchi identity $d_\omega \Omega = 0$ holds. If we apply proposition 2.1 to $\psi_i = \Omega$ we obtain a homomorphism

$$\gamma: S(\mathfrak{g}^*)^G \to \Omega(M),$$

given by $\gamma(f) = f^{\Omega}$. Since the image of γ consists of closed forms we have an induced homomorphism

$$\gamma': S(\mathfrak{g}^*)^G \to H^*(M).$$

This is the well known Chern-Weil homomorphism.

3.2. The algebra $A(\mathfrak{g}, V)$. In oder to generalize the Chern Weil homomorphism we associate to a Lie algebra \mathfrak{g} and a vector space V the associative graded commutative algebra

$$A(\mathfrak{g},V) := S(\mathfrak{g}^*) \otimes \Lambda(V^*),$$

where the generators of the symmetric algebra $S(\mathfrak{g}^*)$ have degree 2. We may also consider $A(\mathfrak{g}, V)$ as a graded Lie algebra with the bracket

$$[a \otimes \varphi, b \otimes \psi] := \{a, b\} \otimes \varphi \wedge \psi, \quad a, b \in S(\mathfrak{g}^*), \varphi, \psi \in \Lambda(V^*),$$

where $\{a, b\}$ is the usual Poisson-Lie bracket in $S(\mathfrak{g}^*)$.

Let now \mathfrak{g} be the Lie algebra of the Lie group G and let $\rho: G \to GL(V)$ be a representation. Then G acts naturally on $A(\mathfrak{g}, V)$, and we denote $A(\mathfrak{g}, V)^G$ the subalgebra of G-invariant elements in $A(\mathfrak{g}, V)$.

- **3.3. Remark.** The associative algebra $A(\mathfrak{g},V)^G$ contains the subalgebra $S(\mathfrak{g}^*)^G \otimes \Lambda(V^*)^G$, in general as a proper subalgebra. Actually, let $G \subset GL(V)$ be the isotropy group of an irreducible Riemannian symmetric space M. Then the curvature tensor of M defines an element of $(\mathfrak{g}^* \otimes \Lambda^2 V^*)^G \subset A(\mathfrak{g},V)^G$ that does not belong to $(\mathfrak{g}^*)^G \otimes (\Lambda^2 V^*)^G = 0$
- **3.4. The generalized Chern-Weil homomorphism.** Now we are in a position to combine the constructions 2.2 and 3.1.

Theorem. Let $\pi: P \to M$ be a G-structure on M with displacement form θ . Any connection ω in π defines a homomorphism of associative algebras

$$\mu: A(\mathfrak{g}, V)^G \to \Omega(M)$$
$$(S^p(\mathfrak{g}^*) \otimes \Lambda^q V^*)^G \ni f \mapsto f^{\Omega, \theta} = f(\underbrace{\Omega, \dots, \Omega}_p, \underbrace{\theta, \dots, \theta}_q)$$

If the connection ω has no torsion then the image of μ consists of closed forms and μ induces a homomorphism

$$\mu': A(\mathfrak{g}, V)^G \to H^*(M),$$

which is independent of the choice of the torsionfree connection.

In other words, any G-invariant tensor $f \in S^p(\mathfrak{g}^*) \otimes \Lambda^q(V^*)$ defines a cohomology class $[f^{\Omega,\theta}] \in H^{2p+q}(M)$ which is an invariant of the 1-integrable G-structure. We call it a *characteristic class* of the 1-integrable G-structure π .

Proof. It just remains to show that the cohomology class $[f^{\Omega,\theta}]$ does not depend on the choice of the torsionfree connection for the G-structure $\pi: P \to M$.

So let ω_0 , ω_1 be two torsionfree connections for the G-structure, let $\varphi = \omega_1 - \omega_0$, and denote by $\Omega_t = d_{\omega_t} \Omega_t$ the curvature form of the torsionfree connection $\omega_t = \omega_0 + t\varphi = (1-t)\omega_0 + t\omega_1$. We claim that for $f \in (S^p(\mathfrak{g}^*) \otimes \Lambda^q(V^*))^G$ we have

(1)
$$f^{\Omega_1,\theta} - f^{\Omega_0,\theta} = d(Tf), \quad \text{where}$$

$$Tf = p \int_0^1 f(\varphi, \Omega_t, \dots, \Omega_t, \theta, \dots, \theta) dt$$

is the transgression form of f on P. The assertion is immediate from (1). To prove it we compute $\partial_t f^{\Omega_t,\theta}$ using the identities $\partial_t \Omega_t = d_{\omega_t} \varphi$ (see [Kobayashi, Nomizu II, p. 296]), $d_{\omega_t} \Omega_t = 0$, and $d_{\omega_t} \theta = 0$.

$$\partial_t f^{\Omega_t, \theta} = p f(\partial_t \Omega_t, \Omega_t, \dots, \Omega_t, \theta, \dots, \theta)$$

$$= p f(d_{\omega_t} \varphi, \Omega_t, \dots, \Omega_t, \theta, \dots, \theta)$$

$$= p d_{\omega_t} f(\varphi, \Omega_t, \dots, \Omega_t, \theta, \dots, \theta)$$

$$= p d f(\varphi, \Omega_t, \dots, \Omega_t, \theta, \dots, \theta). \quad \Box$$

3.5. Remarks about secondary characteristic classes. If the characteristic forms $f^{\Omega_1,\theta}$ and $f^{\Omega_0,\theta}$ associated with two torsionfree connections ω_1 and ω_0 vanish we obtain a secondary characteristic class [Tf]. It is a natural generalization of the classical Chern-Simons characteristic class, see [Chern, Simons], [Kobayashi, Ochiai].

Problem: study conditions when the secondary characteristic class [Tf] does not depend on the choice of the torsionfree connections ω_1 and ω_0 .

3.6. Examples of characteristic classes. Assume that a linear group $G \subset GL(V)$ preserves some pseudo Euclidean metric in $V = \mathbb{R}^n$. Then we may identify the Lie algebra $\mathfrak{g} = \text{Lie}(G)$ with a subspace $\mathfrak{g} \subset \Lambda^2 V$. Suppose that there exists a G-invariant supplement \mathfrak{d} to \mathfrak{g} in $\Lambda^2 V$. Then the G-equivariant projection $\Lambda^2 V \to \mathfrak{g}$ along \mathfrak{d} determines a G-invariant element $q \in \mathfrak{g} \otimes \Lambda^2 V^* \cong \mathfrak{g}^* \otimes \Lambda^2 V^*$. The element q defines a 4-form $q^{\Omega,\theta}$ on the base of any G-structure $\pi: P \to M$ with a connection ω and curvature Ω . It may be written as

$$q^{\Omega,\theta} = q(\Omega,\theta,\theta) = q^a_{bcd} R^b_{aef} \theta^c \wedge \theta^d \wedge \theta^e \wedge \theta^f,$$

where (q_{bcd}^a) is the coordinate expression of q in the standard basis (e_a) of $V = \mathbb{R}^n$, $\theta = e_a \otimes \theta^a$, and $\Omega = R_{bef}^a \theta^e \wedge \theta^f$.

If ω is torsionfree the 4-form $q^{\Omega,\theta}$ is closed and it defines a cohomology class $[q^{\Omega,\theta}] \in H^4(M)$ independently of the choice of ω .

3.7. Remarks about the classification of characteristic classes. The classification of characteristic classes for G – structures with a given Lie group G reduces to the construction of generators of the associative algebra $A(\mathfrak{g}, V)^G = (S(\mathfrak{g}^*) \otimes \Lambda(V^*))^G$. We may also use the bracket to multiply characteristic classes. It suffices to solve this problem for those Lie groups G which appear as holonomy groups of torsionfree connection. Only for such groups G there exist 1-integrable non-flat G-structures. Under the additional hypothesis of irreducibility, all such groups were classified by [Berger], up to some gaps which were filled by [Bryant] and [Alekseevsky, Graev].

REFERENCES

Alekseevsky, D. V.; Graev M. M., Twistors and G-structures, Preprint, University of Roma, (1991).

Berger, M., Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemanniénnes, Bull. Soc. Math. France 83 155 (1955), 279–330.

- Bryant, R., *Holonomy groups*, Lecture at the conference: Global Differential Geometry and Global Analysis, Berlin 1990.
- Chern, S. S.; Simons, J., Some cohomology classes in principal fiber bundles and their applications to Riemannian geometry, Proc. Nat. Acad. Sci. (USA) **68** (1971), 791–794.
- Chern, S. S.; Simons, J., Charateristic forms and geometrical invariants, Annals of Math. 99 (1974), 48–69.
- Dupont, Johan L., Curvature and characteristic classes, Lecture Notes in Mathematics 640, Springer-Verlag, Berlin, 1978.
- Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry. Vol. II., J. Wiley-Interscience, 1969.
- Kobayashi, Sh.; Ochiai, T., G-structures of order two and transgression operators, J. Diff. Geo. 6 (1971), 213–230.
- Kolář, I; Vadovičová, I, On the structure functions of a G-structure, Math. Slovaca **35** (1985), 277–282.
- D. V. Alekseevsky: Center 'Sophus Lie', Krasnokazarmennaya 6, 111250 Moscow, USSR
- P. W. Michor: Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria

 $E ext{-}mail\ address: ext{MICHOR@AWIRAP.BITNET}$