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Introduction

This is the extended version of a lecture course given at the University of
Vienna in the spring term 2005. Many thanks to the audience of this course
for many keen questions. The main aim of this course was to understand the
papers [11] and [13].

The purpose of this review article is to give a complete account of exis-
tence and uniqueness of the solutions of the members of higher order of the
hierarchies of Burgers’ equation and the Korteweg-de Vries equation, includ-
ing their derivation and all the necessary background. We do this both on
the circle, and on the real line in the setting of rapidly decreasing functions.
These are all geodesic equations of infinite dimensional regular Lie groups,
namely the diffeomorphism group of the line or the circle and the correspond-
ing Virasoro group.

Let us describe the content: Appendix A is a short description of conve-
nient calculus in infinite dimensions (beyond Banach spaces) where every-
thing is based on smooth curves: A mapping is C*° if it maps smooth curves
to smooth curves. It is a theorem that smooth curves in a space of smooth
functions are just smooth functions of one variable more; this is the basic
assumption of variational calculus. Appendix B gives a short account of in-
finite dimensional regular Lie groups. Here regularity means that a smooth
curve in the Lie algebra can be integrated to a smooth curve in the group
whose right (or left) logarithmic derivative equals the given curve. No infi-
nite dimensional Lie group is known which is not regular. Section 1, as a
motivating example, computes the geodesics and the curvature of the most
naive Riemannian metric on the space of embeddings of the real line to itself
and shows that this can be converted into Burgers’ equation. Section 2 treats
Hamiltonian mechanics on infinite dimensional weak symplectic manifolds.
Here ‘weak’ means that the symplectic 2-form is injective as a mapping from
the tangent bundle to the cotangent bundle. Section 3 computes geodesics
and curvatures of right invariant Riemannian metrics on regular Lie groups as
done by Arnold [4]. Section 4 redoes this in the symplectic approach and com-
putes the associated momentum mappings and conserved quantities. Section
5 shows that the geodesic distance vanishes on any full diffeomorphis group
for the right invariant metric coming from the L?-metric on the Lie algebra
of vector fields for a given Riemannian metric on a manifold. In particular,
Burgers’ equation is the geodesic equation of such a metric. Section 6 treats
the group of diffeomorphisms of the real line which decrease rapidly to the
identity as a regular Lie group. This will be important for Burgers’ equa-
tion as geodesic equation on this group, and also for the KdV equation. Here
we also give a short presentation of Sobolev spaces on the real line and of
the scale of HC™-spaces for which we were able to give simple proofs of the
results which we need later. Section 7 treats geodesic equations on the diffeo-
morphism groups of the real line or S' which leads to Burgers’ hierarchy. We
solve these equations starting at certain higher order, following [13]. Section
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8 does this for the Virasoro groups on the real line or S'. For the solution of
the higher order equations we follow [11].

Note that in this paper we concentrate on in the smooth (= C°°) aspect.
We also do not treat complete integrability for Burgers’ and KdV equation,
although we prepared almost all of the necessary background.

1. A general setting and a motivating example

1.1. The principal bundle of embeddings

Let M and N be smooth finite dimensional manifolds, connected and sec-
ond countable without boundary, such that dim M < dim N. Then the space
Emb(M, N) of all embeddings (immersions which are homeomorphisms on
their images) from M into N is an open submanifold of C*°(M, N) which
is stable under the right action of the diffeomorphism group of M. Here
C> (M, N) is a smooth manifold modeled on spaces of sections with compact
support I.(f*T'N). In particular the tangent space at f is canonically iso-
morphic to the space of vector fields along f with compact support in M. If
f and g differ on a non-compact set then they belong to different connected
components of C*°(M, N). See [31] and [37]. Then Emb(M, N) is the total
space of a smooth principal fiber bundle with structure group the diffeomor-
phism group of M; the base is called B(M, N), it is a Hausdorff smooth
manifold modeled on nuclear (LF)-spaces. It can be thought of as the ”non-
linear Grassmannian” or ”differentiable Chow variety” of all submanifolds of
N which are of type M. This result is based on an idea implicitly contained
in [51], it was fully proved in [7] for compact M and for general M in [36].
See also [37], section 13 and [31]. If we take a Hilbert space H instead of
N, then B(M, H) is the classifying space for Diff (M) if M is compact, and
the classifying bundle Emb(M, H) carries also a universal connection. This
is shown in [38].

1.2

If (N, g) is a Riemannian manifold then on the manifold Emb(M, N) there
is a naturally induced weak Riemannian metric given, for s1, s € I'.(f*TN)
and ¢ € Emb(M, N), by

Gy(s1,82) = /M g(s1,s2) vol(¢*g), ¢ € Emb(M, N),
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where vol(g) denotes the volume form on N induced by the Riemannian
metric g and vol(¢*g) the volume form on M induced by the pull back met-
ric ¢*g. The covariant derivative and curvature of the Levi-Civita connec-
tion induced by G were investigated in [6] if N = R¥mM+1 (endowed with
the standard inner product) and in [25] for the general case. In [40] it was
shown that the geodesic distance (topological metric) on the base manifold
B(M,N) = Emb(M, N)/Diff(M) induced by this Riemannian metric van-
ishes.

This weak Riemannian metric is invariant under the action of the diffeo-
morphism group Diff (M) by composition from the right and hence it induces
a Riemannian metric on the base manifold B(M, N).

1.3. Example

Let us consider the special case M = N = R, that is, the space Emb(R,R) of
all embeddings of the real line into itself, which contains the diffeomorphism
group Diff(R) as an open subset. The case M = N = S! is treated in a
similar fashion and the results of this paper are also valid in this situation,
where Emb(S*, S1) = Diff(S!). For our purposes, we may restrict attention
to the space of orientation-preserving embeddings, denoted by Emb™ (R, R).
The weak Riemannian metric has thus the expression

Gf(h,k)z/Rh(x)k(xﬂf’(xﬂdac, f € Emb(R,R), h,k e C=(R,R).

We shall compute the geodesic equation for this metric by variational calcu-
lus. The energy of a curve f of embeddings is

E(f) = é/abe(ft,ft)dtz éLbAfffmdxdt.

If we assume that f(z,t,s) is a smooth function and that the variations are
with fixed endpoints, then the derivative with respect to s of the energy is

b
85|0%//ft2f$dxdt
a JR

b
= %/G/R(thftsfx + f2 fus)dadt

FsloE(f( ,5))

b
= 7% /a /R(thtfsfz + 2ftfsftz + 2ftftzfs)d$dt

[ (rueatle

) fsfedadt,
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so that the geodesic equation with its initial data is:

fee = —Zf}fx

= L¢(fi, fi),

where the Christoffel symbol I' : Emb(R,R) x C°(R,R) x C*(R,R) —
C*(R,R) is given by symmetrisation:

f( ’0) € Emb+(R7R)v ft( 70) € CSO(RvR) (1)

_hkg +hak (hk)s
Ja fa

For vector fields X,Y on Emb(R,R) the covariant derivative is given by

the expression VE™Y = dY(X) — I'(X,Y). The Riemannian curvature

R(X,Y)Z = (VxVy — VyVx — V(x,y])Z is then determined in terms of
the Christoffel form by

Iy(h, k) = (2)

R(X,Y)Z = (VxVy = VyVx — Vixy))Z
=Vx(dZ(Y)-I'(Y,Z)) —= Vy(dZ(X) - I'(X, Z))
—dZ([X,Y]) + I'([X,Y], Z)

=d*Z(X,Y) +dZ(dY (X)) - ['(X,dZ(Y))
—dI(X)(Y,Z) - T(dY(X),Z) - I'(Y,dZ(X))+ I'(X, (Y, Z))
—d*Z(Y,X) —dZ(dX(Y)) + I'(Y,dZ(X))
+dl(Y)(X,Z)+ T(dX(Y),2)+ I(X,dZ(Y)) - T'(Y,I['(X,Z))
—dZ(dY (X) —dX(Y))+I'(dY(X)—dX(Y),2)

—dIN(X)Y,Z2)+ (X, (Y, 2))+dI[(Y)(X,Z) - I'(Y,['(X, Z)

so that

Ry(h, k)l =

= —dI'(f)(h)(k,£) + dI'(f)(k)(h,£) + Ty (h, ¢ (k, £)) — L'¢(k, L't (h, £))

_ha(k0)s | Ra(h). (h(kffz)w - (k%) -
f2 f2 fz fa

f3

Now let us consider the trivialisation of T Emb(R, R) by right translation (this
is most useful for Diff(R)). The derivative of the inversion Inv : g + g~ ! is

given by
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hog™!
T.(Inv)h = —-T(¢ Vohog t=——"—2 _
9( ) (g ) g gwog,1

for g € Emb(R,R), h € C°(R,R). Defining
w:= fo f7', or, in more detail, wu(t,z) = fi(t, f(t, )" (x)),
we have

uz:(ftof_l)w:(ft:vof_ )fr 1f T J;f:

Ut:(ftof_l)t:fttof_l‘f'(ftzof DY
=fuof ' =(fruofh) (fe 71

f 1

fa f !
which, by (1) and the first equation becomes

up = fyof "t — (f?ft) ft=-3 <f?ft> o f71 = —3uyu.

The geodesic equation on Emb(R,R) in right trivialization, that is, in Eule-
rian formulation, is hence
Up = —3UL U, (4)

which is just Burgers’ equation.

Finally let us solve Burgers’ equation and also describe its universal com-
pletion, see see [10], [2], or [26].

In R? with coordinates (x,%) consider the vector field Y (x,y) = (3y,0) =
3y0, with differential equation & = 3y,y = 0. It has the complete flow
FIY (z,y) = (z + 3ty y).

Let now t — u(t, z) be a curve of functions on R. We ask when the graph
of u can be reparametrized in such a way that it becomes a solution curve
of the push forward vector field Y, : f — Y o f on the space of embeddings
Emb(R, Rz). Thus consider a time dependent reparametrization z — x(t, z),
i.e., v € C*(R2, R). The curve t — (x(t, 2),u(t,z(z,t))) in R? is an integral
curve of Y if and only if

3uox -9 x \ Ty
0 T \wox)  \ugox+ (ugom) -z

Ty =3uox
—
0 = (u¢ + 3uuy) ox

This implies that the graph of u(¢, -), namely the curve t = (z — (z, u(t, z))),
may be parameterized as a solution curve of the vector field Y, on the space
of embeddings Emb(R, R?) starting at x ~ (z,u(0, 7)) if and only if u is a
solution of the partial differential equation u; 4+ 3uu, = 0. The parameteriza-
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tion z — x(z,t) is then given by x4(z,t) = 3u(x(¢, 2)) with z(0,2) = z € R.

/
/

Fig. 1 The characteristic flow of the inviscid Burgers’ equation tilts the plane.

This has a simple physical meaning. Consider freely flying particles in
R, and trace a trajectory x(t) of one of the particles. Denote the velocity
of a particle at the position x at the moment ¢ by u(t,z), or rather, by
3u(t,z) := &(t). Due to the absence of interaction, the Newton equation of
any particle is Z(t) = 0.

Let us illustrate this: The flow of the vector field Y = 3ud, is tilting the
plane to the right with constant speed. The illustration shows how a graph of
an honest function is moved through a shock (when the derivatives become
infinite) towards the graph of a multivalued function; each piece of it is still
a local solution.

2. Weak symplectic manifolds

2.1. Review

For a finite dimensional symplectic manifold (M,w) we have the following
exact sequence of Lie algebras:

0 — HO(M) — C®(M,R) 229" ¥(M,w) — H' (M) — 0.

Here H*(M) is the real De Rham cohomology of M, the space C*°(M,R)
is equipped with the Poisson bracket { , }, ¥(M,w) consists of all vector
fields & with Lew = 0 (the locally Hamiltonian vector fields), which is a Lie
algebra for the Lie bracket. Furthermore, grad® f is the Hamiltonian vector
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field for f € C°°(M,R) given by i(grad” flw = df and v(§) = [icw]. The
spaces HY(M) and H'(M) are equipped with the zero bracket.

Consider a symplectic right action r : M x G — M of a connected Lie
group G on M; we use the notation r(z,g9) = r?(z) = r,(9) = x.g. By
Cx(z) = T.(ry)X we get a mapping ¢ : g — X(M,w) which sends each
element X of the Lie algebra g of G to the fundamental vector field X. This
is a Lie algebra homomorphism (for right actions!).

grad®

HOY(M) —'> C>=(M,R) X(M,w) —= H' (M)

A

g

A linear lift j : g — C*°(M,R) of ¢ with grad” oj = ( exists if and only
if yo¢ = 0 in H'(M). This lift j may be changed to a Lie algebra ho-
momorphism if and only if the 2-cocycle 7 : g x g — HY(M), given by
(1o)(X,Y) = {4(X),j(Y)}—3([X,Y]), vanishes in the Lie algebra cohomol-
ogy H?(g, H*(M)), for if 7 = Sa then j—ioa is a Lie algebra homomorphism.

Ifj: g — C>®(M,R) is a Lie algebra homomorphism, we may associate the
moment mapping i : M — g’ = L(g,R) to it, which is given by u(z)(X) =
X(X)(z) for v € M and X € g. It is G-equivariant for a suitably chosen (in
general affine) action of G on g'.

2.2

We now want to carry over to infinite dimensional manifolds the procedure of
subsection (2.1). First we need the appropriate notions in infinite dimensions.
So let M be a manifold, which in general is infinite dimensional.

A 2-form w € 2?(M) is called a weak symplectic structure on M if it is
closed (dw = 0) and if its associated vector bundle homomorphism «': TM —
T*M is injective.

A 2-form w € 2%(M) is called a strong symplectic structure on M if it is
closed (dw = 0) and if its associated vector bundle homomorphism «: TM —
T* M is invertible with smooth inverse. In this case, the vector bundle T'M has
reflexive fibers T, M: Let i : T, M — (T, M)" be the canonical mapping onto
the bidual. Skew symmetry of w is equivalent to the fact that the transposed
(W)t = (W)*oi: TyM — (T, M)' satisfies (w)! = —w. Thus, i = —((w)~1)* o
is an isomorphism.
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2.3

Every cotangent bundle T* M, viewed as a manifold, carries a canonical weak
symplectic structure wy; € 2%(T*M), which is defined as follows. Let Ty
T*M — M be the projection. Then the Liouville form 0y € QY(T*M) is
given by 0a1(X) = (mp-1(X), T(w3,)(X)) for X € T(T"M), where ( , )
denotes the duality pairing T* M x p; T M — R. Then the symplectic structure
on T*M is given by wy; = —dfp;, which of course in a local chart looks
like wg((v,v"), (w,w")) = (W', v)g — (v, w)g. The associated mapping w :
T (ExE')=ExE — E' x E" is given by (v,v') = (=v',ig(v)), where
igp : B — E” is the embedding into the bidual. So the canonical symplectic
structure on T M is strong if and only if all model spaces of the manifold M
are reflexive.

2.4

Let M be a weak symplectic manifold. The first thing to note is that the
Hamiltonian mapping grad® : C°°(M,R) — X(M,w) does not make sense in
general, since « : TM — T*M is not invertible. Namely, grad” f = (w)~todf
is defined only for those f € C°°(M,R) with df(x) in the image of w for all
x € M. A similar difficulty arises for the definition of the Poisson bracket on
C>*(M,R).

Definition

For a weak symplectic manifold (M,w) let T« M denote the real linear sub-
space TYM = (T, M) C Ty M = L(T,M,R), and let us call it the smooth
cotangent space with respect to the symplectic structure w of M at x in view
of the embedding of test functions into distributions. These vector spaces fit
together to form a subbundle of T%M which is isomorphic to the tangent
bundle TM via « : TM — T“M C T*M. It is in general not a splitting
subbundle.

2.5. Definition

For a weak symplectic vector space (E,w) let

C>(E,R) € C*(E,R)
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denote the linear subspace consisting of all smooth functions f : E — R such
that each iterated derivative d* f(z) € L* (F;R) has the property that

sym

dkf(x)( 7y23"'ayk)€Ew

is actually in the smooth dual E“ C E’ for all x,ys, ..., y. € E, and that the
mapping

k
[[E—E
(x?y27ayk)'_>(wv)_l(df(x)( 7y2a'~'ayk>))

is smooth. By the symmetry of higher derivatives, this is then true for all
entries of d* f(x), for all z.

2.6. Lemma.
For f € C*(E,R) the following assertions are equivalent:

(1) df : E — E' factors to a smooth mapping E — E“.
(2) f has a smooth w-gradient grad” f € X(E) = C*(E, E) which satisfies

df (v)y = w(grad” f(z),y).
(3) f € C=(E,R).

Proof. Clearly, (3) = (2) < (1). We have to show that (2) = (3).
Suppose that f: F — R is smooth and df (z)y = w(grad® f(z),y). Then

dkf(x)(yb cee 7yk) = dkf(x)(y% s 7ykay1)
= (d* 71 dN)) (@) (Y2, - yx) (11)
= w(d**(grad” f)(x)(y2,- - yn),y1).0

2.7

For a weak symplectic manifold (M,w) let
CZ(M,R) Cc C*(M,R)

denote the linear subspace consisting of all smooth functions f : M — R
such that the differential df : M — T*M factors to a smooth mapping
M — T¥M. In view of lemma (2.6) these are exactly those smooth functions
on M which admit a smooth w-gradient grad” f € X(M). Also the condition
(2.6.1) translates to a local differential condition describing the functions in
CP(M,R).
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2.8. Theorem.
The Hamiltonian mapping grad” : C*(M,R) — X(M,w), which is given by

igrade pw =df or grad” f:= (W) 'odf
1s well defined. Also the Poisson bracket
{ » }:C5(M,R) x CF(M,R) — CF(M,R)

{fa g} = Z.grad“’ fig;mdW gWw = w(grad“’ g, gradw f) =
= dg(grad” f) = (grad” f)(g)

is well defined and gives a Lie algebra structure to the space C°(M,R), which
also fulfills

{f.9h} ={f,9}h + g{f h}.

We have the following long exact sequence of Lie algebras and Lie algebra
homomorphisms:

0 — H°(M) — C°(M,R) 229, x(M,w) -2+ HL(M) — 0,
where H°(M) is the space of locally constant functions, and

 {p e C®(M « TM) : dp = 0}
B {df - f € Cr(M,R)}

H, (M)

is the first symplectic cohomology space of (M,w), a linear subspace of the
De Rham cohomology space H(M).

Proof. It is clear from lemma (2.6), that the Hamiltonian mapping grad® is
well defined and has values in X(M,w), since by [31], 34.18.6 we have

Egrad“ fw = igrad“’ fdw + digradw fw = ddf = 0.

By [31], 34.18.7, the space X(M,w) is a Lie subalgebra of X(M). The Poisson
bracket is well defined as a mapping { , }: CP(M,R) x CP(M,R) —
C*(M,R); it only remains to check that it has values in the subspace
C(M,R).

This is a local question, so we may assume that M is an open subset of
a convenient vector space equipped with a (non-constant) weak symplectic
structure. So let f, g € C2°(M,R), then {f,g}(x) = dg(x)(grad® f(x)), and
we have

d({f,g})(x)y = d(dg( )y)(z).grad” f(x)+ dg(x)(d(grad” f)(x)y)
= d(w(grad” g( ), y)(x).grad® f(z) +w (grad“ g(x), d(grad® f )(x)y)

= w(dlgrad g)(w) (grad” f(x)) — d(grad f)(w)(grad” g(x)),v),



Geometric Evolution Equations 13

since grad” f € X(M,w) and for any X € X(M,w) the condition Lxw = 0
implies w(dX (x)y1,y2) = —w(y1,dX (z)y2). So (2.6.2) is satisfied, and thus
{f.9} € CX(M,R).

If X € X(M,w) then dixw = Lxw =0, so [ixw] € H(M) is well defined,
and by ixw = & 0X we even have v(X) = [ixw] € HL(M), so v is well
defined.

Now we show that the sequence is exact. Obviously, it is exact at H°(M)
and at C2°(M,R), since the kernel of grad” consists of the locally constant
functions. If y(X) = 0 then wo X = ixw = df for f € C(M,R), and clearly
X = grad” f. Now let us suppose that ¢ € I'(T* M) C 21 (M) with dp = 0.
Then X := ()~ oy € X(M) is well defined and Lxw = dixw = dp = 0, so
X € X(M,w) and v(X) = [¢].

Moreover, H. (M) is a linear subspace of H'(M) since for ¢ € I'(T“M) C
21 (M) with ¢ = df for f € C°°(M,R) the vector field X := (u) top € X(M)
is well defined, and since w 0X = ¢ = df by (2.6.1) we have f € C(M,R)
with X = grad” f.

The mapping grad® maps the Poisson bracket into the Lie bracket, since
by [31], 34.18 we have

igrad“’{f,g}w = d{fag} = d[/grad“ f9 = Egrad“’ fdg =
= L:grad“ figradw gWw — Z'grad‘“ gﬁgrad“’ fw
= [Lgrad“’ fo Z‘grad“’ g]w = Z.[glrad“" f,grad® g|W-

Let us now check the properties of the Poisson bracket. By definition, it is
skew symmetric, and we have

{{f, 9}, h} = Lgraa= 1,01 = Ligraa~ fgrad= gt = [Lgrad« f, Lgraaw g/ =
= Lgrad~ fLgrad gh — Lgraa gLgrad~ fh = {f:{g,h}} —{g. {f. h}}
{f,gh} = Lgraaw 1(gh) = (Lgraaw 19)h + gLgradw th =
={f.gth+g{f h}.

Finally, it remains to show that all mappings in the sequence are Lie algebra
homomorphisms, where we put the zero bracket on both cohomology spaces.
For locally constant functions we have {ci,c2} = Lgradgw ¢, 2 = 0. We have
already checked that grad” is a Lie algebra homomorphism. For X,Y €
X(M,w)

i[X,y]w = [ﬁx,iy]w =Lxiyw+0=dixiyw+ixLyw =dixiyw

is exact. O
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2.9. Weakly symplectic group actions

Let us suppose that an infinite dimensional regular Lie group G with Lie
algebra g acts from the right on a weak symplectic manifold (M,w) by r :
M x G — M in a way which respects w, so that each transformation r9 is a
symplectomorphism. This is called a symplectic group action. We shall use the
notation r(z, g) = r9(x) = r;(g). Let us list some immediate consequences:

(1) The space C(M)C of G-invariant smooth functions with w-gradients
is a Lie subalgebra for the Poisson bracket, since for each g € G and f,h €
C>(M)< we have (r9)*{f,h} = {(r9)*f, (r9)*h} = {f, h}.

(2) For x € M the pullback of w to the orbit x.G is a 2-form, invariant
under the action of G on the orbit. In the finite dimensional case the orbit
is an initial submanifold. In our case this has to be checked directly in each
example. In any case we have something like a tangent bundle T, (z.G) =
T(ry)g. If i : .G — M is the embedding of the orbit then 79 04 = i o019,
so that i*w = *(r9)*w = (r9)*i*w holds for each ¢ € G and thus i*w is
invariant.

(3) The fundamental vector field mapping ¢ : g — X(M,w), given by
Cx(z) =Te(ry)X for X € g and x € M, is a homomorphism of Lie algebras,
where g is the Lie algebra of G (for a left action we get an anti homomorphism
of Lie algebras). Moreover, ¢ takes values in X(M,w). Let us consider again
the exact sequence of Lie algebra homomorphisms from (2.8):

0 —— HOM) —2> co(M) 2% x(M,w) > HL(M) ——0

One can lift ¢ to a linear mapping j : g — C*°(M) if and only if yo ¢ = 0.
In this case the action of G is called a Hamiltonian group action, and the
linear mapping j : g — C°(M) is called a generalized Hamiltonian function
for the group action. It is unique up to addition of a mapping « o 7 for
79— HY(M).

(4) If HL(M) = 0 then any symplectic action on (M,w) is a Hamiltonian
action. But if yo{ # 0 we can replace g by its Lie subalgebra ker(~yo() C g and
consider the corresponding Lie subgroup G which then admits a Hamiltonian
action.

(5) If the Lie algebra g is equal to its commutator subalgebra [g,g], the
linear span of all [ X, Y] for X, Y € g (true for all full diffeomorphism groups),
then any infinitesimal symplectic action ¢ : g — X(M,w) is a Hamiltonian
action, since then any Z € g can be written as Z = ) [X;,Y;] so that (z =
M [Cx,,Cy;] € im(grad®) since v : X(M,w) — H'(M) is a homomorphism
into the zero Lie bracket.
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(6)Ifj:9— (CX(M),{ , })happenstobenotahomomorphism of Lie
algebras then ¢(X,Y) = {j(X),5(Y)} — j([X,Y]) lies in H°(M), and indeed
c:gxg— HO(M) is a cocycle for the Lie algebra cohomology: c¢([X, Y], Z) +
Y, Z], X)+c([Z, X],Y) = 0.If cis a coboundary, i.e., ¢(X,Y) = —=b([X,Y]),
then j + a o b is a Lie algebra homomorphism. If the cocycle ¢ is non-trivial
we can use the central extension H°(M) x. g with bracket [(a, X), (b,Y)] =
(¢(X,Y),[X,Y]) in the diagram

grad®

0 —= HO(M) —— C(M) ——— X(M,w) —— HL(M) —0

(N

HY(M) x.g——>¢g

where 7(a, X) = j(X) + a(a). Then 7 is a homomorphism of Lie algebras.
2.10. Momentum mapping.

For an infinitesimal symplectic action, i.e. a homomorphism ¢ : g — X(M,w)
of Lie algebras, we can find a linear lift j : g — C°(M) if and only if there
exists a mapping

JeCP(M,g"):={feC®(M,g"): (f( ),X)eC(M) for all X € g}

such that
grad“((J, X)) =Cx foralX €g.

The mapping J € C°(M,g*) is called the momentum mapping for the
infinitesimal action ¢ : g — X(M,w). Let us note again the relations between
the generalized Hamiltonian j and the momentum mapping J:

J:M—=g", j:g—=CrX(M), (:g—X(Muw)
(/, X) =j(X) e CF (M), grad®(j(X)) =¢(X), Xeg, (1)
iC(X)w = dj(X) = d<J7X>,

where (, ) : g* x g — R is the duality pairing.

2.11. Basic properties of the momentum mapping

Let 7 : M x G — M be a Hamiltonian right action of an infinite dimensional
regular Lie group G on a weak symplectic manifold M, let j : g — C°(M)
be a generalized Hamiltonian and let J € C°(M, g*) be the associated mo-
mentum mapping.

(1) For x € M, the transposed mapping of the linear mapping dJ(z) :
T, M — g* is
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dJ(z)" g — T:M, dJ(z)"T =@y 0,
since for £ € T, M and X € g we have
(dJ(§), X) = (igdJ, X) = igd(J, X) = igicxyw = (02 (Cx (2)), §)-

(2) The closure of the image dJ(T, M) of dJ(x) : T, M — gx is the anni-
hilator g5 of the isotropy Lie algeba g, :== {X € g : (x(z) = 0} in g*, since
the annihilator of the image is the kernel of the transposed mapping,

im(dJ(z))° = ker(dJ(z) ") = ker(@, o ¢) = ker(ev, o) = g..

(8) The kernel of dJ(x) is the symplectic orthogonal

(T(r)a) - = (To(2.G))> C T, M,

since for the annihilator of the kernel we have

ker(dJ(x))° =im(dJ(z)T) = im(&, 0 () =
= {0 (Cx(2)) : X € g} = 0 (T (2.G)).

(4) If G is connected, x € M is a fized point for the G-action if and only if
x is a critical point of J, i.e. dJ(x) = 0.

(5) (Emmy Noether’s theorem) Let h € C3° (M) be a Hamiltonian function
which is invariant under the Hamiltonian G action. Then dJ(grad”(h)) = 0.
Thus the momentum mapping J : M — g* is constant on each trajectory (if
it exists) of the Hamiltonian vector field grad® (h). Namely,

(dJ(grad”(h)), X) = d(J, X)(grad® (h)) = dj(X)(grad” (h)) =
= {h,j(X)} = —dh(grad® j(X)) = dh(Cx) = 0.

E. Noether’s theorem admits the following generalization.

2.12. Theorem.
Let G1 and G2 be two regular Lie groups which act by Hamiltonian actions 1
and ro on the weakly symplectic manifold (M,w), with momentum mappings
J1 and Jo, respectively. We assume that Jo is Gq-invariant, i.e. Jo is constant
along all Gy-orbits, and that Go is connected.

Then Jy is constant on the Go-orbits and the two actions commute.

Proof. Let ¢ : g; — X(M,w) be the two infinitesimal actions. Then for
X, € g1 and X, € go we have
£C§(2 <J1,X1> = i<§(2d<J1,X1> = i@(zi@‘}qw = {<J2,X2>, <J1,X1>}

= {1, X1), (Jo, Xo)} = —i¢y d(Jz, Xo) = =Ly (J2, X2) =0
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since .Jy is constant along each Gi-orbit. Since G is assumed to be con-
nected, Ji is also constant along each Gs-orbit. We also saw that each Pois-
son bracket {(J2, X2), (J1,X1)} vanishes; by grad” (J;, X;) = (%, we con-
clude that [C ,C%,] = 0 for all X; € g; which implies the result if also Gy is
connected. In the general case we can argue as follows:

(r?") ¢k, = (r{")" grad” (Jo, Xo) = (r{")* (@™ 'd(J2, X2))

= () N~ d(r]") " Ja, Xa) = (@™ d(J2, Xa) = grad” (J2, Xa) = (%,
Thus r¥ commutes with each rS**?) and thus with each {2, since G is
connected. 0O

3. Right invariant weak Riemannian metrics on Lie
groups

3.1. Notation on Lie groups

Let G be a Lie group which may be infinite dimensional, but then is supposed
to be regular, with Lie algebra g. See appendix (B) for more information. Let
i G X G — G be the multiplication, let u, be left translation and p¥ be
right translation, given by u,(y) = p¥(x) = 2y = p(x, y).

Let L, R : g — X(G) be the left and right invariant vector field mappings,
given by Lx(g) = Te(pg).- X and Rx = T.(u9).X, respectively. They are
related by Lx(g9) = Raa(g)x(g). Their flows are given by

FI;X (9) = g.exp(tX) = p™PX) (g),  FI(g) = exp(tX).9 = Hexp(ix)(9)-

We also need the right Maurer-Cartan form x = " € 2%(G,g), given
by kz(§) := Ty (,u‘”fl) - &. Tt satisfies the right Maurer-Cartan equation dx —
5[k, k]x = 0, where [, ] denotes the wedge product of g-valued forms on
G induced by the Lie bracket. Note that i[x,]a(£,1) = [K(£),x(n)]. The

(exterior) derivative of the function Ad : G — GL(g) can be expressed by
dAd = Ad.(adok!) = (ad or"). Ad,

since we have d Ad(T'py.X) = 4| Ad(g. exp(tX)) = Ad(g). ad (k' (Tpy.X)).
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3.2. Geodesics of a right invariant metric on a Lie
group

Let v = (, ) : gxg — R be a positive definite bounded (weak) inner product.
Then

Yol&m) = (T(™ ) - & T (™) - m)) = (5(€), k(m)) (1)

is a right invariant (weak) Riemannian metric on G, and any (weak) right
invariant bounded Riemannian metric is of this form, for suitable (, ).

Let g : [a,b] = G be a smooth curve. The velocity field of g, viewed in the
right trivializations, coincides with the right logarithmic derivative

0

07(9) = T(u*") - Bug = 5(Dhg) = (9°K)(Dr). where 0, = =

The energy of the curve g(¢) is given by
b b
B(9) =} [ Golg.g)dt =} [ {(o"0(@0). (4"0(00)

For a variation g(s,t) with fixed endpoints we have then, using the right
Maurer-Cartan equation and integration by parts,

0.5) =} 2(04(0" K@), (9°R)(00) di

-/ (00" R)(0.) — dlgR) (@1, 02), (R) () di

-/ (A R)(@), gD — (57D, (6" R) B0, (") (@) e
--/ (g R)(@4), Du(g™R) (@) + ad((g") (@) (5" K) (O

where ad((g*k)(0;))" : g — g is the adjoint of ad((¢g*x)(d;)) with respect
to the inner product {( , ). In infinite dimensions one also has to check the
existence of this adjoint. In terms of the right logarithmic derivative u :
[a,b] = g of g : [a,b] = G, given by u(t) := g*x(d;) = Ty (u® ") - g'(1),
the geodesic equation has the expression:

up = —ad(u) "u (2)

This is, of course, just the Euler-Poincaré equation for right invariant systems
using the Lagrangian given by the kinetic energy (see [34], section 13).
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3.3. The covariant derivative

Our next aim is to derive the Riemannian curvature and for that we develop
the basis-free version of Cartan’s method of moving frames in this setting,
which also works in infinite dimensions. The right trivialization, or framing,
(mg,k) : TG — G x g induces the isomorphism R : C*(G, g) — X(G), given
by R(X)(x) := Rx(x) =T (u*) - X(x), for X € C*(G, g) and = € G. Here
X(G) := I'(TG) denote the Lie algebra of all vector fields. For the Lie bracket
and the Riemannian metric we have

[Rx,Ry] = R(~[X,Y]y +dY - Rx — dX - Ry), (1)
R7'[Rx,Ry] = —[X,Y]s + Rx(Y) — Ry (X)),
Yo (Rx(2), Ry (2)) = v(X(2),Y(z)), z € G.

In the sequel we shall compute in C*°(G, g) instead of X(G). In particular,
we shall use the convention

VxY := R Vg Ry) for X,Y € C™(G,g).

to express the Levi-Civita covariant derivative.

Lemma.

Assume that for all € € g the adjoint ad(€) T with respect to the inner product
{(, ) exists and that & — ad(&)T is bounded. Then the Levi-Civita covariant
derivative of the metric (3.2.1) exists and is given for any X, Y € C*(G, g)
in terms of the isomorphism R by

VxY =dY.Rx + 3ad(X)'Y + 1ad(y)' X — Lad(X)Y (2)
Proof. Easy computations show that this formula satisfies the axioms of a

covariant derivative, that relative to it the Riemannian metric is covariantly
constant, since

Rx(Y, Z) = 1(dY.Rx, Z) + 1(Y,dZ.Rx) = 4(VxY, Z) + 1Y, Vx 2),
and that it is torsion free, since
VxY -VyX+[X,Y]; —dY.Rx +dX.Ry = 0.0
For ¢ € g define (&) : g — g by a(&)n := ad(n) "¢, With this notation,

the previous lemma states that for all X € C°°(G, g) the covariant derivative
of the Levi-Civita connection has the expression

Vx =Rx +1ad(X)" + a(X) — ad(X). (3)
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3.4. The curvature

First note that we have the following relations:

[Rx,ad(Y)] = ad(Rx(Y)), [Rx,a(Y)] = a(Rx(Y)), (1)
[Rx,ad(Y)'] = ad(Rx(Y))", [ad(X)T,ad(Y)"] = —ad([X,Y],) .

The Riemannian curvature is then computed by

R(X,Y) =[Vx,Vy] = V_[x,¥],+Rx (V)= Ry (X)
=[Rx +1ad(X)" + la(X) — L ad(X),Ry + ad(Y) + a(Y) -

— R_[x,y],+Rx(¥)—Ry (x) — 38d(—[X,Y]g + Rx(Y) — Ry (X)) "

—30(=[X,Y]g + Rx(Y) = Ry (X)) + 3 ad(~[X,Y]g + Rx(Y) — Ry (X))
= —21[ad(X)" +ad(X),ad(Y)" + ad(Y)] (2)

+ Had(X) " — ad(X), a(Y)] + 1 [a(X),ad(Y) " — ad(Y)]

+ la(X),a(Y)] + 3a([X,Y]g).

If we plug in all definitions and use 4 times the Jacobi identity we get the
following expression

7(4R(X7Y)ZvU):+2'7([va]7[27 D ([Ya }7[ ])+'7([XvZ]7[YaU])
-7 Z’ U? [X7YH)+FY(U7 [Z7 [va]] 77( [Xa [Uv ”) ’Y(X7 [Yv [ZvU”)

TU) = ~(ad(U) T X, ad(Y) " 2) (3)

This yields the following expression which is useful for computing the sec-
tional curvature:
4y(R(X,Y)X,Y) = 3y(ad(X)Y,ad(X)Y) — 2y(ad(Y) " X, ad(X)Y)
—29(ad(X) TY,ad(Y)X) + 4y(ad(X) " X,ad(Y) "Y) (4)
—(ad(X)TY +ad(Y)" X,ad(X)"Y +ad(Y) " X).

3.5. Jacobi fields, T

We compute first the Jacobi equation directly via variations of geodesics.
So let g : R? — G be smooth, t — g(t,s) a geodesic for each s. Let again
u = k(0rg) = (g*k)(0:) be the velocity field along the geodesic in right
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trivialization which satisfies the geodesic equation u; = —ad(u)"w. Then
y := £(0s9) = (g%k)(0s) is the Jacobi field corresponding to this variation,
written in the right trivialization. From the right Maurer-Cartan equation
we then have:

ye = 0i(97k)(0s) = d(g"K)(Or, 0s) + 05(97K)(0) + 0

=[(9"K)(0r), (97K)(0s)]g + us
= [u,y] + us.

Using the geodesic equation, the definition of a, and the fourth relation in
(3.4.1), this identity implies

Ut = Ups = sty = —Ds(ad(u) " u) = —ad(us) v — ad(u) " u,
= —ad(y; + [y, u]) "u — ad(u) " (y; + [y, u])
= —a(w)y; — ad([y, u]) "u — ad(u) "y, — ad(w) " ([y, u])
= —ad(u) "y — a(u)y + [ad(y) ", ad(u) Ju — ad(u) " ad(y)u.

Finally we get the Jacobi equation as

Yer = (g, y) + [, ye] + ust
= ad(y) ad(u) "u + ad(u)y; — ad(u) "y
— a(u)y; + [ad(y) ", ad(u) "Ju — ad(u) " ad(y)u,
yi = [ad(y) " +ad(y),ad(u) " Ju — ad(u) "y, — a(u)y; +ad(u)y; . (1)

3.6. Jacob: fields, IT

Let y be a Jacobi field along a geodesic g with right trivialized velocity field u.
Then y should satisfy the analogue of the finite dimensional Jacobi equation

Vo, Va,y+ R(y,u)u =0

We want to show that this leads to same equation as (3.5.1). First note that
from (3.3.2) we have

Voy =y + 3 adu) y + sa(u)y — 5 ad(u)y
so that, using u; = —ad(u) "u, we get:

Vo, Vo, y =V, (yt + 2ad(uw) 'y + ta(u)y — %ad(u)y)
=y + % ad(ut)Ty + %ad(u)—ryt + %a(ut)y
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+ so(u)ye — 5 ad(u)y — 3 Lad(u)y

+ Sad(w) (g + 3 ad(u) "y + salu )y—%ad(u)y)
(y +3ad(w) Ty + sa(w)y — %ad(U)y)
~ 4 ad(u >yt+2ad w) y+,a(u>y_%ad<u>y)

fla( )ad(u ) uffad( ) ad(u) uf%ad(y)ad(u)—ru
+ Lad(u) (% (y)u+ L ad(y) u+§ad(y)u)
+ Sa(w)(aly

%
~ Sad(w)($a(y)u+ Fad(y) Tu+ Lad(y)u)

= yu +ad(u) "y + a(u)y, — ad(u)y,
ad
T

Ju+ 2ad(y) u+ %ad(y)u)

In the second line of the last expression we use

—3a(y)ad(u) v = —ja(y) ad(u) "u — ja(y)a(u)u
and similar forms for the other two terms to get:

Vo,Voy =y + ad(u) "y + a(u)y, — ad(u)y;
+ 1lad(uw) ", a(y)lu+ flad(u) ", ad(y) "Ju+ flad(w) ", ad(y)]u
+ ila(u), a(y)lu + fa(w),ad(y) Ju+ {la(u),ad(y)u
— 1lad(w), a(y)]u — t[ad(u),ad(y) " + ad(y)]u,

where in the last line we also used ad(u)u = 0. We now compute the curvature
term using (3.4.2):

R(y,u)u = —3lad(y) " +ad(y),ad(u) " +ad(w)lu
+3[ad(y) " — ad(y), a(w)u + gla(y), ad(w) " - ad(w)lu
+3la) a(uw)] + so(ly, u))u
= —jlad(y) " +ad(y),ad(w) "Ju — [ad(y) " + ad(y), ad(u)]
+3lad(y) ", a(w)]u — Flad(y), a(w)]lu + Fla(y), ad(u) " — ad(u)]u
+ 3la(y), a(w)]u + 5 ad(u) " ad(y)u

Summing up we get

Vo, Voy + Ry, u)u =y + ad(u) "y + a(u)y, — ad(u)y;
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— Lad(y) " +ad(y),ad(u) "Ju
+ 3la(u), ad(y)lu + § ad(u) " ad(y)u

Finally we need the following computation using (3.4.1):

sla(u), ad(y)lu = Ja(u)ly,u] — 5 ad(y)a(u)u
% ad([y, u])Tu — % ad(y) ad(u)Tu
= —3[ad(y) ", ad(u) "u — $ad(y) ad(u) "u.

Inserting we get the desired result:

Vo,Vo,y + Ry, u)u = e + ad(u) "ye + a(u)y, — ad(u)yy
— [ad(y) " + ad(y), ad(u) u.

3.7. The weak symplectic structure on the space of
Jacobi fields

Let us assume now that the geodesic equation in g
uy = —ad(u) "u

admits a unique solution for some time interval, depending smoothly on the
choice of the initial value «(0). Furthermore we assume that G is a regular
Lie group (B.9) so that each smooth curve u in g is the right logarithmic
derivative of a smooth curve g in G which depends smoothly on u, so that
u = (¢*k)(0¢). Furthermore we have to assume that the Jacobi equation along
u admits a unique solution for some time, depending smoothly on the initial
values y(0) and y:(0). These are non-trivial assumptions: in (A.4) there are
examples of ordinary linear differential equations ‘with constant coefficients’
which violate existence or uniqueness. These assumptions have to be checked
in the special situations. Then the space J, of all Jacobi fields along the
geodesic g described by u is isomorphic to the space g x g of all initial data.

There is the well known symplectic structure on the space 7, of all Jacobi
fields along a fixed geodesic with velocity field u, see e.g. [28], II, p.70. It is
given by the following expression which is constant in time ¢:

w(y,z) 1 = (y,Va,z) — (Vo,y, 2)
=(y,z + 2ad(u) "z + 2a(u)z — L ad(u)2)
— (ye + s ad(u) "y + a(u)y — 5 ad(u)y, z)
= (ys 20) = (Yo, 2) + ([, 9], 2) = (v [w, 2]) = ([y: 2], w)
= (y, 2 — ad(u)z + za(u)2) — (g — ad(uw)y + a(u)y, 2).
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It is worth while to check directly from the Jacobi field equation (3.5.1) that
w(y, z) is indeed constant in ¢. Clearly w is a weak symplectic structure on
the relevant vector space J,, = g X g, i.e., w gives an injective (but in general
not surjective) linear mapping 7, — J,5. This is seen most easily by writing

w(y,z) = <yazt - Fg(uaz)>|t:0 - <yt - Fg(u7y)7z>|t:0

which is induced from the standard symplectic structure on g x g* by applying
first the automorphism (a, b) + (a,b—Iy(u,a)) to g x g and then by injecting
the second factor g into its dual g*.

For regular (infinite dimensional) Lie groups variations of geodesics exist,
but there is no general theorem stating that they are uniquely determined
by y(0) and y:(0). For concrete regular Lie groups, this needs to be shown
directly.

4. The Hamiltonian approach

4.1. The symplectic form on T*G and G X g*

For an (infinite dimensional regular) Lie group G with Lie algebra g, elements
in the cotangent bundle 7 : (T*G,wg) — G are said to be in material or
Lagrangian representation. The cotangent bundle T*G has two trivializations,
the left one

(mq, k') : T*G — G x g*,
T3G 3 ag = (9, Te(pg) g = Ty (pg-1)ay),
also called the body coordinate chart, and the right one,
(ra, k") : TG — G x g,
T°G 3 ay = (. To(n) 0y = Ty (1 o). ()
Ty(u? ) (g,0) € G x g*

also called the space or Eulerian coordinate chart. We will use only this
from now on. The canonical 1-form in the Eulerian chart is given by (where
( , ):g" xg— R is the duality pairing):
QGXQ* (697 «, 5) = (((ﬂ—a K/T)_l)*eG)(g,a) (é-g? «, ﬁ)
= GG(T(g,oc) (7T7 Hr)il(ggv «, B))
= (71 (Tig.a0 (T, K) ™ (g5 00 8)) T(7) (Tg.a0 (7, 67) ™ (€95 8)) )
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= ((m,5") " (ms w6y @ B), T o (m, 1) ™) (€ 8)) )
= (5" 7 (9,0). T(ory) (€ 0, 8)) ) = (Ty(n? )y )
= (0, Ty (1)) = (o0 w7 (&) (2)

Now it is easy to to take the exterior derivative: For X; € G, thus Rx, € X(G)
right invariant vector fields, and g* > 5, € X(g*) constant vector fields, we
have

Ocxg+ (Rx,(9), (o, Bi)) = (o, Xi)
QGXQ* (RXL761> = <Idg*’Xi> = < aXi>
waxgr ((Rx,, 1), (Rx,,52)) = —dbaxg-((Rx,, 1), (Rx,, 52))
= —(Rx,,B1)(0cxg* (Rx,, B2)) + (Bx,, B2)(0cxg- (Rx,, 51))
+(9G><g ([(RXlwgl) RX2,52)])
—(Bx,, B0, X2)) + (Bx,, B2)({ ,X1))
+(9G (= Rix,,x5), 0g+)
—(B1, X2) + (B2, X1) — ( ,[X1, X))
(wGXQ*)(g,a)((T( 9).X1,61), (T(n?) X2, B2))
= (B2, X1) — (B1, X2) — (o, [X1, Xo]) (3)

4.2. The symplectic form on TG and G X g and the
momentum mapping

We consider an (infinite dimensional regular) Lie group G with Lie algebra
g and a bounded weak inner product v : g X g — R with the property the
transpose of the adjoint action of G on g,

v(Ad(9) "X, Y) = (X, Ad(9)X),

exists. It is then unique and a right action of G on g. By differentiating it
follows that then also the transpose of the adjoint operation of g exists:

Y(ad(X) 'Y, Z) = 9oy (Ad(exp(tX)) 'Y, Z) = 1(Y, ad(X)Z)

exists.

We exted ~ to a right invariant Riemannian metric, again called v on G
and consider v : TG — T*G. Then we pull back the canonical symplectic
structure wg to G X g in the right or Eulerian trivialization:

7:Gxg—Gxg'(gX) = (g,7(X))
(VW) (g,3) (T (1) X1, X, V1), (T(19) X2, X, Y2))
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= W(g~(x) (T (). X1,7(X), (Y1), (T(p9) X2, 7(X),7(Y2)))
= (v(Y2), X1) — (v(Y1), X2) — (v(X), [X1, X2])
:'Y(Y27X1)_’Y(Y17X2)_’Y(X7 [leXQ]) (1)

Since 7 is a weak inner product, y*w is again a weak symplectic structure on

TG = G x g. We compute the Hamiltonian vector field mapping (symplectic

gradient) for functions f € C32,,(G x g) admitting such gradients:
(@) ) (1ad?(£)(9, X), (T(17) Xz, X, Y2) ) = df (T(1u?) X3 X, 2)

“(f
:dlf(g> )( ( )X2>+d2f(g’ )(Yé)
= (k" (grad] (f)(g, X)), X2) + ~v(grady (f)(g, X), Y2)
=v(X1,Y2) +v(=Y1 —ad(X1) " X, X3) by ((1)).

Thus the Hamiltonian vector field of f € C32,(G x g) = C°(G x g) is
grad” “(f)(g, X) = (2)
(T(u?) grad3 (£)(g, X), X, — ad(grad3 (f)(g, X)) " X — " (grad] (f)(g, X)))

In particular, the Hamiltonian vector field of the function (g, X) — (X, X) =
| X2 on TG is given by:

grad” “ (3] 2)(9. X) = (T(p)X; X, —ad(X) " X) (3)

We can now compute again the flow equation of the Hamiltonian vector field
grad” “(3]| [12): For g.(t) € TG we have

(ma K (ge() = (9(8), u(®)) = (9(t), T(uD"")gu(t)

and .
Or(g,u) = grad” “ (|| [12)(g, ) = (T (1), u, — ad(u) "u). (4)

which reproduces the geodesic equation from (3.2).

4.3. The momentum mapping

Under the assumptions of (4.2), consider the right action of G on G and
its prolongation to a right action of G on TG in the Eulerian chart. The
corresponding fundamental vector fields are then given by:
T(u9): TG — TG,
(7, k)T ()T (u") X = (7, k") T ()X = (h.g,X), (h,X)+ (hg, X)
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G9(h,Y) = 3fo(h.exp(tX),Y) = (T(un) X,0y) € TG x Tg (1)
Consider now the diagram from (2.1) in the case of the weak symplectic

manifold (M = G x g,v*w):

HO - C’ny’zw(G X gaR) X(G X gvﬁy*w) I H’}/*w
g

From the formulas derived above we see that for j(X)(h,Y) := v(Ad(h)X,Y)
we have:

Ygrad} (5 (X)) (h, V), Z) = da(G (X)) (h, Y)(Z) = 7(Ad(h)X, Z)
grad] (j(X))(h, Y) = Ad(h)X
¥ (grad] (j(X))(h

)(h,Y), T(u")Z) = d(j(X))(T(1")Z, Y, 0)
=(dAd(T(1")2)(X),Y) = 7(((adox") Ad)(T'(u") Z)(X),Y)
) = —7([Ad(h)X, Z],Y) = —7(Z,ad(Ad(h)X)"Y)

Thus the momentum mapping is

J:Gxg—g", JeCOX,(Gxgg")=
={feC™(Gxg,9"):(f( ),X)eCF,(Gxg) VX €g}
(0, V), X) = §(X)(h,Y) = 1(Ad(R) X, Y) = v(Ad(h) 7Y, X)
— ((Ad()TY), X),
J(h,Y) = ~v(Ad(h)Y) € g«
Ji=y"loJ:Gxg—g,
J(h,Y)=Ad(h)"Y € g. (2)
(3) Note that the momentum mapping J : G x g — g* is equivariant for the
right G-action and the coadjoint action, and that J : G x g — g is equivariant
for the right action Ad( )T on g:
(J(hg,Y), X) = ((Ad(hg)"Y), X) = v(Ad(g) " Ad(h) Y, X
=7(Ad(h)"Y,Ad(9)X) = (v(Ad(h)"Y), Ad
= (Ad(9)"y(Ad(R)TY), X) = (Ad(9)" I (h, Y
J(hg,Y) = Ad(hg)"Y = Ad(g) " J(h,Y)

(4) For x € G x g, the transposed mapping of dJ(z) : To(G x g) — ¢ is
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dJ(z)" g =T} (G xg), dJ(x)" =(Vw)so,
since for £ € T,,(G x g) and X € g we have
Y(dJ(€), X) = dy(J, X)(€) = dj(X)(€§) = ((v"w)(Cx) €)-

(5) For x € G x g, the closure dJ(T,(G >< g)) of the image of dJ(x) :

T.(G x g) — g is the y-orthogonal space g+ of the isotropy Lie algeba
g = {X € g: (x(z) = 0} in g, since the annihilator of the image is the
kernel of the transposed mapping,

m(dJ(z))° = ker(dJ(:z:)T) = ker((7*w), o ¢) = ker(ev, o) = g,.

Attention: the orthogonal space with respect to a weak inner product need
not be a complement.

(6) For (h,Y) € G x g, the G-orbit (h,Y).G = G x {Y} is a submanifold
of G x g. The kernel of dJ(h,Y) is the symplectic orthogonal space

(Tihy) (G x {Y )7 C T(u")g x g
since for the annihilator of the kernel we have
ker(dJ(h,Y))? = im(dJ(h,Y)T) = im((y*wny)oC), by ((4)),

={(vw)ny)(Cx(2)) : X € g} = (v*W)n,y)(T(n,y) (G x {Y})),
( hY) (G x {Y})) 7 w)o-

The last equality holds by the bipolar theorem for the usual duality pairing.
(7) Thus, for (h,Y) € G x g,

T(u")X1,Y1) € ker(dJ(h,Y))
= (VW) u (T(E") X1, Y1), (T(4")Z,0)) = 0 for all Z € g
= 0=0-7(Y1,2) = (Y, [X1,2]) = —v(V1 +ad(X1) 'Y, 2) V Z € g
= Y =—ad(X;)'Y.

(8) (Emmy Noether’s theorem) Let h € CX(G x g) be a Hamiltonian
function which is invariant under the right G-action. Then dj(gradﬁf*“’(h)) =
0 € g and also dJ(grad” “(h)) = 0 € ~(g) C g*. Thus the momentum
mappings J : G x g — g and J : G x g = v(g) C ¢g* are constant on each

trajectory (if it exists) of the Hamiltonian vector field gradW*‘”(h), Namely,
consider the function (J, X) = (J, X) = j(X).

Y(dJ(grad” “(h)), X) = grad” “(h)(y(J, X)) =
= {h,v(J, X)} = —{j(X),h} = —(x(h) = 0.
(dJ(grad” “(h)), X) = grad” “(h)((J, X)) =
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={h,j(X)} = —{i(X),h} = =Cx(h) = 0

4.4. The geodesic equation via conserved momentum

We consider a smooth curve ¢t — g(t) in G and (7g, K")g(t) = (g(t),u(t)) =
(g(t), T(u9® Mg (t)) as in (4.2.4). Applying J : G x g — g to it we get
J(g,u) = Ad(g)"u. We claim that the curves t + g(t) in G for which
J(g ( ),u(t)) is constant in t are exactly the geodesics in (G,~y). Namely, by
(3.

1) we have
0=0,Ad(g(t)) = ((ad or")(Drg(1)). Ad(g(t)))Tu(t) + Ad(g(t)) " Oru(t)
= Ad(g(t)" ( ( (f))Tu(t)Jrut( t))
—  u=—ad(u)u

4.5. Symplectic reduction to transposed adjoint orbits

Under the assumptions of (4.2) we have the following:
(1) For X € J(G x g) the inverse image J—1(X) C G x g is a manifold.
Namely, it is the graph of a smooth mapping:

JHX)={(hY)eGxg:Ad(h)'Y = X}
={(h,Ad(h™ )T X):he G} =GO

(2) At any point of J~H(X), the kernel of the pullback of the symplectic
form v*w on G x g from (4.2.1) equals the tangent space to the orbit of the
isotropy group Gx :={g € G : Ad(g)TX = X} through that point.

For (h,Y = Ad(h™!)TX) € J71(X) the Gx-orbit is h.Gx x {Y} and its
tangent space at (h,Y) is T'(un)gx x 0 where gx = {Z € g: ad(Z)T X = 0}.
The tangent space at (h,Y) of J~1(X) is

T(h,Ad(hfl)TX)jil(X) = {8t|0(exp(tZ)h,Ad((eXp(tZ)h)fl)TX) A c g}
={(T(u"Z,—ad(Z)" Ad(h")TX): Z c g} C T1,G x g.
For Z1,Z, € g consider the tangent vectors (T'(u") Ad(h)Z1,Y, —ad(Z1)X)
and (T(u")Z,Y,—ad(Z)" Ad(h™1)"X) in T(p,yyJ H(X). From (4.2.1), we
get
(V') ) (T(6") Ad(R) Z1,—ad(21) " X), (T (") Z2,—ad(Z) T Ad(h™1) T X))
=y(—ad(Z>)" Ad(h™) "X, Ad(h)Z1) — y(—ad(Z1) " X, Z5)
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=Y, [Ad(h) Z1, Z5))

= —y(Ad(h™") " X, ad(Z2) Ad(h)Z1) +y(ad(Z1) ' X, Za)—
—v(Ad(h) "X, [Ad(h) Z1, Zo])

=~ad(Z1)"X,Z,) =0 VZy€g < Z €gx. O

(3) The reduced symplectic manifold J='(X)/Gx with symplectic form
induced by v*w| 7-1(x) s symplectomorphic to the adjoint orbit Ad(G)TX Cyg
with symplectic form the pullback via v : g — g* of the Kostant Kirillov
Souriou form

we(ad(Y1)*a, ad(Y2)*a) = (a, [Y1, Ya])

which is given by

wz(ad(Y1)" Z,ad(Ya) " Z) = w,(z)(vad(Y1) " Z,vad(Y2) ' Z)
= wy(z)(ad(Y1)™vZ,ad(Y2)"vZ) = (v(2), [Y1,Y2]) = (Z, [Y1, Y2]),

since for Y, Z,U € g we get

(7ad(Y)TZ,U) = (ad(Y) T Z,U) = 1(Z, ad(¥)U) =
— (4(2),ad(Y)U) = (ad(Y)*(Z),U).

The quotient space is J }(X)/Gx = {(h.Gx,Ad(h"))TX) : h € G} =
Ad(G)TX = G/Gx. The 2-form Y*w|j-1(x) induces a symplectic form on
the quotient by (2) and it remains to check that it agrees with the pullback
of the Kirillov Kostant Souriou symplectic form. But this is obvious from the
last computation in (2) (for the special case h = e if the reader insists). 0O

(4) Reconsider the geodesic equation on the reduced space J 1(X)/Gx =
Ad(G)TX. The energy function is E(Ad(g)'X) = 1 Ad(g)TXH,Qy. For
Z = Ad(g)" X € Ad(G) T X the tangent space is given by T7(Ad(G)"X) =
{ad(Y)TZ : Y € g}. We look for the Hamiltonian vector field of E in the
form grad” E(Z) = ad(Hg(Z))" Z, for a vector field Hg. The differential
of the energy function is dE(Z)(ad(Y)"2) = v(Z,ad(Y) " Z) = ~([Y, Z], Z)
which equals wz(grad® E(Z),ad(Y)"Z) = wz(ad(Hg(Z))" Z,ad(Y)"Z) =
v(Z,[Hg(Z),Y]) from which we conclude that Hg(Z) = —Z will do (which
is defined up to annihilator of Z). Thus grad” E(Z) = —ad(Z)"Z which
leads us back to the geodesic equation u; = —ad(u) "u again.

5. Vanishing H°-geodesic distance on groups of
diffeomorphisms

This section is based on [40].
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5.1 The H°-metric on groups of diffeomorphisms

Let (N,g) be a smooth connected Riemannian manifold, and let Diff.(V)
be the group of all diffeomorphisms with compact support on N, and let
Diffo(N) be the subgroup of those which are diffeotopic in Diff (V) to the
identity; this is the connected component of the identity in Diff.(N), which
is a regular Lie group in the sense of [42], section 38. This is proved in [31],
section 42. The Lie algebra is X.(IN), the space of all smooth vector fields with
compact support on N, with the negative of the usual bracket of vector fields
as Lie bracket. Moreover, Diff (V) is a simple group (has no nontrivial normal
subgroups), see [18], [50], [35]. The right invariant H°-metric on Diffq(N) is
then given as follows, where h,k : N — TN are vector fields with compact

support along ¢ and where X = hop 1Y = ko=t € X (N):

ﬁwmzﬁwmmmwwzjguv%waWﬂm

:/mxmmm» (1)
N

5.2. Theorem.
Geodesic distance on Diffo(N) with respect to the H°-metric vanishes.

Proof. Let [0,1] 5 t — ¢(¢, ) be a smooth curve in Diffo(N) between ¢q
and ;. Consider the curve u = ¢; o =1 in X.(IV), the right logarithmic
derivative. Then for the length and the energy we have:

°@=fd [l volte) e (1)
//mmml 2)

Lyo(9)? < Eyof 3)

(4) Let us denote by Diffo(N)¥=0 the set of all diffeomorphisms ¢ € Diffo(N)
with the following property: For each € > 0 there exists a smooth curve from
the identity to ¢ in Diffg(/N) with energy < e.

(5) We claim that Diffo(N)¥=C coincides with the set of all diffeomorphisms
which can be reached from the identity by a smooth curve of arbitraily short
4°-length. This follows by (3).

(6) We claim that Diffo(N)E=% is a normal subgroup of Diffo(N). Let 1 €
Diffo(N)E=% and 1 € Diffo(N). For any smooth curve t — o(¢, ) from the
identity to ¢ with energy E.o(¢) < € we have

-1 _ ' -1 2 -1 *
Eyp ()™ opot) [T~ 0 i 0 l[gvol (™" 0 p o ))7g)
o JN
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1
< sup [T - / /N ot 0 G20 0 )" vol (1))

zeN

SSEJI\)’”Tww ” 5211\)7 vol(g) /O/NHW75 ¥[|g (¢ ov)* vol(g)
vol(¥™)"g)
)

wn

< sup | Ty~ 1* - sup “Eyo(p).
zeEN

reEN VOl(g
Since % is a diffeomorphism with compact support, the two suprema are
bounded. Thus 1! o ¢ 0 1) € Diffo(N)E=0.

(7) We claim that Diffq(N)®=C is a non-trivial subgroup. In view of the
simplicity of Diffy(N) mentioned in (5.1) this concludes the proof.

It remains to find a non-trivial diffeomorphism in Diffo(N)®=C. The idea
is to use compression waves. The basic case is this: take any non-decreasing
smooth function f : R — R such that f(z) = 0if z <« 0 and f(z) = 1 if
x> 0. Define
o(t,xr) =2+ f(t — \z)

where A < 1/max(f’). Note that
pu(t,x) =1 = \f'(t = Ax) > 0,

hence each map ¢(¢, ) is a diffeomorphism of R and we have a path in the
group of diffeomorphisms of R. These maps are not the identity outside a
compact set however. In fact, p(z) =+ 1if 2 < 0 and ¢(z) = x if x > 0.
Ast — —oo, the map (¢, ) approaches the identity uniformly on compact
subsets, while as t — +o00, the map approaches translation by 1. This path
is a moving compression wave which pushes all points forward by a distance
1 as it passes. We calculate its energy between two times tg and t1:

Ef(g) = / [ onttptt, @)= / [ tnr ety
_ / [rer a-arenEa

max f'>

< (t1 —to) - 1-Xf'(2))d
S RN RSO

If we let A =1 — ¢ and consider the specific f given by the convolution
f(2) = max(0, min(1, 2)) x G¢(2),

where G, is a smoothing kernel supported on [—¢, +<], then the integral is
bounded by 3¢, hence
Ep(p) < (1 —to) -
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We next need to adapt this path so that it has compact support. To do
this we have to start and stop the compression wave, which we do by giving
it variable length. Let:

fe(z,a) = max(0, min(a, 2)) * (G:(2)Ge(a)).
The starting wave can be defined by:
ve(t,x) =z + fe(t — Az, 9(z)), A <1, g¢ increasing.

Note that the path of an individual particle = hits the wave at ¢t = Az —¢ and
leaves it at t = Az + g(z) + £, having moved forward to z + g(x). Calculate
the derivatives:

(fe)z = To<z<a * (Ge(2)Ge(a)) € [0,1]
(fe)a = lo<a<z * (G (2)Ge(a)) € [0,1]
(pe)e = (fo)=(t — Az, g())

(pe)e =1 = M(fe)=(t = Az, g(2)) + (fe)alt — Az, g(2)) - ¢'(2) > 0.

This gives us:

By (¢) —L:I/R(%)f(%)xdzdt

< /t ! /R(fs)g(t — Az, g(x)) - (1 = A(fo).(t — Az, g(x)))dz dt
+/t ! /R(fs)z(t — )\l‘,g(x)) . (fa)a(t _ )\w,g(l’))g’(x)d:cdt

The first integral can be bounded as in the original discussion. The second
integral is also small because the support of the z-derivative is —e <t — Az <
g(x) + &, while the support of the a-derivative is —e < g(z) <t — Az + ¢, so
together |g(x) — (t — Az)| < e. Now define 21 and 3 by g(z1) + Azy =t +¢
and g(xo) + Axg =t — e. Then the inner integral is bounded by

/ ¢ (z)dz = g(x1) — glao) < 22,
lg(z)+Az—t|<e

and the whole second term is bounded by 2e(t; —tp). Thus the length is O(e).
The end of the wave can be handled by playing the beginning backwards.
If the distance that a point 2 moves when the wave passes it is to be g(z), so
that the final diffeomorphism is z — x + g(z), then let b = max(g) and use
the above definition of ¢ while ¢’ > 0. The modification when ¢’ < 0 (but
g’ > —1 in order for  — z + g(z) to have positive derivative) is given by:

pe(t,2) = x + fo(t = Az = (1 = A)(b = g()), g(@))-
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Consider the figure showing the trajectories ¢ (¢, x) for sample values of .

Particle trajectories under ¢, A = 0.6
3.5 T T

25 1

Space x
o
T
I

-0.5 0 0.5 1 1.5 2 25 3

It remains to show that Diffo(N)®=° is a nontrivial subgroup for an arbi-
trary Riemannian manifold. We choose a piece of a unit speed geodesic con-
taining no conjugate points in N and Fermi coordinates along this geodesic;
so we can assume that we are in an open set in R™ which is a tube around
a piece of the u'-axis. Now we use a small bump function in the slice or-
thogonal to the u'-axis and multiply it with the construction from above for
the coordinate u!'. Then it follows that we get a nontrivial diffeomorphism in
Diffo(N)#=0 again. O

Remark

Theorem (5.2) can be proved directly without the help of the simplicity of
Diffg(N). For N = R one can use the method of (5.2.7) in the parameter
space of a curve, and for general N one can use a Morse function on N to
produce a special coordinate for applying the same method.
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5.8. Geodesics and sectional curvature for v° on
Diff (N)

According to (3.2), (3.4), or (4.4), for a right invariant weak Riemannian
metric G on an (possibly infinite dimensional) Lie group the geodesic equation
and the curvature are given in terms of the transposed operator (with respect
to G, if it exists) of the Lie bracket by the following formulas:

wp = —ad(u)*u, u=gpop"

G(ad(X)'Y, Z) := G(Y,ad(X)Z)
AG(R(X,Y)X,Y) = 3G(ad(X)Y,ad(X)Y) — 2G(ad(Y)* X, ad(X)Y)
— 2G(ad(X)"Y, ad(Y)X) + 4G(ad(X)* X, ad(Y)*Y)
— G(ad(X)*Y + ad(Y)* X, ad(X)*Y +ad(Y)*X)

In our case, for Diffy(N), we have ad(X)Y = —[X,Y] (the bracket on the
Lie algebra X.(IN) of vector fields with compact support is the negative of
the usual one), and:

P(X,Y) = /N 4(X, ) vol(g)
P (@d(Y)'X, 2) = (X ~(Y.2) = [ g(X,~Ly2)vollg
N
_ /Ng(cyx + (97 Ly g) X +divi (V) X, Z) vol(g)
ad(Y)* =Ly + 9 'Ly (g) +div?!(Y)Idr N = Ly + B(Y),

where the tensor field 3(Y) = g7 'Ly (g) + div/(Y)Id : TN — TN is self
adjoint with respect to g. Thus the geodesic equation is

wn = ~(g7 Lul9)) () — div*(wu = —B(w)u,  w=pop”!
The main part of the sectional curvature is given by:
4G(R(X,Y)X,Y) =
= [ (BB YIIE + 20((£y + )X, [X.Y]) + 20((£x + BOX)Y. V. X))
+4g(BCOX, BY)Y) = [B(X)Y + B(V)X|2) vol(g)
= [ (F1BGOY = BOX + X,V — 49((8(X). AV )X, V) vollg)

So sectional curvature consists of a part which is visibly non-negative, and
another part which is difficult to decompose further.
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5.4 Example: n-dimensional analog of Burgers’
equation

For (N, g) = (R, can) or ((S')", can) we have:

(ad(X)Y)F =Y ((2:X")Y' = X(9;YF))

9

(ad(X)*Z)* = Z((akxi)zi + (0, XD 2" + Xi(aizk)»

so that the geodesic equation is given by
o = —(ad(u) Tu)k = — Z((akui)ui + (Dput)u® + ui(aiuk)),

the n-dimensional analog of Burgers’ equation.

5.5. Stronger metrics on Diffo(INV)

A very small strengthening of the weak Riemannian H°-metric on Diffo (V)
makes it into a true metric. We define the stronger right invariant semi-
Riemannian metric by the formula:

GA(X o, Yogp) = /N(g(x, Y) + Adivy (X). divy(Y)) vol(g).

Then the following holds:

Theorem.
For any distinct diffeomorphisms ¢g, @1, the infimum of the lengths of all
paths from @y to @1 with respect to G2 is positive.

Proof. We may suppose that g = Idy. If 1 # Idy, there are two functions
p and f on N with compact support such that:

[ sttt vlta)n) # [ o ) vl

Now consider any path (¢, y) between ¢y = Idy to 1 with left logarithmic
derivative u = T(¢) ™! 0 ¢; and a path in X.(N). Then we have:

/(fogol)vol() / pf vol(g //patf ) vol(g)dt
// (df 1) vol(g) dt = // (df Tp.u) vol(g)dt
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_ / 1 /N (df.Tp.(pu)) vol(g)dt

Locally, on orientable pieces of N, we have:

div((f o ¢)pu) vol(g) = L(top)pu Vol(9) = (i(fop)pud + di(fop)pu) VOl(g)
= d((f o p)ipuvol(g)) = d(f o p) Niyyvol(g) + pdiv(u) vol(g),
— d(f o) (pu) vol(g) + (F o @) div(pu)vol(g), since

0(f ©9) i v0l(g) = —ipuld(f 0 9) Av0l(0)) + (ipud(f 0 2)) vol(g).

Thus on N we have:
0= /N div((f o ¢)pu) vol(g)
= / d(f o ¢)(pu)vol(g) + / (f o p)div(pu) vol(g)
N N

and hence

0| [ atroeve)~ [ prvoi)| = [ 1 [ a7 o e)ew) ol
‘/ / £ 0p)div(pu) vol(g) dt‘
< sup| ] / \/ | Cullule + cylaiv(ulz vol(a) at

for constants C,, C’; depending only on p. Clearly the right hand side gives
a lower bound for the length of any path from ¢g to 1. O

5.6. Geodesics and sectional curvature for G4 on
Diff (R)

We consider the groups Diff.(R) or Diff (S1) with Lie algebras X.(R) or X(S!)
whose Lie brackets are ad(X)Y = —[X,Y] = X'Y — XY’. The G*-metric
equals the H'-metric on X.(R), and we have:

GA(X, Y) = /(XY + AX/Y/)dx = / X(l _ Aaz)de’
R R
GH(ad(X)"Y, Z) = /(YX’Z ~YXZ' +AY'(X'Z - XZ'))dx
R

_ / Z(1—P)(1-02) 2V X' +Y'X — 24Y" X' — AY" X )dx,
R
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ad(X)'Y = (1-0%) 'YX +Y'X —24Y"X' — AY"'X)
ad(X)* = (1 - 9271 (2X' + X8,)(1 — Ad?)
so that the geodesic equation in Eulerian representation u = (9;f) o f~! €
X.(R) or X(S1) is
Ou = —ad(u)*u = —(1 — 02) " (Buu — 24u"v' — Au'"u), or
Up — Uppr = Algrr. U+ 2AULz Up — SUg.u,
which for A =1 is the dispersionless version of the Camassa-Holm equation,

see (7.3.4). Note that here geodesic distance is a well defined metric describing
the topology.

6. The regular Lie group of rapidly decreasing
diffeomorphisms

6.1. Lemma.
For smooth functions of one variable we have:

m (047)

(Fog®e) =p Y L0 5 I

m=>0 aeNT,
a1+-~+am—p

(m) p! g™ @)\ ™
D DR ARITE N DU < ( )
m=0 A=(An)eNLz0  1>0

> An=m

ZnAnn:p

Let f € O®(R¥) and let g = (g1,...,gr) € C®(R™,RF). Then for a multiin-
dex v € N™ the partial derivative 07 (f o g)(x) of the composition is given by
the following formula, where we use multiindex-notation heavily.

(fog)(z) =

Zi)‘ia
- e Y 3I(s) Hewwr

ENF — () Ex(N™\0) * qeN™ i,a>0
’ AT o
Z'La Ao ="

- x (;,)Z (8% 1) a@) TT @ auta)

—() Ex(N™\0) © qeN™ i,a>0
A=(Xia)EN - TS0
2ia Mo =Y
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The one dimensional version is due to Faa di Bruno [19], the only beatified
mathematician.

Proof. We compose the Taylor expansions of

(m)
flg(@) +h)+ join f(h) Z o) )

m>0
. g
glz+t): jg )+
n>1
. M (g(x) 9™ (@),
flglz+1): 52°( Z m' ZTt
m>0 n>1
F™ (g(x)) 1997 @) ) arsetan
=2 2 () e
m>0 Q] yeeny a,n, >0 \i=1

Or we use the multinomial expansion

(Ta) = )

=1 My Ag €N
AL+ Ag=m
to get
f< ml g @\ s
E(ea® =% >R (I(EE) ) e
m>0 A= ()\n)ENi%O n>0
X, An=m
where A = A1 As! ... ; most of the A; are 0. The multidimensional formula

just uses more indices. O

6.2

The space S(R) of all rapidly decreasing smooth functions f for which x —
(1 + |z|>)k07 f(x) is bounded for all k € N and all n € N>, with the locally
convex topology described by these conditions, is a nuclear Fréchet space.
The dual space S'(R) is the space of tempered distributions.

S(R) is a commutative algebra under pointwise multiplication and convo-
lution (u*v)(z) = [u(z — y)v(y)dy. The Fourier transform

Fu)(©) = a(€) = / () dr,  F o a)(e) = - / ¢*a(€)de,

21
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is an isomorphism of S(R) and also of L?(R) and has the following further
properties:

Dou(€) = —ig - a(€), Tu(E) = —ideu(£),
u(z —a)(€) = eCa(E), eulz)(€) = eCa(e)
u(az)(€) = (), u(=w)(€) = a(=¢),

In particular, for any polynomial P with constant coefficients we have

F(P(=i0:)u) (&) = P(§)u(s).

S(R) satisfies the uniform V-boundedness principle for every point separating
set V of bounded linear functionals by [31], 5.24, since it is a Fréchet space;
in particular for the set of all point evaluations {ev, : S(R) = R, z € R}.
Thus a linear mapping ¢ : E — S(R) is bounded (smooth) if and only if
ev, of is bounded for each x € R.

6.3. Lemma.
The space C*°(R,S(R)) of smooth curves in S(R) consists of all functions
f € C=(R2,R) satisfying the following property:

e For all n,m € N>q and each t € R the expression (1 + |z[2)*0rom f(t, )
1s uniformly bounded in x, locally in t.

Proof. We use (A.3) for the set {ev, : € R} of point evaluations in &’'(R).
Note that S(R) is reflexive. Here c*(t) = 9F f(t, ). O

6.4. Diffeomorphisms which decrease rapidly to the
identity

Any orientation preserving diffeomorphism R — R can be written as Id +f
for f a smooth function with f/(z) > —1 for all z € R. Let us denote by
Diff s(R)o the space of all diffeomorphisms Id+f : R — R (so f/(z) > —1 for
all z € R) for f € S(R).

Theorem.

Diffs(R)o is a regular Lie group.

Proof. Let us first check that Diff (R)g is closed under multiplication. We
have

(d+f) o (Id+9))(z) = x + g(z) + f(z + g(x)), (1)

and z — f(z + g(x)) is in S(R) by the Faa di Bruno formula (6.1) and the
following estimate:
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ﬂm@+ﬂ@D=O(u+ujy@W%):O(HI%PW) )

which holds since g(x) — 0 for |z| — oo and thus

1+ |zf?

Ttz +9@)P is globally bounded.

Let us check next that multiplication is smooth. Suppose that the curves
t—=Id+f(t, ),Id+g(t, ) arein C*(R,Diff5(R)o) which means that the
functions f, g € C°°(R? R) satisfy the conditions of lemma (6.2). Then

L+ |z[*) oo f(t,x + g(t,z))

is bounded in z € R, locally in ¢, by the 2-dimensional Faa di Bruno formula
(6.1) and the more elaborate version of estimate (2)

1 1
@D+ 900 = Oy apr) = wreme) @

which follows from (6.3) for f and g. Thus the multiplication respects smooth
curves and is smooth.

To check that the inverse (Id +g)~! is again an element in Diffs(R)o for
g € S(R), we write (Id+g)~! = Id +f and we have to check that f € S(R).

(Id+f)o(Id+g) =1d = z+g(z)+ f(x +g(x)) ==
= z— f(r+g(x)) =—g(z)isin S(R). (4)

Now consider

0x(f(x + 9(x))) = f'(x + g(x))(1 + ¢'(2))
0z (f(x +g(x)) = f"(z + g(x))(1 + ¢'(2))* + f'(z + g(2))g" (x)

B(f(z+g(@) = fO(z+ g(x) (1 + ¢ (x)*+ (5)
+3f"(z+ g(2) (1 + ¢ (2))g" (z) + f'(z + g(x))g® (2)
O (f(x+g(x) = f™ (2 + g(a)(1 + ¢ ()" +

3 1R+ gl (0),

k=1

where an; € S(R) for n > k > 1. We have 1 + ¢'(x) > & > 0 thus #,(m)
is bounded and its derivative is in S(R). Hence we can conclude that (1 +
|z|?)* f () (x4g(x)) is bounded for each k. Since (1+|z+g(z)[?)* = O(14|z|?)
we conclude that (1 + |z + g(z)|>)* £ (z + g(x)) is bounded for all k and n.
Inserting y = z+g(z) it follows that f € S(R). Thus inversion maps Diff s(R)
into itself.
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Let us check that inversion is also smooth. So we assume that g(t, z) is a
smooth curve in S(R), satisfies (6.3), and we have to check that then f does
the same. Retracing our considerations we see from (4) that f(t,x+g(t,x)) =
—g(t,x) satisfies (6.3) as a function of ¢,z, and we claim that f then does
the same. Applying ;" to the equations in (5) we get

OrO (f(t,x+ gt 2))) = (0™ F)(t,2 + g(t, 2))(1 + Dag(t, )™+
+ 30 @%E )t + gt 7)) ar, a, (t 7).

k)l Sn
ko<m+4n

where ag, , (¢, z) = O(W) uniformly in 2 and locally in ¢. Again 1 +
0:9(t,x) > € > 0, locally in ¢ and uniformly in z, thus the function m
is bounded with any derivative in S(R) with respect to z. Thus we can
conclude f satisfies (6.3). So the inversion is smooth and Diff g(R) is a Lie
group.

We claim that Diff ¢(R) is also a regular Lie group. So let t — X (¢, ) be
a smooth curve in the Lie algebra S(R)0, i.e., X satisfies (6.3). The evolution
of this time dependent vector field is the function given by the ODE

Evol(X)(t,z) = a + f(t,z),

O(x+ f(t,x) = filt,x) = X(t, 2 + [(t, 7)),
f(0,z) =0.

We have to show that f satisfies (6.3). For 0 < ¢ < C' we consider

() < / o5, 2)|ds = / X (s, + f(5,2))|ds. (7)

Since X (t, z) is uniformly bounded in x, locally in ¢, the same is true for f(¢, )
by (7). But then we may insert X (s, + f(s,z)) = O(W)
O(W) into (7) and can conclude that f(t,z) = O(W) globally in
x, locally in t, for each k. For 070" f(t, x) we differentiate equation (6) and
arrive at a system of ODE’s with functions in S(R) which we can estimate

in the same way. O

6.5. Sobolev spaces and HC™-spaces

The differential operator

k

k
Ay = Pi(—ids) =Y (-1)'07, PE) =) ¢,
i=0

=0
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will play an important role later on. We consider the Sobolev spaces, namely
the Hilbert spaces

H'R)={f € S'®R): [/, fP,.../" e L*(R)}.
In terms of the Fourier transform f we have, by the properties listed in (6.2):

fEH" <= (1+[E)"f(&) € L* < (1+¢)"/?f(¢)) € L
= (L+ )" Pu(€)f(€) € L* <= Ay(f) € H" 2.

‘We shall use the norm

1f e = 1 F €)1+ (€)™ 122

on H™(R). Moreover, for 0 < a <1 we consider the Banach space

CO2(R) = {f € C°(R) : sup | f(z)| + sup M
z€R styeR [T — Y|

< oo}
of bounded Hoélder continuous functions on R, and the Banach spaces
CP*(R) = {f € C™"(R): f,f'..., f" Y bounded, and ™ € C)*(R)}.

Finally we shall consider the space

HC"(R) = H"(R) NGy (R),  [|fllzce = [If]

o+ [ fllep-

6.6. Lemma.
Consider the differential operator Ay = Zfzo(—l)ié‘fci.

(1) A : S(R) = S(R) is a linear isomorphism of the Fréchet space of rapidly
decreasing smooth functions.

(2) Ay : HMP2R(SY) — H™(SY) is a linear isomorphism of Hilbert spaces for
each n € Z, where H"(S') = {f € L?(S') : A,.(f) € L*(S")}. Note that
H™(SY) C CF(SY) if n > k +1/2 (Sobolev inequality).

(3) Ay : C=(SY) — C>°(S?) is a linear isomorphism.

(4) Ax : HC"?(R) — HC™(R) is a linear isomorphism of Banach spaces
for each n > 0.

Proof. Without loss we may consider complex-valued functions.

(1) Let F : C>(S') — s(Z) be the Fourier transform which is an iso-
morphism on the space of rapidly decreasing sequences. Since F(f..)(n) =
—(2mn)2F(f)(n) we have FoAroF 1 : (¢,) = ((1+(2mn)?+- - -+(27n)%*) ¢,,)
which is a linear bibounded isomorphism.

(2) This is obvious from the definition.
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(3) can be proved similarly to (1), using that the Fourier series expansion
is an isomorphism between C°°(S!) and the space [ of rapidly decreasing
sequences.

(4) follows from (2). O

6.7. Sobolev inequality.
We have bounded linear embeddings (0 < o <1):

H™R) C CER) if n > k+ 3,
H"(R) C CP(R) if n>k+ 4 +a

Proof. Since 9 : H"(R) — H" *(R) is bounded we may assume that k = 0.
So let n > % Then we use the Cauchy-Schwartz inequality:

2rfu(a)] = \ et df‘ < [1a@)1de = [1a©ia+ wm de

< (Jruora i) ([ ) =l

o~ (Jvigm) <

depends only on n > % For the second assertion we use x > y and

where

1
e — e = (1 — y)/ icetWHt@E—v)E gy
0

176 — €] < [z — ylI¢

to obtain
wz) — uly) e — eV e el
2o G| < [ [y e e e
<2 [ 110+ 16D e de

<2( [P s|>2"ds)% (/ e dg)é = Culuf e

where C7 depends only on n — « > % 0O

6.8. Banach algebra property.
If n > % then pointwise multiplication S(R) x S(R) — S(R) extends to a
bounded bilinear mapping H™(R) x H*(R) — H™(R).

For n > 0 multiplication HC™(R) x HC™(R) — HC™(R) is bounded bilin-
ear.
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See [17] for the most general version of this on open Riemannian manifolds
with bounded geometry.

Proof. For f,g € H"(R) we have to show that for 0 < k < n we have

k

(fo)* =>" (’f) fOg* D e LA(R)

=0

with norm bounded by a constant times ||f||gn.||g||zn. If I < n then fO €
CY(R) by the Sobolev inequality and g%=D e H' ¢ L? so the product is in
L? with the required bound on the norm. If [ = 0 we exchange f and g.

In the case of HC™, the L?-norm of each product in the sum is bounded
by the sup-norm of the first factor times the L2-norm of the second one. And
the sup-norm is clearly submultiplicative. 0O

6.9. Differentiability of composition.
If n > 0 then composition S(R) x S(R) — S(R) extends to a weakly C*-
mapping HC"*(R) x (Idg + HC"(R)) — HC™(R).

A mapping f : E — F is weakly C! for Banach spaces E, F ifdf : ExE —
F exists and is continuous. We call it strongly C! if df : E — L(E,F) is
continuous for the operator norm on the image space. Similarly for C*. Since
I could not find a convincing proof of this result for the spaces H™ under the
assumtion n > %, I decided to use the spaces HC™(R). This also inproves on
the degree n which we need.

Proof. We consider the Taylor expansion

k

fa+g@) =3 %f‘p) (2).g(x)"+

i /0 (1(k_t)1)_' (f9 (@ + tg(x)) = f0 (@) dt g(2)*

For fixed f this is weakly C* in g by invoking the Banach algebra property
and by estimating the integral in the remainder term. We have to show that
the integrand is continuous at (f(k),g = 0) as a mapping H" x H" — H".
The integral from 0 to 1 does not disturb this so we disregard it. By (6.1) we
have

02/ (@ + g(a)) — S P(a)) =
P sl G [C0) N S ATCR 0 R G IC0)
m=0

m! aq! Q!

ag,...,0m >0
a1+t =p

The most dangerous term is the one for p = n. As soon as a derivative of g
of order > 2 is present, this is easily estimated. The most difficult term is
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FE (@ + g(z)) — fE ()

which should go to 0 in L? N C} for fixed f and for g — 0 in HC™. f*) s
continuous and in L2. Off some big compact intervall it has small H"-norm
and small sup-norm (the latter by the lemma of Riemann-Lebesque). On this
compact intervall £(*) is uniformly continuous and if we choose ||g||¢n small
enough, f®) (z + tg(z)) — f*)(z) is uniformly small there, thus small in the
sup-norm, and also small in L? (which involves the length of the compact
intervall — but we can still choose g smaller). O

The last result cannot be improved to strongly C* since we have:

6.10. Attention.
Composition HC™(R) x (Idg +HC™(R)) — HC™(R) is only continuous and
not Lipschitz in the first variable.

Proof. To see this, consider (f,t) — f( —t.g) for a given bump function
g which equals 1 on a large intervall. For each ¢ > 0 we consider a bump
function f with support in (—%,%) with [|f||,= = 1. Then we have ||f —
f( —t)||z2 = V2 by Pythagoras, and consequently | f — f(  —t.g)||mcn >

If =fC -tlz=v2. O

6.11. The topological group Diff (R)

For n > 1 we consider f : R — R of the form f(z) = 2+ g(z) for g € HC™.
Then f is a C™-diffeomorphism iff ¢’(z) > —1 for all . The inverse is also of
the form f~1(y) = y+ h(y) for h € HC™(R) iff ¢'(x) > —1 +¢ for a constant
e. Indeed, h(y) = —g(f~(y)). Let us call DiffHC"(R) the group of all these
diffeomorphsms.

Lemma.
Inversion DifHC™ ¥ (R) — DiffHC™(R) is weakly C*.

Proof. As we saw above, Diff HC"*(R) is stable under inversion. (f,g)
f ogis a weak C* submersion by (6.9). So we can use the implicit function
theorem for the equation fo f~! =1d. O

6.12 Proposition.

For n > 1 and a € HC™(R), the mapping HC™(R) x DiffHC"(R) —
HC" Y(R) given by (f,g) — (ads(f o g~1)) og is continuous and Lipschitz
n f.

Forn > k + % and for each linear differential operator D of order k,
the mapping HC™(R) x DifHC™(R) — HC™ *(R) given by (f,g) — (D(f o
g~ 1)) o g is continuous and Lipschitz in f.

Here Diff(R) = {Idg +h : [|A'[[co > —1}.

Proof. We have
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Jos-@on st

0g N og= . og H)———
(@0(f o™ 09 = (a-(feog™) — = -

which is Lipschitz by the results above. O

6.13 Proposition.
For the operator Ay = Zfzo(—l)i(?ii and for n > 2k, the mapping
(f,9) = (A (fog™1))og is Lipschitz HO™ (R) x Diff HC™(R) — HCO™+2#(R).

Proof. The inverse of Ay is given by the pseudo differential operator

(AL f) (@) = / ¢HaE f(y) ! ¢ dy

R? 1+82+ +&

Thus the mapping is given by

(A7 (Fog))(g(x) = / @V £ () ! ¢ dy

—
R2 1+&24 4620

/
_ [ cite@)-g()e 9@ eq
/e 1) e de

which is a genuine Fourier integral operator. By the foregoing results this is
visibly locally Lipschitz. O

7. The diffeomorphism group of S! or R, and Burgers’
hierarchy

7.1. Burgers’ equation and its curvature

We consider the Lie groups Diffs(R) and Diff(S!) with Lie algebras Xs(R)
and X(S') where the Lie bracket [X,Y] = X'Y — XY is the negative of the
usual one. For the L?-inner product v(X,Y) = (X,Y)y = [ X(2)Y (z)dx
integration by parts gives

(X,Y], Z) = /R(X’YZ — XY'Z)dx

= /(QX’YZ + XY Z')dx = (Y,ad(X)" Z),
R

which in turn gives rise to

ad(X)'Z=2X'Z2+ X7, (1)
a(X)Z=ad(Z2)'X =22'X + ZX', (2)
(ad(X) T +ad(X))Z =3X'Z, (3)
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(ad(X)" —ad(X))Z = X'Z +2X 7' = a(X)Z. (4)

Equation (4) states that —2a(X) is the skew-symmetrization of ad(X) with
respect to the inner product { , )o. From the theory of symmetric spaces
one then expects that —%a is a Lie algebra homomorphism and indeed one
can check that

~La([X.Y)) = [~a(X), ~La(¥)]

holds for any vector fields X, Y. From (1) we get the geodesic equation, whose
second part is Burgers’ equation [10]:

{ ge(t, ) = ult,g(t, 7)) (5)

uy = —ad(u) Tu = —3u,u
Using the above relations and the general curvature formula (3.4.2), we get

RX,Y)Z = -X"YZ+XY"Z - 2X'YZ' +2XY'Z'
= 9[X,Y)Z - [X,Y]Z = —a([X,Y])Z. (6)

Sectional curvature is non-negative and unbounded:

~GLR(X,Y)X,Y) = (a([X,Y])(X),Y) = (ad(X) " ([X,Y]),Y)
= <[X7 Y]a [X’YD = ||[X7 Y]”27
Gg(R(X, Y)X,Y)
XY - GY(X,Y)?

_ X, Y]|1?
= IXEIYE - (X veE = (7)

E(XAY)=

Let us check invariance of the momentum mapping J from (4.3):
(5. X).Y) =2(Ad(9) TX.Y) =2 (X, Ad(@)Y) = [ X((g'Y) o )da

— [ X(g' o g™ 0o = sign(s)) [ (X0 g)(g' Yo

= sign(¢")y((¢)*(X 0 g9),Y)
J(g, X) = sign(g.).(g:)*(X o g). (8)

Along a geodesic t — g(t, ), according to (5) and (4.3), the momentum
j(gvu =gt ° g_l) = gggt is constant. (9)

This is what we found in (1.3) by chance.
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7.2. Jacobi fields for Burgers’ equation

A Jacobi field y along a geodesic g with velocity field u is a solution of the
partial differential equation (3.5.1), which in our case becomes:

yee = [ad(y) " + ad(y),ad(u) "Ju — ad(u) "y — a(u)y + ad(w)y, (1)
= 73u2yr1 - 4uytm - 2nyt

Uy = —3UgU.

If the geodesic equation has smooth solutions locally in time it is to be ex-
pected that the space of all Jacobi fields exists and is isomorphic to the space
of all initial data (y(0),v:(0)) € C°>(S1,R)? or C2°(R,R)?, respectively. The
weak symplectic structure on it is given by (3.7):

W(y, Z) = <y7 2t = %uwz + 2uzi> - <yt - %ny + 2uys, Z>

:3/ (w21 — iz + 2ulyze — yo2)) de @)
Slor R

7.8. The Sobolev H*-metric on Diff (S') and Diff (R)

On the Lie algebras X.(R) and X(S') with Lie bracket [X,Y] = X'Y — XY’
we consider the H*-inner product

k . .
WXHZMJM:Z/@M@ﬂM:/MMWWw
1=0

k

:/XAk(Y)dx, where Ay =Y (-1)'0% (1)

=0

is a linear isomorphism X.(R) — X.(R) or X(S') — X(S') whose inverse
is a pseudo differential operator. Ay is also a bounded linear isomorphism
between the Sobolev spaces H't2¥(S') — H!(S1), see lemma (6.5). On the
real line we have to consider functions with fixed support in some compact
set [-K, K] C R.

Integration by parts gives

q&mmwj

(XY — XY")Ap(Z)dx = / (2X'Y Ap(Z) + XY Ap(Z"))da
R

R

:/YAkA,gl(QX'Ak(Z)+XAk(Z’))dx: (YV,ad(X) ", Z)s,
R

which in turn gives rise to
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ad(X)"FZ = A (2X'Ak(Z) + X An(Z)),
ak(X)Z = ad(Z2)"H(X) = A (22 Ak(X) + ZAR(X)) (2)

Thus the geodesic equation is

( ;@) = ult, g( ,l’))
= —ad(u)"*u 2 (2uy Ak (u ) + udy(ug))
K 3)
—AL 1 (2um Z 32lu +u Z 32”1
=0

For k = 0 the second part is Burgers’ equation, and for £ = 1 it becomes

Ut — Utgx = _3uuz + 2umuzx + Ulgzn (4)

= utuug + (1-92) H(w? + ul), =0

which is the dispersionfree version of the Camassa-Holm equation, see [11],
[44], [29]. We met it already in (5.6), and will meet the full equation in (8.7).
Let us check the invariant momentum mapping from (4.3.2):

1(T(g.X).Y) = (Ad(g) X, Y ) = (X, Ad(9)Y )

[ 4006 097 09 e =sign(s') [(4(X) 0 0)(9' Y da
= sign(g) (47" ((9)2(A(X) 0 g)).Y )

J(9.X) = sign(g.). A7 ((9:)*(Ax(X) 0 9) ). (5)

Along a geodesic t — g(t, ), by (3) and (4.3), the expressions

sign(92)J(9,u = gu0 ) = A7 ((92)*(Ax(w) 0 9)) (6)

and thus also (g,)%(Ak(u) o g) are constant in ¢.

7.4. Theorem.
Let k > 1. There exists a HC?**1-open neighborhood V of (I1d,0) in
Diff (S') x X(S") such that for each (go,uo) € V there exists a unique C°
geodesic g € C3((—2,2), Diff(SY)) for the right invariant H* Riemann met-
ric, starting at g(0) = go in the direction g;(0) = ug o go € T,, Diff(S1).
Moreover, the solution depends C' on the initial data (go,up) € V.

The same result holds if we replace Diff(S') by Diffsw) and X(S*) by
%s(R) = S(R)d,.

This result is stated in [13], and also this proof follows essentially [13]. But
there is a mistake in [13], p 795, where the authors assume that composition
and inversion on H"(S*) are smooth. This is wrong. One needs to use (6.12)



Geometric Evolution Equations 51

and (6.13). The mistake was corrected in [12], for the more general case of
the Virasoro group.

In the following proof, Diff, X, DiffHC", HC™ should stand for either
Diff(S1), X(S1), DiffHC"(S!), HC™(S?) or for Diffs(R), Xs(R), Diff HC™(R),
HC™(R), respectively.

Proof. For u € HC", n > 2k + 1, we have

k k 2i
Ag(ung) = Y (=1)'0F (wuz) = Y (=1)" Y (F) () (3 u)
i=0 ‘=0 i
= uAg(ug) + Z )’ Z a I u) (92 )

Jj=1

= uAg(ug) + Bk(u),

where By, : HC™ — HC™ 2k is a bounded quadratic operator. Recall that
we have to solve

up = —ad(u) Fu = —A; " (2us Ap (u) + udy(uy))
= —A; M (2u Ag(u) + Ag(uug) — Bi(u))
= —uu, — A; " (2uz Ay (u) — Bi(u))
=: —uu, + A; ' Cr(u),

where C), : HC™ — HC™ %% is a bounded quadratic operator, and where
u=g;0g ' €X%. Note that

C’k(u) = —2umAk( ) Bk(u)

2i
= —2u, Ax(u) Z Z (‘321 J+1 w).

=0

We put

Gt =1v=wuog
vr=uog+ (ugog)gr =uog+ (uug)og=A Cr(u)og (1)
= A;'Cr(vog")og=:pra(Dyo Ey)(g,v), where

Er(g,v) = (9.Cx(vog ") og),  Dilg,v) = (9,4, (vog ') og).

Now consider the topological group and Banach manifold DiffHC™ described
n (6.11).
(2) Claim. The mapping Dj, : DiffHC" x HC" =2k — DiffHC" x HC™ is
strongly C!.

First we check that all directional derivatives exist and are in the right
spaces.
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For w € HC™ we have

Islo(uo (g + sw)) = (ug 0 gJw
wog !
goog~?

as|0 PTy Dk(g + S’LU,U) =

— 8S|OA,;1(11 o gfl) o(g+ sw)+ 5S|0(A,:1(v o(g+ sw)fl)) og
= (0.4 (o g™ 0 g)w — (A (ve 0 g™ 225 )) o g
= (A wog Vae(wog ™)) og— (A7 (vog Ha(wog ™)) oyg.

Therefore,

Oslo(g + sw)fl =

Ai((0slo pry Di(g + sw,v)) 0 g7") =

= A(A (o g e(wog ™)) = (vog ) (wog™)
k21 ..
=(wog e (wog ™)+ Z Z (QZ) A (wog ™).02 T (wog™t)
: ; J
1=0 5=0
—(vog u(wog™t) e HO" 2.

By (6.12) and (6.13) this is locally Lipschitz jointly in v, g, w. Moreover we
have 0s|g pry Dk (g4 sw,v) € HC™, and Dy, is linear in v. Thus Dy, is strongly
Cl.

(3) Claim. The mapping Ej : DiffHC" x HC™ — DiffHC" x HC"~2F is
strongly C'. This can be proved similarly, again using (6.12) and (6.13).

By the two claims equation (1) can be viewed as the flow equation of a
C'-vector field on the Hilbert manifold Diff HC™ x HC™. Here an existence
and uniqueness theorem holds. Since v = 0 is a stationary point, there exist
an open neighborhood W,, of (Id,0) in DiffHC" x HC™ such that for each
initial point (go,vo) € W,, equation (1) has a unique solution F1}(go,vo) =
(g(t),v(t)) defined and C? in t € (—2,2). Note that v(t) = g;(¢), thus g(t) is
even C? in t. Moreover, the solution depends C! on the initial data.

We start with the neighborhood

Waks1 C DIffHC?* 1 x HC?H! 5 DIffHC™ x HC™  for n > 2k + 1

and consider the neighborhood V;, := Wo,11 N DIfHC™ x HC™ of (1d,0)

(4) Claim. For any initial point (go,vo) € V;, the unique solution FI{*(go, vo) =
(g(t),v(t)) exists, is C? in t € (—2,2), and depends C! on the initial point in
Va.

We use induction on n > 2k + 1. For n = 2k + 1 the claim holds since
V2k+1 = W2k+1. Let (go,’Uo) S ‘/ék+2 and let FltZkJrz(go,Uo) = (g(t),f}(t))
be maximally defined for ¢t € (¢1,f2) > 0. Suppose for contradiction that
ty < 2. Since (go,v0) € Varya C Vagy1 the curve FIZF2(go, vo) = (G(t), 6(t))
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solves (1) also in Dif HC?*T! x HO?*+1 | thus F128+2 (g0, v0) = (§(1), 0(t)) =
(9(t),v(t)) := FI?* ™ (go, vo) for t € (t1,t2)N(—2,2). By (7.3.6), the expression

J(t) = J(g,v,t) = gu(t)* Ar(u(t)) 0 g(t) = gu(t)* Ax(v(t) 0 g(t) 1) 0 9(t) (5)

is constant in ¢ € (—2,2). Actually, since we used C*°-theory for deriving
this, one should check it again by differentiating. Since v = g, 0 g~ ! we get
the following (the exact formulas can be computed with the help of Faa di
Bruno’s formula (6.1).

— — g —
U = (92097 )g e =""0g7"
9z
829t 6 g
82u=($ — Gt %)o‘g*1
’ g gl
1
19) g_1 = — og_1
)=,
20 —1 929
ooy =2
x
ang
(g og= — g1 + lower order terms in g
x
o2k H2k
(07Fu) o g = szgt — Ota 23251 + lower order terms in g, g = v.
9z gz

Thus
(=1)*g2* =11 (t) = g,0%% g, — 9:.0?* g + lower order terms in g, g; = v.
Hence for each t € (—2,2):

gmagkgt — gtmagkg = (—1)’“933 (gik_3j(t) + Pk(g7v)> , where

Oug, ..., 0%k1 Opv, ..., 0%1
Pk(g7v) _ Qk(ga g, y Ugp ggava zU, s Ug ’U)
x

for a polynomial Q. Since J(t) = J(0) we obtain that

9z (t)

This implies

(azkgm) = (D! (25720 (0) + Pa(g(t), v(1))) for all ¢ € (~2,2).

2rg(t) _ 93°9(0)
9x(t) B 9:(0)

For t € (t1,t2) we have

+(=1)" /Ot (gi’“‘?’(s)J(()) + Pk(g(s),v(s))> ds.
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_ a%kgo
8z90

H(0a) [ (27670 + Pula(s). () ds.

97"g(t) 92 (t)+ (6)

Since (go,v0) € Varia we have J(0) = J(go,v0,0) € HC? by (5). Since
k > 1, by (6) we see that 92¢G(t) € HC?. Moreover, since ty < 2, the limit
lim; ¢, 028§(t) exists in HC?, so lim; ., G(t) exists in HC?**2. As this
limit equals g(ts), we conclude that g(t2) € DiffHC?***2. Now & = §; so we
may differentiate both sides of (6) in ¢ and obtain similarly that lim;_,:,— 0(t)
exists in HC?*+2 and equals v(t5). But then we can prolong the flow line (g, 9)
in DiffHC?*2 x HC?*+2 heyond to, so (t1,t2) was not maximal.
By the same method we can iterate the induction. 0O

8. The Virasoro-Bott group and the Korteweg-de Vries
hierarchy

8.1. The Virasoro-Bott group

Let Diff denote any of the groups DiffHC'(S'), Diff(R)o (diffeomorphisms
with compact support), or Diff s(R) of section (6). For ¢ € Diff let ¢ :
St or R — RT be the mapping given by T,¢ - 9, = ¢'(2)9,. Then

c : Diff x Diff - R

1

o) =5 [ toaloou)dlogs! = 5 [ Toale' 0v)dlogy

satisfies c(p, 0™ 1) = 0, c(Id, ) = 0, ¢(p,1d) = 0, and is a smooth group
cocycle, i.e.,

c(p2,p3) — c(p1 0 Y2, ¢3) + c(p1, P2 0 p3) — c(p1,p2) = 0,

called the Bott cocycle.
Proof. Let us check first:

/ log(ip 0 )’ dlog 9! = / log((¢ o $)3/)dlogy =
- / log(e o ¥)dlog ' + / log(¢/)dlog ',
/log(ip’)dlogz// = %/d log(¢/)? = 0.
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2¢(1d, ) = /log(l)dlogw' =0.
2¢(p,1d) = /log(ga’)dlog(l) =0.

2c(p™ ", ) = /log((sf1 o) )dlogy’ = /log(l)dlogcp’ =0.
c(p, o7t =0.

For the cocycle condition we add the following terms:
2¢(¢p2, p3) = /log(wé © p3)dlog ¢y
—2c(p1 02, 3) = —/log((% © p2)" 0 p3)dlog
=— /log((w’l © @2 0 p3) (03 © p3))dlog o
- /log(sO'l © 2 0 p3)dlog g — /log(w’g © p3)dlog
2¢(p1,p2 © 3) = /log(w’l © p3 © p3)dlog(pz © 3)’

/log @} 0 @2 0 @3)dlog((¢h o @3)¢s)

/log (¢} 0 @2 0 p3)dlog(py o 3) + /log(so’l 0 @3 0 p3)dlog ¢
/log (¢} 0 p2)dlog ¢ + /log(wi 0 g 0 p3)dlog ¢y

—2¢(p1,2) = — /log(gp’l o 9)dlog b O

The corresponding central extension group S* x, DiﬁHC+(S 1), called the
periodic Virasoro-Bott group, is a trivial S'-bundle S* x DiffHCT(S') that
becomes a regular Lie group relative to the operations

(V) -(piotn) () =)

for ¢, v € DiffHCT (S') and o, B € S'. Likewise we have the central extension
group with compact supports R x . Diff (R)g with group operations

D) - () ) -C)
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for ¢,1 € DIffHCT (R) and «, 8 € R. Finally there is the central extension of
the rapidly decreasing Virasoro-Bott group R x. Diﬂg (R) which is given by
the same formulas.

8.2. The Virasoro Lie algebra

Let us compute the Lie algebra of the two versions of the the Virasoro-
Bott group. Consider R x. Diff, where again Diff denotes any one of the
groups DiffHC™(S'), Diff(R)g, or Diffs(R). So let ¢,¢ : R — Diff with
©(0) = (0) = Id and ;(0) = X, ¢:(0) = Y € X .(R), X(S), or S(R),. For
completeness’ sake we also consider «, 5 : R — R with «(0) = 0, 5(0) =
Then we compute:

(20 () =2 (o) (50) (o)
(a(t)+5< ) +clp(t) (fb)(:)z)b( ’ ()(+)c(so() w(s),so(t)l))

_ -1 = M) ) "

Bi(0) + Osloclp(t), ¥(s)) + dsloc(p(t) 0 9 (s), ¢ (1))
X Y

(i) (o)) -

) |0( (FI).Y = Ad(p(1)Y )
TNB0) + Ouloc(p(t), 1(s)) + Deloc(p(t) 0 1(s), (1))

N S,
Ftlo0sloc(o(t), ¥ (s)) + Belodsloc(p(t) © P (s), 0 () 7)

Now we differentiate the Bott cocycle, where sometimes f/ = 9, f:

20s|oc(p(t), 9 (s)) :3slo/10g( ()" 0 ¥(s)) dlog(t(s)")

:/Mdlogﬂgl +/10g 'Yy’
— [ tog(ete) )y ds
2011004 oc(o(), ¥(s)) = Drlo / log(o(t) )Y da — / );(é/d _ / XY da.
For the second term we first check:
(o) = — (¢ ) = — L2208

@z o7t (pz 0 p1)3’
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1
—1 _ _
o (2) =y, oo T dx = dy
/! —1 1
Ny P°¥Y g P
leg((QD )51?) - (SO/ o s0,1)2 dx QD/ dy

and continue to compute

205loc(p(t) o v(s), p(t) ") = &slo/log((w(t) 0 9(s))s 0 p(t) ") dlog(p(t); ")

_ /(@(t)"osﬁ(t)‘l)(Y o)1) + (p(t)0 o)) (Yo plt) )
() 0 @B~ D(B(0) o (t)-1)

- /(s@( VPV ettt Y
(02

204 00sloc((t) 0 B(s), o(t) 1) = —Brlo /

_ _/0+0+¢(0)’X”Y’—0
(¢(0) =1)

- / X"Y' dy = / X'Y" da.

Finally we get from (2):
X\ (Y _[X,Y] X'Y - XY
o) \bv)|  \w , - w(X, 3
GO Caw) (o) o
where

/ /
w(X,Y) =w(X)Y = /X’dY’ = /X’Y”dac = %/det (?g,, 1};/) dz,

is the Gelfand-Fuchs Lie algebra cocycle w : g X g — R, which is a bounded
skew-symmetric bilinear mapping satisfying the cocycle condition

dlog(p(t); ")

()Y + o(t) ()" Y’
(e(t))?

dy

dy

w([X,Y],2)+w([Y, 2], X) +w([Z,X],Y) = 0.

It is a generator of the 1-dimensional bounded Chevalley cohomology H?(g, R)
for any of the Lie algebras g = X(S1), X.(R), or S(R)9,. The Lie algebra
of the Virasoro-Bott Lie group is thus the central extension R x,, g of g in-
duced by this cocycle. We have H?(X.(M),R) = 0 for each finite dimensional
manifold of dimension > 2 (see [21]), which blocks the way to find a higher
dimensional analog of the Korteweg — de Vries equation in a way similar to
that sketched below.

For further use we also note the expression for the adjoint action on the
Virasoro-Bott groups which we computed along the way. For the integral in
the central term in (1) we have:
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1 o (@//)QYJ'_LPISD//YV B 1 4,0” , @// 2 B
5 /(1og(ap )Y L )dsc =5 ( 25 (?) Y) dz =
"

:/((ZI/’)'_;(Z)Q)dez/sw)mx,

where a new character appears on stage, the Schwartzian derivative:

e\ Lre"N2 " 3 9"N\? N N2
1= () (5~ 5 () -t ey
©=(5) -3(5) =5 -5(5) =toate) ~ 3se) ) @)
which measures the deviation of ¢ from being a Moebius transformation:

aa:—l—bf ab
' cd

S(p) =0 <= ¢(z) = ) € SL(2,R).

Indeed, S(¢) = 0 if and only if g = log(¢') = %,/ satisfies the differen-

tial equation ¢’ = ¢%/2, so that 29—'129 = dx or _72 ==z —|—% which means
log(¢") (z) = g(z) = ﬁd?/c or again log(¢'(x)) = fw_fjfc = —2log(xz +
d/c) — 2log(c) = log(i(m}rd)2 ). Therefore, ¢'(x) = (caHl»d)z =0 Z;:Idb

For completeness’ sake, let us note here the Schwartzian derivative of a
composition and an inverse (which follow since the adjoint action (5) below
is an action):

S(e o) = (S(p) o W)W +5(), S =~y o
So finally, the adjoint action is given by:
O\ (V)  (Ad(p)Y =¢.Y =TpoYop!
w(@) G- ey )@

8.3. H°-Geodesics on the Virasoro-Bott groups

We shall use the L2-inner product on Rx g, where g = X(S1), X.(R), S(R),:

(@) (), = [rvasa w

Integrating by parts we get

GG )~ (i) (),

= / (X'YZ—XY'Z +cX'Y")dx
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= /(ZX’Z +XZ' 4+ cX")Y dx

.
= <<1;),ad (X) <Z>> ,  where
a c)/,
(XN (2 _ (X 2+ XZ X
a c) 0 '
Using matrix notation we get therefore (where 9 := 9,,)
X X(? 0
a
2X’ —|— X0 X"
a 0
X\ Trx
a) a
(X) (2)- ( ')
+ ad
a a

X> _ (X’ +2X0 X>

X' +2X0+4ad?0
0 0

59

Formula (3.2.2) gives the H° geodesic equation on the Virasoro-Bott group:

() )= o
()¢ U()) ot
z< P ><$2s>1 o)l
@rop!
| 255 da

()
()

since we have

205¢(p(s), o() ) |s=t = 0s /10g(s0(8)' o p(t)™) dlog((p(t) 1)) o=t

(el oo (e opt Y
/9"“)'0@(0‘1( (p(t) o p(t)~ )2>d by (8.2)
_ [ [P,

- /(@’)Qdy / sz 0

(2)
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Thus a is a constant in time and the geodesic equation is hence the Korteweg-
de Vries equation
U + 3UzpU + AQUgey = 0. (3)

with its natural companions

Yy =uo P, at:a—i—/wmﬂmdx.
23

It is the periodic equation, if we work on S*.

The derivation above is direct and does not use the Euler-Poincaré equa-
tions; for a derivation of the Korteweg-de Vries equation from this point of
view see [34], section 13.8.

Let us compute the invariant momentum mapping from (4.3.2). First we
need the transpose of the adjoint action (8.2.5):

() ().~ () O,
N <<§> <c+f(g*(i)2dx)>o

:/Y((ap’ocp’l)(Zo(pfl)dx—i—bc—f—/bS(go)de

= [((oo)(&)? +b5(e) 2 dx + be

Ad @T (’2) _ ((Y : so)(sa'bf + bsw))_

Thus the invariant momentum mapping (4.3.2) turns out as

HE0)) =2 () ()2 ).

Along a geodesic t — g(t, ) = (‘p((ﬁ’(t) )), according to (3) and (4.3), the
momentum

2\ (u=wro9 ™\ _ ((wop)pl +aS(p)\ _ (¢l +aS(p)
QL)) ()

is constant in ¢.
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8.4. The curvature

The computation of the curvature at the identity element has been done
independently by [41] and Misiolek [42]. Here we proceed with a completely
general computation that takes advantage of the formalism introduced so
far. Inserting the matrices of differential- and integral operators ad (ij)—r,
a(X ) and ad (X ) etc. given above into formula (3.4.2) and recalling that the

matrix is applied to vectors of the form ( ) where c is a constant, we see that
4R (( 1) (f;)) is the following 2 x 2-matrix whose entries are differential-
and integral operators:

A(X XY — XU Xo) + 2(an X5V — ap x V)

F(8(X1 X} — X! Xo) 4+ 10(a1 XY — ag X|"))0 2(X7" X5 — X1X3")
+18(a1 XY — ax X{)0? +2(X1X2(4) - X£4)X2)
+(12(a1 X} — ao X)) + 2w(X1, X3))0? Flar X — as X ()

X/// (XQ) +X//I (X )

w(X2)(4X] +2X10 + a,0%)
—w(X1)(4X% 4+ 2X50 + a20°)

Therefore, 4R (( 1), (X2)) (f;) has the following expression

az

A(X XY — XU X) X5 + 2(a XY — aa X W) X5
=+ (8(X1X2 XlXQ) + 10((11X”I G,QX/N)) Xé
+ 18(G1X2 - (ZQX )Xé’ + 12(a1X2 - a2X1)Xé//

+oxy / X|Xdz — X / XL XYdx + XY’ / X! XV dx

+ 2a3(X]" X5— XX + 2a3(X1 XSV = XV X5) + ag(an X3V —ao X9

/XI// 1)(é// _ GQX{/I)de

/ IXL(X) XY — XU Xy — 2X| XY + 2X7 Xb)da

which coincides with formula (2.3) in Misiolek [42]. This in turn leads to the
following expression for the sectional curvature

(1R ((9), () (9). (%)) =

_ / (4(X1X§’ — XV X5) X1 X0 + 8(X1 X, — X|X2) X! Xo
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+2(a1 X5 — e XM X1 X + 10(a1 XY — as X)) X| X
+18(a1 XY — as X)XV X,

+12(a1 X, — as X)) XV Xo + 2w(X1, X2) X! X

— XVw( Xy, X1) X5 4+ XY w(X1, X1) X5

+ (XY X} — X[ XY a1 Xz

+2(x, XY - XxW X0)a X,

+ (a1X2(6) — agX{G))ang
+(AX X XY+ 22X X XY 4 a X XY

—AXLX X~ 2Xa XX aQX{”X{”)az) dw
= /( —4[X1, Xo)? + 4(a1 Xo — a2X1)(X1X2(4) - X1 XY+ XX — X1(4)X2)

—(X)2a? 42X XY aras — (X{”)Qag) dx
+3CL)(X1,X2)2.

This formula shows that the sign of the sectional curvature is not constant.
Indeed, choosing h; () = sinx, ha(x) = cos x we get —7(8+a?+a3—37) which
can be positive and negative by choosing the constants aq, as judiciously.

8.5. Jacob: fields

A Jacobi field y = (}) along a geodesic with velocity field (%) is a solution of

the partial differential equation (3.5.1) which in our case looks as follows.
Y [ Yy T Yy U T u
tt
()= )+ () () ] )
L Ny N N

t t n
—ad (a) (bt) - oz(a) (bt> +ad (a) (bt)
~\wly) 0 )7 0 0 "

+ —2uy — duby — a0 —Ugzs \ (Yt
w(uw) 0 b, )’

which leads to

Ytt = _u(4ytm + 3uy;vzv + aywxmx) - uw(2yt + 2ayxxm) (1)
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— Uzza (bt + w(y7 U) - SCWL) — QYtzax,
b = w(u, yt) + w(y, uzu) + w(y, Qg )- (2)

Equation (2) is equivalent to:

btt = /(_ytxmmu + Yzax (Suwu + aumww))dl‘ (2l)

Next, let us show that the integral term in equation (1) is constant:
by + w(y,u) = by + /ywmu dx =: B;. (3)

Indeed its t-derivative along the geodesic for u (that is, w satisfies the
Korteweg-de Vries equation) coincides with (2'):

btt +/(ytmxxu+ywmxut) dr = btt +/(ytxmwu+ywmm(_3uzu_ auwwx)) dr = 0.

Thus b(t) can be explicitly solved from (3) as

t
b(t) = Bo + Bit — / /miu dz dt. (4)

The first component of the Jacobi equation on the Virasoro-Bott group is a
genuine partial differential equation. Thus the Jacobi equations are given by
the following system:

Yt = _u(4yt$ + 3Uym + aywwwx) - uz(zyt + Qnym)
— Ugax (Bl - 3ayz) — QYtzxx, (5)
U = —3UzU — AlUggg,

a = constant,

where u(t,z),y(t,z) are either smooth functions in (t,z) € I x S! or in
(t,z) € I x R, where I is an interval or R, and where in the latter case u, y,
y; have compact support with respect to x.

Choosing © = ¢ € R, a constant, these equations coincide with (3.1) in
Misiolek [42] where it is shown by direct inspection that there are solutions
of this equation which vanish at non-zero values of t, thereby concluding
that there are conjugate points along geodesics emanating from the identity
element of the Virasoro-Bott group on S!.
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8.6. The weak symplectic structure on the space of
Jacobi fields on the Virasoro Lie algebra

Since the Korteweg - de Vries equation has local solutions depending smoothly
on the initial conditions (and global solutions if a # 0), we expect that the
space of all Jacobi fields exists and is isomorphic to the space of all initial
data (R x, X(S1)) x (R x,, X(S')). The weak symplectic structure is given
in section (3.7):

() C)) =€) GG G, 1) G- 0)),
/ GGG, <L) G,

B S

+bC) — ¢B; — a/y’z” dz, (1)

where the constant C relates to ¢ as By does to b, see (8.5.3) and (8.5.4).

8.7. The geodesics of the H*-metric on the Virasoro
group

We shall use the H*-inner product on R x,, g, where g is any of the Lie
algebras X(S') or Xs(R) = S(R)9,. The Lie algebra X.(R) does not work
here any more since Ay = 377 (—1)70;7 is no longer a linear isomorphism

here.
<<f><};>> ::/(XY+X’Y’+~-~+X(’“)Y(’f>)da:+ab (1)
k

:/Ak(X)de—i-ab:/XAk(Y)dm—i-ab,

k
where Ay = 2(71)1’8?' as in (7.3.1).
i=0

Integrating by parts we get
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()G (), (o ) C),
= / (X'Y Ap(Z) = XY'Ap(Z) + eX'Y") da

_ / QXY AL(Z) + XY A(Z') + eX") da

_ / Y A A 2X AL(Z) + X A(Z') + eX") da

(=) ()

" (X)T (Z) _ <Ak1(2X/Ak(Z) X A(Z) + cX”’)>.

a c 0

(2)

Using matrix notation we get therefore (where 0 := 9,,)

4(0)= ()
T 1 , . "
ad (f) _ (Ak (2X .A,6+XA,€.3,T) A; E)X ))

a(f) :ad< )T@) _ (A,;l.(Ak(X’) +%Ak(X)6'm + ad?) 8)'

Formula (3.2.2) gives the geodesic equation on the Virasoro-Bott group:

(ZZ) . (Z>T(Z> _ (—Ak1(2umAk(u) —BuAk(uz) +aumm)>7 3

u(t)) ( prop! )

where ( = S Onn

a(t) ar— [ %dz

as in (8.3.2) Thus a is a constant in time and the geodesic equation contains
the equation from the Korteweg-de Vries hierarchy:

Ag(ug) = —2uz Ag(u) — uAg(ug) — Qg (4)

For k& = 0 this gives the Korteweg-de Vries equation.
For k = 1 we get the equation

Up — Ugpr = —3UUg + 2UzUsze + Ulgrr — WUgzz,

the Camassa-Holm equation, [13], [36]. See (7.3.4) for the dispersionfree ver-
sion.

Let us compute the invariant momentum mapping from (4.3.2). First we
need the transpose of the adjoint action (8.2.5):



) 00) (O @),

o) (o rS5itman)),

(
:/Ak(Y)(ap*Z) dm-l—bc—f—/bS((p)Zdat
:/Ak(Y)((go’Z)o<p_1)dx+bc+/b5’(<p)de
:/(Ak.(y)o¢)(¢')22dy+bc+/b5(¢)2dx
_ /((Ak(Y) 0 0)(&)? +bS(9))Z dx + be

— [ AT (A 0 )@ + 85 (e) Z o+ be

_ <<Ak1((Ak(Y) ° sz)(so’)2 + bS(‘P))>7 <f>> '

Ad (z)T (3;) _ <Ak1<<Ak<Y> S +b5(90)))

Thus the invariant momentum mapping (4.3.2) turns out as

7 (@ @) _aa (E)T @ _ (A,:%(Ak(Y) o)) + bs«o)))(_ |
5

Along a geodesic t — g(t, ) = (‘P(;’(t) )), according to (4) and (4.3), the
momentum

(7))

(A;Zl (Ar(u) 0 0)¢3 + aS(@)))
_ (A;Zl((Ak(wt o) op)pl + aS(<ﬂ))) ©)

a

a

is constant in ¢, and thus also

J(a,¢) == (Ar(pr 0 9™ 1) 0 )02 +aS(yp) (7)
is constant in ¢.

8.8. Theorem.

[12] Let k > 2. There exists a HC?**1-open neighborhood V of (1d,0) in the
space (S x. Diff(S1)) x (R x,, X(SY)) such that for each (go,c, ug,a) € V
there exists a unique C® geodesic g € C3((—2,2),S! x. Diff(S')) for the
right invariant H* Riemann metric, starting at g(0) = go in the direction
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gt(0) = ug o go € Ty, Diff(S'). Moreover, the solution depends C' on the
initial data (go,up) € V.

The same result holds if we replace S* x . Diff(S') by R x, Diffs(R) and
X(SY) by S(R)I, = Xs5(R).

In the following proof Diff, X, Diff HC", HC™ will mean either Diff(S?),
X(SY), DIfHC™(St), HC™(S1), or Diffs(R), Xs(R), DiffHC™(R), HC™(R),
respectively.

Proof. For u € HC™, n > 2k + 1, we have as in the proof of (7.4)

Ap(uug) = uAg(ug) Z Z u) (02 I ) =: u Ag(uy) + Br(u),

1=0

where By : HC™ — HC™ % is a bounded quadratic operator. Recall from
(8.7.4) that we have to solve (where a is a real constant)

up = ngl (2umAk(u) + uAg(ug) + aumm)
ngl (2umAk(u) + A (uuy) — Br(u) + aumz)
= —uly — A;l (QUIAk(u) — B(u) + aumz)
= —uuy + A, ' Ci(u, a),

where u = g, 0 g~' € ¥, and where Cy : HC™ — HC™ 2! is a bounded
polynomial operator, given by

Ci(a,u) = —2u, Ag(u) + Bk( ) — QUgyy
2
= —2u, Ak (u) + Z Z 87 )((ﬁi_ﬂ_lu) — QUggy-
j=1

Note that here we need 2k > 3. In [43] this result was obtained for k > 3/2.
We put

g=tv=uog
vp=upog+ (ugog)g =uog+ (uug)og= Ay Crla,u)og

= A 'Cr(a,vog7t) o g =:pra(Dy 0 Ex)(g,v), where
(1)

Ei(a,g,v) = (9,Cr(a,vog™")og),  Di(g,v) = (9,4, (vog™")og).

Now consider the topological group and Banach manifold DiffHC".

Claim. The mapping Dj : DiffHC" x HC" 2 — DiffHC" x HC™ is
strongly C!.

Let us assume that we have C-curves s + g(s) € DiffHC" and s — v(s) €
HC™ %k Then we have:
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s pry Dy(a, g(5),v(s)) = 05 A (vog ') oyg

—1
_ _ _ _ gs©og
— A (w0 g ) 0 g+ Ayt (<vxog 1><—W)> 9

+ (A (vog Nz og)gs
A ((9sprs Difag(s),v(s)) ) o g7") =
=vs09 ' = (Wog algs 097 h) + Ap(Ay (wo g algsog™t))
—(wog Nalgsog )+ (vog Halgsog )+

(
+ zk:mi <2Z> (aj+1 (Afl( —1))821'—]'( -1 ch—2k
‘ (0T (A (vog™ )0 M (gseg ) €

=vs0g

i=0 j=0 J
dspry Di(a, g(s),v(s)) = A M (vsog™ ') oyg
k 2i—1 .
27 _ ; _ _ i— i —
+ XX () A (@ wog a2 0g7) o
i=0 =0

and by (6.12) and (6.13) we can conclude that this is continuous in a, g, gs, v, vs
jointly and Lipschitz in g, and vs. Thus Dy, is strongly C*.

Claim. The mapping Ej; : DiffHC" xHC™ — DiffHC" xHC™ 2k is
strongly C*!.

This can be proved in a similar way as the last claim.

By the two claims equation (1) can be viewed as the flow equation of a
C'-vector field on the Hilbert manifold Diff HC™ x HC™. Here an existence
and uniqueness theorem holds. Since v = 0 is a stationary point, there exists
an open neighborhood W,, of (Id,0) in DiffHC" x HC™ such that for each
initial point (go,v9) € W,, equation (1) has a unique solution F1}(go,v) =
(g(t),v(t)) defined and C? in t € (—2,2). Note that v(t) = g.(¢), thus g(¢) is
even C? in t. Moreover, the solution depends C! on the initial data.

We start with the neighborhood

Waks1 C DIffHC?* 1 x HC?H! 5 DIffHC™ x HC™  for n > 2k + 1

and consider the neighborhood V;, := Way11 N DIffHC™ x HC™ of (Id, 0).

Claim. For any initial point (go,v9) € V, the solution FIY(go,vo) =
(g(t),v(t)) exists, is unique, is C? in t € (—2,2), and depends C! on the
initial point in V,,.

We use induction on n > 2k + 1. For n = 2k + 1 the claim holds since
V2k+1 = W2k+1. Let (go,’Uo) S ‘/ék+2 and let Fl?k+2(go,1}0) = (g(t),@(t))
be maximally defined for ¢ € (t1,f2) > 0. Suppose for contradiction that
ty < 2. Since (go,v0) € Vagyro C Vagy1 the curve FIZF2(go, vo) = (§(t), 6(t))
solves (1) also in DiffHC**™! x HC?F+1 thus FI1272(go, vo) = (§(t), 0(t)) =
(9(t),v(t)) := FI?*™(go,vo) for t € (t1,t2)N(—2,2). By (7.3.6), the expression

J(t) = J(g,0,1) = g2(1)* Ak (u(t)) 0 g(t) = 9o (1) Ak(v(t) 0 g(1)) 0 g(t)  (2)
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is constant in ¢ € (—2,2). Actually, since we used C*°-theory for deriving

this, one should check it again by differentiating. Since u = g, o g~ !

we get

the following (the exact formulas can be computed with the help of Faa di

Bruno’s formula (6.1):

_ — g -
e = (909 g e =" 09!
9z
D294 d2g
Pu= (2" —gu—=)og™"
e g2 “ gl
1
(g™ )= —o0g!
a7 =
2/ —1 979
8r(gi )Og: o z3
9z
82]69
(g Hog= _%4-1 + lower order terms in g
9z
92k o2k
(8§ku) 0g= ;QEt — Gia 92‘2_& + lower order terms in g, g; = v.
T T
Thus

(=1)Eg2=1J(t) = g.0%* g; — 9120 g + lower order terms in g, g; = v.
Hence for each t € (—2,2):
9202 g — 1,07 g = (1) g2 (gik_?’j(t) + Pk(g,v)> , where

_ Qr(9,029,. .., 02k=1g v, 0,0, ...,0% 1)
= 2
9%

Pk(g7v)

for a polynomial Q. Since .J(t) = J(0) we obtain that

(azkga)) = (1" (427 (0) + Pulg(t), v(1))) for all ¢ € (~2,2).

9z ()

This implies

arg(t) _ 92Fg(0) .k [T (ks
+ 0 [

9z (1) 9:(0)

For t € (t1,t2) we have

g2%(5)J(0) JFPk(g(S),U(S))) ds.

_ kago
amgo

H00) [ (27670 + Pula(s). () ds.

97"q(t)

9z (t)+
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Since (go,v0) € Vaktz we have J(0) = J(go,v0,0) € HC? by (2). Since
k> 1, by (3) we see that 92*g(t) € HC?. Moreover, since to < 2, the limit
lim; ., 028G(t) exists in HC?, so lim;_, §(t) exists in HC?**2. As this
limit equals g(t), we conclude that g(ty) € DiffHC** 2. Now o = §;; so we
may differentiate both sides of (3) in ¢ and obtain similarly that lim;_,:,— 0(¢)
exists in HC?*+2 and equals v(t5). But then we can prolong the flow line (g, )
in DIffHC***2 x HC?¥+2 beyond t3, so (t1,12) was not maximal.
By the same method we can iterate the induction. 0O

Appendix A. Smooth calculus beyond Banach spaces

The traditional differential calculus works well for finite dimensional vector
spaces and for Banach spaces. For more general locally convex spaces we
sketch here the convenient approach as explained in [20] and [30]. The main
difficulty is that the composition of linear mappings stops to be jointly con-
tinuous at the level of Banach spaces, for any compatible topology. We use
the notation of [30] and this is the main reference for the whole appendix.
We list results in the order in which one can prove them, without proofs for
which we refer to [30]. This should explain how to use these results. Later we
also explain the fundamentals about regular infinite dimensional Lie groups.

A.1. Convenient vector spaces

Let E be a locally convex vector space. A curve ¢: R — F is called smooth
or C° if all derivatives exist and are continuous - this is a concept without
problems. Let C*°(R, E) be the space of smooth functions. It can be shown
that C*°(R, E) does not depend on the locally convex topology of E, but
only on its associated bornology (system of bounded sets).

FE is said to be a convenient vector space if one of the following equivalent
conditions is satisfied (called ¢*°-completeness):

1. For any ¢ € C*(R, E) the (Riemann-) integral fol c(t)dt exists in E.

2. A curve ¢: R — E is smooth if and only if A o ¢ is smooth for all A € F’,
where E’ is the dual consisting of all continuous linear functionals on E.

3. Any Mackey-Cauchy-sequence (i. e. tpm (2y — ) — 0 for some ¢, — 00
in R) converges in E. This is visibly a weak completeness requirement.

The final topology with respect to all smooth curves is called the ¢*°-topology
on FE, which then is denoted by ¢*F. For Fréchet spaces it coincides with
the given locally convex topology, but on the space D of test functions with
compact support on R it is strictly finer.
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A.2. Smooth mappings

Let E and F be locally convex vector spaces, and let U C E be c*°-open.
A mapping f : U — F is called smooth or C®, if foc € C®(R,F) for all
c € C®(R,U). The main properties of smooth calculus are the following.

1. For mappings on Fréchet spaces this notion of smoothness coincides with
all other reasonable definitions. Even on R? this is non-trivial.

2. Multilinear mappings are smooth if and only if they are bounded.

3. If f: E DU — F is smooth then the deriwative df : U x E — F' is smooth,

and also df : U — L(E, F) is smooth where L(E, F') denotes the space of

all bounded linear mappings with the topology of uniform convergence on

bounded subsets.

The chain rule holds.

The space C> (U, F) is again a convenient vector space where the structure

s given by the obvious injection

il

C*U,F)— [ C*®RF) - 11 C>(R,R).
ceC>(R,U) ceC>(R,U),\eF’

6. The exponential law holds:
C®(U,C®(V,G)) 2 C®(U x V,G)

1s a linear diffeomeorphism of convenient vector spaces. Note that this is
the main assumption of variational calculus.

7. A linear mapping f : E — C*°(V,G) is smooth (bounded) if and only if
E L5 ¢°(V,G) = G is smooth for each v € V. This is called the
smooth uniform boundedness theorem and it is quite applicable.

A.3. Theorem. [20], 4.1.19..

Let ¢ : R — FE be a curve in a convenient vector space E. Let V C E’ be a
subset of bounded linear functionals such that the bornology of E has a basis
of o(E,V)-closed sets. Then the following are equivalent:

1. ¢ is smooth
2. There exist locally bounded curves ¢ : R — E such that £ o ¢ is smooth
R — R with (£ oc)®) = ok,

If E is reflexive, then for any point separating subset V C E’ the bornology
of E has a basis of o(E,V)-closed subsets, by [20], 4.1.23.
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A.J. Counterexamples in infinite dimensions against
common beliefs on ordinary differential equations

Let E := s be the Fréchet space of rapidly decreasing sequences; note
that by the theory of Fourier series we have s = C°(S!,R). Consider
the continuous linear operator T : E — FE given by T(xg,x1,%2,...) :=
(0,1%221,2%29,3%23,...). The ordinary linear differential equation a’(t) =
T'(z(t)) with constant coefficients has no solution in s for certain initial val-
ues. By recursion one sees that the general solution should be given by

tnfi

wlt) = 30 () w0 —p
i=0

K2

If the initial value is a finite sequence, say x,,(0) = 0 for n > N and zx(0) # 0,
then

o 2 i
Zn(t) :Z(Z‘) z;(0) (n—)!
1=0
n!)? N | )
~ G Y () g
’ =0
(n‘)Q n—N 1 2 _N_l 1 2 ) (n—N)!' |, | N—i
[zn(t)] 2 o) It] en (0)] (51)" = D () = (0) | o= [t
=0

where the first factor does not lie in the space s of rapidly decreasing se-
quences and where the second factor is larger than ¢ > 0 for ¢ small enough.
So at least for a dense set of initial values this differential equation has no
local solution.

This shows also, that the theorem of Frobenius is wrong, in the following
sense: The vector field z — T'(z) generates a 1-dimensional subbundle E of
the tangent bundle on the open subset s\ {0}. It is involutive since it is
1-dimensional. But through points representing finite sequences there exist
no local integral submanifolds (M with TM = E|M). Namely, if ¢ were a
smooth nonconstant curve with ¢(¢t) = f(¢).T(c(t)) for some smooth function
f, then z(¢t) := c¢(h(t)) would satisfy z'(t) = T'(x(t)), where h is a solution of
W (t) = 1/ (h(1)).

As next example consider F := RN and the continuous linear operator 7T :
E — FE given by T(zg, 21,...) := (1,2, ...). The corresponding differential
equation has solutions for every initial value x(0), since the coordinates must
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satisfy the recusive relations 41 (t) = «}.(t) and hence any smooth functions
o : R — R gives rise to a solution z(t) := (a:gk) (t))r with initial value
z(0) = (xék) (0))k. So by Borel’s theorem there exist solutions to this equation
for any initial value and the difference of any two functions with same initial
value is an arbitray infinite flat function. Thus the solutions are far from being
unique. Note that RY is a topological direct summand in C*(R, R) via the
projection f + (f(n))n,, and hence the same situation occurs in C*° (R, R).

Let now E := C*°(R,R) and consider the continuous linear operator T :
E — FE given by T(x) := 2’. Let z : R - C*°(R,R) be a solution of the
equation z’(t) = T(x(t)). In terms of & : R?> — R this says %i‘(t,s) =
%:ﬁ(t, s). Hence r — &(t — 7, s + r) has vanishing derivative everywhere and
so this function is constant, and in particular z(t)(s) = &(¢,s) = £(0,s+1t) =
x(0)(s + t). Thus we have a smooth solution z uniquely determined by the
initial value z(0) € C*°(R,R) which even describes a flow for the vector
field T in the sense of (A.6) below. In general this solution is however not
real-analytic, since for any x(0) € C*°(R,R), which is not real-analytic in a
neighborhood of a point s the composite evs oz = z(s+ ) is not real-analytic
around 0.

A.5. Manifolds and vector fields

In the sequel we shall use smooth manifolds M modelled on ¢>°-open subsets
of convenient vector spaces. Since we shall need it we also include some results
on vector fields and their flows.

Consider vector fields X; € C°(TM) and Y; € I'(T'N) fori = 1,2, and
a smooth mapping f : M — N. If X; and Y; are f-related fori = 1,2, i. e.
TfoX,=Y;o0f, then also [X1,X2] and [Y1,Ya] are f-related.

In particular if f : M — N is a local diffeomorphism (so (T} f)~! makes
sense for each © € M), then for Y € I'(T'N) a vector field f*Y € I'(TM) is
defined by (f*Y)(z) = (T.f)~1.Y(f(x)). The linear mapping f* : I'(TN) —
I'(TM) is then a Lie algebra homomorphism.

A.6. The flow of a vector field

Let X € I'(TM) be a vector field. A local flow F1* for X is a smooth mapping
FI* : M xR D U — M defined on a ¢>®-open neighborhood U of M x 0 such
that

1. LFX(z) = X(FI\ ().

2. FI (z) =z for all z € M.
3. UN ({z} x R) is a connected open interval.
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4. FI}, = FI* oF1 holds in the following sense. If the right hand side exists

then also the left hand side exists and we have equality. Moreover: If Flf
exists, then the existence of both sides is equivalent and they are equal.

Let X € I'(TM) be a vector field which admits a local flow Flix. Then for
each integral curve ¢ of X we have c(t) = FIX (¢(0)), thus there exists a unique
mazimal flow. Furthermore, X is FL\ -related to itself, i. e. T(FIX) o X =
X oFL*.

Let X e I'(TM) and Y € I'(TN) be f-related vector fields for a smooth
mapping f : M — N which have local flows F1* and F1¥. Then we have
fo FltX = Flzf of, whenever both sides are defined.

Moreover, if f is a diffeomorphism we have Flf*y =f"lo Flf of in the
following sense: If one side exists then also the other side exists, and they are
equal.

For f = Idj; this implies that if there exists a flow then there exists a
unique maximal flow FL*.

A.7. The Lie derivative

There are situations where we do not know that the flow of X exists but
where we will be able to produce the following assumption: Suppose that
¢ :Rx M DU — M is a smooth mapping such that (¢,z) — (¢, ¢(t,2) =
vi(z)) is a diffeomorphism U — V', where U and V are open neighborhoods
of {0} x M in R x M, and such that ¢y = Idy, and O,y = X € I'(TM).
Then again O;fo(p¢)" f = Otlof o pr = df o X = X(f).

In this situation we have for Y € I'(TM), and for a k-form w € Q2%(M):

Olo(pe)"Y = [X,Y],
8t|0(g0t)*w = EXW.

Appendix B. Regular infinite dimensional Lie groups

B.1. Lie groups

A Lie group G is a smooth manifold modelled on ¢*°-open subsets of a conve-
nient vector space, and a group such that the multiplication y: G x G — G
and the inversion v : G — G are smooth. We shall use the following notation:
u: G x G — G, multiplication, u(x,y) = z.y.

to : G — G, left translation, uq(z) = a.z.
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u . G — G, right translation, pu*(z) = z.a.
v:G — G, inversion, v(z) = 271
e € (G, the unit element.
The tangent mapping Tiqpyp - ToG X TyG — TG is given by

T(aﬁb)u'(Xav Yb) = Ta(:ub)'Xa + Tb(ua)'Yb

and Tpv : T,G — T,-1G is given by

1 -1

Tov = *Te(,ua_ )-Ta(,uafl) = 7T€(/u’a*1)'Ta(lu‘a )

B.2. Invariant vector fields and Lie algebras

Let G be a (real) Lie group. A vector field & on G is called left invariant,
if pre¢ = € for all @ € G, where p*¢ = T(pg-1) © £ © pe. Since we have
pilE,ml = [ui&, pinl, the space X1 (G) of all left invariant vector fields on
G is closed under the Lie bracket, so it is a sub Lie algebra of X¥(G). Any
left invariant vector field ¢ is uniquely determined by &(e) € T.G, since
&(a) = Te(pq)-£(€). Thus the Lie algebra X1 (G) of left invariant vector fields
is linearly isomorphic to T.G, and on T.G the Lie bracket on X, (G) induces
a Lie algebra structure, whose bracket is again denoted by [ , |. This Lie
algebra will be denoted as usual by g, sometimes by Lie(G).

We will also give a name to the isomorphism with the space of left invariant
vector fields: L : g — X1(G), X — Lx, where Lx(a) = Teptq-X. Thus
[X,Y] = [Lx, Ly](e).

Similarly a vector field n on G is called right invariant, if (u®)*n = n for
all a € G. If € is left invariant, then v*¢ is right invariant. The right invariant
vector fields form a sub Lie algebra Xg(G) of X(G), which is again linearly
isomorphic to T, G and induces the negative of the Lie algebra structure on
T.G. We will denote by R : g = T.G — Xr(G) the isomorphism discussed,
which is given by Rx(a) = Te(u®).X.

If Lx is a left invariant vector field and Ry is a right invariant vector
field, then [Lx, Ry] = 0. So if the flows of Lx and Ry exist, they commute.

Let ¢ : G — H be a smooth homomorphism of Lie groups. Then ¢’ :=
Tep:9=T.G — bh=T.H is a Lie algebra homomorphism.
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B.3. One parameter subgroups

Let G be a Lie group with Lie algebra g. A one parameter subgroup of G is
a Lie group homomorphism « : (R, +) — G, i.e. a smooth curve «a in G with
a(s+t) = a(s).a(t), and hence a(0) = e.

Note that a smooth mapping 5 : (—¢,e) — G satistying B(¢)8(s) = B(t+s)
for |¢], |s|, |t + s| < e is the restriction of a one parameter subgroup. Namely,
choose 0 < tg < £/2. Any t € R can be uniquely written as ¢t = N.ty + t’ for
0<t <tygand N € Z. Put a(t) = B(to)YB(t'). The required properties are
easy to check.

Let a : R — G be a smooth curve with a(0) = e. Let X € g. Then the
following assertions are equivalent.

1. « is a one parameter subgroup with X = Opa(t).

2. a(t) is an integral curve of the left invariant vector field Lx, and also an
integral curve of the right invariant vector field Rx .

3. FIEX(t,2) = z.a(t) (or FIEX = 12®)) is the (unique by (A.6)) global flow
of Lx in the sense of (A.6).

4. FIX (¢ 2) == a(t).z (or FI'* = La(t)) s the (unique) global flow of Rx .

Moreover, each of these properties determines a uniquely.

B.4. Exponential mapping

Let G be a Lie group with Lie algebra g. We say that G admits an exponential
mapping if there exists a smooth mapping exp : g — G such that ¢ — exp(tX)
is the (unique by (B.3)) l-parameter subgroup with tangent vector X at 0.
Then we have by (B.3)

1. FI* (t,2) = z. exp(tX).

2. FI%X(t,2) = exp(tX).z.

3. exp(0) = e and Tpexp = Id : Tog = g — T.G = g since Tpexp.X =
Ailoexp(0 4 t.X) = 8o FI¥X (t,e) = X.

4. Let ¢ : G — H be a smooth homomorphism between Lie groups admitting
exponential mappings. Then the diagram

Lp/
_—

g y
expci iepo

G—2-H

commutes, since t — ¢(exp®(tX)) is a one parameter subgroup of H and
Belop(exp® tX) = ¢/ (X), so p(exp? tX) = exp” (to'(X)).
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We shall strengthen this notion in (B.9) below and call it a ‘regular Fréchet
Lie groups’.

If G admits an exponential mapping, it follows from (B.4).(3) that exp
is a diffeomorphism from a neighborhood of 0 in g onto a neighborhood of
e in G, if a suitable inverse function theorem is applicable. This is true for
example for smooth Banach Lie groups, also for gauge groups, but it is wrong
for diffeomorphism groups.

If E' is a Banach space, then in the Banach Lie group GL(FE) of all bounded
linear automorphisms of E the exponential mapping is given by the von
Neumann series exp(X) = Y7 £ X"

If G is connected with exponential mapping and U C g is open with 0 € U,
then one may ask whether the group generated by exp(U) equals G. Note
that this is a normal subgroup. So if G is simple, the answer is yes. This is
true for connected components of diffeomorphism groups and many of their
important subgroups.

B.5. The adjoint representation

Let G be a Lie group with Lie algebra g. For a € G we define conj, : G = G
by conj,(z) = aza=!. It is called the conjugation or the inner automorphism
by a € G. This defines a smooth action of G on itself by automorphisms.
The adjoint representation Ad : G — GL(g) C L(g, g) is given by Ad(a) =
(conj,) = Te(conj,) : g — g for a € G. By (B.2) Ad(a) is a Lie algebra

1

homomorphism. By (B.1) we have Ad(a) = T.(conj,) = To(pu® ).Te(pa) =

Ta—l(ﬂa)oTe(ﬂa 1)'

Finally we define the (lower case) adjoint representation of the Lie algebra
g,ad: g — gl(g) := L(g,9), by ad := Ad' = T, Ad.

We shall also use the right Maurer-Cartan form k" € 2Y(G,g), given
by ky = Tg(ugil) : T,G — g; similarly the left Maurer-Cartan form k' €
21(G, g) is given by /{lg =Ty(pg-1) : TyG — g.

1. Lx(a) = Raqa)x(a) for X € g anda € G.
2. ad(X)Y = [X,Y] for X,Y € g.
3. dAd = (adok"). Ad = Ad .(adok!) : TG — L(g, g).

B.6. Right actions

Let r : M x G — M be a right action, so 7 : G — Diff (M) is a group
anti-homomorphism. We will use the following notation: r* : M — M and
ry : G = M, given by r,(a) = r*(x) = r(z,a) = z.a.
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For any X € g we define the fundamental vector field (x = (¥ € X(M)
by (x(z) = Te(ry). X = T(z,e)r-(omv X).
In this situation the following assertions hold:

1. ¢ :g— X(M) is a Lie algebra homomorphism.

To(r*)-Cx (#) = Cad(a—1)x (z.0).
3. Opr X Lx € X(M x G) is r-related to (x € X(M).

B.7. The right and left logarithmic derivatives

Let M be a manifold and let f : M — G be a smooth mapping into a Lie
group G with Lie algebra g. We define the mapping 6" f : TM — g by the
formula

8" F(E) 1= Ty(wy (! )T f.£, for &, € Ty M.
Then 6" f is a g-valued 1-form on M, 6" f € 2Y(M;g). We call 6" f the right
logarithmic derivative of f, since for f : R — (R*,.) we have 0" f(z).1 =
P& — (logof)' ().

Similarly the left logarithmic derivative 8'f € §21(M,g) of a smooth map-
ping f: M — G is given by

5lf£m = Tf(x) (/Lf(a:)_l)Tffgm
Let f,g: M — G be smooth. Then the Leibniz rule holds:
6"(f.9)(x) = 6" f(x) + Ad(f(x)).0"g(x).

Moreover, the differential form 6"f € Q21(M;g) satifies the ‘left Maurer-
Cartan equation’ (left because it stems from the left action of G on itself)

ds” f(&m) — [0 Tf(f) " f(m)* =0,
or do"f — [5Tf,57“f] =0,

where £,m € T, M, and where for ¢ € 2P(M;g),v € 29(M;g) one puts

[(paw]?\(gla-'wg}ﬂrq = ' 'ZSIgH 60'17-'-)aw<£0’(p+1)7"')]g'

For the left logarithmic derivative the corresponding Leibniz rule is uglier,
and it satisfies the ‘right Maurer Cartan equation’:

8'(fg)(x) = d'g ( ) + Ad(g(z)~1)8' f (@),
o' f + [5lf761f]
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For ‘regular Lie groups’ a converse to this statement holds, see [30], 40.2.
The proof of this result in infinite dimensions uses principal bundle geometry
for the trivial principal bundle pry : M x G — M with right principal action.
Then the submanifolds {(z, f(x).g) : * € M} for g € G form a foliation of
M x G whose tangent distribution is complementary to the vertical bundle
M x TG C T(M x G) and is invariant under the principal right G-action.
So it is the horizontal distribution of a principal connection on M x G — G.
Thus this principal connection has vanishing curvature which translates into
the result for the right logarithmic derivative.

B.8

Let G be a Lie group with Lie algebra g. For a closed interval I C R and for
X € C*°(1,g) we consider the ordinary differential equation

o) =< m
dg(t) =T.(u9D)X(t) = Rx()(g(t)), or k" (dg(t)) = X(¢),

for local smooth curves g in G, where tg € I.

(2) Local solution curves g of the differential equation (1) are unique.

(8) If for fixzed X the differential equation (1) has a local solution near each
tg € I, then it has also a global solution g € C(1,QG).

(4) If for all X € C*°(I,g) the differential equation (1) has a local solution
near one fived to € I, then it has also a global solution g € C*(I, Q) for
each X. Moreover, if the local solutions near ty depend smoothly on the
vector fields X then so does the global solution.

(5) The curvet — g(t)~! is the unique local smooth curve h in G which satifies

{h(to) _p
Oh(t) = Te(pnw)) (=X () = Lox@y(h(t)),  or &' (8:h(t)) = =X (2).

B.9. Regular Lie groups

If for each X € C*°(RR, g) there exists g € C*(R, G) satisfying

g(0) =,
Og(t) = To(n? )X (t) = Rx (1) (9(t)), (1)
or K"(9ig(t)) = 0"g(0) = X (1),
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then we write

evolg (X) = evolg(X) := g(1),
Evolg;(X)(t) := evolg(s — tX (ts)) = g(t),

and call it the right evolution of the curve X in G. By lemma (B.8) the
solution of the differential equation (1) is unique, and for global existence it
is sufficient that it has a local solution. Then

Evolg : C*(R,g) — {g € C°(R,G) : g(0) = e}

is bijective with inverse the right logarithmic derivative §".

The Lie group G is called a regular Lie group if evol” : C*®(R,g) — G
exists and is smooth.

We also write

evol,,(X) = evolg(X) := h(1),
Evoll, (X)(t) := evol, (s — tX (ts)) = h(t),

if h is the (unique) solution of

h(0) = e
Oh () Te(pune )( (t)):LX(t)(h(tDv (2)
K (Oeh(t)) = 6'h(Dy) = X (t).

Clearly evol' : C®(R,g) — G exists and is also smooth if evol” does, since
we have evol' (X) = evol”(—X)~! by lemma (B.8).

Let us collect some easily seen properties of the evolution mappings. If
f € C*(R,R), then we have

Evol"(X)(f(t)) = Evol"(f".(X o f))(t). Evol"(X)(£(0)),
Evol' (X)(f(t)) = Evol (X)(£(0)). Evol' (f'.(X o f))(t).

If ¢ : G — H is a smooth homomorphism between regular Lie groups then
the diagram

C(R,g) —7> C=(R, )

evolg i ievolH

G—*% s H
commutes, since dyp(g(t)) = Tp. T (9M). X (t) = T(uf )" X (t).
Note that each regular Lie group admits an exponential mapping, namely
the restriction of evol” to the constant curves R — g. A Lie group is regular
if and only if its universal covering group is regular.
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Up to now the following statement holds:
All known Lie groups are regular.

Any Banach Lie group is regular since we may consider the time dependent
right invariant vector field Ry ) on G and its integral curve g(t) starting
at e, which exists and depends smoothly on (a further parameter in) X. In
particular finite dimensional Lie groups are regular.

For diffeomorphism groups the evolution operator is just integration of
time dependent vector fields with compact support.

B.10. Extensions of Lie groups

Let H and K be Lie groups. A Lie group G is called a smooth extension of
H with kernel K if we have a short exact sequence of groups

{e} = K - G 25 H — {e}, (1)

such that 7 and p are smooth and one of the following two equivalent condi-
tions is satisfied:

2 p admits a local smooth section s near e (equivalently near any point),
and ¢ is initial (i. e. any f into K is smooth if and only if 4o f is smooth).

1. 4 admits a local smooth retraction r near e (equivalently near any point),
and p is final (i. e. f from H is smooth if and only if f o p is smooth).

Of course by s(p(z))i(r(z)) = x the two conditions are equivalent, and then G
is locally diffeomorphic to K x H via (r,p) with local inverse (iopr;).(sopr,).

Not every smooth exact sequence of Lie groups admits local sections as
required in (2). Let for example K be a closed linear subspace in a convenient
vector space G which is not a direct summand, and let H be G/K. Then the
tangent mapping at 0 of a local smooth splitting would make K a direct
summand.

Let {e} - K -~ G 2+ H — {e} be a smooth extension of Lie groups.
Then G is reqular if and only if both K and H are regular.

B.11. Subgroups of regular Lie groups

Let G and K be Lie groups, let G be regular and let ¢ : K — G be a smooth
homomorphism which is initial (see (B.10)) with T,i = i’ : € — g injective.
We suspect that K is then regular, but we know a proof for this only under
the following assumption. There is an open neighborhood U C G of e and
a smooth mapping p : U — E into a convenient vector space E such that
p~1(0) = KNU and p constant on left cosets KgNU.
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