COHOMOLOGY FOR A GROUP OF DIFFEOMORPHISMS OF A MANIFOLD PRESERVING AN EXACT FORM.

MARK LOSIK, PETER W. MICHOR

ABSTRACT. Let M be a G-manifold and ω a G-invariant exact m-form on M. We indicate when these data allow us to constract a cocycle on a group G with values in the trivial G-module \mathbb{R} and when this cocycle is nontrivial.

1. INTRODUCTION

Let M be a manifold, let G be a group of diffeomorphisms of M, and let ω be a G-invariant exact m-form on M. In this paper we apply the construction of [5] to get from these data a cocycle on the group G with values in the trivial G-module \mathbb{R} . We prove that this cocycle may be chosen differentiable (continuous) whenever G is a subgroup of a Lie group (a topological group). Moreover, we prove that for a manifold $\mathbb{R}^n \times M$ with an exact form ω which is either of type $\omega_0 + \omega_M$ or of type $\omega_0 \wedge \omega_M$, where ω_0 is a nonzero form on \mathbb{R}^n with constant coefficients and ω_M is a form on M, and the group $\text{Diff}(\mathbb{R}^n \times M, \omega)$ of diffeomorphisms of $\mathbb{R}^n \times M$ preserving the form ω the corresponding cocycle is nontrivial.

2. A construction of cohomology classes for a group of Diffeomorphisms

Let G be a group and let A be a right G-module. Let $C^p(G, A)$ be the set of maps from G^p to A for p > 0 and let $C^0(G, A) = A$. Define the differential $D: C^p(G, A) \to C^{p+1}(G, A)$ as follows, for $f \in C^p(G, A)$ and $g_1, \ldots, g_{p+1} \in G$:

(1)
$$(Df)(g_1, \dots, g_{p+1}) = f(g_2, \dots, g_{p+1})$$

+ $\sum_{i=1}^p (-1)^i f(g_1, \dots, g_i g_{i+1}, \dots, g_{p+1}) + (-1)^{p+1} f(g_1, \dots, g_p) g_{p+1}.$

Then $C^*(G, A) = (C^p(G, A), D)_{p\geq 0}$ is the standard complex of nonhomogeneous cochains of the group G with values in the right G-module A and its cohomology $H^*(G, A) = (H^p(G, A)_{p>0})$ is the cohomology of the group G with values in A.

Date: July 25, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 58D05, 20J06, 22E65.

Key words and phrases. group cohomology.

Supported by FWF Projekt P 17108-N04.

¹

Let M be a smooth n-dimensional G-manifold, where G is a group of diffeomorphisms of M. Denote by $\Omega(M) = (\Omega^p(M))_{p=1,...,n}$ the de Rham complex of differential forms on M and consider the natural (right) action of the group G on $\Omega(M)$ by pull backs. Denote by $\Omega(M)^G$ the subcomplex of $\Omega(M)$ consisting of G-invariant forms. Next we denote by $H_q(M)$ the q-dimensional real homology of M and by $H^q(M)$ the q-dimensional real cohomology of M.

Let $C^*(G, \Omega(M)) = \{C^p(G, \Omega^q(M)), \delta')\}_{p,q \ge 0}$ be the standard complex of nonhomogeneous cochains of G with values in the G-module $\Omega(M)$. We define the second differential $\delta'' : C^p(G, \Omega^q(M)) \to C^p(G, \Omega^{q+1}(M))$ by

$$(\delta''c)(g_1,\ldots,g_p) = (-1)^p dc(g_1,\ldots,g_p),$$

where $f \in C^p(G, \Omega^q(M))$, $g_1, \ldots, g_p \in G$, and where d is exterior derivative. Since $\delta' \delta'' + \delta'' \delta' = 0$, we have on $C^*(G, \Omega(M))$ the structure of double complex. Denote by $C^{**}(G, \Omega(M))$ the cochain complex $C^*(G, \Omega(M))$ with respect to the total differential $\delta = \delta' + \delta''$. We denote by $H(G, M, \Omega(M))$ the cohomology of the complex $C^{**}(G, \Omega(M))$.

It is easily checked that the inclusion $\Omega(M)^G \subset C^0(G, \Omega(M))$ induces an injective homomorphism of complexes $\Omega(M)^G \to C^{**}(G, \Omega(M))$ and thus also a homomorphism $H(\Omega(M)^G) \to H(G, M, \Omega(M))$ of cohomologies. We identify $\omega \in \Omega(M)^G$ with its image by the inclusion $\Omega(M)^G \subset C^{**}(G, \Omega(M))$ and denote by $h(\omega)$ the cohomology class of ω in the complex $C^{**}(G, \Omega(M))$ whenever the form ω is closed.

We shall use some standard facts on spectral sequences (see, for example, [1]). Consider the first filtration

$$F_{1,p}(G, M, \Omega(M)) := \bigoplus_{q > p} C^q(G, \Omega(M))$$

of the double complex $C^*(G, \Omega(M))$. By definition, $F_{1,p}(G, M, \Omega(M))$ is a subcomplex of the complex $C^{**}(G, \Omega(M))$ and $F_{1,0}(G, M, \Omega(M)) = C^{**}(G, \Omega(M))$. Denote by $E_{1,r} = (E_{1,r}^{p,q}, d_{1,r}^{pq})_{p,q\geq 0}$ for $r = 0, 1, \ldots, \infty$ the corresponding spectral sequence. Denote by h_p the homomorphism of cohomologies $H(F_{1,p}(G, M, \Omega(M)) \rightarrow H(G, M, \Omega(M)))$ induced by the inclusion $F_{1,p}(G, M, \Omega(M)) \subset C^{**}(G, \Omega(M))$. Then $(\operatorname{Im} h_p)_{p\geq 0}$ is a filtration of the cohomology $H(G, M, \Omega(M))$ and

$$E_{1,\infty}^{p,q} = h_p(H^{p+q}(F_{1,p}(G, M, \Omega(M))))/h_{p+1}(H^{p+q}(F_{1,p+1}(G, M, \Omega(M)))).$$

For this spectral sequence we have $E_{1,2}^{p,q} = H^p(G, H^q(M))$, where an action of the group G on $H^q(M)$ is induced by its action on $\Omega(M)$. Moreover, there is a natural homomorphism $H^p(G, H^0(M)) = E_{1,2}^{p,0} \to E_{\infty}^{p,0}$.

Proposition 2.1. Let $\omega \in \Omega(M)^G$ be an exact m-form and let p be the maximal integer such that $h(\omega) \in h_{p+1}(H^m(F_{1,p+1}(G, M, \Omega(M))))$. Then the image of $h(\omega)$ under the natural homomorphism $\operatorname{Im} h_{p+1} \to \operatorname{Im} h_{p+1}/\operatorname{Im} h_{p+2}$ belongs to $E_{1,m-p+1}^{p+1,m-p-1}$. In particular, if m = p+1 and the manifold M is connected, the above image of $h(\omega)$ is an m-dimensional cohomology class of the group G with values in the trivial G-module \mathbb{R} .

 $\mathbf{2}$

Proof. By assumption the image of $h(\omega)$ under the homomorphism

$$\operatorname{Im} h_{p+1} \to \operatorname{Im} h_{p+1} / \operatorname{Im} h_{p+2}$$

belongs to $E_{1,\infty}^{p+1,m-p-1}$. Since $d_{1,r}^{p,q}: E_{1,r}^{p,q} \to E_{1,r}^{p+r,q-r+1}$ vanishes whenever r > q+1, we have $E_{1,\infty}^{p+1,m-p-1} = E_{1,m-p+1}^{p+1,m-p-1}$. If m = p+1 and the manifold M is connected we have $E_{1,\infty}^{p+1,m-p-1} = E_2^{m,0} = H^m(G, H^0(M)) = H^m(G, \mathbb{R})$.

Theorem 2.2. Let ω be a *G*-invariant exact *m*-form on *M* and let $H^{m-p}(M) =$ $\dots = H^{m-1}(M) = 0$ and $H^{m-p-1}(M) \neq 0$ for some $1 \leq p \leq m-1$. Then $h(\omega) \in \text{Im} h_{p+1}$ and $h(\omega)$ defines a unique (p+1)-dimensional cohomology class $c(\omega)$ of the group G with values in the natural G-module $H^{m-p-1}(M)$.

Proof. By assumption there is a form $\varphi_{0,m-1} \in C^0(G,\Omega^{m-1}(M))$ such that $\omega =$

 $-d\varphi_{0,m-1} = -\delta''\varphi_{0,m-1}.$ Then we have $\omega + \delta\varphi_{0,m-1} = \delta'\varphi_{0,m-1}.$ Since $H^{m-1}(M) = 0$ and $\delta''\delta'\varphi_{0,m-1} = -\delta'\delta''\varphi_{0,m-1} = \delta'\omega = 0$, there is a cochain $\varphi_{1,m-2} \in C^1(G, \Omega^{m-2}(M))$ such that $\delta'\varphi_{0,m-1} = -\delta''\varphi_{1,m-2}.$ Thus we have $\omega + \delta(\varphi_{0,m-1} + \varphi_{1,m-2}) = \delta' \varphi_{1,m-2}$. Using the conditions $H^{m-2}(M) = \cdots = H^{m-p}(M) = 0$ and proceeding in the

same way we get for i = 1, ..., p the cochains $\varphi_{i,m-i-1} \in C^i(G, \Omega^{m-i-1}(M))$ such that

(2)
$$\delta' \varphi_{i-1,m-i} + \delta'' \varphi_{i,m-i-1} = 0$$

and so

$$\omega + \delta(\varphi_{0,m-1} + \dots + \varphi_{p,m-p-1}) = \delta'\varphi_{p,m-p-1} \in C^{p+1}(G, \Omega^{m-p-1}(M)).$$

Moreover, we have

$$d\delta'\varphi_{p,m-p-1} = -\delta''\delta'\varphi_{p,m-p-1} = \delta''\delta''\varphi_{p-1,m-p} = 0.$$

Consider $H^{m-p-1}(M)$ as a G-module with respect to the natural action of G on $H^{m-p-1}(M)$. Then the cochain $\delta' \varphi_{p,m-p-1}$ defines a cocycle on G of degree p+1 with values in the G-module $H^{m-p-1}(M)$. We claim that the cohomology class of this cocycle depends only on the cohomology class of ω in the complex $\Omega(M)^G$.

If we replace the form ω by a form $\omega + d\omega_1$, where $\omega_1 \in \Omega^{m-1}(M) \cap \Omega(M)^G$, one can replace the sequence $\varphi_{0,m-1},\ldots,\varphi_{p,m-p-1}$ by the sequence $\varphi_{0,m-1}$ – $\omega_1, \varphi_{1,m-2}, \ldots, \varphi_{p,m-p-1}$ and obtain the same cochain $\varphi_{p,m-p-1}$ at the end.

Consider another sequence $\bar{\varphi}_{0,m-1}, \ldots, \bar{\varphi}_{p,m-p-1}$ $(i = 0, \ldots, p)$ such that $\omega =$ $-d\bar{\varphi}_{0,m-1}$ and $\delta'\bar{\varphi}_{i-1,m-i} + \delta''\bar{\varphi}_{i,m-i-1} = 0$ for $i = 1, \dots, p$. Since $H^{m-1}(M) = 0$ we have

$$\bar{\varphi}_{0,m-1} = \varphi_{0,m-1} + \delta'' \psi_{0,m-2},$$

where $\psi_{0,m-2} \in C^0(G, \Omega^{m-2}(M))$. If p = 1 we have $\delta' \bar{\varphi}_{0,m-1} = \delta' \varphi_{0,m-1} - \delta' \varphi_{0,m-1}$ $\delta''\delta'\psi_{0,m-2}$ and we are done. If p>1 we have

$$\delta'\bar{\varphi}_{0,m-1} = \delta'\varphi_{0,m-1} - \delta''\delta'\psi_{0,m-2} = -\delta''(\varphi_{1,m-2} + \delta'\psi_{0,m-2}) = -\delta''\bar{\varphi}_{1,m-2}$$

Since $H^{m-2}(M) = 0$ there is a cochain $\psi_{1,m-3} \in C^1(G, \Omega^{m-3}(M))$ such that $\bar{\varphi}_{1,m-2} = \varphi_{1,p-2} + \delta' \psi_{0,m-2} + \delta'' \psi_{1,m-3}$. For $i = 2, \ldots, p-1$ proceeding in the same way we get the cochains $\psi_{i,m-i-2} \in C^i(G, \Omega^{m-i-2}(M))$ such that

$$\bar{\varphi}_{i,m-i-1} = \varphi_{i,m-i-1} + \delta' \psi_{i-1,m-i-1} + \delta'' \psi_{i,m-i-2}.$$

In particular, we have

$$\bar{\varphi}_{p,m-p-1} = \varphi_{p,m-p-1} + \delta' \psi_{p-1,m-p-1} + \delta'' \psi_{p,m-p-2}$$

and $\delta' \bar{\varphi}_{p,m-p-1} = \delta' \varphi_{p,m-p-1} - \delta'' \psi_{p,m-p-2}$. Thus the cochains $\delta' \bar{\varphi}_{p,m-p-1}$ and $\delta' \varphi_{p,m-p-1}$ define the same cohomology class of $H^{p+1}(G, H^{m-p-1}(M))$. \Box

Suppose that the conditions of theorem 2.2 are satisfied for an exact *m*-form $\omega \in \Omega(M)^G$. Let α be a singular smooth cycle of M of dimension m - p - 1 whose homology class a is invariant under the natural action of the group G on $H_{m-p-1}(M)$. Put

(3)
$$c_a(\omega)(g_1,\ldots,g_{p+1}) = \int_{\alpha} (\delta'\varphi_{p,m-p-1})(g_1,\ldots,g_{p+1}).$$

By definition, $c_a(\omega)$ is a (p+1)-cocycle on the group G with values in the trivial G-module \mathbb{R} which is independent of a choice of the cycle α in the homology class a.

Let p = 0. Evidently, the cocycle $c_a(\omega)$ is nontrivial if and only if it does not vanish. From now on we assume p > 0.

Remark 2.3. Let the assumptions of theorem 2.2 be satisfied for an exact *m*-form $\omega \in \Omega(M)^G$. If either the manifold is connected and m = p+1, or *G* is a connected topological group, the action of *G* on the $H_{m-p-1}(M)$ is trivial. If the homology class *a* of the cycle α is not invariant under the action of *G*, consider the vector subspace H_a of $H_{m-p-1}(M)$ generated by the orbit of *a*. Then (3) defines a (p+1)-cocycle on the group *G* with values in the *G*-module H_a .

Consider the partial case when M = G is a connected Lie group and the group G acts on M by left translations. It is clear that the complex $\Omega(G)^G$ is isomorphic to the complex $C^*(\mathfrak{g}, \mathbb{R})$ of standard cochains of the Lie algebra \mathfrak{g} of the group G with values in the trivial \mathfrak{g} -module \mathbb{R} . Consider the second filtration

$$F_{2,p}C^{**}(G,G,\Omega(G)) := \bigoplus_{q \ge p} C^*(G,\Omega^q(G))$$

of the double complex $C^{**}(G, \Omega(G))$ and the corresponding spectral sequence $E_{2,r} = (E_{2,r}^{p,q}, d_r^{p,q})_{p,q\geq 0}$ for $r = 0, 1, \ldots, \infty$. It is easily seen that $E_{2,1}^{p,q} = H^p(G, \Omega^q(G))$.

Lemma 2.4. The inclusion $\Omega(M)^G \subset C^{**}(G, G, \Omega(G))$ induces an isomorphism of cohomologies.

Proof. We prove that for each $q \ge 0$ we have

 $H^p(G, \Omega^q(G)) = 0$ for p > 0 and $H^0(G, \Omega^q(G)) = \Omega^q(G)^G$.

First we consider the case when q = 0. We use the standard operator $B : C^p(G, \Omega^0(G)) \to C^{p-1}(G, \Omega^0(G))$ defined as follows. For p > 0, put

$$(Bc)(g_1,\ldots,g_{p-1})(g) = (-1)^p c(g_1,\ldots,g_{p-1},g)(e),$$

where $c \in C^p(G, \Omega^0(G))$, $g, g_1, \ldots, g_{p-1} \in G$, and e is the identity element of G. For $c \in C^0(G, \Omega^0(G))$, put Bc = 0. It is easy to check that B is a homotopy operator between the identity isomorphism of $C^*(G, \Omega^0(G))$ and the map of $C^*(G, \Omega^0(G))$ into itself which vanishes on $C^p(G, \Omega^0(G))$ for p > 0 and takes $c \in C^0(G, \Omega^0)$ to c(e). This proves our statement for p = 0.

To prove our statement for p > 0 we note that $\Omega^q(G) = \Omega^q(G)^G \otimes \Omega^0(G)$, where $\Omega^p(G)^G$ is the space of left invariant *q*-forms on *G*. Since *G* acts trivially on $\Omega^p(G)^G$, its action on $\Omega^q(G)$ is induced by its action on $\Omega^0(G)$. Then we have $H^p(G, \Omega^q(G)) = 0$ for p > 0 and $H^0(G, \Omega^q(G)) = \Omega^q(G)^G$.

The above statement implies that $E_{2,1}^{p,q} = 0$ when p > 0 and $E_{2,1}^{0,q} = \Omega^q(G)^G$. Then $E_{2,1} = \Omega(G)^G$ and evidently the differential $d_{2,1}^{0,q}$ equals the exterior derivative d on $\Omega(G)^G$ up to sign. Therefore we have $E_{2,2}^{p,q} = 0$ when p > 0 and $E_{2,2}^{0,q} = H^q(\Omega(G)^G)$. Thus implies that $E_{2,\infty}^{p,q} = E_{2,2}^{p,q}$ and therefore the inclusion $\Omega(G)^G \subset C^{**}(G,\Omega(G))$ induces an isomorphism of cohomologies.

Proposition 2.5. Let $\omega \in \Omega(G)^G$ be an exact m-form whose cohomology class in the complex $\Omega(G)^G$ is nontrivial and let

$$\varphi_{i,m-i-1} \in C^{i}(G, \Omega^{m-i-1}(G)) \quad (i = 0, \dots, m-1)$$

be a sequence of cochains such that $\delta(\omega + \varphi_{0,m-1} + \cdots + \varphi_{m-1,0}) = \delta'\varphi_{m-1,0}$. Then, for a point $x \in G$, a cocycle $\delta'\varphi_{m-1,0}(g)(x)$ of the complex $C^*(G, \mathbb{R})$ is nontrivial.

Proof. By lemma 2.4 the cohomology class of ω in the complex $C^{**}(G, \Omega(G))$ is nontrivial and then by assumption ω defines a nontrivial element of $E_{2,\infty}^{m,0}$. Since

$$H^m(G,\mathbb{R}) = E_{2,2}^{m,0} = E_{2,\infty}^{m,0},$$

the cocycle $\delta' \varphi_{m-1,0}(g)(x)$ of the complex $C^*(G,\mathbb{R})$ is nontrivial.

3. The map f_{γ} and its properties

Let G be a finite dimensional Lie group. For $X \in T_e(M)$ denote by X^r the right invariant vector field on G such that $X^r(e) = X$ and by \tilde{X} the fundamental vector field on M corresponding to X for the action of G on M. We denote the action by $\varphi : G \times M \to M$ and write $gx = \varphi(g, x) = \varphi^x(g) = \varphi_g(x)$. By definition, $T(\varphi^x)X^r(g) = \tilde{X}(gx)$ and for each $g \in G$ we have $\varphi^x \circ L_g = \varphi_g \circ \varphi^x$, where L_g is left translation on G.

Let γ be a singular smooth cycle of dimension q on M. Define a map f_{γ} : $\Omega(M) \to \Omega(G)$ as follows. Let $\omega \in \Omega(M)$. If deg $\omega < q$ put $f_{\gamma}(\omega) = 0$. If $\deg \omega = p + q$ with $p \geq 0$ put

(4)
$$f_{\gamma}(\omega)(X_1^r,\ldots,X_p^r)(g) = \int_{\gamma} \varphi_g^*\left(i(\tilde{X}_p)\ldots i(\tilde{X}_1)\omega\right) = \int_{g\gamma} i(\tilde{X}_p)\ldots i(\tilde{X}_1)\omega,$$

where $X_1, \ldots, X_p \in T_e(G)$ and $g \in G$. Clearly $\omega \to f_\gamma(\omega)$ is a linear map from $\Omega(M)$ to $\Omega(G)$ decreasing degrees to q.

Consider the action of the group G on itself by left translations.

Lemma 3.1. The map f_{γ} is G-equivariant.

Proof. It suffices to consider the case when deg $\omega \ge q$. Let $\omega \in \Omega^{p+q}(M)$, $X \in T_e(G)$, and $g, \tilde{g} \in G$. It is easy to check that

(5)
$$T(\mathcal{L}_{\tilde{g}}) \circ X^{r} = (\operatorname{ad} \tilde{g}(X))^{r} \circ L_{\tilde{g}} : G \to TG,$$

(6)
$$T(\varphi_{\tilde{g}}) \circ \tilde{X} = \operatorname{ad} \tilde{g}(X) \circ \varphi_{\tilde{g}} : M \to TM$$

From this we get

$$L_{\tilde{g}}^{*}f_{\gamma}(\omega))(X_{1}^{r},\ldots,X_{p}^{r})(g) = \int_{\tilde{g}g\gamma} i(T\varphi_{\tilde{g}}.\tilde{X}_{p})\ldots i(T\varphi_{\tilde{g}}.\tilde{X}_{1})\omega$$
$$= \int_{g(\gamma)}\varphi_{g}^{*}\left(i(T\varphi_{\tilde{g}}\tilde{X}_{p})\ldots i(T\varphi_{\tilde{g}}.\tilde{X}_{1}))\omega\right) = \int_{g\gamma}i(\tilde{X}_{p})\ldots i(\tilde{X}_{1})\varphi_{g}^{*}\omega = f_{\gamma}(\varphi_{g}^{*}\omega).$$

Lemma 3.2. $d_G \circ f_{\gamma} = f_{\gamma} \circ d$, where d_G is the exterior derivative in $\Omega(G)$.

Proof. Let $\omega \in \Omega^m(M)$. If m < q, by definition we have $d_G \circ f_{\gamma}(\omega) = f_{\gamma} \circ d(\omega) = 0$. Let $\omega \in \Omega^{p+q}(M)$, where $p \ge 0$, and $X_1, \ldots, X_p \in T_e(G)$. Then we have

$$(7) \quad (d_G f_{\gamma}(\omega))(X_1^r, \dots, X_p^r)(g) = \sum_{i=1}^p (-1)^{i-1} X_i^r(g) f_{\gamma}(\omega)(X_1^r, \dots, \widehat{X}_i^r, \dots, X_p^r) + \sum_{i < j} (-1)^{i+j} f_{\gamma}(\omega)([X_i^r, X_j^r], X_1^r, \dots, \widehat{X}_i^r, \dots, \widehat{X}_j^r, \dots, X_p^r)(g) = \sum_{i=1}^p (-1)^{i-1} X_i^r(g) \int_{\gamma} g^* \left(i(\tilde{X}_p) \dots \widehat{i(\tilde{X}_i)} \dots \widehat{i(\tilde{X}_i)} \dots i(\tilde{X}_1) \omega \right) + \sum_{i < j} (-1)^{i+j} \int_{\gamma} g^* \left(i(\tilde{X}_p) \dots \widehat{i(\tilde{X}_j)} \dots \widehat{i(\tilde{X}_i)} \dots i(\tilde{X}_1) i([\tilde{X}_i, \tilde{X}_j]) \omega \right) = \sum_{i=1}^p (-1)^{i-1} \int_{\gamma} g^* \left(L_{\tilde{X}_i}(i(\tilde{X}_p) \dots \widehat{i(\tilde{X}_i)} \dots i(\tilde{X}_1) \omega) \right) + \sum_{i < j} (-1)^{i+j} \int_{\gamma} g^* \left(i(\tilde{X}_p) \dots \widehat{i(\tilde{X}_j)} \dots \widehat{i(\tilde{X}_i)} \dots i(\tilde{X}_1) i([\tilde{X}_i, \tilde{X}_j]) \omega \right),$$

where L_X denote the Lie derivative with respect to a vector field X and, as usual, $\widehat{i(\tilde{X})}$ means that the term $i(\tilde{X})$ is omitted.

Using the formula $[L_X, i(Y)] = i([X, Y])$ it is easy to check by induction over p that for any manifold M and vector fields X_1, \ldots, X_p on M the following formula is true.

$$\sum_{i=1}^{p} (-1)^{i-1} \operatorname{L}_{X_{i}} i(X_{p}) \dots \widehat{i(X_{i})} \dots i(X_{1}) + \sum_{i < j} (-1)^{i+j} i(X_{p}) \dots \widehat{i(X_{j})} \dots \widehat{i(X_{i})} \dots i(X_{1}) i([X_{i}, X_{j}]) = i(X_{q}) \dots i(X_{1}) d + (-1)^{p-1} di(X_{q}) \dots i(X_{1}).$$

Applying this formula in (7) we get

$$(d_G f_{\gamma}(\omega_1))(X_1^r, \dots, X_p^r)(g) = \int_{\gamma} g^* i(\tilde{X}_p) \dots i(\tilde{X}_1) d\omega = f_{\gamma}(d\omega)(X_1^r, \dots, X_p^r)(g).$$

Consider the double complex $(C^*(G, \Omega(G)), \delta'_G, \delta''_G)$ for the action of the group G on G by left translations. Define the map $F_{\gamma} : (C^{**}(M, \Omega(M))(C^{**}(G, \Omega(G)))$ as follows: for a cochain $c \in C^p(G, \Omega^q(M))$ put $F_{\gamma}(c) = f_{\gamma} \circ c$.

Lemma 3.3. $\delta'_G \circ F_\gamma = F_\gamma \circ \delta'$.

Proof. Let $c \in C^{s}(G, \Omega^{p+q}(M) \text{ and } g, g_{1}, \ldots, g_{s+1} \in G$. By definition we have

(8)
$$(\delta'_G \circ F_\gamma)(c))(g_1, \dots, g_{s+1})(g) = F_\gamma(c)(g_2, \dots, g_{s+1})(g)$$

+ $\sum_{i=1}^s (-1)^i F_\gamma(c)(g_1, \dots, g_i g_{i+1}, \dots, g_{s+1})(g) + (-1)^{s+1} \operatorname{L}^*_{g_{s+1}} F_\gamma(c)(g_1, \dots, g_s)(g).$

For $X_1, \ldots, X_p \in T_e(G)$ and $g \in G$ by (5) and (6) we get

Replacing the last summand in (8) by formula (9) we get

$$(\delta'_G \circ F_{\gamma})(c)(g_1, \dots, g_{s+1})(g) = (F_{\gamma} \circ \delta')(c)(g_1, \dots, g_{s+1})(g).$$

Lemmas 3.1, 3.2, and (8) imply the following

Theorem 3.4. The map $F_{\gamma} : C^*(G, \Omega(M)) \to C^*(G, \Omega(G))$ is a homomorphism of double complexes decreasing the second degree to q.

Suppose that the conditions of theorem 2.2 for an exact *m*-form ω are satisfied. Let α be a singular smooth cycle of M of dimension m-p-1 whose homology class a is invariant under the natural action of the group G on $H_{m-p-1}(M)$. Consider the sequence of cochains $\varphi_{i,m-i-1}$ (i = 0, ..., p) constructed in the proof of theorem 2.2. By theorem 3.4 $F_{\alpha} \circ \omega$ is a left invariant (p+1)-form on G, i.e., a (p+1)-cocycle of the complex $C^*(\mathfrak{g},\mathbb{R})$. Moreover, we have

$$\delta'_G F_\alpha \circ \varphi_{i-1,m-i} + \delta''_G F_\alpha \circ \varphi_{i,m-i-1} = 0 \quad (i = 1, \dots, p).$$

Since $d_G(\delta'_G \circ F_\alpha \circ \varphi_{p,m-p-1}) = 0$, for any $g \in G$ we have

$$c_a(\omega) = \int_{\gamma} \delta' \varphi_{p,m-p-1} = (F_\alpha \circ \delta' \circ \varphi_{p,m-p-1})(e) = (\delta' \circ F_\alpha \circ \varphi_{p,m-p-1})(e).$$

Consider the complex $(C^*(G, \mathbb{R}), D)$ of nonhomogeneous cochains on the group G with values in the trivial G-module \mathbb{R} . Define a cochain $b \in C^p(G, \mathbb{R})$ as follows:

$$b(g_1,\ldots,g_p)=\int_{\alpha}\varphi_{p,m-p-1}(g_1,\ldots,g_p).$$

By the definitions of the cocycle $c_a(\omega)$ and the map f_{γ} and by (1) we have

(10)
$$c_a(g_1, \dots, g_p, g) = (-1)^{p+1} \left(f_\alpha \circ \varphi_{p,m-p-1}(g_1, \dots, g_p)(g) - b(g_1, \dots, g_p) \right) \\ + (Db)(g_1, \dots, g_p, g).$$

Proposition 3.5. Let the cycle γ be G-invariant. Then the cocycle $c_a(\omega)$ is trivial. *Proof.* By assumption we have

$$(F_{\alpha} \circ \varphi_{p,m-p-1})(g_1, \dots, g_p)(g) = \int_{g_{\alpha}} \varphi_{p,m-p-1}(g_1, \dots, g_p) = b(g_1, \dots, g_p)$$

n by (10) we have $c_a(\omega) = Db$.

Then by (10) we have $c_a(\omega) = Db$.

Denote by H the subgroup of G consisting of all elements $g \in G$ preserving the cycle γ . Consider the natural action of the group G on the homogeneous space G/H. The projection $p_H: G \to G/H$ induces a homomorphism $\tilde{p}_H: C^*(G, \Omega(G/H)) \to$ $C^*(g, \Omega(G))$ of double complexes.

Proposition 3.6. There is a unique homomorphism of double complexes $F_{\gamma,H}$: $C^*(G, \Omega(M)) \to C^*(G, \Omega(G/H))$ such that $F_{\gamma} = \tilde{p}_H \circ F_{\gamma, H}$.

Proof. Note that formula (4) implies that the form $f_{\gamma}(\omega)$ is *H*-invariant. Moreover, by assumption for each $X \in T_e(H)$ the fundamental vector field \tilde{X} preserves the cycle γ . Thus the form $i(X)\omega$ vanishes on the cycle γ . This implies that $f_{\gamma}(\omega)(X_1^r,\ldots,X_p^r)=0$ whenever one of the vectors $X_1,\ldots,X_p\in T_e(G)$ belongs to $T_e(H)$. Thus the form $f_{\gamma}(\omega)$ lies in the image of the map $p^*: \Omega(G/H) \to \Omega(G)$. \Box We point out the following sufficient condition of nontriviality of the cocycle $c_a(\omega)$.

Theorem 3.7. Let $\omega \in \Omega(M)^G$ be an exact m-form such that the conditions of theorem 2.2 are satisfied and let α be a singular smooth (m - p - 1)-cycle on Mwhose homology class a is G-invariant. If the cohomology class of the closed left invariant form $f_{\alpha} \circ \omega$ in the complex $\Omega(G)^G$ is nontrivial, the cocycle $c_a(\omega)$ of the complex $C^*(G, \mathbb{R})$ is nontrivial as well.

Proof. It is easy to check that the form $f_a \circ \omega$ satisfies the conditions of proposition 2.5 and the cocycle $c_a(\omega)$ equals the cocycle $\delta'_G \circ f_\alpha \circ \varphi_{p,m-p-1}(e)$. Thus the cocycle $c_a(\omega)$ is nontrivial.

Let H be a subgroup G preserving the cycle γ . By proposition 3.6 the condition of theorem 3.7 can be satisfied only if dim $G/H \ge m$.

4. Continuous and differentiable cocycles

Let G be a topological group (or a Lie group which may be infinite-dimensional), E a Frechét space, and $\rho: G \to \operatorname{GL}(E)$ a representation of G in E. A cochain $f \in C^p(G, E)$ is continuous (differentiable) if it is a continuous (differentiable of class C^{∞}) map from G^p to E. Let $C_c^p(G, E)$ and $C_{\operatorname{diff}}^p(G, E)$ denote the subspaces of continuous and differentiable cochains of the space $C^p(G, E)$, respectively. Denote by $H_c^*(G, E)$ and $H_{\operatorname{diff}}^*(G, E)$ the cohomology of the complex $C_c^*(G, E) =$ $(C_c^p(G, E), \delta')_{p\geq 0}$ and of $C_c^*(G, E) = (C_{\operatorname{diff}}^p(G, E), \delta')_{p\geq 0}$, respectively. It is known (see [2] and [3]) that the inclusion $C_{\operatorname{diff}}^*(G, E) \subset C_c^*(G, E)$ induces an isomorphism $H_c^*(G, E) = H_{\operatorname{diff}}^*(G, E)$ whenever G is a finite dimensional Lie group.

Later we apply these notions to $\Omega(M)$ as a topological vector space with the C^{∞} -topology. Evidently both $C_c^{**}(G, \Omega(M)) = (C_c^p(G, \Omega^q(M)))$ and $C_{\text{diff}}^{**}(G, \Omega(M)) = (C_{\text{diff}}^p(G, \Omega^q(M)))$ are subcomplexes of $C^{**}(G, \Omega(M))$.

Let the conditions of theorem 2.2 be satisfied for an exact *m*-form $\omega \in \Omega(M)^G$. Assume that *G* is a topological group or a Lie group. We investigate whether we can construct a sequence $\varphi_{i,m-i-1}$ for $i = 1, \ldots, p$ as above which consists of continuous or differentiable cochains. For such a sequence $c_a(\omega)$ is a continuous or differentiable cocycle.

Theorem 4.1. Let M be a connected manifold with a countable base. Then for each p > 0 we have the following decomposition in the category of topological vector spaces

$$\Omega^p(M) = d\Omega^{p-1}(M) \oplus H^p(M) \oplus \Omega^p(M)/Z^p(M),$$

where $Z^p(M)$ is the space of closed p-forms. If $H^p(M) = 0$, $d\Omega^{p-1}(M) = Z^p(M)$ and $\Omega^p(M)/Z^p(M)$ are Frechét spaces.

Proof. For compact M the statement follows from the Hodge decomposition for the identity operator 1 on $\Omega^p(M)$ $1 = d \circ \delta \circ G \oplus H^p(M) \oplus \delta \circ d \circ G$ (see, for example, [9]).

For noncompact M the statement follows from Palamodov's theorem (see [8], Proposition 5.4).

Corollary 4.2. Let the conditions of theorem 2.2 be satisfied for an exact m-form $\omega \in \Omega(M)^G$ and let G be a topological group (a Lie group). Then one can construct a sequence $\varphi_{i,m-i-1}$ for $i = 1, \ldots, p$ consisting of continuous (differentiable) cochains and thus for a singular smooth (m - p - 1)-dimensional cycle α whose homology class a is G-invariant the corresponding cocycle $c_a(\omega)$ is continuous (differentiable).

Proof. The sequence $\varphi_{i,m-i-1}$ $(i = 1, \ldots, p)$ is constructed successively by means of the equation $\delta' \varphi_{i-1,m-i} + (-1)^i d\varphi_{i,m-i-1} = 0$. By theorem 4.1 for each of the above cases this equation has a continuous (differentiable) solution $\varphi_{i,m-i-1} = L_{m-i} \circ \delta' \varphi_{i_1,m-i}$ whenever the cochain $\varphi_{i_1,m-i}$ is continuous (differentiable). \Box

5. Conditions of triviality of a differentiable cocycle $c_a(\omega)$

In this section we study the conditions of triviality of the cocycle $c_a(\omega)$ in the complex $C^*_{\text{diff}}(G, \mathbb{R})$ whenever G is a Lie group and for the exact *m*-form ω we choose a sequence of cochains $\varphi_{i,m-i-1}$ $(i = 1, \ldots, p)$ consisting of differentiable cochains.

Theorem 5.1. Let M be a G-manifold, where G is a Lie group preserving an exact m-form ω , let the conditions of theorem 2.2 be satisfied, and for $i = 1, \ldots, p$ let $\varphi_{i,m-i-1} \in C^i_{\text{diff}}(G, \Omega^{m-i-1}(M))$. Then, if the cocycle $c_a(\omega)$ is trivial, there is a cochain $f \in C^{p-1}_{\text{diff}}(G, \Omega^0(G))$ such that $\delta'_G(f_{\gamma} \circ \varphi_{p-1,m-p} - d_G f) = 0$. If the group G is connected, this condition implies the triviality of the cocycle $c_a(\omega)$.

Proof. Let the cocycle $c_a(\omega)$ be trivial. By (10) there is a cochain $\overline{f} \in C^p_{\text{diff}}(G, \mathbb{R})$ such that for any $g, g_1, \ldots, g_p \in G$ we have

(11) $(-1)^{p+1} (f_a \circ \varphi_{p,m-p-1}(g_1,\ldots,g_p)(g) - b(g_1,\ldots,g_p)) = D\bar{f}(g_1,\ldots,g_p,g).$

Define a cochain $f\in C^{p-1}_{\mathrm{diff}}(G,\Omega^0(G))$ as follows

$$f(g_1, \ldots, g_{p-1})(g) = f(g_1, \ldots, g_{p-1}, g).$$

By lemma 3.2 we have

(12)
$$d_G((-1)^{p+1} ((f_a \circ \varphi_{p,m-p-1})(g_1, \dots, g_p)(g) - b(g_1, \dots, g_p))$$

= $(-1)^{p+1} (f_\alpha \circ d\varphi_{p,m-p-1})(g_1, \dots, g_p)(g)$
= $\delta'_G(f_\alpha \circ \varphi_{p-1,m-p})(g_1, \dots, g_p)(g).$

On the other hand, it is easy to check that

(13) $D\bar{f}(g_1,\ldots,g_p,g) = (\delta'_G f)(g_1,\ldots,g_p)(g) + (-1)^{p+1}\bar{f}(g_1,\ldots,g_p).$

10

By (12) and (13), equation (11) implies

$$\delta'_G(f_\alpha \circ \varphi_{p-1,m-p})(g_1, \dots, g_p)(g) - (d_G \delta'_G f)(g_1, \dots, g_p)(g)) = \delta'_G \left((f_\alpha \circ \varphi_{p-1,m-p} - d_G f) \right) (g_1, \dots, g_p)(g) = 0.$$

Now suppose that the condition of the theorem is satisfied. We may assume that for any $g_1, \ldots, g_p \in G$ we have $f(g_1, \ldots, g_p)(e) = 0$. The above condition is equivalent to the following one

$$\delta_G''\left((-1)^{p+1}f_\alpha\circ\varphi_{p,m-p-1}-\delta_G'f\right)(g_1,\ldots,g_p)(g)=0.$$

Since the group G is connected and $f(g_1, \ldots, g_{p-1})(e) = 0$ we have

$$((-1)^{p+1} f_{\alpha} \circ \varphi_{p,m-p-1} - \delta'_G f) (g_1, \dots, g_p)(g) = ((-1)^{p+1} f_{\alpha} \circ \varphi_{p,m-p-1} - \delta'_G f) (g_1, \dots, g_p)(e) = (-1)^{p+1} (b - \bar{f})(g_1, \dots, g_p).$$

Using (10) and (13) we get $(c_a(\omega) - D\bar{f})(g_1, \ldots, g_p, g) = 0$. This concludes the proof.

Corollary 5.2. Let the conditions of theorem 5.1 be satisfied for m = 2 and p = 1. Then, if the 2-cocycle $c_a(\omega)$ is trivial, there is a smooth function f on G such that the 1-form $f_{\alpha} \circ (\varphi_{0,1}) - d_G f$ on G is left invariant. In particular, the cohomology class of the form $f_{\alpha} \circ \omega$ in the complex $\Omega(G)^G$ is trivial. If the group G is connected, the above condition implies the triviality of the cocycle $c_a(\omega)$.

Example 5.3. Consider the abelian group $G = \mathbb{R}^n$ acting on itself by translations. Evidently an *m*-form

$$\omega(x) = \sum_{i_1 < \dots < i_m} \omega_{i_1 \dots i_m}(x) dx_{i_1} \wedge \dots \wedge dx_{i_m},$$

where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, is *G*-invariant if and only if the coefficients $\omega_{i_1 \ldots i_p}$ are constant. Then the differential of the complex $\Omega(\mathbb{R}^n)^G$ is trivial.

Evidently the conditions of theorem 2.2 are satisfied for each nonzero *m*-form ω with constant coefficients on \mathbb{R}^n for p = m - 1. It is easy to check that the sequence of cochains $\varphi_{j,m-j-1} \in C^j_{\text{diff}}(G, \Omega^{m-j-1}(\mathbb{R}^n))$ $(j = 0, \ldots, m-1)$ corresponding to ω can be defined as follows.

$$\varphi_{j,m-j-1}(a_1,\ldots,a_j) = \frac{(-1)^{j-1}}{m(m-1)\dots(m-j)}i(x)i(a_j)i(a_{j-1})\dots i(a_1)\omega,$$

where $a_k = (a_{k,1}, \ldots, a_{k,n}) \in \mathbb{R}^n$ $(k = 1, \ldots, j)$ and on the right hand side we consider each a_k as a constant vector field on \mathbb{R}^n and x as identical vector field on \mathbb{R}^n . Then we have

$$\delta'\varphi_{m-1,0}(a_1,\ldots,a_m) = \frac{1}{m!}i(a_m)i(a_{m-1})\ldots i(a_1)\omega,$$

where $a_1, \ldots, a_m \in \mathbb{R}^n$.

Take the point $0 \in \mathbb{R}^n$ as the cycle α . Then $F_{\alpha} : \Omega(\mathbb{R}^n)^G \to \Omega(G)$ is the identity map. By proposition 3.7 the cocycle $c_a(\omega)$ is nontrivial in the complex $C^*(G, \mathbb{R})$.

6. Cocycles on groups of diffeomorphisms

In this section we indicate nontrival cocycles for groups of diffeomorphisms of a manifold preserving a family of exact forms.

Let $(\omega_i)_{i \in I}$ be a family of smooth differential forms on a manifold M. Denote by $\operatorname{Diff}(M, (\omega_i))$ the group of diffeomorphisms of M preserving all forms ω_i . We consider $\operatorname{Diff}(M, (\omega_i))$ as a topological group with respect to C^{∞} -topology or as a infinite-dimensional Lie group if such a structure on $\operatorname{Diff}(M, (\omega_i))$ exists. By proposition 4.2 one can suppose that the cocycle $c_a(\omega_i)$ is a continuous or differentiable cocycle.

Let $(\omega_i)_{i \in I}$ be a family of nonzero differential forms on \mathbb{R}^n with constant coefficients. Put $G = \text{Diff}(\mathbb{R}^n, (\omega_i))$.

Theorem 6.1. Let $(\omega_i)_{i \in I}$ be a family of nonzero differential forms on \mathbb{R}^n with constant coefficients such that deg $\omega_i = d_i$. Then, for each $i \in I$ and for $0 \in \mathbb{R}^n$ as a zero dimensional cycle α , the cocycle $c_a(\omega_i)$ is defined and nontrivial in the complex $C^*(G, \mathbb{R})$.

Proof. Evidently the conditions of theorem 2.2 are satisfied for each form ω_i and $p = m_i - 1$ and then the cocycle $c_a(\omega_i)$ of the complex $C^*(G, \mathbb{R})$ is defined. Obviously the group G contains the group \mathbb{R}^n acting on \mathbb{R}^n by translations. Consider the restriction of the cocycle $c_a(\omega)$ to the subgroup \mathbb{R}^n . By example 5.3 this restriction is nontrivial. Then the cocycle $c_a(\omega_i)$ is nontrivial as well.

Corollary 6.2. Let M be a connected manifold such that

$$H^{1}(M,\mathbb{R}) = \cdots = H^{m-1}(M,\mathbb{R}) = 0.$$

let ω_0 be a nonzero *m*-form on \mathbb{R}^n with constant coefficients, and let ω_M be an exact *m*-form on *M*. Consider $\omega = \omega_0 + \omega_M$ as an *m*-form on $\mathbb{R}^n \times M$. Then for the group $G = \text{Diff}(\mathbb{R}^n \times M, \omega)$ and a point $x \in \mathbb{R}^n \times M$ as a zero dimensional cycle α , the cocycle $c_a(\omega)$ is defined and nontrivial in the complex $C^*(\mathbb{R}^n \times M, \mathbb{R}))$.

Proof. Evidently the conditions of theorem 2.2 for the form ω are satisfied and then the cocycle $c_a(\omega)$ of the complex $C^*(G, \mathbb{R})$ is defined. Consider the group $\operatorname{Diff}(\mathbb{R}^n, \omega_0)$ acting on the first factor of $\mathbb{R}^n \times M$ as a subgroup of G and the restriction of the cocycle $c_a(\omega)$ to this subgroup. Since the subgroup $\operatorname{Diff}(\mathbb{R}^n, \omega_0)$ preserves the form ω_M as a form on $\mathbb{R}^n \times M$ by theorem 6.1, this restriction is a nontrivial cocycle. Thus $c_a(\omega)$ is a nontrivial cocycle of the complex $C^*(G, \mathbb{R})$ as well. \Box

We indicate the following partial case of corollary 6.2 (see also [6]).

Corollary 6.3. Let ω_0 be the standard symplectic 2-form on \mathbb{R}^{2n} and let $m = 1, \ldots, n$. Let M be a connected manifold such that $2m \leq \dim M$,

$$H^{1}(M,\mathbb{R}) = \cdots = H^{2m-1}(M,\mathbb{R}) = 0,$$

and ω_M an exact 2*m*-form on a manifold M. Consider the 2*m*-form $\omega = \omega_0^m + \omega_M$ on $\mathbb{R}^{2n} \times M$. Then for the group $G = \text{Diff}(\mathbb{R}^{2n} \times M, \omega)$ and a point $x \in \mathbb{R}^{2n} \times M$ as a zero dimensional cycle α , the cocycle $c_a(\omega)$ is defined and nontrivial in the complex $C^*(\mathbb{R}^{2n} \times M, \mathbb{R}))$.

Let M be a connected compact oriented manifold with a volume form v_M such that $\int_M v_M = 1$.

Theorem 6.4. Let $(\omega_i)_{i\in I}$ be a family of nonzero differential forms on \mathbb{R}^n with constant coefficients such that deg $\omega_i = d_i$. Consider the family $\{\omega_i \wedge \upsilon_M\}_{i\in I}$ of forms on $\mathbb{R}^n \times M$. For a cycle $\alpha = 0 \times M$ of the homology class a on $\mathbb{R}^n \times M$ and each $i \in I$ the cocycle $c_a(\omega_i \wedge \upsilon_M)$ on the group $G = \text{Diff}(\mathbb{R}^n \times M, (\omega_i \wedge \upsilon_M))$ with values in the trivial G-module \mathbb{R} is defined and nontrivial.

Proof. Evidently the conditions of theorem 2.2 for each form $\omega_i \wedge \upsilon_M$ and p = n-1 are satisfied. Then the cocycle $c_a(\omega_i \wedge \upsilon_M)$ of the complex $C^*(G, \mathbb{R})$ is defined.

Consider the group $\text{Diff}(\mathbb{R}^n, (\omega_i))$ as a subgroup of the group G and the restriction of the cocycle $c_a(\omega)$ to this subgroup. Since the subgroup $\text{Diff}(\mathbb{R}^n, (\omega_i))$ preserves the form v as a form on $\mathbb{R}^n \times M$, as in the proof of corollary 6.2 we can show that the above restriction is a nontrivial cocycle. Thus the cocycle $c_a(\omega)$ is nontrivial as well. \Box

We indicate the following partial case of theorem 6.4.

Corollary 6.5. Let v_0 be the standard volume form on \mathbb{R}^n . Then for the cycle $a = 0 \times M$ the cocycle $c_a(v_0 \wedge v_M)$ on the group $G = \text{Diff}(\mathbb{R}^n \times M, v_0 \wedge v_M)$ is defined and nontrivial in the complex $C^*(G, v_0 \wedge v_M), \mathbb{R})$.

We consider the space \mathbb{C}^{2n} and a skew-symmetric bilinear form ω of rank 2 on it. Let $\tilde{\omega}$ be the differential 2-form corresponding to ω on \mathbb{C}^{2n} as a complex manifold. By definition the form $\tilde{\omega}$ has constant coefficients. Then $\tilde{\omega} = \tilde{\omega}_1 + i\tilde{\omega}_2$, where $i = \sqrt{-1}$, $\tilde{\omega}_1$ and $\tilde{\omega}_2$ are real differential 2-forms with constant coefficients on $\mathbb{C}^{2n} = \mathbb{R}^{4n}$ as a real 4n-dimensional manifold.

Similarly, consider the space \mathbb{C}^n , a sqew-symmetric *n*-form v of maximal rank on it, and the corresponding differential *n*-form \tilde{v} on \mathbb{C}^n . Consider the real differentiable *n*-forms \tilde{v}_1 and \tilde{v}_2 on $\mathbb{C}^n = \mathbb{R}^{2n}$ as a real 2*n*-dimensional manifold defined by an equality $\tilde{v} = \tilde{v}_1 + i\tilde{v}_2$.

In both cases above we can apply theorem 6.1 to the forms $\tilde{\omega}_1$, $\tilde{\omega}_2$, \tilde{v}_1 and \tilde{v}_2 . We leave to the reader to define the corresponding cocycles on the group of diffeomorphisms preserving the forms $\tilde{\omega}$ and \tilde{v} and to formulate the statement similar to those of corollaries 6.2 and 6.4.

References

- [1] H. Cartan, S. Eilenberg, Homological algebra, Princeton, Princeton University Press, 1956.
- [2] W.T. van Est, Group cohomology and Lie algebra cohomology in Lie groups. I, II, Indagationes Mathematicae, 15 (1953), 484-492; 493-504.
- [3] A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie, Cedic/Nathan, Paris, 1980.
- [4] G.P. Hochschild, G.D. Mostow, Cohomology of Lie algebras, Ann. Math, 57 (1953), no 3, 591-603.
- [5] M.V. Losik, Characteristic classes of transformation groups, Diff. Geom. Appl., 3 (1993), 205-218.
- [6] M. Losik, P.W. Michor Extensions for a group of diffeomorphisms of a manifold preserving an exact 2-form, arXiv:math.GR/0410100.
- [7] G.D. Mostow, Cohomology on topological groups and solvmanifolds, Ann. Math., 73 (1961), 20-48.
- [8] V.P. Palamodov, The complex Dolbeault on a Stein manifold splits in positive dimensions, Mat. Sb. (N.S.) 88(130),no. 2(6) (1972), 287-315 (Russian).
- [9] G. de Rham, Variétés différentiableles, Paris, Hermann, 1955.

M. LOSIK: SARATOV STATE UNIVERSITY, ASTRAKHANSKAYA, 83, 410026 SARATOV, RUSSIA. *E-mail address*: LosikMV@info.sgu.ru

P. W. Michor: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria; *and*: Erwin Schrödinger Institute of Mathematical Physics, Boltz-manngasse 9, A-1090 Wien, Austria.

E-mail address: Peter.Michor@esi.ac.at