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Zusammenfassung

Die vorliegende Arbeit behandelt die Frage ob gewisse Gruppen von Diffeomorphismen
einfach, oder wenigstens perfekt, sind. M. R. Herman und W. Thurston haben gezeigt,
daß die Zusammenhangskomponente der Identität der Gruppe aller Diffeomorphismen mit
kompakten Träger einer Mannigfaltigkeit einfach ist. Für volumserhaltende Diffeomorphis-
men hat W. Thurston ein analoges Resultat bewiesen. A. Banyaga hat ähnliche Methoden
auf die Automorphismengruppe einer symplektischen Mannigfaltigkeit angewandt. Auch
auf die infinitesimale Version davon, nämlich die Perfektheit von Lie Algebren von Vek-
torfeldern, wird eingegangen. Diese ist um einiges einfacher zu behandeln, es scheint aber
keine Möglichkeit zu geben aus ihr die Perfektheit der Gruppe zu erhalten. Trotzdem ist
in allen bekannten Fällen die Gruppe genau dann perfekt, wenn es die entsprechende Lie
Algebra ist. Für die Einfachheit gilt dies bei weitem nicht. Zum Beispiel hat die Lie Al-
gebra aller Vektorfelder mit kompakten Träger sehr viel Ideale, obwohl die Gruppe dazu
einfach ist.

Im ersten Kapitel wird gezeigt, unter welchen Voraussetzungen man von der lokalen Per-
fektheit einer Diffeomorphismengruppe zu deren Einfachheit gelangt. Außerdem wird ein
simplizialer Komplex konstruiert, dessen erste Homologiegruppe gleich der Abelisierung der
universellen Überlagerung der Diffeomorphismengruppe ist. Verschwindet diese Homolo-
giegruppe, ist die Diffeomorphismengruppe also perfekt. Danach wird ein Resultat von
M. R. Herman und F. Sergeraert diskutiert, welches besagt, daß die Diffeomorphismen-
gruppe des Torus perfekt ist. Daraus folgt auch leicht, daß die Gruppe der Diffeomorphis-
men des Torus, die die Blätter der Standardblätterung erhalten, perfekt ist. Dies wurde
erstmals von T. Rybicki gezeigt, sein Beweis benötigt allerdings eine geblätterte Version
des Theorems von Herman.

Im zweiten Kapitel wird zuerst eine modifizierte Unterteilung des Standard Simplex
konstruiert. Diese ist etwas umständlicher zu handhaben als die baryzentrische Unterteil-
ung, aber sie erlaubt es eine Fragmentierungsabbildung für modulare Diffeomorphismen-
gruppen zu definieren, welche kettenhomotop zur Identität ist. Dies vereinheitlicht zwei
Methoden, nämlich das Fragmentierungs- und das Deformierungslemma, die üblicherweise
verwendet werden um Perfektheit der Diffeomorphismengruppe einer Mannigfaltigkeit auf
die Perfektheit der entsprechenden Diffeomorphismengruppe des Torus zurückzuführen.
Dies wird dann auf den Fall der vollen Diffeomorphismengruppe angewandt, und liefert
deren Perfektheit, und in weiterer Folge auch deren Einfachheit. Auch die Gruppe aller
Diffeomorphismen, die die Blätter einer Blätterung invariant lassen ist modular, und so
liefert diese Methode auch die Perfektheit letzterer Gruppe.

Im dritten Kapitel werden sogenannte lokal konform symplektische Mannigfaltigkeiten
behandelt. Das sind Mannigfaltigkeiten mit einer Struktur, die lokal bis auf konforme
Äquivalenz wie eine symplektische Struktur aussieht. Ihre Bedeutung rührt einerseits da-
her, daß jedes gerade dimensionale Blatt einer Jacobi-Mannigfaltigkeit eine lokal konform
symplektische Struktur besitzt, und andererseits daher, daß sie als Phasenräume in der
Hamiltonschen Mechanik auftreten, siehe [Vai85]. Es wird auch ein Beispiel einer solchen
Mannigfaltigkeit gegeben, die keine symplektische Struktur besitzt. Im Weiteren wird die

v



Automorphismengruppe einer lokal konform symplektischen Struktur betrachtet. Es stellt
sich heraus, daß dies eine unendlich dimensionale Lie Gruppe im Sinn von [KM97] ist. Im
allgemeinen ist diese Gruppe, wie im symplektischen Fall auch, weder einfach noch perfekt.
Der Flux-Homomorphismus und die Calabi-Invariante lassen sich vom symplektischen Fall
auf den lokal konform symplektischen Fall verallgemeinern, sie haben jetzt allerdings Werte
in getwisteten de Rham Cohomologiegruppen. Außerdem tritt eine neue solche Invariante
auf, die im symplektischen Fall immer verschwindet. Das erste Hauptresultat besagt, daß
der Kern der Calabi-Invariante eine einfache, also auch perfekte Gruppe ist. Dies verall-
gemeinert ein bekanntes Resultat von A. Banyaga für symplektische Mannigfaltgkeiten,
siehe [Ban78]. Genauer wird die derivierte Reihe der Automorphismengruppe sowie die
infinitesimale Version davon, d.h. die derivierte Reihe der entsprechenden Lie Algebra,
berechnet. Schlußendlich wird noch gezeigt, daß die Gruppe der Automorphismen schon
die Mannigfaltigkeit und die lokal konform symplektische Struktur bestimmt. Im symplek-
tischen Fall wurde dies von A. Banyaga bewiesen.

Im letzten Kapitel wird gezeigt, daß zwei der Invarianten aus dem dritten Kapitel auf
die Fundamentalgruppe größerer Diffeomorphismengruppen ausgedehnt werden können,
und wie diese Ausdehnungen mit gewissen Erweiterungen von Diffeomorphismengruppen
zusammenhängen.
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1. Basic Setup

1.1 Introduction

This work deals with the question, whether certain groups of diffeomorphisms are simple, or
at least perfect. M. R. Herman andW. Thurston have shown that the connected component
of the group of all compactly supported diffeomorphisms of a manifold is simple, and hence
perfect. For the group of volume preserving diffeomorphisms W. Thurston has shown an
analogous statement, but it involves the concept of the flux homomorphism. In fact, he
showed that the kernel of the flux homomorphism is a simple group. A. Banyaga adapted
his methods to the symplectic case and obtained similar simplicity results, although another
invariant, the Calabi invariant, appears in the non-compact symplectic case. There are also
lots of perfectness results for Lie algebras of vector fields. These are much more easier to
prove, but there does not seem to exist a method to obtain the perfectness of the group
from the perfectness of the Lie algebra, although in all known cases the group is perfect if
and only if the Lie algebra is. This is far from being true for simplicity. For example the
Lie algebra of compactly supported vector fields has many ideals, but the corresponding
group is simple.

In the first chapter we fix some notation and discuss under which assumptions one
obtains simplicity of the group from so called local perfectness. In addition a simplicial
complex is introduced. Its first homology group equals the abelianization of the universal
covering of the diffeomorphism group in question. Consequently, if this homology group
vanishes, the diffeomorphism group is perfect. Then we discuss a well known theorem
of Herman, which immediately implies that the group of diffeomorphisms of the torus is
simple. Finally we show how this yields the perfectness of the group of leaf preserving dif-
feomorphisms of the torus with the standard foliation. This is originally due to T. Rybicki,
but his proof uses a foliated version of Hermans theorem.

In the second chapter we define a modified subdivision of the standard simplex. Com-
binatorically it is more difficult to handle than the barycentric subdivision, but it allows to
define a fragmentation mapping for all modular groups of diffeomorphisms which is chain
homotopic to the identity. This method unifies two main tools, usually used when one
tries to reduce the problem of perfectness of a diffeomorphism group of a manifold to the
perfectness of the corresponding diffeomorphism group of the torus. We apply this method
and obtain simplicity of the full diffeomorphism group and perfectness of the group of leaf
preserving diffeomorphisms.

In the third chapter we discuss locally conformally symplectic manifolds. These are
manifolds together with a structure which locally, up to conformal equivalence, looks like a
symplectic structure. There are two reasons why this structures may be interesting. First,
every even dimensional leaf of a Jacobi manifold possesses a locally conformally symplectic
structure and second, they occur as phase spaces in Hamiltonian mechanics, cf. [Vai85].
We also give an example of a locally conformally symplectic manifold, which does not
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2 CHAPTER 1. BASIC SETUP

admit a symplectic structure. Furthermore we show that the group of automorphisms of a
locally conformally symplectic manifold is a Lie group in the sense of [KM97]. In general
this group is neither simple nor perfect. The flux homomorphism and the Calabi invariant
generalize to the locally conformal case, although they now have values in twisted de Rham
cohomology groups. In addition another invariant appears, which is always zero in the
symplectic case. The main result of this chapter is that the kernel of the Calabi invariant
is simple. This generalizes a well known theorem of A. Banyaga. More precisely we compute
the derived series of the automorphism group of a locally conformally symplectic manifold.
We also compute the derived series of the corresponding Lie algebra. Finally we show that
the automorphism group determines the manifold and the locally conformally symplectic
structure, up to conformal equivalence.

In the last chapter we show how one can extend two of the invariants of the third
chapter to the fundamental group of larger groups of diffeomorphisms, and how these are
related to certain extensions of diffeomorphism groups.

1.2 The Lie Group Diff∞
c (M)

Let M be a smooth, paracompact, boundaryless manifold and denote by Xc(M) the Lie
algebra of compactly supported vector fields. We equipped it with the inductive limit
topology Xc(M) = lim−→KXK(M), where the limit is over all compact subsets K ⊆ M
and XK(M) := {X ∈ X(M) : supp(X) ⊆ K}. By Diff∞c (M) we denote the group of all
compactly supported diffeomorphisms of M equipped with the inductive limit topology
Diff∞c (M) = lim−→K Diff∞K (M), where Diff∞K (M) := {f ∈ Diff∞(M) : supp(f) ⊆ K}. Recall
that Xc(M) is a strict inductive limit of Fréchet spaces and that Diff∞c (M) is a Lie group
modeled on Xc(M). See [KM97] for this. By Diff∞c (M)◦ we denote the connected com-
ponent of Diff∞c (M) containing idM . It consists exactly of those diffeomorphisms f that
are compactly diffeotopic to idM , i.e. there exists a compact set K ⊆ M and a smooth
mapping H :M × I →M , such that Ȟ : I → Diff∞K (M), Ȟ(0) = idM and Ȟ(1) = f . The
kinematic tangent space of Diff∞c (M) at f is

Tf Diff∞c (M) = Γc(f
∗πM : f ∗TM →M) ∼= {X ∈ C∞c (M,TM) : πM ◦X = f},

i.e. Tf Diff∞c (M) consist of all compactly supported vector fields along f . In particular
we have TidM Diff∞c (M) = Xc(M). Diff∞c (M) admits a smooth exponential mapping exp :
Xc(M) → Diff∞c (M) namely exp(X) = FlX1 , but it is not even locally surjective around
idM , although T0 exp = id. This can be found for example in [Gra88] or [KM97]. The
adjoint representation Ad : Diff∞c (M)→ GL(Xc(M)) is given by g 7→ (g−1)∗ since we have

Ad(g) ·X = TidM conjg ·X = d
dt
|0(g ◦ exp(tX) ◦ g−1)

= d
dt
|0(g ◦ Fl

X
t ◦g

−1) = Tg ◦X ◦ g−1 = (g−1)∗X.

Thus for ad : Xc(M)→ L
(
Xc(M),Xc(M)

)
we have

ad(X)(Y ) = (TidM Ad ·X)(Y ) = d
dt
|0Ad(exp(tX))(Y )

= d
dt
|0 exp(−tX)∗Y = d

dt
|0(Fl

X
−t)

∗Y = −[X,Y ]

and hence the Lie bracket [·, ·]Xc(M) : Xc(M)×Xc(M)→ Xc(M) is the negative of the usual
Lie bracket on vector fields.



1.2. THE LIE GROUP Diff∞C (M) 3

The space of Xc(M)-valued k-forms on Diff∞c (M) is

Ωk
(
Diff∞c (M);Xc(M)

)
:= Γ

(
Lkalt
(
T Diff∞c (M),Diff∞c (M)× Xc(M)

))

the space of smooth sections of the smooth vector bundle

Lkalt
(
T Diff∞c (M),Diff∞c (M)× Xc(M)

)
→ Diff∞c (M).

Notice that the right translation µg : Diff∞c (M)→ Diff∞c (M), h 7→ h ◦ g has the following
derivative Thµ

g : ThDiff∞c (M) → Th◦g Diff∞c (M), Xh 7→ Xh ◦ g. Thus the right Maurer
Cartan form κr ∈ Ω1

(
Diff∞c (M);Xc(M)

)
is

κr(Xg) := Tgµ
g−1

·Xg = Xg ◦ g
−1.

Recall that for any manifold N the space Ω∗(N ;Xc(M)) is a graded Lie algebra with Lie
bracket

[Ψ,Θ]Xc(M)(X1, . . . , Xp+q) =
1

p!q!

∑

σ∈S(p+q)

sign(σ)[Ψ(Xσ(1), . . . ),Θ(Xσ(p+1), . . . )]Xc(M)

where Ψ ∈ Ωp(N ;Xc(M)), Θ ∈ Ωq(N ;Xc(M)) and Xi ∈ X(N). Moreover the exterior
derivative d : Ωk(N ;Xc(M))→ Ωk+1(N ;Xc(M)) is defined by:

dΨ(X0, . . . , Xk) =
k∑

i=0

(−1)iXi ·Ψ(X0, . . . , î, . . . , Xk)

+
∑

i<j

(−1)i+jΨ([Xi, Xj], X0, . . . , î, . . . , ĵ, . . . , Xk).

In the first term Xi ·Ψ(X0, . . . , î, . . . , Xk) denotes the derivative of Ψ(X0, . . . , î, . . . , Xk) ∈
C∞(N ;Xc(M)) in direction Xi. κ

r satisfies the left Maurer-Cartan equation:

dκr − 1
2
[κr, κr]Xc(M) = 0 ∈ Ω2

(
Diff∞c (M);Xc(M)

)
(1.1)

For a mapping f : N → Diff∞c (M) the right logarithmic derivative δrf := f ∗κr ∈
Ω1(N ;Xc(M)) looks like

δrf(Xx) = (f ∗κr)(Xx) = κr(Txf ·Xx) = Txf ·Xx ◦ f(x)
−1

where Xx ∈ TxN . For a curve c : R→ Diff∞c (M) this yields ċ := i∂tδ
rc : R→ Xc(M) and

ċ(t) = δrc(∂t)(t) = Ttc · ∂t ◦ c(t)
−1 = d

ds
|tc(s) ◦ c(t)

−1.

Pulling back (1.1) via f : N → Diff∞c (M) we obtain

dδrf − 1
2
[δrf, δrf ]Xc(M) = 0 ∈ Ω2(N ;Xc(M)). (1.2)

The special case we will need later is f : R2 → Diff∞c (M). For α ∈ Ω1(R2;Xc(M)) we have
(
dα− 1

2
[α, α]Xc(M)

)
(∂s, ∂t) = ∂s · α(∂t)− ∂t · α(∂s)− α([∂s, ∂t])

− 1
2

(
[α(∂s), α(∂t)]Xc(M) − [α(∂t), α(∂s)]Xc(M)

)
(1.3)

= ∂s · α(∂t)− ∂t · α(∂s) + [α(∂s), α(∂t)]
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and so (1.2) yields

∂s · δ
rf(∂t)− ∂t · δ

rf(∂s) + [δrf(∂s), δ
rf(∂t)] = 0. (1.4)

For f, g : N → Diff∞c (M) and fg := µ◦(f, g) : N → Diff∞c (M) that is (fg)(x) = f(x)◦g(x)
we have the Leibniz rule

δr(fg)(x) = δrf(x) + Ad(f(x)) · δrg(x). (1.5)

Finally recall that Diff∞c (M) is a regular Lie group, i.e. there exists a smooth right evolution
mapping

Evolr : Ω1(R;Xc(M))→ C∞
(
(R, 0), (Diff∞c (M), idM)

)

inverse to δr : C∞
(
(R, 0), (Diff∞c (M), idM)

)
→ Ω1(R;Xc(M)). f := Evolr(α) is simply the

integral curve of the time dependent vector field X := i∂tα ∈ C∞(R,Xc(M)) on M , i.e.
∂
∂t
ft = Xt ◦ f .

1.2.1. Lemma. Let X,Y : R → Xc(M) be smooth curves. Then the inhomogeneous
linear, differential equation Z ′(t) = [X(t), Z(t)]Xc(M)+Y (t) has a unique solution Z : R→
Xc(M) with initial value Z(0) and it is given by

Z(t) = Ad(g(t)) ·
( ∫ t

0
Ad(g(s)−1) · Y (s)ds+ Z(0)

)

where g : R→ Diff∞c (M) is such that g(0) = idM and δrg(∂t) = X, i.e. g = Evolr(Xdt).

Proof. Notice first that we have for g ∈ Diff∞c (M), X ∈ Xc(M) and Yg ∈ Tg Diff∞c (M):

Tg
(
Ad(·)(X)

)
Yg = Tg

(
Ad(·)(X)

)
Teµ

gTgµ
g−1

Yg

= Te
(
Ad(·)(Ad(g)(X))

)
Tgµ

g−1

Yg = [Tgµ
g−1

Yg,Ad(g)(X)]Xc(M)

So we have

Z ′(t) =
[
Tg(t)µ

g(t)−1
g′(t),Ad(g(t))

( ∫ t
0
Ad(g(s)−1)Y (s)ds+ Z(0)

)]
Xc(M)

+Ad(g(t))Ad(g(t)−1)(Y (t))

= [X(t), Z(t)]Xc(M) + Y (t)

and Z solves the differential equation. Remains to check uniqueness. Suppose C : R →
Xc(M) is another solution with initial value C(0) = Z(0). Then D : R→ Xc(M), D(t) :=
Z(t)− C(t) solves D′(t) = [X(t), D(t)]Xc(M) with D(0) = 0. Let us compute

∂t ·
(
Ad(g(t)−1)(D(t))

)

= −
[
Tg(t)−1µg(t)Teµ

g(t)−1

Tg(t)µg(t)−1g′(t),Ad(g(t)−1)(D(t))
]
Xc(M)

+Ad(g(t)−1)(D′(t))

= −Ad(g(t)−1)[Tg(t)µ
g(t)−1

g′(t), D(t)]Xc(M) +Ad(g(t)−1)[X(t), D(t)]Xc(M)

= −Ad(g(t)−1)[X(t), D(t)]Xc(M) +Ad(g(t)−1)[X(t), D(t)]Xc(M) = 0

So Ad(g(t)−1)(D(t)) = Ad(g(0)−1)(D(0)) = 0 and therefore D(t) = 0 which yields Z(t) =
C(t).
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The following can be found in [KM97], where it is proved using principal bundle theory.

1.2.2. Lemma. Let N be a simply connected manifold, let α ∈ Ω1(N ;Xc(M)) satisfying
the Maurer-Cartan equation dα − 1

2
[α, α]Xc(M) = 0 and let x ∈ N . Then there exists a

unique g ∈ C∞
(
(N, x), (Diff∞c (M), idM)

)
such that δrg = α.

Proof. Let y ∈ N and choose a path c ∈ C∞(I,N) from x = c(0) to y = c(1). If such a g
exists then we must have (g◦c)(0) = idM and c∗α = c∗δrg = δr(g◦c), i.e. g◦c = Evolr(c∗α).
Especially we get g(y) = Evolr(c∗α)(1) and therefore g is unique.

Let H ∈ C∞(I × I,N) be a homotopy with H(s, 0) = x and H(s, 1) = y. Define
h ∈ C∞(I × I,Diff∞c (M)) by h(s, 0) = idM and δrh(∂t) = H∗α(∂t), in other words
h(s, t) = Evolr(inc∗sH

∗α)(t). Pulling back dα − 1
2
[α, α]Xc(M) = 0 we obtain dH∗α −

1
2
[H∗α,H∗α]Xc(M) = 0 and in view of (1.3) this yields:

∂s ·H
∗α(∂t)− ∂t ·H

∗α(∂s) + [H∗α(∂s), H
∗α(∂t)] = 0

Using this equation and (1.4) for h we obtain

∂t·(δ
rh(∂s)−H

∗α(∂s)) =

= ∂s · δ
rh(∂t) + [δrh(∂s), δ

rh(∂t)]− ∂s ·H
∗α(∂t)− [H∗α(∂s), H

∗α(∂t)]

= [δrh(∂s)−H
∗α(∂s), δ

rh(∂t)] = [δrh(∂t), δ
rh(∂s)−H

∗α(∂s)]Xc(M)

that means ϕs ∈ C
∞(I,Xc(M)) given by ϕs(t) := δrh(∂s)(s, t)−H

∗α(∂s)(s, t) satisfies the
linear differential equation ϕ′s(t) = [δrh(∂t)(s, t), ϕs(t)]Xc(M) with initial condition ϕs(0) =
δrh(∂s)(s, 0)−H

∗α(∂s)(s, 0) = 0− 0 = 0. Hence by the uniqueness part of lemma 1.2.1 we
get ϕs(t) = 0 for all t ∈ I, hence δrh(∂s) = H∗α(∂s) and therefore δrh = H∗α. Especially
we have δrh(∂s)(s, 1) = H∗α(∂s)(s, 1) = 0 and thus h(s, 1) is constant in s. Further for
ci(t) := H(i, t), i = 0, 1 we have

c∗iα = (H ◦ inci)
∗α = inc∗i H

∗α = inc∗i δ
rh = δr(h ◦ inci)

and thus
Evolr(c∗iα)(1) = Evolr(δr(h ◦ inci))(1) = h ◦ inci(1) = h(i, 1)

So Evolr(c∗0α)(1) = Evolr(c∗1α)(1) and since N is simply connected we may define g by
g(y) := Evolr(c∗α)(1) where c is any path from x to y.

Next consider the mapping ms : (I, 0) → (I, 0) defined by ms(t) = st where s ∈ I.
For every β ∈ Ω1(I,Xc(M)) we have δr(Evolr(β) ◦ms) = m∗

sδ
r Evolr(β) = m∗

sβ and hence
Evolr(m∗

sβ) = Evolr(β) ◦ms. So

Evolr(c∗α)(s) = (Evolr(c∗α) ◦ms)(1) = Evolr(m∗
sc
∗α)(1)

= Evolr((c ◦ms)
∗α)(1) = g(c(s))

that is g ◦ c = Evolr(c∗α). Hence g maps smooth curves to smooth curves and is thus
smooth.

Remains to show that δrg = α. But for Xy ∈ TyN we choose a curve c form x to y
such that c′(1) = Xy and obtain:

δrg(Xy) = δrg(T1c · ∂t) = (c∗δrg)(∂t)(1) = δr(g ◦ c)(∂t)(1)

= c∗α(∂t)(1) = α(T1c · ∂t) = α(Xy)

This shows δrg = α.
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1.2.3. Lemma. Let N be a manifold, g ∈ C∞
(
N,Diff∞c (M)

)
, ω ∈ C∞

(
N,Ωk(M)

)
and

Xx ∈ TxN . Then we have

Xx ·
(
y 7→ g(y)∗ω(y)

)
= g(x)∗

(
Lδrg(Xx)(w(x)) + (Xx · ω)

)

for all x ∈ N .

Proof. Notice that σ : R → Ωk(M), σ(t) := w(x) + t(Xx · ω) is a smooth curve satisfying
σ(0) = w(x) and σ′(0) = (Xx · ω). Moreover τ : R → Diff∞c (M), τ(t) := exp(tκr(Txg ·
Xx)) ◦ g(x) is a smooth curve satisfying τ(0) = g(x) and

τ ′(0) = d
dt
|0µ

g(x)
(
exp(tκr(Txg ·Xx))

)
= Tidµ

g(x) · κr(Txg ·Xx)

= Tidµ
g(x)Tg(x)µ

g(x)−1

· Txg ·Xx = Txg ·Xx.

Hence we obtain

Xx ·
(
y 7→ g(y)∗ω(y)

)
= d

dt
|0τ(t)

∗ω(x) + d
dt
|0g(x)

∗σ(t)

= d
dt
|0
(
exp(tκr(Txg ·Xx)) ◦ g(x)

)∗
ω(x) + g(x)∗ d

dt
|0σ(t)

= g(x)∗
(
d
dt
|0 exp(tκ

r(Txg ·Xx))
∗ω(x) + (Xx · ω)

)

= g(x)∗
(
Lκr(Txg·Xx)ω(x) + (Xx · ω)

)

= g(x)∗
(
L(g∗κr)(Xx)ω(x) + (Xx · ω)

)

= g(x)∗
(
Lδrg(Xx)ω(x) + (Xx · ω)

)

and thus the lemma is proved.

A well known special case of lemma 1.2.3 is ∂
∂t
(g∗tωt) = g∗t

(
Lġtωt +

∂
∂t
ωt
)
for smooth

curves g : R→ Diff∞c (M) and ω : R→ Ωk(M).

1.2.4. Definition. Let G ⊆ Diff∞c (M) be a subgroup. Then we set

C∞(N,G) :=
{
f ∈ C∞

(
N,Diff∞c (M)

)
: f(x) ∈ G ∀x ∈ N

}

We denote by G◦ the normal subgroup of all elements g of G that can be joined with the
identity by a smooth path in G, i.e. there exists c ∈ C∞(I,G) with c(0) = id and c(1) = g.
We call G connected by smooth arcs if G◦ = G. Moreover we denote by G̃ the group
C∞
(
(I, 0), (G, id)

)
/ ∼, where two such curves c0, c1 are equivalent iff they are smoothly

homotopic relative endpoints in G, i.e. there exists H ∈ C∞(I × I,G) with H(s, 0) = id,
H(s, 1) = c0(1) = c1(1), H(0, t) = c0(t) and H(1, t) = c1(t). Notice that π := ev1 : G̃→ G,
c 7→ c(1), is surjective iff G is connected by smooth arcs. Finally set π1(G) := kerπ.
If G ⊆ Diff∞c (M) is a submanifold then G◦ is the connected component containing id,
π : G̃→ G is the universal covering of G◦ and π1(G) is the first homotopy group of G.

1.2.5. Definition. Let G ⊆ Diff∞(M) be a subgroup, and k ∈ N. We say G acts k-
transitive on M if the following holds: For distinct points x1, . . . , xk ∈ M and distinct
points y1, . . . , yk ∈ M there exists g ∈ G such that g(xi) = yi for all 1 ≤ i ≤ k. A
Lie subalgebra g ⊆ X(M) is said to act infinitesimal k-transitive if for distinct points
x1, . . . , xk ∈M and Yi ∈ TxiM there exists X ∈ g with X(xi) = Yi for all 1 ≤ i ≤ k.

The proof of the following is due to P. W. Michor and C. Vizman, see [KM97].
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1.2.6. Proposition. Let M be a connected manifold of dimension greater than 1. Let
G ⊆ Diff∞c (M) be a subgroup and g ⊆ Xc(M) a Lie subalgebra such that FlXt ∈ G for all
X ∈ g and all t ∈ R. If g acts infinitesimal k-transitive on M then G◦ acts k-transitive
on M .

Proof. Consider

M̃ :=
{
(x1, . . . , xk) : xi 6= xj for i 6= j

}
⊆M × · · · ×M

G acts on M̃ by g · (x1, . . . , xk) :=
(
g(x1), . . . , g(xk)

)
. It is clear that G acts k-transitive on

M iff G acts transitive on M̃ . Notice that M̃ is connected, since we have the assumption
dim(M) > 1. So it suffices to show that the G-orbits on M̃ are open, for then they are
closed too, and connectedness yields that there exists only one orbit. Let (x1, . . . , xk) ∈ M̃
and choose Xi,j ∈ g, 1 ≤ i ≤ k, 1 ≤ j ≤ n such that {Xi,1(xi), . . . , Xi,n(xi)} is a basis of
TxiM for all 1 ≤ i ≤ k and Xi,j(xl) = 0 for l 6= i. Consider the mapping:

f :

k factors︷ ︸︸ ︷
Rn × · · · × Rn → M̃((

t1,1

...
t1,n

)
, . . . ,

(
tk,1

...
tk,n

))
7→
(
Fl
X1,1

t1,1 ◦ · · · ◦ Fl
X1,n

t1,n ◦ · · · ◦ Fl
Xk,1

tk,1
◦ · · · ◦ Fl

Xk,n

tk,n

)
· (x1, . . . , xk)

We have f(0, . . . , 0) = (x1, . . . , xk) and

f(0, . . . , ti,jej, . . . , 0) = Fl
Xi,j

ti,j ·(x1, . . . , xk) =
(
x1, . . . ,Fl

Xi,j

ti,j (xi), . . . , xk
)

where ej ∈ Rn is the j-th unit vector. So ∂
∂ti,j

f(0) =
(
0, . . . , Xi,j(xi), . . . , 0

)
∈ T(x1,...,xk)M̃

and T0f is surjective. Using the inverse function theorem we see that f is a local diffeo-
morphism and so (x1, . . . , xk) is in the interior of the G-orbit through (x1, . . . , xk). Since
(x1, . . . , xk) was arbitrary the G-orbits are open.

1.2.7. Remark. If dim(M) = 1 the statement of proposition 1.2.6 remains true for k = 1.
The proof is the same, since M̃ is connected in this case, too. Easy examples show that
proposition 1.2.6 is false for dim(M) = 1 and k > 1.

1.3 From Perfectness to Simplicity

The following result slightly generalizes a result due to W. Thurston (cf. [Ban97]).

1.3.1. Proposition. Let X be a Hausdorff topological space, U be a basis of the topology
and G ⊆ Homeo(X) be a subgroup of homeomorphisms on X. Assume we have for all
U ∈ U a perfect subgroup GU ⊆ G ∩ HomeoU(X), satisfying:

1. every G-orbit is dense in X (weak transitivity)

2. if V ⊆ U is a covering of X then
⋃
V ∈V GV generates G (fragmentation)

3. if U, V ∈ U , g ∈ G, g(U) ⊆ V then gGUg
−1 ⊆ GV

Then G is simple.
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Proof. Let id 6= g ∈ G. We want to show N (g) = G, where N (g) denotes the normal
subgroup in G generated by g. Since id 6= g we find x ∈ X with g(x) 6= x and by
1 we also find h ∈ G with h(x) 6= x and h(x) 6= g(x). Since X is Hausdorff we can
separate x, g(x), h(x) by open neighborhoods W1,W2,W3 of x, g(x), h(x) respectively. We
let U := W1∩g

−1(W2)∩h
−1(W3). Then U is an open neighborhood of x and U, g(U), h(U)

are pairwise disjoint. We claim

[u, v] = [[u, g], [v, h]] ∀u, v ∈ HomeoU(X) (1.6)

Indeed, since U ∩ g(U) = ∅ and U ∩ h(U) = ∅ we have

[u, g] =





u on U

gu−1g−1 on g(U)

id elsewhere

[v, h] =





v on U

hv−1h−1 on h(U)

id elsewhere

(1.7)

and so (1.6) holds on M \ (g(U)∪ h(U)). Remains to check [[u, g], [v, h]]|g(U)∪h(U) = id but
this follows again from (1.7) and the fact g(U) ∩ h(U) = ∅.

From (1.6) we especially obtain

GU = [GU , GU ] ⊆ [[GU , g], [GU , h]] ⊆ [N (g), G] ⊆ N (g)

Now let y ∈ X be arbitrary. From 1 we obtain a neighborhood Uy ∈ U of y and αy ∈ G
with αy(Uy) ⊆ U . Using 3 we get

GUy ⊆ α−1y GUαy ⊆ α−1y N (g)αy ⊆ N (g)

Since {Uy : y ∈ X} covers X,
⋃
y∈X GUy generates G by 2 and so G ⊆ N (g).

The following is another famous result in this direction, due to D. B. A. Epstein, but
we will not use it in the sequel. See [Eps70] for the completely elementary proof.

1.3.2. Theorem. Let X be a paracompact Hausdorff topological space and G ⊆ Homeo(X)
a subgroup of homeomorphisms on X. Assume there exists a basis U of the topology of X
such that the following conditions (Epstein’s axioms) are satisfied:

1. if U ∈ U and g ∈ G then g(U) ∈ U

2. G acts transitively on U

3. if g ∈ G, U ∈ U and V is an open covering of X then there exist N ∈ N, g1, . . . , gN ∈
G and V1, . . . , VN ∈ V such that g = g1 · · · gN , supp(gi) ⊆ Vi and supp(gi) ∪
gi−1 · · · g1(Ū) 6= X for all 1 ≤ i ≤ N .

Then every non-trivial subgroup H ⊆ G, with [G,G] ⊆ NG(H) := {g ∈ G : gHg−1 ⊆ H},
contains [G,G].

1.3.3. Corollary. In the situation of theorem 1.3.2 the commutator subgroup [G,G] is
simple.

Proof. If H is a non-trivial normal subgroup of [G,G] we have [G,G] ⊆ NG(H) and hence
by theorem 1.3.2 we obtain [G,G] = H.
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1.3.4. Corollary. In the situation of theorem 1.3.2 the commutator subgroup [G,G] is the
minimal normal subgroup of G.

Proof. For a normal subgroup H of G we have [G,G] ⊆ G = NG(H) and hence theo-
rem 1.3.2 yields [G,G] ⊆ H. So any non-trivial normal subgroup contains [G,G].

1.3.5. Remark. The problem about theorem 1.3.2 is that it is not applicable to groups of
diffeomorphisms that preserve e.g. a volume form or a symplectic form since the second
axiom does not hold.

1.4 The Simplicial Set BḠ

Let ∆n := {(t0, . . . , tn) ∈ Rn+1 : 0 ≤ ti ≤ 1,
∑
ti = 1} denote the standard n-simplex and

recall that the mappings δni : ∆n−1 → ∆n, 0 ≤ i ≤ n and σn−1i : ∆n → ∆n−1, 0 ≤ i ≤ n−1,
given by

δni (t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)
σn−1i (t0, . . . , tn) = (t0, . . . , ti + ti+1, . . . , tn)

satisfy the relations:

δn+1j δni = δn+1i δnj−1 0 ≤ i < j ≤ n+ 1
σn−1j σni = σn−1i σnj+1 0 ≤ i ≤ j ≤ n− 1
σnj δ

n+1
i = δni σ

n−1
j−1 0 ≤ i < j ≤ n

σnj δ
n+1
i = δni−1σ

n−1
j 1 ≤ j + 1 < i ≤ n+ 1

σnj δ
n+1
j = σnj δ

n+1
j+1 = id∆n 0 ≤ j ≤ n

For a subgroup G ⊆ Diff∞c (M) we let Sn(G) := C∞(∆n, G) denote the set of smooth
mappings ∆n → Diff∞c (M) that take values in G. Then ∂ni := (δni )

∗ : Sn(G) → Sn−1(G)
and sni := (σni )

∗ : Sn(G)→ Sn+1(G) satisfy the well known relations:

∂ni ∂
n+1
j = ∂nj−1∂

n+1
i 0 ≤ i < j ≤ n+ 1

sni s
n−1
j = snj+1s

n−1
i 0 ≤ i ≤ j ≤ n− 1

∂n+1i snj = sn−1j−1∂
n
i 0 ≤ i < j ≤ n

∂n+1i snj = sn−1j ∂ni−1 1 ≤ j + 1 < i ≤ n+ 1
∂n+1j snj = ∂n+1j+1 s

n
j = idSn(G) 0 ≤ j ≤ n

That means Sn(G) together with sni and ∂
n
i form a simplicial complex, which we will denote

by S(G). A good reference for simplicial complexes is [May75]. In the sequel we will write
∂i resp. si for ∂

n
i resp. sni if no confusion is possible.

1.4.1. Lemma. For any subgroup G ⊆ Diff∞c (M) the simplicial complex S(G) is a Kan
complex. That is, it satisfies the following extension condition: For n + 1 n-simplices
g0, . . . , gk−1, gk+1, . . . , gn+1 which satisfy the compatibility condition ∂igj = ∂j−1gi, 0 ≤ i <
j ≤ n+ 1, i 6= k, j 6= k there exists a (n+ 1)-simplex g such that ∂ig = gi for i 6= k.

Proof. For 1 ≤ i ≤ n we consider the mapping

ri : ∆
n → ∆n−1 ri(t0, . . . , tn) := (t0 + ti, t1, . . . , ti−1, ti+1, . . . , tn)
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and ρi := r∗i : S∗−1(G)→ S∗(G). An easy calculation shows:

∂jρi = ρi−1∂j 1 ≤ j < i
∂iρi = id
∂jρi = ρi∂j−1 i < j

(1.8)

Suppose first the case k = 0, i.e. we have n-simplices g1, . . . , gn+1. Define λ1 := ρ1g1 ∈
Sn+1(G) and inductively

λi := λi−1(ρi∂iλ
−1
i−1)(ρigi) ∈ Sn+1(G)

for 2 ≤ i ≤ n + 1. Here the multiplication and inverse of simplices is point wise, i.e.
(αβ)(t0 . . . , tn) := α(t0, . . . , tn)β(t0, . . . , tn) and α−1(t0, . . . , tb) = α(t0, . . . , tn)

−1. Clearly
this multiplication commutes with the operators si, ∂i and ρi.

We claim that ∂jλi = gj for 1 ≤ j ≤ i ≤ n + 1. We will prove the last statement by
induction on i. For i = 1 this follows immediately from the second equations of (1.8). For
the inductive step we calculate

∂iλi = (∂iλi−1)(∂iρi∂iλ
−1
i−1)(∂iρigi) = (∂iλi−1)(∂iλ

−1
i−1)gi = gi

where we used again (1.8). For 1 ≤ j < i we have

∂jλi = (∂jλi−1)(∂jρi∂iλ
−1
i−1)(∂jρigi) = gj(ρi−1∂j∂iλ

−1
i−1)(ρi−1∂jgi)

= gj(ρi−1∂i−1∂jλ
−1
i−1)(ρi−1∂i−1gj) = gj(ρi−1∂i−1g

−1
j )(ρi−1∂i−1gj) = gj

This ends the proof in the case k = 0, for g := λn+1 has the desired property.
To cope with the case k 6= 0 we define mappings

p : ∆n → ∆n p(t0, . . . , tn) := (tn, t0, . . . , tn−1)

and π := p∗ : S∗(G)→ S∗(G). An easy calculation shows

∂iπ = π∂i+1 0 ≤ i < n
∂nπ = ∂0

(1.9)

We proceed by induction on k. So we have n-simplices g0, . . . , gk−1, gk+1, . . . , gn+1 with
∂igj = ∂j−1gi for 0 ≤ i < j ≤ n + 1, i 6= k, j 6= k. Define fn+1 := g0 and fi := πgi+1 for
0 ≤ i ≤ n, i 6= k−1, i.e. we have n-simplices f0, . . . , fk−2, fk, . . . .fn+1. Using equations (1.9)
we obtain for 0 ≤ i < n+ 1, i 6= k − 1

∂ifn+1 = ∂ig0 = ∂0gi+1 = ∂nπgi+1 = ∂nfi

and for 0 ≤ i < j ≤ n, i 6= k − 1, j 6= k − 1

∂ifj = ∂iπgj+1 = π∂i+1gj+1 = π∂jgi+1 = ∂j−1πgi+1 = ∂j−1fi

So fi satisfy the compatibility conditions for k− 1 and by induction there exists an n+ 1-
simplex f with ∂if = fi for i 6= k − 1. If we define g := (p−1)∗f we get

∂0g = ∂0(p
−1)∗f = ∂n+1f = fn+1 = g0

and for 0 ≤ i ≤ n+ 1, i 6= k

∂ig = ∂i(p
−1)∗f = (p−1)∗∂i−1f = (p−1)∗fi−1 = gi

hence g is the desired extension.



1.4. THE SIMPLICIAL SET BḠ 11

1.4.2. Definition. Consider the left action of G on S(G) by simplicial maps G×Sn(G)→
Sn(G), (h, g) 7→ (µh

−1
)∗g, where µh

−1
: G→ G denotes right multiplication with h−1. Since

∂i and si are G-equivariant we can define a new simplicial set S(BG) := S(G)/G.

1.4.3. Lemma. Let G ⊆ Diff∞c (M) be a group with Lie algebra g ⊆ Xc(M) in the sense
that g ∈ C∞

(
(I, 0), (G, id)

)
⊆ C∞

(
(I, 0), (Diff∞c (M), id)

)
if and only if δrg ∈ Ω1(I; g) ⊆

Ω1(I;Xc(M)), i.e. ġt ∈ g for all t ∈ I (cf. page 3). Then there exists a natural one-to-one
correspondence between

1. Sp(BG)

2. C∞
(
(∆p, e0), (G, id)

)

3. σ ∈ Ω1(∆p; g) satisfying dσ − 1
2
[σ, σ]g = 0

4. dim(M)-codimensional foliations on ∆p ×M , transversal to {t} ×M for all t ∈ ∆
which have the following property: if Yt ∈ Tt∆

p and X ∈ Xc(M) such that (Yt, X) is
tangential to this foliation, then X ∈ g.

[g] ∈ Sp(BG) corresponds to g · g(e0)
−1 ∈ C∞

(
(∆p, e0), (G, id)

)
, to δrg ∈ Ω1(∆p; g) and

to the foliation with leaves {(t, g(t)(x)) : t ∈ ∆p}. If σ ∈ Ω1(∆p; g) then E(t,x) :=
{(Yt, σ(Yt)(x)) : Yt ∈ Tt∆

p} ⊆ T(t,x)(∆
p ×M) is a distribution, transversal to {t} ×M

for all t ∈ ∆p. It is integrable iff dσ − 1
2
[σ, σ]g = 0 and the foliation corresponding to σ is

the foliation tangential to this distribution.

Proof. The correspondence between 1 and 2 is obvious. Notice that the right logarith-
mic derivative δrg does not depend on the representative g of [g] ∈ Sp(BG). For g ∈
C∞
(
(∆p, e0), (Diff∞c (M), id)

)
we have:

g ∈ C∞
(
(∆p, e0), (G, id)

)
⇔ δrg ∈ Ω1(∆p; g)

Indeed if g ∈ C∞
(
(∆p, e0), (G, id)

)
and Yt ∈ Tt∆

p we choose a path c : I → ∆p connecting
e0 and t with c′(1) = Yt. Then

δrg(Yt) = (c∗δrg)(∂t)(1) = δr(g ◦ c)(∂t)(1) ∈ g

for g ◦ c : I → G. Suppose conversely δrg ∈ Ω1(∆p; g) and let t ∈ ∆p. We have to show
g(t) ∈ G. Let again c : I → ∆p be a path from e0 to t. Then δr(g ◦ c) = c∗δrg ∈ Ω1(I; g)
and thus g(t) = (g ◦ c)(1) ∈ G. The correspondence between 2 and 3 now follows from
lemma 1.2.2.

If σ ∈ Ω1(∆p;Xc(M)) then E(t,x) := {(Yt, σ(Yt)(x))} is a dim(M)-codimensional dis-
tribution on ∆p ×M which is transversal to {t} ×M for all t ∈ ∆p. Conversely every
such distribution is of this form. It remains to show that this distribution is integrable iff
dσ − 1

2
[σ, σ]g = 0. Choose a global frame of vector fields Y1, . . . , Yp ∈ X(∆p) and consider

Xi :=
(
Yi, σ(Yi)

)
∈ Xc(∆

p ×M). Then Xi span the distribution and it is integrable if and
only if [Xi, Xj] is tangential to the distribution ∀i, j, i.e.

0 = −σ([Yi, Yj]) + TpM [(Yi, σ(Yi)), (Yj, σ(Yj))]

= −σ([Yi, Yj]) + Yi · σ(Yj)− Yj · σ(Yi) + [σ(Yi), σ(Yj)]

=
(
dσ − 1

2
[σ, σ]g

)
(Yi, Yj)

and since Y1, . . . , Yp is a frame this is equivalent to dσ − 1
2
[σ, σ]g = 0.
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1.4.4. Corollary. For any subgroup G ⊆ Diff∞c (M) the complex S(BG) is a Kan complex.

Proof. Let 0 ≤ k ≤ n+1 and given n+1 n-simplices g0 . . . , gk−1, gk+1, . . . , gn+1 ∈ Sn(BG)
such that ∂igj = ∂j−1gi ∈ Sn−1(BG) for 0 ≤ i < j ≤ n + 1, i 6= k, j 6= k, i.e. ∂igj and
∂j−1gi equal up to right multiplication by some element of G. We claim that there exist
representatives fi ∈ Sn(G) of gi ∈ Sn(BG) with ∂ifj = ∂j−1fi ∈ Sn−1(G) for 0 ≤ i < j ≤
n + 1, i 6= k, j 6= k. To see this suppose first k 6= 0. Then we can choose fj such that
∂0fj = ∂j−1f0 ∈ Sn−1(G) for 1 ≤ j ≤ n + 1, j 6= k. Then for 1 ≤ i < j ≤ n + 1, i 6= k,
j 6= k we get

∂0∂ifj = ∂i−1∂0fj = ∂i−1∂j−1f0 = ∂j−2∂i−1f0 = ∂j−2∂0fi = ∂0∂j−1fi

and since ∂ifj = ∂j−1fj ∈ Sn−1(BG) we obtain ∂ifj = ∂j−1fj ∈ Sn−1(G). If k = 0 one
has to define the representatives fi of gi by fj by ∂1fj = ∂j−1f1 ∈ Sn−1(G). A similar
calculation shows ∂1∂ifj = ∂1∂j−1fi and hence again ∂ifj = ∂j−1fi ∈ Sn−1(G). Since S(G)
is a Kan complex by lemma 1.4.1 we find f ∈ Sn+1(G) such that ∂if = fi ∈ Sn(G) for
i 6= k and especially ∂if = fi = gi ∈ Sn(BG).

If K is a simplicial complex let Cp(K;Z) denote the free abelian group generated by
the p-simplices Kp. Moreover consider the differential

∂ :=
∑p

i=0(−1)
i∂i : Cp(K;Z)→ Cp−1(K;Z)

One easily checks ∂ ◦ ∂ = 0 and so one has a complex:

· · · → C2(K;Z) ∂
−→C1(K;Z) ∂

−→C0(K;Z)→ 0

Its homology is, by definition, the homology of K with values in Z. We will write H∗(K;Z)
for it.

For a Kan complex K one can also define homotopy groups πi(K), see [May75]. For
example π1(K) = {x ∈ K1 : ∂0x = ∂1x}/ ∼, where x ∼ y iff there exists z ∈ K2 such
that ∂1z = x, ∂2z = y and ∂0z = s0∂0x = s0∂0y. In the case K = BG there is only one
0-simplex and we obtain π1(BG) = C∞

(
(∆1, e0), (G, idM)

)
/ ∼, where g ∼ h if and only if

they are smoothly homotopic relative endpoints, i.e. π1(BG) = G̃, the universal covering
of G. By the Huréwitz theorem, which is also valid for Kan complexes (see [May75]), we
thus get:

H1(BG;Z) =
π1(BG)

[π1(BG),π1(BG)]
=

G̃

[G̃, G̃]
= H1(G̃;Z)

If G is connected by smooth arcs then the projection G̃ → G is surjective and so is the
induced mapping G̃/[G̃, G̃] → G/[G,G] too. So perfectness of G̃ implies perfectness of G
and we have shown:

1.4.5. Proposition. If G ⊆ Diff∞c (M) is a group of diffeomorphisms which is connected

by smooth arcs then G̃ is perfect if and only if H1(BG;Z) = 0. In this situation G is
perfect too.

1.4.6. Remark. Since there is only one 0-simplex in BG and since ∂ = 0 : C1(BG;Z) →
C0(BG;Z) we have H0(BG;Z) = Z for every G.
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1.4.7. Remark. If G = {id} then C∗(BG;Z) is

· · · → Z 0
−→Z id

−→ Z 0
−→Z id

−→ Z 0
−→Z→ 0

and so H0(BG;Z) = Z and Hp(BG;Z) = 0 for p > 0.

1.4.8. Lemma. Let G ⊆ Diff∞c (M) be a subgroup and let f ∈ G◦. Then conjf : G → G,

conjf (g) = fgf−1 induces a simplicial mapping (conjf )∗ : S∗(BG)→ S∗(BG) and we have

(conjf )∗ = id : H∗(BG;Z)→ H∗(BG;Z).

Proof. If h ∈ G and g ∈ Sp(BG) then

conjf (gh) = fghf−1 = fgf−1fhf−1 = (conjf g)(fhf
−1) (1.10)

and thus conjf induces a simplicial mapping (conjf )∗ : S∗(BG) → S∗(BG). Moreover
left multiplication µf : G → G is G-equivariant, so it also induces a simplicial mapping
(µf )∗ : S∗(BG) → S∗(BG) and we have (µf )∗ = (conjf )∗ : S∗(BG) → S∗(BG). Since
f ∈ G◦ we know that µf is homotopic to µid = id. Consequently there exists a chain
homotopy H from µf : C∗(G;Z) → C∗(G;Z) to id in singular homology. Recall that H
is constructed by considering ∆p × I → G, (t, s) 7→ µf(s)g(t) together with a simplicial
decomposition of ∆p × I. Now the latter can be chosen to consist of affine (smooth)
simplices, cf. figure 2.5 on page 28. So H maps smooth simplices to smooth simplices.
Moreover, since µf is G-equivariant, H is G-equivariant too and hence descends to a
homotopy H : C∗(BG;Z)→ C∗+1(BG;Z) from (conjf )∗ = (µf )∗ to id = (µid)∗.

1.4.9. Lemma. Let M1,M2 be two manifolds and let Gi ⊆ Diff∞c (Mi), i = 1, 2. Con-
sider the disjoint union M := M1 tM2 and G := G1 × G2 ⊆ Diff∞c (M). If k ≥ 1 and
Hp(BGi;Z) = 0 for all 1 ≤ p < k then we have:

Hk(BG;Z) ∼= Hk(BG1;Z)⊕Hk(BG2;Z)

Proof. Arguments similar to the one in the proof of lemma 1.4.8 show that the Eilenberg-
Zilber theorem also holds for smooth simplices and descends to C∗(BG;Z); that is, the
complex C∗(BG1;Z) ⊗ C∗(BG2;Z) computes H∗(BG;Z). From homological algebra we
obtain

Hk(BG;Z) ∼= Hk(BG1;Z)⊗H0(BG2;Z)⊕H0(BG1;Z)⊗Hk(BG2;Z)
∼= Hk(BG1;Z)⊕Hk(BG2;Z)

since we have H0(BGi;Z) = Z, Hp(BGi;Z) = 0 for 1 ≤ p < k, and so there is no torsion
involved.

For a subset K ⊆M and G ⊆ Diff∞c (M) we denote by GK the subgroup of G consisting
of the diffeomorphisms having support in K. Moreover if U is a set of subsets of M then
SU(BG) denotes the simplicial subcomplex of S(BG) consisting of simplices which have
support in one element of U . Let CUp (BG;Z) denote the p-chains of this complex and

HU
∗ (BG;Z) its homology.

1.4.10. Lemma. Let U be a set of sets in M . Then lim−→KH
U
∗ (BGK ;Z) = HU

∗ (BG;Z),
where the limit is taken over all compact subsets K ⊆M .
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Proof. Obviously we have lim−→KC
U
∗ (BGK ;Z) = CU∗ (BG;Z) as chain complexes, and since

the homology functor commutes with inductive limits we obtain the result.

Let sd : C∗(G;Z) → C∗(G;Z) be the barycentric subdivision and let H : C∗(G;Z) →
C∗+1(G;Z) be a natural chain homotopy satisfying sd−id = ∂H +H∂, such that H(id∆n)
consists of affine simplices. Since sd and H are natural they are G-equivariant and support
shrinking. Hence they induce mappings sd : CU∗ (BG;Z)→ CU∗ (BG;Z), H : CU∗ (BG;Z)→
CU∗+1(BG;Z) for every set U of sets in M .

We equip the standard simplices ∆p := {(t0, · · · , tp) :
∑p

i=0 ti = 1} ⊆ Rp+1 with the
usual Riemannian metric. Further we define the disk bundle of ∆p to be D∆p := {X ∈
T∆p : ‖X‖ ≤ 1}. For a neighborhood of zero E ⊆ Xc(M) we now define

SE,Up (BG) := {g ∈ SUp (BG) : (δrg)(D∆p) ⊆ E},

where we consider δrg : T∆p → Xc(M). Since every affine mapping l : ∆p → ∆q is
a contraction, i.e. ‖T l · X‖ ≤ ‖X‖ for all X ∈ T∆p, CE,U∗ (BG;Z) is a sub complex of
CU∗ (BG;Z) and the mappings sd and H preserve this sub complex. Moreover there exist

0 < bp < 1 independent of E and U such that sd
(
CE,Up (BG;Z)

)
⊆ C

bpE,U
p (BG;Z).

1.4.11. Lemma. Let U be a set of sets in M and E ⊆ Xc(M) be a neighborhood of zero.
Then for every simplex g ∈ SUp (BG) there exists m ∈ N such that sdm(g) ∈ CU ,Ep (BG;Z).
Proof. We may assume that E is convex. Consider σ := δrg as smooth mapping T∆p →
Xc(M). D∆p is a compact set and so σ(D∆p) ⊆ Xc(M) is compact and therefore it is
absorbed by E , i.e. there exists N > 0 such that σ(D∆p) ⊆ NE , i.e. g ∈ CNE,U

p (BG;Z). If
we choose m such that bmp N ≤ 1 we obtain sdm(g) ∈ C

bmp NE,U
p (BG;Z) ⊆ CE,Up (BG;Z).

The next proposition shows that the homology of S(BG), more generally SU(BG), can
be computed via small simplices. Therefore it is sometimes called local homology of G.

1.4.12. Proposition. For every set U of sets in M and for every neighborhood of zero
E ⊆ Xc(M) the inclusion induces an isomorphism in homology HE,U

∗ (BG;Z) ∼= HU
∗ (BG;Z).

Proof. For every chain g ∈ CU∗ (BG;Z) let m(g) ∈ N0 denote the smallest integer such that
sdm(g)(g) ∈ CE,U∗ (BG;Z). Notice that such an integer exists by lemma 1.4.11, m(∂g) ≤
m(g) and for g ∈ CE,U∗ (BG;Z) we have m(g) = 0. Now we define H̄ : CU∗ (BG;Z) →
CU∗+1(BG;Z) by H̄(g) :=

∑m(g)−1
j=0 H sdj(g). Using sd−id = ∂H +H∂ we obtain

∂H̄(g) =
∑

0≤j<m(g)

sdj+1(g)−
∑

0≤j<m(g)

sdj(g)−
∑

0≤j<m(g)

H∂ sdj(g)

= sdm(g)(g)− g −
∑

0≤j<m(g)

H sdj(∂g)

H̄∂(g) =
∑

0≤j<m(∂g)

H sdj(∂g)

and this yields:

g + ∂H̄(g) + H̄∂(g) = sdm(g)(g)−
∑

m(∂g)≤j<m(g)

H sdj(∂g) ∈ CE,U∗ (BG;Z)

Let i : CE,U∗ (BG;Z) → CU∗ (BG;Z) denote the inclusion and define r : CU∗ (BG;Z) →
CE,U∗ (BG;Z) by r := id + ∂H̄ + H̄∂. Both are chain maps, r ◦ i = id and H̄ is a chain
homotopy i ◦ r ' id. So r induces an inverse of i in homology.



1.5. THE TORUS 15

1.5 The Torus

1.5.1. Definition. For k = (k1, . . . , kn) ∈ Zn and γ = (γ1, . . . , γn) ∈ T n := Rn/Zn let
|k| :=

∑n
i=1 |ki| ∈ Z and 〈k, γ〉 := π

(∑n
i=1 kiγ̃i

)
∈ T 1, where π : R → T 1 denotes the

natural projection and γ̃ ∈ Rn with π(γ̃i) = γi. Obviously this doesn’t depend on the

choice of γ̃. Further for δ ∈ T 1 we define ||δ|| := minn∈Z |δ̃ − n|, where π(δ̃) = δ. This
doesn’t depend on the choice of δ̃.

We say γ ∈ T n satisfies an diophantine equation iff there exists α > 0 and C > 0 such
that

‖〈k, γ〉‖ ≥
C

|k|α
∀k ∈ Zn \ 0.

The existence of γ ∈ T n satisfying a diophantine equation is guaranteed by the following
result due to Kintchine, see [Lan71].

1.5.2. Proposition. The set γ ∈ T n satisfying a diophantine equation has measure 1 with
respect to the Haar measure on T n.

The following theorem is due to M. R. Herman, see [Her73]. His proof uses a deep
Nash-Moser-Sergeraert implicit function theorem, see [Ser72].

1.5.3. Theorem. Let γ ∈ T n satisfy an diophantine equation, and consider the following
smooth mapping:

Φγ : Diff∞(T n)◦ × T
n → Diff∞(T n)◦

(f, λ) 7→ Rλ ◦ f
−1 ◦Rγ ◦ f,

where Rβ denotes rotation on T n by β ∈ T n. Then there exists a C∞-open neighborhood U
of Rγ ∈ Diff∞(T n)◦ and a smooth mapping s : U → Diff∞(T n)◦×T n satisfying Φγ ◦s = idU
and s(Rγ) = (id, 0).

In the sequel we consider T n as a subgroup of Diff∞(T n)◦ via β 7→ Rβ. Then we also

have Rn ∼= T̃ n ⊆ D̃iff
∞
(T n)◦. Further for every subset S of a group G we denote by NG(S)

the normal subgroup S generates in G.

1.5.4. Corollary. We have N (T̃ n) := N
D̃iff

∞
(Tn)◦

(T̃ n) = D̃iff
∞
(T n)◦.

Proof. By proposition 1.5.2 we can choose γ ∈ T n satisfying a diophantine equation. Using
theorem 1.5.3 we obtain for every f ∈ C∞

(
(I, 0), (Diff∞(T n)◦, id)

)
, sufficiently close to id,

s1 = pr1 ◦s◦Rγf ∈ C
∞((I, 0), (Diff∞(T n)◦, id)

)
and s2 = pr2◦s◦Rγf ∈ C

∞((I, 0), (T n, 0)
)

such that Rγf = Rs2s
−1
1 Rγs1, i.e. f = Rs2 [R

−1
γ , s−11 ]. Let α : I → T n be a path connecting

0 with γ. Then (s, t) 7→ [R−1α(s+(1−s)t), s1(t)
−1] is a homotopy relative endpoints from t 7→

[R−1α(t), s1(t)
−1] to t 7→ [R−1γ , s1(t)

−1], and we obtain:

f = Rs2 [t 7→ R−1α(t), s
−1
1 ] ∈ N (T̃ n) ⊆ D̃iff

∞
(T n)◦

The f which are close to id generate C∞
(
(I, 0), (Diff∞(T n)◦, id)

)
as a group, since they con-

tain an open neighborhood of id. Consequently D̃iff
∞
(T n)◦ ⊆ N (T̃ n), the other inclusion

is trivial.
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1.5.5. Corollary. D̃iff
∞
(T n)◦ is perfect.

Proof. We have to show D̃iff
∞
(T n)◦ = [D̃iff

∞
(T n)◦, D̃iff

∞
(T n)◦]. Consider the action of

PGL(2,C) := GL(2,C)/C∗, where C∗ := C \ 0, on CP1 given by

PGL(2,C)× CP1 → CP1

(A, [v]) 7→ [Av]

If one thinks of CP1 as C ∪ {∞} this becomes the well known action by Möbius transfor-
mations

M : PGL(2,C)× C ∪ {∞} → C ∪ {∞}

(( a bc d ) , z) 7→
az + b

cz + d

Let H+ := {z ∈ C : =(z) > 0} denote the upper half plane. It is easy to see that
the subgroup of PGL(2,C) mapping H+ onto H+ is PGL(2,R) := GL(2,R)/R∗. Next
recall, that the Möbius transformation z 7→ z−i

z+i
= M( 1 −i1 i )

(z) maps H+ onto D2. So

G := ( 1 −i1 i ) PGL(2,R) ( 1 −i1 i )
−1
⊆ PGL(2,C) is the subgroup of Möbius transformations

mapping D2 onto D2. Certainly G preserves ∂D2 = T 1, and so we have found a subgroup
G ⊆ Diff∞(T 1)◦ which is isomorphic to PGL(2,R). If θ ∈ T 1 ⊆ C we have Rθ = M( θ 0

0 1 )
and so T 1 ⊆ G ⊆ Diff∞(T 1)◦. Therefore we have T n ⊆ Gn ⊆ Diff∞(T n)◦, where Gn :=
G × · · · × G. It is well known, see [GOV93] for example, that G̃ is perfect, and therefore

G̃n ∼= (G̃)n is perfect too. From corollary 1.5.4 we thus obtain:

D̃iff
∞
(T n)◦ = N (T̃ n) ⊆ N (G̃n) = N ([G̃n, G̃n])

⊆ N ([D̃iff
∞
(T n)◦, D̃iff

∞
(T n)◦]) = [D̃iff

∞
(T n)◦, D̃iff

∞
(T n)◦]

The other inclusion is trivial.

1.5.6. Corollary. H1

(
BDiff

∞
(T n);Z

)
= 0 and Diff∞(T n)◦ is perfect too.

Proof. This follows immediately from proposition 1.4.5 and corollary 1.5.5.

1.6 The Foliated Torus

Let F be a regular foliation ofM . Then we denote by Diff∞c (M,F) the group of compactly
supported, leaf preserving diffeomorphisms of M . In this section we consider the torus
Tm × T n with the foliation F having {pt} × T n as leaves. Then we have

Diff∞(Tm × T n,F) ∼= C∞
(
Tm,Diff∞(T n)

)

as groups, where the multiplication on the latter group is point wise. Recall that we
considered T n as subgroup of Diff∞(T n), via α 7→ Rα, the rotation by α, and define a
subgroup:

H := C∞(Tm, T n)◦ ⊆ C∞
(
Tm,Diff∞(T n)

)
◦
∼= Diff∞(Tm × T n,F)◦

In this situation we have the following generalization of corollary 1.5.4.
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1.6.1. Corollary. N (H̃) := N
D̃iff

∞
(Tm×Tn,F)◦(H̃) = D̃iff

∞
(Tm × T n,F)◦

Proof. Choose γ ∈ T n satisfying a diophantine equation. Let

f ∈ C∞
(
(I, 0), (Diff∞(Tm × T n,F), id)

)

be sufficiently close to id and consider it as mapping

f ∈ C∞
(
(I × Tm, {0} × Tm), (Diff∞(T n), id)

)
.

From theorem 1.5.3 we obtain s1 = pr1◦s◦Rγf ∈ C
∞((I×Tm, {0}×Tm), (Diff∞(T n), id)

)

and s2 = pr2 ◦s◦Rγf ∈ C
∞((I×Tm, {0}×Tm), (T n, 0)

)
such that Rγf = Rs2s

−1
1 Rγs1, i.e.

f = Rs2 [R
−1
γ , s−11 ]. As we did in the proof of corollary 1.5.4 we choose a path α connecting

0 with γ in T n and show that [R−1γ , s−11 ] ∈ C∞
(
(I × Tm, {0} × Tm), (Diff∞(T n), id)

)
is

homotopic relative ∂(I × Tm) to [R−1α , s−11 ]. So we get:

f = Rs2 [R
−1
α , s−11 ] ∈ N (H̃) ⊆ D̃iff

∞
(Tm × T n,F)◦

since Rs2 , Rα ∈ H̃. This shows D̃iff
∞
(Tm × T n,F)◦ ⊆ N (H̃). The other inclusion is

trivial.

1.6.2. Lemma. Let G be a n-dimensional, perfect Lie group. Then there exists an open
neighborhood U of e ∈ G, h1, . . . , hn ∈ G and smooth mappings si : U → G, 1 ≤ i ≤ n,
such that

g = [s1(g), h1][s2(g), h2] · · · [sn(g), hn] ∀g ∈ U

and si(e) = e.

Proof. Let h ∈ G and consider the mapping κh : G → G, κh(g) := [g, h]. An easy
calculation shows Teκh = id− Ad(h). For h1, . . . , hn ∈ G we consider the mapping:

κ(h1,...,hn) : G
n → G (g1, . . . , gn) 7→ [g1, h1] · · · [gn, hn]

Its derivative at (e, . . . , e) is:

T(e,...,e)κ(h1,...,hn)(X1, . . . , Xn) = (id− Ad(h1))X1 + · · ·+ (id− Ad(hn))Xn

It remains to show that we can choose hi such that T(e,...,e)κ(h1,...,hn) : gn → g is onto.
Then everything follows from the implicit function theorem. Since g is perfect we find
X1, . . . , Xn ∈ g and Y1, . . . , Yn ∈ g such that [X1, Y1], . . . , [Xn, Yn] is a basis of g. We have:

∂
∂ti
|0
(
id− Ad(exp(tiYi))

)
(Xi) = −[Yi, Xi] = [Xi, Yi]

If we choose ti 6= 0 sufficiently small and let hi := exp(tiYi) then (id − Ad(hi))(Xi) is a
basis of g, i.e.

(id− Ad(h1))(g) + · · ·+ (id− Ad(hn))(g) = g

and so T(e,...,e)κ(h1,...,hn) is onto.

1.6.3. Corollary. D̃iff
∞
(Tm × T n,F)◦ is perfect.
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Proof. In the proof of corollary 1.5.5 we constructed a finite dimensional, connected, perfect
Lie group Gn with T n ⊆ Gn ⊆ Diff∞(T n). Consider now the subgroup:

K := C∞(Tm, Gn)◦ ⊆ C∞
(
Tm,Diff∞(T n)

)
◦
∼= Diff∞(Tm × T n,F)◦

Then we have H ⊆ K ⊆ Diff∞(Tm×T n,F)◦ and thus H̃ ⊆ K̃ ⊆ D̃iff
∞
(Tm×T n,F)◦. We

claim that K̃ is perfect. Indeed we have

K̃ ∼= C∞
(
(I, 0), C∞(Tm, Gn)

)
/ ∼∂I∼= C∞

(
(I × Tm, {0} × Tm), (Gn, e)

)
/ ∼∂(I×Tm)

and it follows from lemma 1.6.2 that the latter is perfect. From corollary 1.6.1 we now
obtain:

D̃iff
∞
(Tm × T n,F)◦ = N (H̃) ⊆ N (K̃) = N ([K̃, K̃])

⊆ N
(
[D̃iff

∞
(Tm × T n,F)◦, D̃iff

∞
(Tm × T n,F)◦]

)

= [D̃iff
∞
(Tm × T n,F)◦, D̃iff

∞
(Tm × T n,F)◦]

The other inclusion is trivial.

Corollary 1.6.3 is due to T. Rybicki, see [Ryb95a]. He proved a slightly stronger (foli-
ated) version of theorem 1.5.3 to show it.

1.6.4. Corollary. H1

(
BDiff

∞
(Tm × T n,F);Z

)
= 0 and Diff∞(Tm × T n,F)◦ is perfect

too.

Proof. This is an immediate consequence of proposition 1.4.5 and corollary 1.6.3.

1.6.5. Remark. Notice that Diff∞(Tm × T n,F) is not simple. For example the subgroup
fixing the points of one distinguished leaf is a proper, normal subgroup.



2. Fragmentation and Deformation

2.1 Modified Subdivision

For N ∈ N let Dn
N := {(m0, . . . ,mn) ∈ Nn+1

0 :
∑n

i=0mi = N}. See figure 2.1 on page 19
for low dimensional special cases. If λ ∈ ∆N−1 and m ∈ Dn

N we define τλm ∈ ∆n by

Figure 2.1: The index set Dn
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The bold dots represent the elements of D2
4. The lines

are just for convenience, they have no interpretation.

τλm := (λ0 + · · ·+ λm0−1︸ ︷︷ ︸
m0

, λm0 + · · ·+ λm0+m1−1︸ ︷︷ ︸
m1

, . . . , λm0+···+mn−1 + · · ·+ λm0+···+mn−1︸ ︷︷ ︸
mn

)

See figure 2.2 on page 20 for low dimensional special cases. Moreover we let

AnN := {(m,π) ∈ Dn
N ×Sn : m+ fπ(1) + · · ·+ fπ(j) ∈ D

n
N ∀0 ≤ j ≤ n}

where fi := ei − ei−1 and ei ∈ Rn+1 denote the unit vectors, i.e. the vertexes of ∆n (cf.
figure 2.3 on page 20). If (m,π) ∈ An

N we define τλ(m,π) : ∆n → ∆n by τλ(m,π)(ej) :=

τλm+fπ(1)+...+fπ(j)
for 0 ≤ j ≤ n and extend it affinely. This is shown in two special cases in

figure 2.4 on page 21.

2.1.1. Lemma. Let Bn
N := AnN × {0, . . . , n}, C

n
N := AnN × {0, . . . , n + 1} and for α =

(m,π, i) ∈ Cn
N we define δα := δi, sgn(α) := (−1)i sgn(π), τλα := τλ(m,π).

Then there exist injective mappings bnN : Cn
N → Bn+1

N and cnN : Bn
N \ b

n−1
N (Cn−1

N ) →
Bn
N \ b

n−1
N (Cn−1

N ) such that

δα ◦ τ
λ
α = τλbnN (α) ◦ δbnN (α) : ∆

n → ∆n+1 ∀α ∈ Cn
N (2.1)

τλα ◦ δα = τλcnN (α) ◦ δcnN (α) : ∆
n−1 → ∆n ∀α ∈ Bn

N \ b
n−1
N (Cn−1

N ) (2.2)

19
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Figure 2.2: The points τλ(m,π) ∈ ∆n
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Figure 2.3: The index set An
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The oriented 2-simplices represent the elements of A2
4.

Note that
(
(4, 0, 0), id

)
∈ A2

4, but
(
(4, 0, 0), (12)

)
/∈ A2

4.

holds for every λ ∈ ∆N−1. Moreover we have cnN ◦ c
n
N = id, sgn ◦bnN = sgn and sgn ◦cnN =

− sgn. Especially cnN has no fixed points.

Proof. We regard Sn ⊂ Sn+1, i.e. π ∈ Sn iff π(n+ 1) = n+ 1. Next we define

bnN : Zn+1 ×Sn × {0, . . . , n+ 1} 7→ Zn+2 ×Sn+1 × {0, . . . , n+ 1}

(m,π, 0) 7→ (δ0m− f1, (1 · · ·n+ 1) ◦ π ◦ (1 · · ·n+ 1)−1, 0)

(m,π, i) 7→ (δim, (i · · ·n+ 1) ◦ π ◦ (π−1(i) · · ·n+ 1)−1, π−1(i))

and

cnN : Zn+1 ×Sn × {0, . . . , n} → Zn+1 ×Sn × {0, . . . , n}

(m,π, 0) 7→ (m+ fπ(1), π ◦ (1 · · ·n), n)

(m,π, i) 7→ (m,π ◦ (ii+ 1), i)

(m,π, n) 7→ (m− fπ(n), π ◦ (1 · · ·n)
−1, 0)
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Figure 2.4: The simplices τλ(m,π)
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The oriented triangles represent the image of the sim-
plices τλ((4,0,0),id), τ

λ
((3,1,0),id), . . . in ∆

2, again for λ =

( 18 ,
1
8 ,

1
4 ,

1
2 ) ∈ ∆

4−1 = ∆3.

It is clear that cnN ◦ c
n
N = id, especially cnN is injective. It is easy to see that bnN is injective.

Moreover one readily checks that sgn ◦bnN = sgn and sgn ◦cnN = − sgn.
Next we check bnN(C

n
N) ⊆ Bn+1

N . If (m,π, 0) ∈ Cn
N then m0 ≥ 1 and hence δ0m − f1 ∈

Dn+1
N . Moreover if π′ := (1 · · ·n+ 1) ◦ π ◦ (1 · · ·n+ 1)−1 we obtain for 1 ≤ j ≤ n+ 1

δ0m− f1 + fπ′(1) + · · ·+ fπ′(j) = δ0m− f1 + f1 + fπ(1)+1 + · · ·+ fπ(j−1)+1

= δ0(m+ fπ(1) + · · · fπ(j−1)) ∈ D
n+1
N

and so bnN(m,π, 0) ∈ B
n+1
N . Now let (m,π, i) ∈ Cn

N with 1 ≤ i ≤ n+ 1. One checks

δifπ(j) = fπ′(j) 1 ≤ j < π−1(i)

δifπ(j) = fπ′(j+1) + fπ′(j) j = π−1(i)

δifπ(j) = fπ′(j+1) π−1(i) < j ≤ n

where π′ := (i · · ·n+1)◦π◦(π−1(i) · · ·n+1)−1. It follows immediately from these equations
that δim+ fπ′(1) + · · ·+ fπ′(j) ∈ D

n+1
N for j 6= π−1(i). Moreover

δim+ fπ′(1) + · · · fπ′(π−1(i)) = δi(m+ fπ(1) + · · ·+ fπ(π−1(i)−1)) + fi ∈ D
n+1
N

for (m+ fπ(1) + · · ·+ fπ(π−1(i)−1))i−1 ≥ 1 since m+ fπ(1) + · · ·+ fπ(π−1(i)−1) + fi ∈ D
n
N . So

we have shown that bnN(m,π, i) ∈ B
n+1
N .

The most difficult part is to show that cnN(B
n
N \ b

n−1
N (Cn−1

N )) ⊆ Bn
N \ b

n−1
N (Cn−1

N ). We
do this by showing

cnN(B
n
N) ∩ b

n−1
N (Cn−1

N ) = ∅ and Bn
N \ (c

n
N)
−1(Bn

N) ⊆ bn−1N (Cn−1
N ).

We first show cnN(B
n
N)∩ b

n−1
N (Cn−1

N ) = ∅: Let (m,π, 0) ∈ Bn
N and suppose that there exists

(m′, π′, i′) ∈ Cn−1
N such that

bn−1N (m′, π′, i′) = cnN(m,π, 0) = (m+ fπ(1), π ◦ (1 · · ·n), n)
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Then i′ = n, π(1) = n, δnm
′ = m + fn but the latter is a contradiction. Next let

(m,π, n) ∈ Bn
N and suppose there exists (m′, π′, i′) ∈ Cn−1

N such that

bn−1N (m′, π′, i′) = cnN(m,π, n) = (m− fπ(n), π ◦ (1 · · ·n)
−1, 0)

Then i′ = 0, π(n) = 1, m − f1 = δ0m
′ − f1 hence m = δ0m

′ but this contradicts the fact
that (m,π) ∈ An

N . At last let (m,π, i) ∈ Bn
N and suppose there exists (m′, π′, i′) ∈ Cn−1

N

such that
bn−1N (m′, π′, i′) = cnN(m,π, i) = (m,π ◦ (i, i+ 1), i)

Then π′−1(i′) = i, π(i+ 1) = i′ and π(i) = i′ + 1. So

0 ≤ (m+ fπ(1) + · · ·+ fπ(i−1) + fi′+1)i′ = mi′ − 1

and we obtain mi′ ≥ 1, but this contradicts m = δi′m
′.

Next we show Bn
N \ (c

n
N)
−1(Bn

N) ⊆ bn−1N (Cn−1
N ): Let (m,π, 0) ∈ Bn

N and suppose
cnN(m,π, 0) = (m + fπ(1), π ◦ (1 · · ·n), n) /∈ Bn

N . We show π(1) = 1. Suppose conversely
π(1) 6= 1. For 1 ≤ j ≤ n we have m+ fπ(1) + · · · fπ(j) ∈ D

n
N hence

m+ en − e0 + eπ(1) − eπ(1)−1 = m+ fπ(1) + · · ·+ fπ(n) + fπ(1) /∈ D
n
N

and thus mπ(1)−1 = 0. On the other hand we have 0 ≤ (m + fπ(1))π(1)−1 = mπ(1)−1 − 1 a
contradiction. Since m+ en− e0 ∈ D

n
N and m+ en− e0 + e1− e0 /∈ D

n
N we obtain m0 = 1.

So we define m′ := pr0(m + f1) ∈ D
n−1
N and π′ := (1 · · ·n)−1 ◦ π ◦ (1 · · ·n) ∈ Sn−1, where

pri : Zn+1 → Zn forgets about the i-th component. Obviously we have bn−1N (m′, π′, 0) =
(m,π, 0) and it remains to show that (m′, π′, 0) ∈ Cn−1

N , i.e. (m′, π′) ∈ An−1N . But for
0 ≤ j ≤ n− 1 we have

m′ + fπ′(1) + · · ·+ fπ′(j) = m′ + fπ(2)−1 + · · ·+ fπ(j+1)−1

= pr0(m+ f1 + fπ(2) + · · ·+ fπ(j+1)) ∈ D
n−1
N

since (m+ f1 + fπ(2) + · · ·+ fπ(j+1))0 = 0.
Next consider the case (m,π, n) ∈ Bn

N and suppose cnN(m,π, n) = (m − fπ(n), π ◦
(1 · · ·n)−1, 0) /∈ Bn

N . For 1 ≤ j ≤ n− 1 we have m− fπ(n) + fπ(n) + fπ(1) + · · ·+ fπ(j) ∈ D
n
N

and so m− fπ(n) /∈ D
n
N hence mπ(n) = 0. We have m− fπ(n)+ en− e0 ∈ D

n
N and by looking

at the π(n)-th coordinate we get π(n) = n and mn = 0. We define π′ := π ∈ Sn−1 and
m′ := prn(m) ∈ Dn−1

N . Obviously we have bn−1N (m′, π′, n) = (m,π, n) and so it remains to
show (m′, π′, n) ∈ Cn−1

N , i.e. (m′, π′) ∈ An−1N . But for 0 ≤ j ≤ n− 1 we have

m′ + fπ′(1) + · · ·+ fπ′(j) = prn(m+ fπ(1) + · · ·+ fπ(j)) ∈ D
n−1
N

since (m+ fπ(1) + · · ·+ fπ(j))n = 0.
Consider now the last case (m,π, i) ∈ Bn

N and suppose cnN(m,π, i) = (m,π◦(i, i+1), i) /∈
Bn
N . One easily sees m + fπ(1) + · · · + fπ(i−1) + fπ(i+1) /∈ D

n
N , m + fπ(1) + · · · + fπ(i−1) +

fπ(i+1) + fπ(i) ∈ Dn
N and therefore we obtain π(i + 1) − 1 = π(i) and mπ(i) = 0. We let

π′ := (π(i) · · ·n)−1 ◦ π ◦ (i · · ·n) ∈ Sn−1, m′ := prπ(i)(m) ∈ Dn−1
N and i′ := π(i). Then

we obviously have bn−1N (m′, π′, i′) = (m,π, i) and it remains to show (m′, π′, i′) ∈ Cn−1
N , i.e.

(m′, π′) ∈ An−1N , but this follows easily from the equations

prπ(i)(fπ(j)) = fπ′(j) 1 ≤ j < i

prπ(i)(fπ(j)) = fπ′(j−1) i+ 1 < j ≤ n

prπ(i)(fπ(i) + fπ(i+1)) = fπ′(i)
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and the fact that the π(i)-th coordinates of fπ(j) for j 6= i, i+ 1 and fπ(i) + fπ(i+1) are 0.
Since the mappings in equations (2.1) and (2.2) are affine it suffices to check them on

the vertexes ej ∈ ∆n, resp. ej ∈ ∆n−1, but these are now easy calculations.

2.1.2. Definition. For N ∈ N we let λ := ( 1
N
, . . . , 1

N
) ∈ ∆N−1 and

dnN :=
∑

(m,π)∈An
N

sgn(π)τλ(m,π) ∈ Cn(∆
n;Z)

For any topological space we define the modified subdivision

sdN : C∗(X;Z)→ C∗(X;Z)

on a n-simplex σ : ∆n → X by sdN(σ) := σ∗(dnN) and extend it Z-linear.

2.1.3. Theorem. For any topological space X the modified subdivision sdN : C∗(X;Z)→
C∗(X;Z) is a chain map natural in X and it is natural chain homotopic to the identity.

Proof. Let f : X → Y be continuous and let σ : ∆n → X be a simplex. Then we have

(sdN ◦f∗)(σ) = sdN(f ◦ σ) = (f ◦ σ)∗d
n
N = f∗σ∗d

n
N = (f∗ ◦ sdN)(σ)

and so sdN is natural.
The most difficult part is to show that sdN is a chain map. So let σ : ∆n → X be a

simplex. Then (∂ ◦ sdN)(σ) = ∂σ∗dnN = σ∗∂dnN and

(sdN ◦∂)(σ) =
n∑

i=0

(−1)i sdN(σ ◦ δi) = σ∗
( n∑

i=0

(−1)i sdN(δi)
)
= σ∗

( n∑

i=0

(−1)i(δi)∗d
n−1
N

)

so it remains to show ∂dnN =
∑n

i=0(−1)
i(δi)∗d

n−1
N ∈ Cn−1(∆n;Z). Using lemma 2.1.1 we

obtain

∂dnN =
n∑

i=0

(−1)i
∑

(m,π)∈An
N

sgn(π)τλ(m,π) ◦ δi =
∑

α∈Bn
N

sgn(α)τλα ◦ δα

where λ = ( 1
N
, . . . , 1

N
) ∈ ∆N−1, and

n∑

i=0

(−1)i(δi)∗d
n−1
N =

n∑

i=0

(−1)i
∑

(m,π)∈An−1
N

sgn(π)δi ◦ τ
λ
(m,π) =

∑

α∈Cn−1
N

sgn(α)δα ◦ τ
λ
α

=
∑

α∈Cn−1
N

sgn(bn−1N (α))τλ
bn−1
N (α)

◦ δbn−1
N (α)

=
∑

α∈bn−1
N (Cn−1

N )

sgn(α)τλα ◦ δα

For the last equation we used the fact that bn−1N is injective. It now remains to show that

∑

α∈Bn
N\b

n−1
N (Cn−1

N )

sgn(α)τλα ◦ δα = 0
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but this follows from the fact that cnN is an involution on the set Bn
N \ b

n−1
N (Cn−1

N ) without
fixed points, equation (2.2) and sgn ◦cnN = − sgn.

The proof that sdN is natural chain homotopic to the identity is standard and uses the
method of acyclic models. Notice first that sdN = id : C0(∆

0;Z) → C0(∆
0;Z). So we

define HN
j := 0 : Cj(X;Z) → Cj+1(X;Z) for j ≤ 0. Then HN

j is clearly natural and we
have ∂HN

j +Hj−1∂ = sdN −id for j ≤ 0.
As usual we proceed by induction on j. Suppose we already have HN

j : Cj(X;Z) →
Cj+1(X;Z), natural in X satisfying ∂HN

j +HN
j−1∂ = sdN −id. Using the last equation we

obtain
∂(sdN −id−H

N
j ∂) = ∂ sdN −∂ − (sdN −id−H

N
j−1∂)∂ = 0

for sdN is a chain map. Especially for id∆j+1 ∈ Cj+1(∆
j+1;Z) we have ∂(sdN −id −

HN
j ∂)(id∆j+1) = 0 and since Hj+1(∆

j+1;Z) = 0 there exists sNj+1 ∈ Cj+2(∆
j+1;Z) such that

∂sNj+1 = (sdN −id−H
N
j ∂)(id∆j+1). Notice that we can choose sNj+1 such that it consists of

affine simplices. We now define HN
j+1 : Cj+1(X;Z) → Cj+2(X;Z) by HN

j+1(σ) := σ∗sNj+1.
The latter is natural, for given a continuous map f : X → Y we get

(HN
j+1 ◦ f∗)(σ) = (f ◦ σ)∗s

N
j+1 = f∗σ∗s

N
j+1 = (f∗ ◦H

N
j+1)(σ).

At last we compute

(∂HN
j+1 +HN

j ∂)(σ) = ∂σ∗s
N
j+1 +HN

j ∂σ∗id∆j+1

= σ∗(sdN −id−H
N
j ∂)(id∆j+1) + σ∗H

N
j ∂id∆j+1

= (sdN −id)σ∗id∆j+1 = (sdN −id)(σ)

Notice that for the last computation it was essential that sdN is a natural chain map.

2.1.4. Corollary. Let G ⊆ Diff∞c (M) be a subgroup with Lie algebra g, in the sense
that g ∈ C∞

(
(I, 0), (G, id)

)
⊆ C∞

(
(I, 0), (Diff∞c (M), id)

)
if and only if δrg ∈ Ω1(I; g) ⊆

Ω1(I;Xc(M)) For any set U of sets in M the modified subdivision induces a mapping
sdN : CU∗ (BG;Z)→ CU∗ (BG;Z) which is homotopic to the identity. Moreover if a simplex
in Sn(BG) is considered as 1-form σ ∈ Ω1(∆n; g) then

sdN(σ) =
∑

(m,π)∈An
N

sgn(π)(τλ(m,π))
∗σ

where λ = ( 1
N
, . . . , 1

N
), and if the simplex is considered as foliation F on ∆n ×M we have

sdN(F) =
∑

(m,π)∈An
N

sgn(π)(τλ(m,π) × idM)∗F

Proof. Since sdN : C∗(G;Z) → C∗(G;Z) is natural it is G-equivariant and hence induces
sdN : C∗(BG;Z)→ C∗(BG;Z). Again by the naturality sdN is support shrinking and hence
we obtain sdN : CU∗ (BG;Z) → CU∗ (BG;Z). Similarly the homotopy induces a mapping
HN : CU∗ (BG;Z)→ CU∗+1(BG;Z).

If τ : ∆n → ∆n and g ∈ C∞(∆n, G) then δr(g∗τ) = δr(τ ∗g) = τ ∗δrg and thus

δr(sdN(g)) = δr(g∗d
n
N) =

∑

(m,π)∈An
N

sgn(π)δr(g∗τ
λ
(m,π)) =

∑

(m,π)∈An
N

sgn(π)(τλ(m,π))
∗(δrg)
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which yields the first description. Denote the foliation corresponding to g by F(g). It has
leaves {(t, g(t)(x)) : t ∈ ∆n}. Now the mapping τ × idM maps the leaves of F(g ◦ τ) to the
leaves of F(g) and so (τ × idM)∗F(g) = F(g∗τ). Hence we have

F(sdN(g)) = F(g∗d
n
N) =

∑

(m,π)∈An
N

sgn(π)F(g∗τ
λ
(m,π)) =

∑

(m,π)∈An
N

sgn(π)(τλ(m,π) × idM)∗F(g)

which yields the second description.

2.1.5. Remark. We could have proven lemma 1.4.11 and proposition 1.4.12 as well by using
sdN for some fixed N ≥ 2 instead of sd. In this case the constants bp used in the proof of

lemma 1.4.11 would be
√
2
N
, independent of p.

2.2 Fragmentation and Deformation for Modular Groups

2.2.1. Definition. A Lie subalgebra g ⊆ Xc(M) is called modular if it is a C0-closed
C∞(M ;R)-submodule of Xc(M). A subgroup G ⊆ Diff∞c (M) is called modular with Lie
algebra g, if g is modular and g is the Lie algebra of G in the following sense:

g ∈ C∞(I,G) ⇔ δrg ∈ Ω1(I; g)

for g ∈ C∞
(
(I, 0), (Diff∞c (M); id)

)
.

Examples for modular Lie algebras are Xc(M) and Xc(M,F), where F is a foliation
on M (possibly with non-constant rank, see [Ste74] and [Ste80]) and Xc(M,F) denotes
the compactly supported vector fields that are tangential to F . Moreover if g is modular
and K ⊆ M is a fixed compact set then gK := {X ∈ g : supp(X) ⊆ K} is again
modular and so further examples are XK(M), XK(M,F). The corresponding modular
groups are Diff∞c (M), Diff∞c (M,F), where the latter denotes the group of leave preserving
diffeomorphisms.

2.2.2. Lemma. Let V ⊆ Xc(M) be a C0-closed C∞(M ;R)-submodule. For x ∈M we let
Ex := {X(x) : X ∈ V } ⊆ TxM . Then V = {X ∈ Xc(M) : X(x) ∈ Ex ∀x ∈M}.

Proof. One inclusion (⊆) is trivial, we show the other one. So let X ∈ Xc(M) such that
X(x) ∈ Ex for all x ∈M and suppose conversely X /∈ V . Since V is C0-closed there exists
ε ∈ C∞(M ;R+) with:

Y ∈ Xc(M) : ‖Y (y)−X(y)‖ ≤ ε(y) ∀y ∈M ⇒ Y /∈ V

For all x ∈ M we choose Yx ∈ V with X(x) = Yx(x) and a neighborhood Ux of x such
that ‖Yx(y) − X(y)‖ ≤ ε(y) for all y ∈ Ux. Since the support of X is compact we
find x1, . . . , xn with Ux1 ∪ · · · ∪ Uxn ⊇ supp(X). Finally we choose a partition of unity
λ0, λ1, . . . , λn subordinated to {M \ supp(X), Ux1 , . . . , Uxn} (i.e. supp(λ0) ⊆M \ supp(X),
supp(λi) ⊆ Uxi) and define Y :=

∑n
i=1 λiYxi ∈ V . For all y ∈M we then obtain

‖Y (y)−X(y)‖ =
∥∥∥

n∑

i=1

λi(y)
(
Yxi(y)−X(y)

)∥∥∥ ≤
n∑

i=1

λi(y)‖Yxi(y)−X(y)‖︸ ︷︷ ︸
≤λi(y)ε(y)

≤ ε(y)

and therefore Y /∈ V , a contradiction.
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2.2.3. Lemma. Let τ : ∆p ×M → ∆q ×M be smooth with prM ◦τ = prM and let G be
modular with Lie algebra g. If σ ∈ Sq(BG) such that the foliation corresponding to σ is
transversal to τ(t, ·) :M → ∆q ×M for all t ∈ ∆p then τ ∗σ ∈ Sp(BG). Moreover we have
supp(τ ∗σ) ⊆ supp(σ).

Proof. Obviously τ ∗σ is a foliation on ∆p × M with codim(τ ∗σ) = dim(M) which is
transversal to the horizontal foliation with leaves {(t, x) : x ∈ M} and so we obtain
at least τ ∗σ ∈ Sp(BDiff

∞
c (M)◦). If Y ∈ Tt∆p, the defining equation for (τ ∗σ)(Y ) is

σ
(
T(t,x)(pr∆q ◦τ) · (Y, (τ ∗σ)(Y )(x))

)
(x) = T(t,x)(prM ◦τ) · (Y, (τ

∗σ)(Y )(x)) = (τ ∗σ)(Y )(x)

So we see that (τ ∗σ)(Y )(x) ∈ Ex := {X(x) : X ∈ g} for all x ∈ M hence by lemma 2.2.2
we obtain (τ ∗σ)(Y ) ∈ g and thus τ ∗σ ∈ Sp(BG).

2.2.4. Lemma. Let G be modular with Lie algebra g, τ :M → ∆n be smooth and define

Eτ := {X ∈ g : ‖Txτ ·Xx‖ < 1 ∀x ∈M} ⊆ g.

Then Eτ is a zero neighborhood in g, and for σ ∈ SEτn (BG) the foliation on ∆n × M
corresponding to σ is transversal to (τ, idM) :M → ∆n ×M .

Proof. Define p : TM → R+
0 by p(Xx) = ‖Txτ · Xx‖. This is a continuous function and

hence U := p−1([0, 1)) ⊆ TM is an open neighborhood of the image of the zero section
0 ∈ g. Now X ∈ Eτ iff X ∈ g and Im(X) ⊆ U , i.e. Eτ consists of vector fields that are
C0-near zero, and therefore Eτ is a neighborhood of 0 ∈ g.

Since (τ, idM) is immersive and by dimensional reasons we only have to show:

Tx(τ, idM) · TxM ∩ {(Y, σ(Y )(x)) : Y ∈ Tτ(x)∆
n} = 0

Suppose conversely there exist x ∈M , 0 6= Y ∈ Tτ(x)∆
n and X ∈ TxM such that

(Txτ ·X,X) = Tx(τ, idM) ·X = (Y, σ(Y )(x))

We may of course assume that ‖Y ‖ = 1, but then we obtain

1 = ‖Y ‖ = ‖Txτ ·X‖ = ‖Txτ · σ(Y )(x)‖ < 1

since σ(Y ) ∈ Eτ .

2.2.5. Corollary. Let G be modular with Lie algebra g, τi : M → ∆n for i = 1, . . . , N
and define E :=

⋂N
i=1 Eτi. Then E is a zero neighborhood in g and for σ ∈ SEn(BG) the

foliation on ∆n ×M corresponding to σ is transversal to (µ, idM), where µ :=
∑N

i=1 tiτi is

any convex combination of the τi, i.e. 0 ≤ ti ≤ 1 and
∑N

i=1 ti = 1.

Proof. First we show E ⊆ Eµ. So given X ∈ E and x ∈M we have

‖Txµ ·Xx‖ = ‖Tx
∑N

i=1 tiτi ·Xx‖ ≤
∑N

i=1 ti‖Txτi ·Xx‖ <
∑N

i=1 ti = 1

and hence X ∈ Eµ. So by lemma 2.2.4 the foliation corresponding to σ ∈ SEn(BG) ⊆

S
Eµ
n (BG) is transversal to (µ, idM).
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If N ∈ N, λ ∈ C∞(M,∆N−1) and m ∈ Dn
N we define τλm : M → ∆n by τλm(x) := τ

λ(x)
m

and we set Eλn :=
⋂
m∈Dn

N
Eτλm . An easy calculation shows that δi ◦ τ

λ
m = τλδim and so we

obtain Eλn ⊆ E
λ
n−1. Indeed for x ∈M , X ∈ Eλn and m ∈ Dn−1

N we have

‖Txτ
λ
m ·Xx‖ = ‖Tτλm(x)δ0Txτ

λ
m ·Xx‖ = ‖Txτ

λ
δ0m
·Xx‖ < 1

since δ0 : ∆
n−1 → ∆n is an isometry and δ0m ∈ D

n
N . So C

Eλ∗∗ (BG;Z) is a chain complex. For

(m,π) ∈ An
N we can define τλ(m,π) : ∆

n×M → ∆n×M by τλ(m,π)(t, x) = (τ
λ(x)
(m,π)(t), x). Since

pr∆n ◦τλ(m,π)(t, ·) is a convex combination of τ λm′ , m′ ∈ Dn
N we obtain from corollary 2.2.5

τλ(m,π)(t, ·) = (pr∆n ◦τλ(m,π)(t, ·), idM) is transversal to the foliation corresponding to σ ∈

S
Eλn
n (BG). If we assume g to be modular lemma 2.2.3 yields (τ λ(m,π))

∗σ ∈ Sn(BG).

2.2.6. Definition. Let G be modular with Lie algebra g, U a set of sets in M , N ∈ N
and λ ∈ C∞(M,∆N−1). Then we define

ϕλn : C
Eλn ,U
n (BG;Z) → CUn (BG;Z)

σ 7→
∑

(m,π)∈An
N

sgn(π)(τλ(m,π))
∗σ

where the simplex σ is considered as foliation on ∆n ×M .

2.2.7. Remark. If we choose λ(x) = ( 1
N
, . . . , 1

N
) then τλ(m,π) = τ

( 1
N
,..., 1

N
)

(m,π) × idM , Eλn = g, and

hence by corollary 2.1.4 ϕλ = sdN .

2.2.8. Theorem. Let G be a modular with Lie algebra g, U a set of sets in M , N ∈ N
and λ ∈ C∞(M,∆N−1). Then

ϕλ∗ : C
Eλ∗ ,U∗ (BG;Z)→ CU∗ (BG;Z)

is a chain map which is homotopic to the inclusion.

Proof. It follows immediately from lemma 2.1.1 that we have

(δα × idM) ◦ τλα = τλbnN (α) ◦ (δbnN (α) × idM) ∀α ∈ Cn
N (2.3)

τλα ◦ (δα × idM) = τλcnN (α) ◦ (δcnN (α) × idM) ∀α ∈ Bn
N \ b

n−1
N (Cn−1

N ) (2.4)

Now the calculation that ϕλ∗ is a chain map is very similar to the calculation that sdN is a
chain map. First we have

(∂ ◦ ϕλn)(σ) =
n∑

i=0

(−1)i
∑

(m,π)∈An
N

sgn(π)(δi × idM)∗(τλ(m,π))
∗σ

=
∑

α∈Bn
N

sgn(α)(δα × idM)∗(τλα)
∗σ



28 CHAPTER 2. FRAGMENTATION AND DEFORMATION

and

(ϕλn ◦ ∂)(σ) =
n∑

i=0

(−1)i
∑

(m,π)∈An−1
N

sgn(π)(τλ(m,π))
∗(δi × idM)∗σ

=
∑

α∈Cn−1
N

sgn(α)(τλα)
∗(δα × idM)∗σ

=
∑

α∈Cn−1
N

sgn(bn−1N (α))(δbn−1
N (α) × idM)∗(τλ

bn−1
N (α)

)∗σ

=
∑

α∈bn−1
N (Cn−1

N )

sgn(α)(δα × idM)∗(τλα)
∗σ

So it remains to show that
∑

α∈Bn
N\b

n−1
N (Cn−1

N )

sgn(α)(δα × idM)∗(τλα)
∗σ = 0

but this follows again from the fact that cnN is an involution on the set Bn
N \ b

n−1
N (Cn−1

N )
without fixed points, equation (2.4) and sgn ◦cnN = − sgn.

Next we show that ϕλ is homotopic to sdN |
C
Eλ∗ ,U
∗ (BG;Z)

. We are then finished since by

theorem 2.1.3 the latter is homotopic to the inclusion. First we subdivide ∆n×I into n+1
simplices in the following way. For 1 ≤ i ≤ n+ 1 we define sn+1i : ∆n+1 → ∆n × I by

sn+1i (ej) :=

{
(ej, 0) 0 ≤ j < i

(ej−1, 1) i ≤ j ≤ n+ 1

and extend it affinely (see figure 2.5). An easy calculation shows

Figure 2.5: Subdivision of ∆n × I
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sn+1k ◦ δk = sn+1k+1 ◦ δk 1 ≤ k ≤ n
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i−1 1 ≤ k + 1 < i ≤ n+ 1

sn+1i ◦ δk = (δk−1 × idI) ◦ s
n
i 1 ≤ i < k ≤ n+ 1
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For (m,π) ∈ An
N we define T λ(m,π) : ∆

n × I ×M → ∆n ×M by

T λ(m,π)(t, 0, x) = τλ(m,π)(t, x) = (τ
λ(x)
(m,π)(t), x)

T λ(m,π)(t, 1, x) = τλ1

(m,π)(t, x) = (τ
( 1
N
,..., 1

N
)

(m,π) (t), x)

and extend it affinely, where λ1 ∈ C
∞(M,∆N−1) is constant λ1(x) = ( 1

N
, . . . , 1

N
). Next we

define a homotopy H : C
Eλ∗ ,U∗ (BG;Z) → CU∗+1(BG;Z) on an n-simplex σ by the following

formula:

H(σ) :=
n+1∑

i=1

(−1)i
∑

(m,π)∈An
N

sgn(π)(sn+1i × idM)∗(T λ(m,π))
∗σ ∈ CUn+1(BG;Z)

Notice that supp((sn+1i × idM)∗(T λ(m,π))
∗σ) ⊆ supp(σ). We claim that this is the desired

homotopy from ϕλ to sdN |
C
Eλ∗ ,U
∗

(BG;Z). From the equations (2.3) and (2.4) we obtain

immediately

(δα × idM) ◦ T λα = T λbnN (α) ◦ (δbnN (α) × idI×M) ∀α ∈ Cn
N (2.5)

T λα ◦ (δα × idI×M) = T λcnN (α) ◦ (δcnN (α) × idI×M) ∀α ∈ Bn
N \ b

n−1
N (Cn−1

N ) (2.6)

Moreover we have T λ(m,π) ◦ (inc1×idM) = τλ1

(m,π) = τ
( 1
N
,..., 1

N
)

(m,π) × idM and T λ(m,π) ◦ (inc0×idM) =

τλ(m,π) and hence we get

(∂H)(σ) =
n+1∑

k=0

(−1)k
n+1∑

i=1

(−1)i
∑

(m,π)∈An
N

sgn(π)((sn+1i ◦ δk)× idM)∗(T λ(m,π))
∗σ

=
∑

(m,π)∈An
N

sgn(π)(inc0×idM)∗(T λ(m,π))
∗σ −

∑

(m,π)∈An
N

sgn(π)(inc1×idM)∗(T λ(m,π))
∗σ

+
∑

1≤k+1<i≤n+1
(−1)i

∑

(m,π)∈An
N

(−1)k sgn(π)(((δk × idI) ◦ s
n
i−1)× idM)∗(T λ(m,π))

∗σ

+
∑

1≤i<k≤n+1
(−1)i

∑

(m,π)∈An
N

(−1)k sgn(π)(((δk−1 × idI) ◦ s
n
i )× idM)∗(T λ(m,π))

∗σ

=
∑

(m,π)∈An
N

sgn(π)(τλ(m,π))
∗σ −

∑

(m,π)∈An
N

sgn(π)(τ
( 1
N
,..., 1

N
)

(m,π) × idM)∗σ

−
n∑

i=1

(−1)i
n∑

k=0

(−1)k
∑

(m,π)∈An
N

sgn(π)(sni × idM)∗(δk × idI×M)∗(T λ(m,π))
∗σ

= ϕλ(σ)− sdN(σ)−
n∑

i=1

(−1)i
∑

α∈Bn
N

sgn(α)(sni × idM)∗(δα × idI×M)∗(T λα )
∗σ
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where we used the description of sdN of corollary 2.1.4. On the other hand we have

(H∂)(σ) =
n∑

k=0

(−1)k
n∑

i=1

(−1)i
∑

(m,π)∈An−1
N

sgn(π)(sni × idM)∗(T λ(m,π))
∗(δk × idM)∗σ

=
n∑

i=1

(−1)i
∑

α∈Cn−1
N

sgn(α)(sni × idM)∗(T λα )
∗(δα × idM)∗σ

=
n∑

i=1

(−1)i
∑

α∈Cn−1
N

sgn(bn−1N (α))(sni × idM)∗(δbn−1
N (α) × idI×M )∗(T λ

bn−1
N (α)

)∗σ

=
n∑

i=1

(−1)i
∑

α∈bn−1
N (Cn−1

N )

sgn(α)(sni × idM)∗(δα × idI×M)∗(T λα )
∗σ

So it remains to show

0 =
n∑

i=1

(−1)i
∑

α∈Bn
N\b

n−1
N (Cn−1

N )

sgn(α)(sni × idM)∗(δα × idI×M )∗(T λα )
∗σ

but for 1 ≤ i ≤ n we even have

0 =
∑

α∈Bn
N\b

n−1
N (Cn−1

N )

sgn(α)(sni × idM)∗(δα × idI×M)∗(T λα )
∗σ

since cnN is an involution without fixed points on Bn
N \ b

n−1
N (Cn−1

N ), we have equation (2.6)
and sgn ◦cnN = − sgn.

2.2.9. Remark. Notice first that for 1 ≤ j ≤ n and (m,π) ∈ An
N

τλ(m,π)(ej−1, x) = τλ(m,π)(ej, x) ∀x /∈ W π(j)
m := supp(λm0+···+mπ(j)−1−1)

So τλ(m,π)(·, x) is constant for x /∈
⋃n
i=1W

i
m and supp((τλ(m,π))

∗σ) ⊆
⋃n
i=1W

i
m. If λ is

subordinated to an open cover U , and U (n) := {U1 ∪ · · · ∪ Un : Ui ∈ U} we obtain

ϕλn : CE
λ
n
n (BG;Z)→ CU

(n)

n (BG;Z)

and therefore the name fragmentation mapping.
Moreover if mi = 0 for some 0 ≤ i < n then W j

m =W k
m for some 1 ≤ j 6= k ≤ n and we

even get (τλ(m,π))
∗σ ∈ SU

(n−1)

n (BG).

2.2.10. Theorem. Let G be modular with Lie algebra g, U be an open covering of M and
define U (n) := {U1 ∪ · · · ∪ Un : Ui ∈ U}. Then the inclusion induces isomorphisms

HU(n)

k (BG;Z)→ Hk(BG;Z) ∀k ≤ n

Proof. It suffices to show that for a fixed compact set K ⊆ M the inclusions induce
isomorphisms HU(n)

k (BGK ;Z) ∼= Hk(BGK ;Z) for all k ≤ n. For then by lemma 1.4.10 we
obtain

HU(n)

k (BG;Z) ∼= lim−→HU(n)

k (BGK ;Z) ∼= lim−→Hk(BGK ;Z) ∼= Hk(BG;Z)
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First we show surjectivity: Let {λ1, λ2, . . . } be a partition of unity subordinated to U ,
assume that

∑N−1
i=1 λi|K = 1 and let λ0 be the sum of the remaining λi. Then λ :=

(λ0, . . . , λN−1) ∈ C∞(M,∆N−1). Given [σ] ∈ Hk(BGK ;Z). By proposition 1.4.12 we may

assume that σ ∈ CE
λ
n

k (BGK ;Z). By theorem 2.2.8 we get [σ] = [ϕλk(σ)] ∈ Hk(BGK ;Z), but
by remark 2.2.9 ϕλk(σ) ∈ C

U(n)

k (BGK ;Z) and we have proven surjectivity.
Next we prove injectivity: It suffices to show that the inclusion induce injective map-

pings i′∗ : H
Eλn+1,U(n)

k (BGK ;Z)→ H
Eλn+1

k (BGK ;Z) for all k ≤ n, since by proposition 1.4.12
we have a commutative square

H
Eλn+1,U(n)

∗ (BGK ;Z)
i′∗ //

∼=
²²

H
Eλn+1
∗ (BGK ;Z)

∼=
²²

HU(n)

∗ (BGK ;Z)
i∗ // H∗(BGK ;Z)

Next choose an open covering V with the property

V1, V2 ∈ V , V1 ∩ V2 6= ∅ ⇒ V1 ∪ V2 ⊆ U ∈ U

As above we let {λ1, λ2, . . . } be a partition of unity subordinated to V with
∑N−1

i=1 λi|K = 1
and we let λ0 be the sum of the remaining λi. Again we obtain λ := (λ0, . . . , λN−1) ∈
C∞(M ; ∆N−1). If m ∈ Dn+1

N we let W j
m := supp(λm0+···+mj−1−1) for 1 ≤ j ≤ n+ 1.

If 0 = i′∗[σ] then there exists ρ ∈ C
Eλn+1

k+1 (BGK ;Z) such that ∂ρ = σ and so ϕλk(σ) =

∂ϕλk+1ρ, but ϕ
λ
k+1ρ ∈ C

V(n+1)

k+1 (BGK ;Z). If we define

κ :=
∑

(m,π)∈An+1
N

mi=0 for some 0≤i<n+1

sgn(π)(τλ(m,π))
∗ρ+

∑

(m,π)∈An+1
N

mi≥1 for all 0≤i<n+1
W j

m not pairwise disjoint

sgn(π)(τλ(m,π))
∗ρ

then κ ∈ CU
(n)

k+1 (BGK ;Z), because of remark 2.2.9 and the construction of V . We claim
that ∂κ = ∂ϕλk+1ρ. Then we are done since from theorem 2.2.8 we would obtain [σ] =

[ϕλkσ] = 0 ∈ HU(n)

k (BGK ;Z) and hence [σ] = 0 ∈ H
Eλn+1,U(n)

k (BGK ;Z).
So it remains to show ∂(ϕλk+1ρ− κ) = 0, but

ϕλk+1ρ− κ =
∑

(m,π)∈An+1
N

mi≥1 for all 0≤i<n+1
W j

m pairwise disjoint

sgn(π)(τλ(m,π))
∗ρ =

∑

m∈Dn+1
N

mi≥1 for all 0≤i<n+1
W j

m pairwise disjoint

∑

π∈Sn+1

sgn(π)(τλ(m,π))
∗ρ

Let m ∈ Dn+1
N with mi ≥ 1 for 0 ≤ i < n + 1 and W j

m pairwise disjoint. If x /∈ W π(1)
m we

have

τλ(m,π) ◦ (δ0 × idM)(ej, x) = (τ
λ(x)
m+fπ(1)+···+fπ(j+1)

, x)

= (τ
λ(x)
m+fπ(2)+···+fπ(j+1)

, x) = τλ(m,π◦(1···n+1)) ◦ (δn+1 × idM)(ej, x)

and if x ∈ W π(1)
m (hence x /∈W π(j)

m for all 1 < j ≤ n+ 1) we obtain

τλ(m,π) ◦ (δ0 × idM)(ej, x) = (τ
λ(x)
m+fπ(1)

, x) and τλ(m,π◦(1···n+1)) ◦ (δn+1 × idM)(ej, x) = (τλ(x)m , x)
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So we get (τλ(m,π) ◦ (δ0× idM))∗ρ = (τλ(m,π◦(1···n+1)) ◦ (δn+1× idM))∗ρ. Looking a bit closer to

the mapping cn+1N of lemma 2.1.1 we see that

∂
( ∑

π∈Sn+1

sgn(π)(τλ(m,π))
∗ρ
)
=

n+1∑

i=0

(−1)i
∑

π∈Sn+1

sgn(π)(τλ(m,π) ◦ (δi × idM))∗ρ

=
∑

π∈Sn+1

sgn(π)(τλ(m,π) ◦ (δ0 × idM))∗ρ

+ (−1)n+1
∑

π∈Sn+1

sgn(π)(τλ(m,π) ◦ (δn+1 × idM))∗ρ

=
∑

π∈Sn+1

sgn(π)(τλ(m,π◦(1···n+1)) ◦ (δn+1 × idM))∗ρ

+ (−1)n+1
∑

π∈Sn+1

sgn(π)(τλ(m,π) ◦ (δn+1 × idM))∗ρ

= 0

and therefore ∂(ϕλk+1σ − ρ) = 0.

We will also make use of the following fragmentation lemma. Its proof is completely
independent of the preceding material in this section.

2.2.11. Lemma. Let G be modular with Lie algebra g and let U be an open covering of
M . Then every g ∈ C∞

(
(I, 0), (G, id)

)
has a decomposition g = g1 · · · gn, where each gi is

supported in some Ui ∈ U and gi ∈ C
∞((I, 0), (GUi

, id)
)
.

Proof. Fix a compact set K ⊆M and recall that we have a continuous mapping

HK : C∞(I, gK)→ C∞
(
(I, 0), (G, id)

)
α 7→ Evol(α)

where gK := g ∩ XK(M). It follows immediately from the Leibniz rule (1.5) that HK is a
homomorphism of topological groups if we set:

(αβ)(t) := αt + (HK(α)(t)
−1)∗βt

It suffices to show that every g ∈ Im(HK) has the desired decomposition, for
⋃
K Im(HK) =

C∞
(
(I, 0), (G, id)

)
.

Now choose U1, . . . , Un ∈ U covering K, open sets Vi, Wi with W̄i ⊆ Vi ⊆ V̄i ⊆
Ui such that Wi still cover K and a partition of unity {λ0, λ1, . . . , λn} subordinated to
{M \K,W1, . . . ,Wn}. Consider the open neighborhoods Wi of the identity:

Wi :=
{
g ∈ C∞

(
(I, 0), (G, id)

)
: gt(M \ V̄i) ⊆M \ W̄i ∀t ∈ I

}

and define an open neighborhood of 0 ∈ C∞(I, gK)

WK :=
{
α ∈ C∞(I, gK) : HK(

∑i−1
j=0 λjα) ∈ Wi ∀1 ≤ i ≤ n

}

Since WK is open it generates C∞(I, gK) as a group and so HK(WK) generates Im(HK).
Consequently it suffices to show that every g ∈ HK(WK) has the desired decomposition.
For α ∈ WK we set fi := HK(

∑i
j=0 λjα), i = 0, . . . , n. Then we have f0 = id, fn = HK(α)
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and if we let gi := f−1i−1fi, i = 1, . . . , n we obtain HK(α) = g1 · · · gn. It remains to show
that gi is supported in Ui, but this follows from

gi = f−1i−1fi

= HK

(
t 7→ −fi−1(t)∗(

∑i−1
j=0 λjαt) + fi−1(t)∗

∑i
j=0 λjαt

)

= HK

(
t 7→ fi−1(t)

∗(λiαt)
)

for we have α ∈ WK , therefore fi−1 = HK

(∑i−1
j=0 λjα

)
∈ Wi and consequently the support

of the mapping t 7→ fi−1(t)∗(λiαt) is contained in V̄i ⊆ Ui.

2.2.12. Corollary. Let G be modular with Lie algebra g, let U be an open covering of M
and assume that G is connected by smooth arcs. Then every g ∈ G has a decomposition
g = g1 · · · gn, with gi ∈ GUi

for some Ui ∈ U .

Proof. This is an immediate consequence of lemma 2.2.11 and the fact that the projection
ev1 : C

∞((I, 0), (G, id)
)
→ G is onto, in this situation.

2.3 Local versus Global

2.3.1. Lemma. Let G ⊆ Diff∞c (M) be a subgroup and let U be an open covering of M .
Then

0← CU∗ (BG;Z) ε
←−
⊕

U∈U
C∗(BGU ;Z)

δ
←−

⊕

U<V ∈U
C∗(BGU∩V ;Z)← · · ·

is an exact sequence of chain complexes, the Čech complex with respect to the covering U
of the pre-cosheaf U 7→ C∗(BGU ;Z).

Proof. It suffices to show this for finite U . For |U| = 1 this is trivial. For |U| = 2 the
sequence looks like:

0← C{U,V }∗ (BG;Z)← C∗(BGU ;Z)⊕ C∗(BGV ;Z)← C∗(BGU∩V ;Z)← 0 (2.7)

which is easily seen to be exact. One proceeds by induction on |U|, but we only consider
the case |U| = 3; for |U| > 3 the proof is similar. Let U = {U, V,W}. Then we have a
commutative diagram

0

²²

0

²²

0

²²

0

²²

Â Ä // C∗(BGU∩V ∩W )

²²

// // C∗(BGU∩V ∩W )

²²

C∗(BGV ∩W )

²²

Â Ä // C∗(BGU∩V )⊕C∗(BGU∩W )⊕C∗(BGV ∩W )

²²

// // C∗(BGU∩V )⊕C∗(BGU∩W )

²²

C∗(BGV )⊕C∗(BGW )

²²

Â Ä // C∗(BGU )⊕C∗(BGV )⊕C∗(BGW )

²²

// // C∗(BGU )

²²

C
{V,W}
∗ (BG)

²²

Â Ä // CU
∗ (BG)

²²

// // CU
∗ (BG)/C

{V,W}
∗ (BG)

²²
0 0 0
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All rows are exact, hence we consider this diagram as short exact sequence of chain com-
plexes. The first column is exact by the induction hypothesis. Moreover the third column
is exact since it is the composition of the two exact sequences

0→ C∗(BGU∩V ∩W )→ C∗(BGU∩V )⊕ C∗(BGU∩W )→ C{V ∩U,W∩U}∗ (BG)→ 0

and
0→ C{V ∩U,W∩U}∗ (BG)→ C∗(BGU)→ CU∗ (BG)/C{V,W}∗ (BG)→ 0.

The second is obviously exact, and the first sequence is also exact by the induction hy-
pothesis, since |{V ∩ U,W ∩ U}| = 2. Summing up, we have a short exact sequence of
chain complexes and two of them have zero homology. So the third one, that is the middle
column, has zero homology too.

2.3.2. Corollary. Let G ⊆ Diff∞c (M) be a subgroup and let U be an open covering of M .
Then there exists a spectral sequence with E1-term

...
...

...

⊕

U∈U
H2(BGU ;Z)

⊕

U<V ∈U
H2(BGU∩V ;Z)oo

⊕

U<V <W∈U
H2(BGU∩V ∩W ;Z)oo · · ·

⊕

U∈U
H1(BGU ;Z)

⊕

U<V ∈U
H1(BGU∩V ;Z)oo

⊕

U<V <W∈U
H1(BGU∩V ∩W ;Z)oo · · ·

⊕

U∈U
Z

⊕

U<V ∈U
Zoo

⊕

U<V <W∈U
Zoo · · ·

converging to HU
∗ (BG;Z). Moreover the bottom row of the E2-term is: Z 0 0 · · ·

Proof. Consider the double complex:

...
...

...

⊕

U∈U
C2(BGU ;Z)

∂
²²

⊕

U<V ∈U
C2(BGU∩V ;Z)δoo

∂
²²

⊕

U<V <W∈U
C2(BGU∩V ∩W ;Z)δoo

∂
²²

· · ·

⊕

U∈U
C1(BGU ;Z)

∂
²²

⊕

U<V ∈U
C1(BGU∩V ;Z)δoo

∂
²²

⊕

U<V <W∈U
C1(BGU∩V ∩W ;Z)δoo

∂
²²

· · ·

⊕

U∈U
C0(BGU ;Z)

⊕

U<V ∈U
C0(BGU∩V ;Z)δoo

⊕

U<V <W∈U
C0(BGU∩V ∩W ;Z)δoo · · ·
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By lemma 2.3.1 it computes HU
∗ (BG;Z) and the E1-term is as claimed, since we have

H0(BG;Z) = Z for every G, cf. remark 1.4.6. Notice that H0(BGU ;Z) = Z even if U is
not connected, e.g. H0(BG∅;Z) = Z too. So the bottom row of the E1-term is acyclic, i.e.
the bottom row of the E2-term is as claimed.

2.4 Simplicity of Diff∞
c (M)◦

2.4.1. Definition. An admissible covering ofM is an open covering U such that for every
k ∈ N and U1, . . . , Uk ∈ U the intersection U1 ∩ · · · ∩Uk is a disjoint union of open balls or
empty.

2.4.2. Lemma. Let A be an Abelian group, X a topological space and U an admissible
covering of X. Then the Čech complex of the pre-cosheaf U 7→ H0(U ;A)

0←
⊕

U∈U
H0(U ;A)

δ
←−

⊕

U<V ∈U
H0(U ∩ V ;A)

δ
←−

⊕

U<V <W∈U
H0(U ∩ V ∩W ;A)← · · ·

computes H∗(X;A).

Proof. Let C∗(X;A) denote the singular chains with coefficients in A and let CU∗ (X;A)
denote the chains made up from simplices each of which lies in some set of the cover U .
Then

0← CU∗ (X;A)
ε
←−
⊕

U∈U
C∗(U ;A)

δ
←−

⊕

U<V ∈U
C∗(U ∩ V ;A)← · · ·

is an exact sequence of chain complexes, see [BT82] for example. Since HU
∗ (X;A) =

H∗(X;A) the double complex

...
...

...

⊕

U∈U
C2(U ;A)

∂
²²

⊕

U<V ∈U
C2(U ∩ V ;A)δoo

∂
²²

⊕

U<V <W∈U
C2(U ∩ V ∩W ;A)δoo

∂
²²

· · ·

⊕

U∈U
C1(U ;A)

∂
²²

⊕

U<V ∈U
C1(U ∩ V ;A)δoo

∂
²²

⊕

U<V <W∈U
C1(U ∩ V ∩W ;A)δoo

∂
²²

· · ·

⊕

U∈U
C0(U ;A)

⊕

U<V ∈U
C0(U ∩ V ;A)δoo

⊕

U<V <W∈U
C0(U ∩ V ∩W ;A)δoo · · ·

computes H∗(X;A). But the E1-term of the corresponding spectral sequence degenerate
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to

...
...

...

0 0 0 · · ·

⊕

U∈U
H0(U ;A)

⊕

U<V ∈U
H0(U ∩ V ;A)oo

⊕

U<V <W∈U
H0(U ∩ V ∩W ;A)oo · · ·

since we have Hi(U1 ∩ · · · ∩ Uk;A) = 0 for all i > 0.

2.4.3. Theorem. Let An
p := Hp

(
BDiff

∞
c (Rn)◦;Z

)
and let M be an n-dimensional ori-

entable manifold. If An
p = 0 for all 1 ≤ p < k then we have

Hk

(
BDiff

∞
c (M)◦;Z) ∼= H0(M ;Ank)

where H∗(M ;Ank) denotes ordinary singular homology of M with coefficients in An
k .

Proof. Suppose U is an open ball inM and choose an orientation preserving diffeomorphism
u : U → Rn. Then

S{U}p

(
BDiff

∞
c (M)

) (conju)∗−−−−→ Sp
(
BDiff

∞
c (Rn)

)

is a simplicial isomorphism and we have an induced isomorphism:

ϕu : H{U}
p

(
BDiff

∞
c (M)◦;Z

)
→ Hp

(
BDiff

∞
c (Rn);Z

)
= Anp

∼= H0(U ;A
n
p )

We claim that it does not depend on the choice of the chart u. Indeed, suppose v : U → Rn

is another chart and c =
∑
λigi ∈ C

{U}
p

(
BDiff

∞
c (M);Z

)
. This is a finite sum and every gi

has compact support, so there exists a closed ball B ⊆ U with supp(gi) ⊆ B for all i. Since
orientation preserving embeddings of closed balls are diffeotopic (see [Hir76] for example)
we find h ∈ Diff∞c (Rn)◦ with v = h ◦ u on B. So (conjv)∗(c) = (conjh)∗ ◦ (conju)∗(c) and
since (conjh)∗ = id in homology (see lemma 1.4.8) we have ϕu([c]) = ϕv([c]). So ϕu does
not depend on u and we will write ϕU in the sequel. If W is a disjoint union of open balls
W =

⊔
Ui we have Diff∞c (W )◦ ∼= Diff∞c (U1)◦ × · · · , so lemma 1.4.9 yields

H
{W}
k

(
Diff∞c (M);Z

)
∼=
⊕

H
{Ui}
k

(
Diff∞c (M);Z

)

and we obtain an isomorphism:

ϕW :=
⊕

ϕUi
: H

{W}
k

(
Diff∞c (M);Z

)
→
⊕

H0(Ui;A
n
k)
∼= H0(W ;Ank)

Now choose an open covering U of M such that U k is admissible, cf. theorem 2.2.10.
Because of the isomorphism ϕ and lemma 2.4.2, the E2-term of the spectral sequence in
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corollary 2.3.2 with respect to the covering U k looks like:

...
...

...

H0(M ;Ank) H1(M ;Ank) H2(M ;Ank) · · · k-th row

0 0 0 · · ·

...
...

...

Z 0 0 · · ·

Since the spectral sequence converges to HUk

∗
(
BDiff

∞
c (M);Z

)
we obtain

HUk

k

(
BDiff

∞
c (M);Z

)
∼= H0(M ;Ank)

and from theorem 2.2.10 HUk

k

(
BDiff

∞
c (M);Z

)
∼= Hk

(
BDiff

∞
c (M);Z

)
.

2.4.4. Remark. It is an immediate consequence of theorem 2.4.3 that for a n-dimensional,
connected and orientable M the following groups are isomorphic

1. Hk

(
BDiff

∞
c (Rn);Z

)

2. Hk

(
BDiff

∞
c (M);Z

)

where k is the first positive integer such that one of them is non-zero. This is a special
case of a theorem due to W. Thurston [Thu74], which states that both are isomorphic to
a homology group of a certain classifying space, see [Mat79] for proofs.

2.4.5. Corollary. H1

(
BDiff

∞
c (M)◦;Z

)
= 0 for every orientable manifold M . Moreover

D̃iff
∞
c (M)◦ and Diff∞c (M)◦ are perfect.

Proof. Recall from corollary 1.5.6 that we have H1

(
BDiff

∞
(T n);Z

)
= 0. From theo-

rem 2.4.3 we thus get

0 = H1

(
BDiff

∞
(T n);Z

)
= H0(T

n;An1 ) = An1

and, using again theorem 2.4.3, we obtain

H1

(
BDiff

∞
c (M)◦;Z

)
= H0(M ;An1 ) = 0

where n = dim(M). The perfectness statement now follows from proposition 1.4.5.

2.4.6. Corollary. Diff∞c (M)◦ is simple for every manifold M .

Proof. We want to apply proposition 1.3.1. Let U be the set of all orientable open subsets
of M , G := Diff∞c (M)◦ and for U ∈ U we set GU := Diff∞c (U)◦. GU is perfect by corol-
lary 2.4.5. G acts transitively on M since we have proposition 1.2.6, see also remark 1.2.7.
G has the fragmentation property since we have corollary 2.2.12. The third assumption of
proposition 1.3.1 is obviously satisfied, and consequently G is simple.
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2.5 Perfectness of Diff∞
c (M,F)◦

In [Ryb95a] T. Rybicki showed that the component containing the identity of the group of
leave preserving diffeomorphisms is perfect. In this chapter we will give a different proof
of this theorem.

2.5.1. Proposition. H1

(
BDiff

∞
(Rm×Rn,F);Z

)
= 0, where F is the foliation with leaves

{pt} × Rn.

Proof. Consider the torus Tm×T n with the foliation G having {pt}×T n as leaves and choose
a good covering U of T n × Tm such that G|U ∼= F for every U ∈ U . From theorem 2.2.10
and corollary 1.6.4 we obtain:

HU
1

(
BDiff

∞
(Tm × T n,G);Z

)
∼= H1

(
BDiff

∞
(Tm × T n,G);Z

)
= 0

In view of corollary 2.3.2 this can only be the case if H1

(
BDiff

∞
c (U,G|U);Z

)
= 0 for every

U ∈ U , and since (U,G|U) ∼= (Rm × Rn,F) we get H1

(
BDiff

∞
c (Rm × Rn,F);Z

)
= 0.

2.5.2. Theorem. Let F be a regular foliation of M . Then H1

(
BDiff

∞
c (M,F);Z

)
= 0.

Proof. Choose an open covering U of M such that (U,F|U) ∼= (Rm×Rn,G) where G is the
product foliation we considered in proposition 2.5.1. Since H1

(
Diff

∞
c (U,F|U);Z

)
= 0 by

proposition 2.5.1 it follows from corollary 2.3.2 that HU
1

(
BDiff

∞
c (M,F);Z

)
= 0 and so

H1

(
BDiff

∞
c (M,F);Z

)
∼= HU

1

(
BDiff

∞
c (M,F);Z

)
= 0

for we have theorem 2.2.10.

2.5.3. Corollary. Let F be a regular foliation of a manifold M . Then D̃iff
∞
c (M,F)◦ and

Diff∞c (M,F)◦ are perfect.

Proof. This is an immediate consequence of theorem 2.5.2 and proposition 1.4.5.



3. Locally Conformally Symplectic Manifolds

3.1 dω-Cohomology

Let ω be a closed 1-form on a manifold M and define

dω : Ω∗(M)→ Ω∗+1(M) dω(α) := dα + ω ∧ α

Obviously we have dω ◦dω = 0 and we may define the dω-cohomology H∗
dω(M) and similarly

dωc -cohomology with compact supports H∗
dωc
(M). Suppose [ω′] = [ω] ∈ H1(M) and choose

a ∈ Ω0(M) with ω′ = ω + da
a

= ω + d(ln |a|). Then there are isomorphisms 1
a
: H∗

dω
∼=

H∗
dω

′ (M) and 1
a
: H∗

dωc
∼= H∗

dω
′

c
(M) given by multiplication with 1

a
. So for an exact ω the

dω-cohomology is isomorphic to the ordinary de Rham cohomology.
For closed 1-forms ω1, ω2 an easy calculation shows

dω1+ω2(σ ∧ τ) = dω1σ ∧ τ + (−1)|σ|σ ∧ dω2τ

and hence the wedge product induces a bilinear mapping

∧ : Hk
dω1 (M)×H l

dω2 (M)→ Hk+l
dω1+ω2

(M)

and similar for compact supports.
For a smooth g : M → N we have an induced mapping g∗ : H∗

dω(N)→ H∗
dg

∗ω(M). If g
is proper then we also have an induced mapping g∗ : H∗

dωc
(N)→ H∗

dg
∗ω

c

(M).

3.1.1. Lemma. Let ω be a closed 1-form on N and let g : M × I → N be a smooth
homotopy. Define a ∈ C∞(M × I,R) by at := exp

( ∫ t
0
inc∗s i∂tg

∗ωds
)
where incs : M →

M × I, incs(x) := (x, s). Then

a1g
∗
1 = a0g

∗
0 : H∗

dω(N)→ H∗
dg

∗
0ω
(M)

If g is proper the same holds with compact supports.

Proof. Notice that the definition of a is such that g∗tω = g∗0ω + d(ln |at|). One defines a

mapping H : Ω∗(N) → Ω∗−1(M) by H(σ) :=
∫ 1
0
at inc

∗
t i∂tg

∗σdt and checks that it is a
chain homotopy, i.e. dg

∗
0ωH(σ) +H(dωσ) = a1g

∗
1σ − a0g

∗
0σ. Indeed we have

dg
∗
0ωH(σ) +H(dωσ) = dg

∗
0ω
∫ 1
0
at inc

∗
t i∂tg

∗σdt+
∫ 1
0
at inc

∗
t i∂tg

∗dωσdt

=
∫ 1
0
atd

g∗t ω inc∗t i∂tg
∗σdt+

∫ 1
0
at inc

∗
t i∂td

g∗ωg∗σdt

=
∫ 1
0
at inc

∗
t d

g∗ωi∂tg
∗σdt+

∫ 1
0
at inc

∗
t i∂td

g∗ωg∗σdt

=
∫ 1
0
at inc

∗
t

(
L∂tg

∗σ + i∂tg
∗ω ∧ g∗σ

)
dt

=
∫ 1
0
at

∂
∂t
(g∗t σ) + ( ∂

∂t
at)g

∗
t σdt

=
∫ 1
0

∂
∂t
(atg

∗
t σ)dt = a1g

∗
1σ − a0g

∗
0σ

where we used dωiXα + iXd
ωα = LXα + iXω ∧ α and ∂

∂t
at = at inc

∗
t i∂tg

∗ω.

39
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3.1.2. Corollary (Relative Poincaré Lemma). Let i : N → M be a closed submani-
fold and ω ∈ Ω1(M) closed. If α ∈ Ωk(M) satisfies dωα = 0, i∗α = 0 then there exists an
open neighborhood U of N and ϕ ∈ Ωk−1(U), which vanishes on N , such that dωϕ = α|U .

Proof. By choosing a tubular neighborhood of N in M we may assume that π :M → N is
a vector bundle and i : N →M is the zero section. Consider the homotopy g :M×I →M
defined by gt(x) := (1− t)x. Since g0 = id, g1 = i ◦ π lemma 3.1.1 yields

dωH(α) +H(dωα) = a1π
∗i∗α− α

and since dωα = 0, i∗α = 0 we obtain α = dω(−H(α)). It remains to show that H(α)
vanishes on i(N). For t < 1 we have inc∗t i∂tg

∗α = g∗t iġtα and ġt(i(x)) = 0. Therefore

H(α)(i(x)) =
∫ 1
0
at(inc

∗
t i∂tg

∗α)(i(x))dt =
∫ 1
0
(atg

∗
t iġtα)(i(x))dt = 0

and ϕ := −H(α) vanishes on i(N).

Suppose M is the union of two open subsets U , V . Then the following is a short exact
sequence of cochain complexes

0→
(
Ω∗(M), dω

) α
−→
(
Ω∗(U)⊕ Ω∗(V ), dω|U ⊕ dω|V

) β
−→
(
Ω∗(U ∩ V ), dω|U∩V

)
→ 0

where α(σ) = (σ|U , σ|V ) and β(σ, τ) = σ|U∩V − τ |U∩V . So we obtain

3.1.3. Lemma. Let M be the union of two open subsets U and V . Then there exists a
long exact sequence

· · · → Hk
dω(M)

α∗−→ Hk
dω|U

(U)⊕Hk
dω|V

(V )
β∗
−→ Hk

dω|U∩V
(U ∩ V )

δ
−→Hk+1

dω (M)→ · · ·

and δ([σ]) = [dλV ∧ σ] = −[dλU ∧ σ], where {λU , λV } is a partition of unity subordinated
to {U, V } and the forms under consideration are assumed to be extended by 0 to the whole
of M .

Similarly there is an exact sequence of cochain complexes

0→
(
Ω∗c(U ∩ V ), dω|U∩V

c

) β
−→
(
Ω∗c(U)⊕ Ω∗c(V ), dω|Uc ⊕ dω|Vc

) α
−→
(
Ω∗c(M), dωc

)
→ 0

where β(σ) = (σ,−σ) and α(σ, τ) = σ+ τ and everything is assumed to be extended by 0.
So we have

3.1.4. Lemma. If M is the union of two open subsets U and V then there exists a long
exact sequence

· · · → Hk−1
dωc

(M)
δ
−→Hk

d
ω|U∩V
c

(U ∩ V )
β∗
−→ Hk

d
ω|U
c

(U)⊕Hk

d
ω|V
c

(V )
α∗−→ Hk

dωc
(M)→ · · ·

where δ[σ] = [dλU ∧ σ|U∩V ] = −[dλV ∧ σ|U∩V ] and {λU , λV } is a partition of unity subor-
dinated to {U, V }.

A covering U of a manifold M is called good if for all m ∈ N and U1, . . . , Um ∈ U the
intersection U1 ∩ · · · ∩Um is either empty or contractible. Using a Riemannian metric and
geodesically convex open sets one easily sees that every manifold admits a good covering
and these are cofinal in all coverings.

Using the Mayer Vietoris sequence inductively and the fact that for contractible sets the
dω-cohomology is isomorphic to the de Rham cohomology, and hence finite dimensional,
we immediately obtain
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3.1.5. Corollary. Suppose M admits a finite good covering. Then H∗
dω(M) and H∗

dωc
(M)

are finite dimensional. Especially this is true for compact manifolds.

For an oriented manifold of dimension n we may define a pairing by

〈·, ·〉ω : H∗
d−ω(M)×Hn−∗

dωc
(M)

∧
−→Hn

c (M)
∫
−→ R

If ω′ = ω + da
a

= ω + d(ln |a|) then −ω′ = −ω + d(ln | 1
a
|) so 1

a
: H∗

dωc
(M) ∼= H∗

dω
′

c
(M),

a : H∗
d−ω(M) ∼= H∗

d−ω′ (M) and 〈a[σ], 1
a
[τ ]〉ω′ = 〈[σ], [τ ]〉ω. Hence if ω is exact this pairing is

non-degenerated by ordinary Poincaré duality.

3.1.6. Proposition. On an oriented manifold of dimension n the mappings defined by

D∗ω : H∗
d−ω(M)→ Hn−∗

dωc
(M)∗ D∗ω([σ])([τ ]) := 〈[σ], [τ ]〉ω

are isomorphisms.

Proof. If M is a disjoint union of open balls then we have

(
H∗
dωc
(
⊔
Ui)
)∗ ∼=

(⊕
H∗
dωc
(Ui)

)∗ ∼=
∏
H∗
dωc
(Ui)

∗

and via this isomorphism D∗
ω corresponds to

∏
D∗ω|Ui

and is therefore an isomorphism.

Using the explicit description of the connecting homomorphisms δ in lemma 3.1.3 and
lemma 3.1.4 one easily checks that the following diagram commutes up to sign:

Hk
d−ω(M)

α∗ //

Dk
ω

²²

Hk
d−ω|U

(U)⊕Hk
d−ω|V

(V )
β∗

//

Dk
ω|U

⊕Dk
ω|V

²²

Hk
d−ω|U∩V

(U ∩ V ) δ //

Dk
ω|U∩V

²²

Hk+1
d−ω (M)

Dk+1
ω

²²

Hn−k
dωc

(M)∗
(α∗)∗

// Hn−k
d
ω|U
c

(U)∗ ⊕Hn−k
d
ω|V
c

(V )∗ (β∗)∗
// Hn−k

d
ω|U∩V
c

(U ∩ V )∗ δ∗ // Hn−k−1
dωc

(M)∗

So if Poincaré duality holds for U , V and U ∩ V it also holds for U ∪ V by the five lemma.
Finally one chooses a good covering U such that every U ∈ U does only intersect finitely
many other sets of U . Then we can write M = W1 ∪ · · · ∪Wn where every Wi is a disjoint
union of open balls in U . Since Poincaré duality holds for Wi, Wj and Wi ∩Wj (the latter
is also an disjoint union of open balls) it holds also for Wi ∪Wj. Proceeding inductively
finishes the proof.

3.1.7. Example. Let [f ] ∈ H0
dω(M), i.e. f ∈ C∞(M,R) and dωf = 0. Consider the set

Z := {x ∈ M : f(x) = 0}. It is of course closed. We show that it is open too. Let x ∈ Z
and choose a contractible neighborhood U of x. Then ω|U = d(ln |a|) for some nowhere
vanishing function a on U and 1

a
: H∗

dω|U
(U) ∼= H∗(U). So 1

a
f |U is a constant function on

U and since it vanishes in x it vanishes on U , that is U ⊆ Z. For connected M this yields
that H0

dω(M) and similarly H0
dωc
(M) is at most 1-dimensional.

Let M be connected and oriented. Then i∗ : H0
dω(M) → H0

dω|U
(U) is injective and by

Poincaré duality i∗ : Hn

d
ω|U
c

(U)→ Hn
dωc
(M) is onto. So generators of Hn

dωc
(M) can be chosen

to have arbitrary small supports.
Let M = S1 and ω = λdθ, where 0 6= λ ∈ R, be a generator of its first de Rham

cohomology. We claim that H0
dω(S

1) = 0. So let f ∈ Ω0(S1) be dω-closed. We consider f
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as periodic function on R then ω = λdx. The condition dωf = 0 translates to f ′+ λf = 0,
but this has no non-trivial periodic solution, hence f = 0. So H0

dω(S
1) = 0 for every

non-exact ω.
Let M be connected and ω a closed 1-form that is not exact. Then there exists a

mapping i : S1 → M such that i∗ω is not exact. Now let f ∈ Ω0(M). By the previous
paragraph i∗f = 0 and hence by connectedness f = 0. So we have shown H0

dω(M) = 0 and
similarly H0

dωc
(M) = 0 for every connectedM and any non-exact ω. Using Poincaré duality

we also obtain Hn
dω(M) = 0 and Hn

dωc
(M) = 0 for every oriented, connected, n-dimensional

M and every non-exact ω. Using the orientation covering one sees that the assumption
orientable is superfluous. A different proof of Hn

dω(M) = 0 can be found in [GL84].

3.1.8. Example. Consider M = R2 \ {(−1, 0), (1, 0)} and let ω resp. η be a generator of
H1(M) supported in (−∞, 0) × {R} resp. U := (0,∞) × R. Then obviously dωη = 0 and
η|U cannot be dω|U = d-exact. From the Mayer Vietoris sequence one sees that η generates
H1
dω(M).

Suppose we have two manifolds M1,M2 and two closed 1-forms ω1 resp. ω2 on M1 resp.
M2. Let ω := pr∗1 ω1 + pr∗2 ω2 ∈ Ω1(M1 ×M2) and define a mapping

Ψ : Ωk(M1)× Ωl(M2)→ Ωk+l(M1 ×M2) (α, β) 7→ pr∗1 α ∧ pr∗2 β.

One easily checks dω(Ψ(α, β)) = Ψ(dω1α, β) + (−1)|α|Ψ(α, dω2β) and hence we have an
induced mapping

H∗
dω1 (M1)⊗H

∗
dω2 (M2)→ H∗

dω(M1 ×M2)

As in ordinary de Rham cohomology one proves that under the assumption that one of
the two manifolds has finite dimensional cohomology, Ψ is an isomorphism. Using this
and example 3.1.8 one obtains manifolds with arbitrarily complicated dω-cohomology and
non-exact ω.

3.1.9. Theorem. Let Fω(U) := {f ∈ C
∞(U,R) : dωf = 0}. Then Fω is a locally constant

sheaf and H∗(M ;Fω) ∼= H∗
dω(M). So the dω-cohomology is a kind of twisted de Rham

cohomology.

Proof. For any x ∈ M we can choose a contractible neighborhood U of x and a function
a ∈ C∞(U,R+) such that ω = d ln a. Then multiplication with a defines a isomorphism of
the sheaf F|U and the constant sheaf R on U . So Fω is a locally constant sheaf. Moreover
we have a fine resolution of Fω

0→ Fω → Ω0 dω
−→ Ω1 dω

−→ Ω2 → · · ·

and hence H∗(M ;Fω) ∼= H∗
dω(M), by the theorem of de Rham which can be found in

[Bre67] for example.

Let ω be a closed 1-form on M , define Bω := M × R and let π : Bω → M denote the
projection. Then tπ∗ω + dt is a nowhere vanishing 1-form on Bω which satisfies d(tπ∗ω +
dt) = (tπ∗ω + dt) ∧ π∗ω. Hence it defines a codimension one foliation on Bω. We provide
Bω with the topology which has as basis the leaves of π−1(U) for U ⊆ M open. This is a
(locally trivial) bundle of coefficients on M , see [Ste51] for example. A section is simply a
smooth function f on M such that 0 = fω + df = dωf . So the sheaf corresponding to Bω

is simply Fω and we have
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3.1.10. Corollary. H∗
dω(M) ∼= H∗(M,Bω), where the latter denotes cohomology with val-

ues in the bundle of coefficients Bω, see [Ste51].

Consider Ω∗c(M) = lim−→KΩ
∗
K(M) with the inductive limit topology, where the limit is

over all compact K and ΩK(M) denotes the forms with support contained in K. This is
a strict inductive limit of Fréchet spaces and hence a complete, separated locally convex
vector space. We provide im dωc ⊆ ker dωc ⊆ Ω∗c(M) with the initial topologies and put the
quotient topology on H∗

dωc
(M).

3.1.11. Theorem. Let ω be a closed 1-form on a manifold M . Then H∗
dωc
(M) is a strict

inductive limit of separated, finite dimensional topological vector spaces and hence a com-
plete, separated locally convex vector space.

Proof. First we assume that M is oriented. dωc : Ω∗c(M) → Ω∗+1c (M) is continuous and
hence ker dωc ⊆ Ω∗c(M) is closed. By Poincaré duality σ ∈ ker dωc is contained in im dωc if
and only if ∫

M
τ ∧ σ = 0 ∀τ ∈ ker

(
d−ω : Ω∗(M)→ Ω∗+1(M)

)

but these are continuous conditions and so im dωc ⊆ ker dωc is closed.
Let dωK := dω|Ω∗

K(M) : Ω
∗
K(M) → Ω∗+1K (M). It is a general fact that if E = lim−→En is a

strict inductive limit and F ⊆ E is a (not necessarily closed) subspace then F = lim−→(En∩F )
as strict inductive limit. Applying this twice we obtain

lim−→K ker dωK = ker dωc and lim−→K

(
Ω∗K(M) ∩ im dωc

)
= im dωc .

Since ker dωK is a Fréchet space and im dωc ⊆ Ω∗c(M) is closed,
ker dωK

Ω∗
K(M)∩im dωc

is separated. We

claim that it is finite dimensional for nice K.
So assume that K is a compact, dim(M)-dimensional submanifold with boundary. Let

i : ∂K ↪→ K denote the inclusion. We let Ω∗(K, ∂K) := {α ∈ Ω∗(K) : i∗α = 0} and denote
by H∗

dω|K
(K, ∂K) the corresponding cohomology, i.e. the relative cohomology. As usual we

have a long exact sequence

· · · → H∗
dω|K

(K, ∂K)→ H∗
dω|K

(K)
i∗
−→ H∗

di
∗ω(∂K)

δ
−→H∗+1

dω|K
(K, ∂K)→ · · ·

and soH∗
dω|K

(K, ∂K) is finite dimensional by corollary 3.1.5. We have a mapping Ω∗K(M)→
Ω∗(K, ∂K) and we claim that the induced mapping H∗

dωK
(M) → H∗

dω|K
(K, ∂K) is injec-

tive. To see this let α ∈ Ω∗K(M) be dω-closed and such that α|K = dω|Kβ for some
β ∈ Ω∗(K, ∂K). Next choose a smooth homotopy g : K × I → K with g0 = idK ,
gt(∂K) ⊆ ∂K and such that there exists an open neighborhood U of ∂K with g1(U) ⊆ ∂K.
From lemma 3.1.1 we get

dω|K
( ∫ 1

0
at inc

∗
t i∂tg

∗αdt
)
= a1g

∗
1(α|K)− a0g

∗
0(α|K) = dω|K (a1g∗1β)− α|K

By the choice of g we see that g∗1β is zero on U an hence can be extended by 0 to the whole
of M . Moreover one sees that inc∗t i∂tg

∗(α|K) is flat along ∂K and so the integral in the
equation above can also be extended to M by 0. But this shows that [α] = 0 ∈ H∗

dωK
(M).

Since we have an injective mapping from H∗
dωK

(M) into the finite dimensional vector space

H∗
dω|K

(K, ∂K) the space H∗
dωK

(M) has to be finite dimensional and hence
ker dωK

Ω∗
K(M)∩im dωc

⊆
ker dωK
Im dωK

= H∗
dωK

(M) too.
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Since the inductive limit can be computed via these nice K we obtain

H∗
dωc
(M) = ker dωc / im dωc =

lim−→K ker dωK
lim−→K(Ω∗

K(M)∩im dωc )
= lim−→K

ker dωK
Ω∗
K(M)∩im dωc

as strict inductive limit and the steps
ker dωK

Ω∗
K(M)∩im dωc

are separated, finite dimensional topo-

logical vector spaces.
If M is non-orientable let π : M̃ →M denote the orientation covering and let f : M̃ →

M̃ be the unique non-trivial deck transformation. Then

Ω∗c(M̃) = Ω∗,evenc (M̃)⊕ Ω∗,oddc (M̃) =: {σ : f ∗σ = σ} ⊕ {σ : f ∗σ = −σ}

Its easily seen that π∗ : Ω∗c(M) ∼= Ω∗,evenc (M̃) and hence H∗
dωc
(M) ∼= H∗,even

dπ
∗ω

c
(M̃) which is a

closed subspace of H∗
dπ

∗ω
c

(M̃). Since the latter is a strict inductive limit of separated finite

dimensional topological vector spaces H∗
dωc
(M) is so too.

For every manifold N and every complete locally convex vector space E we define
C∞c (N,E) = lim−→KC

∞
K (N,E). The following is a slight generalization of an argument due

to A. Banyaga, see [Ban78] and [Ban97].

3.1.12. Corollary. Let N , M be manifolds and ω a closed 1-form on M . Then every
f ∈ C∞c (N, im dωc ) can be lifted, i.e. there exists f̃ ∈ C∞c (N,Ω∗c(M)), with dωc ◦ f̃ = f .

Proof. Since dωc : Ω∗c(M)→ im dωc is onto and im dωc is complete the mapping

dωc ⊗̂π idC∞
c (N,R) : Ω

∗
c(M)⊗̂πC

∞
c (N,R)→ im dωc ⊗̂πC

∞
c (N,R)

is surjective. Since C∞c (N,R) is nuclear we obtain

Ω∗c(M)⊗̂πC
∞
c (N,R) ∼= Ω∗c(M)⊗̂εC

∞
c (N,R) ∼= C∞c (N,Ω∗c(M))

and
im dωc ⊗̂πC

∞
c (N,R) ∼= im dωc ⊗̂εC

∞
c (N,R) ∼= C∞c (N, im dωc )

Via these isomorphisms dωc ⊗̂π idC∞
c (N,R) corresponds to (dωc )∗ and hence the latter is sur-

jective too. See [Jar81] for the functional analysis involved.

3.2 Locally Conformally Symplectic Manifolds

3.2.1. Definition. A locally conformally symplectic manifold is a triple (M,Ω, ω) where
M is a 2n-dimensional manifold, ω is a closed 1-form and Ω is a non-degenerated 2-form
satisfying 0 = dωΩ = dΩ + ω ∧ Ω. Since Ω is non-degenerated we get a canonical vector
bundle isomorphism [ : TM ∼= T ∗M given by X 7→ iXΩ. By ] we denote the inverse of [.

If dimM > 2 then ω is uniquely determined by Ω. Otherwise there would exist a
not everywhere vanishing ω′ with ω′ ∧ Ω = 0. Let x ∈ M with ω′(x) 6= 0. But then
Ω(x) = ω′(x) ∧ η for some η ∈

∧1 T ∗xM . Indeed for any finite dimensional vector space V
and 0 6= w ∈ V one has an exact sequence

0→ R w∧·
−−→ V

w∧·
−−→ Λ2V

w∧·
−−→ Λ3V

w∧·
−−→ · · ·

w∧·
−−→ ΛdimV V → 0
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But this would yield Ω2(x) = 0 a contradiction.
If (M,Ω, ω) is a locally conformally symplectic manifold and a is a nowhere vanishing

function onM then (M, 1
a
Ω, ω+ da

a
) is again a locally conformally symplectic manifold. Two

locally conformally symplectic manifolds (M,Ω, ω) and (M,Ω′, ω′) are called conformally
equivalent iff there exists a nowhere vanishing function a on M with Ω′ = 1

a
Ω and ω′ =

ω + da
a

= ω + d(ln |a|). In this case we will write (M,Ω, ω) ∼ (M,Ω′, ω′) or (M,Ω, ω)
a
∼

(M,Ω′, ω′). So (M,Ω, ω) is conformally equivalent to a symplectic manifold iff [ω] = 0 ∈
H1(M). It is obvious that conformal equivalence is an equivalence relation on the set of
all locally conformally symplectic structures on M .

Suppose dimM = 2n. A submanifold i : L ↪→M is called Lagrangian iff dimL = n and
i∗Ω = 0. Notice that the Lagrangian submanifolds remain the same if we change (M,Ω, ω)
conformally.

3.2.2. Remark. There is another way to look at locally conformally symplectic manifolds,
see [Lee43]. Suppose we have an open covering U of a manifold M and for every U ∈ U
a symplectic form ΩU ∈ Ω2(U) such that ΩU |U∩V = cUVΩV |U∩V for some locally constant
functions cUV ∈ C∞(U ∩ V,R+) (if dim(M) > 2 then the cUV are automatically locally
constant). We have

ΩU |U∩V ∩W = cUVΩV |U∩V ∩W = cUV cVWΩW |U∩V ∩W

and thus cUV cVW |U∩V ∩W = cUW |U∩V ∩W . We set αUV := ln cUV ∈ C
∞(U ∩V,R) and obtain

αVW − αUW + αUV = 0 on U ∩ V ∩W . Next we choose a partition of unity {λU : U ∈ U}
subordinated to U (i.e. suppλU ⊆ U) and set,

βU :=
∑

W∈U λWαUW

where λWαUW is extended by 0 to U . Then we get

βU − βV =
∑

W∈U
λWαUW −

∑

W∈U
λWαVW =

∑

W∈U
λW
(
αUW − αVW

)
=
∑

W∈U
λWαUV = αUV

on U ∩V . So we have found fU := exp βU ∈ C
∞(U,R+) with cUV = fU

fV
|U∩V . We then have

0 = d ln cUV = d ln fU |U∩V − d ln fV |U∩V and we may define a closed 1-form ω ∈ Ω1(M)
by ω|U = d ln fU . Moreover since we have ΩU |U∩V = fU

fV
ΩV |U∩V we also can define a

non-degenerated 2-form Ω ∈ Ω2(M) by Ω|U := 1
fU
ΩU . Finally we have

(dωΩ)|U = dd ln fU
(

1
fU
ΩU

)
= 1

fU
dΩU = 0

and thus (M,Ω, ω) is a locally conformally symplectic manifold. This locally confor-
mally symplectic structure depends of course on the choice of fU , but if we choose f ′U ∈

C∞(U ;R+) with cUV =
f ′U
f ′V
|U∩V the corresponding locally conformally symplectic structure

(M,Ω′, ω′) is conformally equivalent to (M,Ω, ω). Indeed we have fU
fV
|U∩V = cUV =

f ′U
f ′V
|U∩V ,

so fU
f ′U

= fV
f ′V

and we obtain a well defined function a ∈ C∞(M,R+) with a|U = fU
f ′U
. More-

over we have ω|U = d ln fU = d ln a|U + d ln f ′U = (d ln a + ω′)|U as well as Ω|U = 1
fU
ΩU =

1
a

1
f ′U
ΩU = 1

a
Ω′|U , i.e. (M,Ω′, ω′)

a
∼ (M,Ω, ω).

Conversely, if (M,Ω, ω) is a locally conformally symplectic manifold and U is an open
covering such that ω|U ∈ Ω1(U) is exact (if U is a covering of contractible open sets this is
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always true), then we find fU ∈ C
∞(U,R+) with ω|U = d ln fU and we let ΩU := fUΩ|U ∈

Ω2(U). ΩU is closed for we have 0 = (dωΩ)|U = dd ln fU
(

1
fU
ΩU

)
= 1

fU
dΩU and it is obviously

non-degenerated, i.e. ΩU is a symplectic structure on U . Moreover we have

ΩU |U∩V = fUΩ|U∩V = fU
fV
fVΩ|U∩V = fU

fV
ΩV |U∩V =: cUVΩV |U∩V

and d ln fU
fV
|U∩V = d ln fU |U∩V − d ln fV |U∩V = ω|U∩V − ω|U∩V = 0, i.e. ln fU

fV
|U∩V is locally

constant, and so is cUV = fU
fV
|U∩V too.

3.2.3. Remark. To construct the fU in remark 3.2.2 we actually used the fact that the
sheaf C∞(·,R+) ∼= C∞(·,R) is a fine sheaf and is thus acyclic. Especially every 1-cocycle
αVW −αUW +αUV = 0 is a boundary, i.e. αUV = βU −βV . For this argument it is essential
that cUV has values in R+ rather than in R∗ := R\0. If we only have cUV ∈ C

∞(U ∩V,R∗)
then the cohomology class [c] ∈ H1(M ;C∞(·,R∗)) ∼= H1(M ;Z2) is the obstruction to find
fU with cUV = fU

fV
.

For example the Möbius strip does not admit a locally conformally symplectic structure
since it is non-orientable. But one can cover it by three open sets {U, V,W} and easily find
symplectic forms on them with ΩU = ΩV on U ∩ V , ΩV = ΩW on V ∩W and ΩU = −ΩW

on U ∩W .

3.2.4. Example. Let M be a n-dimensional manifold and let ω be a closed 1 form on
M . Let Θ denote the canonical 1-form on T ∗M . Recall that for α ∈ Ω1(M) considered
as mapping α : M → T ∗M one has α∗Θ = α. Define ω′ := π∗ω, Ω′ := dω

′
Θ. Then

(T ∗M,Ω′, ω′) is a locally conformally symplectic manifold. Indeed let (U, q) be a chart
for M and (U ′ := π−1(U), (q, p)) be the induced chart for T ∗M . It is well known that
Θ|U ′ =

∑n
i=1 pidq

i. Moreover we have ω′|U ′ =
∑n

j=1wjdq
j for some wj ∈ C

∞(U ′,R). So
we obtain

(Ω′)n|U ′ = (dω
′
Θ)n|U ′ = (dΘ+ ω′ ∧Θ)n|U ′

= (dΘ)n|U ′ + n(dΘ)n−1 ∧ ω′ ∧Θ|U ′

=
(∑n

i=1 dpi ∧ dq
i
)n

+ n
(∑n

i=1 dpi ∧ dq
i
)n−1

∧
(∑n

j=1wjdq
j
)
∧
(∑n

k=1 pkdq
k
)

=
(∑n

i=1 dpi ∧ dq
i
)n

= ndp1 ∧ dq
1 ∧ dp2 ∧ dq

2 ∧ · · ·

since every summand in the other term contains n+ 1 dqi’s and is hence zero. This shows
that Ω′ is non-degenerated.

For α ∈ Ω1(M) we have α∗Ω′ = α∗dω
′
Θ = dα

∗ω′α∗Θ = dωα. So im(α) is a Lagrangian
submanifold of (T ∗M,Ω′, ω′) if and only if dωα = 0. Since π∗ : H∗(M) ∼= H∗(T ∗M)
we have (T ∗M,Ω′, ω′) is conformally equivalent to a symplectic manifold if and only if
[ω] = 0 ∈ H1(M).

3.2.5. Example. On S3 there exists a global frame of 1-forms α, β, γ ∈ Ω1(S3) satisfying

dα = β ∧ γ dβ = γ ∧ α dγ = α ∧ β.

This is because S3 is a Lie group with Lie algebra so(3,R) and the latter has a basis
{A,B,C} satisfying

[A,B] = C [B,C] = A [C,A] = B.
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If {a, b, c} denotes the dual basis to {A,B,C} then α, β, γ are the left invariant 1-forms
corresponding to a, b, c respectively. Let ω := dt ∈ Ω1(S1) and Ω := dωα ∈ Ω2(S1 × S3).
Since

Ω2 = (dωα)2 = (dα + ω ∧ α)2 = (β ∧ γ + dt ∧ α)2 = 2dt ∧ α ∧ β ∧ γ

Ω is non-degenerated and (S1 × S3,Ω, ω) is a locally conformally symplectic manifold.
However S1 × S3 does not admit a symplectic structure, for this would be exact since

H2(S1 × S3) = 0 and hence would give rise to an exact volume form on S1 × S3, a
contradiction since S1 × S3 is compact.

If g is a diffeomorphism of M then (M, g∗Ω, g∗ω) is again a locally conformally sym-
plectic manifold. We write Diff∞c (M,Ω, ω) for the group of all compactly supported dif-
feomorphisms that preserve the locally conformally symplectic structure up to conformal
equivalence, i.e.

Diff∞c (M,Ω, ω) :=
{
g ∈ Diff∞c (M) : (M, g∗Ω, g∗ω) ∼ (M,Ω, ω)

}

More explicitly g ∈ Diff∞c (M,Ω, ω) iff there exists a ∈ C∞(M,R \ 0) such that g∗Ω = 1
a
Ω

and g∗ω = ω+ d(ln |a|). If dimM > 2 then the first equation implies the second since ω is
unique. Moreover we define

Xc(M,Ω, ω) :=
{
X ∈ Xc(M) : ∃f ∈ C∞(M,R) with LXΩ = −fΩ, LXω = df

}

Again, if dimM > 2 then the equation LXΩ = −fΩ implies the equation LXω = df .
Indeed dΩ + ω ∧ Ω = 0 and LXΩ = −fΩ give

0 = dLXΩ + LXω ∧ Ω + ω ∧ LXΩ = −d(fΩ) + LXω ∧ Ω− fω ∧ Ω

= −df ∧ Ω + fω ∧ Ω + LXω ∧ Ω− fω ∧ Ω = (LXω − df) ∧ Ω

and so LXω = df .

3.2.6. Lemma. Let g ∈ C∞
(
(R, 0), (Diff∞c (M), id)

)
. Then

g ∈ C∞
(
R,Diff∞c (M,Ω, ω)

)
⇔ δrg ∈ Ω1

(
R;Xc(M,Ω, ω)

)
⇔ ġt ∈ Xc(M,Ω, ω).

Especially FlX ∈ C∞
(
R,Diff∞c (M,Ω, ω)

)
iff X ∈ Xc(M,Ω, ω).

Proof. Suppose we have g : (R, 0)→
(
Diff∞c (M,Ω, ω), id

)
. Then there exists a ∈ C∞(R×

M,R) with g∗tΩ = 1
at
Ω and g∗tω = ω + d(ln |at|). Differentiating these equations with

respect to t we obtain LġtΩ = −(g−1t )∗( ȧt
at
)Ω and Lġtω = d((g−1t )∗ ȧt

at
), where ȧt :=

∂
∂t
at.

Hence ġt ∈ Xc(M,Ω, ω) with fġt = (g−1t )∗ ȧt
at
.

Suppose conversely LġtΩ = −ftΩ and Lġtω = dft. Then we define at := exp(
∫ t
0
g∗sfsds).

It satisfies g∗t ft =
ȧt
at

and a0 = 1. So we obtain the following differential equation for g∗tΩ

∂
∂t
(g∗tΩ) = −

ȧt
at
(g∗tΩ) with initial condition g∗0Ω = Ω.

This equation has a solution namely 1
at
Ω and since the solution is unique (evaluate every-

thing at points x ∈ M and obtain differential equations in finite dimensional spaces) we
obtain g∗tΩ = 1

at
Ω. Similarly we check g∗tω = ω + d(ln |at|). For t = 0 this follows from

a0 = 1. Moreover we have

∂
∂t
(g∗tω) = g∗tLġtω = g∗t dft = d(g∗t ft) = d( ȧt

at
) = ∂

∂t
(ω + d ln |at|)

and so equality holds for all t.
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3.2.7. Lemma. Let (M,Ω0, ω0), (M,Ω1, ω1) be two locally conformally symplectic struc-
tures on M , i : N →M a closed submanifold such that Ω0 = Ω1 on TM |N and i∗ω0 = i∗ω1.
Then there exist open neighborhoods U , V of N and a diffeomorphism f : U → V , which is
the identity on N , and such that (U, f ∗Ω1, f

∗ω1) is conformally equivalent to (U,Ω0|U , ω0|U).

Proof. Since i∗ω0 = i∗ω1 there exists a neighborhood U of i(N) and a nowhere vanishing
function a on U such that ω0 = ω1 + d ln |a| on U and i∗a = 1. So changing (Ω0, ω0)
conformally (by a) we may assume ω0 = ω1 = ω.

Since we have Ω1 = Ω0 on TM |N there exists a possibly smaller open neighborhood
U of N such that Ωt := t(Ω1 − Ω0) + Ω0 is non-degenerated on U for all t ∈ I. So
(U,Ωt|U , ω|U) is a locally conformally symplectic manifold for all t ∈ I. Moreover we have
i∗(Ω1 − Ω0) = 0 and hence by corollary 3.1.2 there exists α ∈ Ω1(U), which vanishes on
N such that dωα = Ω1 − Ω0 =

∂
∂t
Ωt on a possibly smaller U . We define a time dependent

vector field Xt ∈ X(U), by iXtΩt := −α and denote the curve of local diffeomorphisms
corresponding to it by ft. Since Xt vanishes on i(N), ft is the identity on i(N) and hence
it is possible to shrink U , such that ft is defined on U for all t ∈ I. Next we have

∂
∂t
(f ∗t Ωt) = f ∗t (LXtΩt +

∂
∂t
Ωt) = f ∗t (diXtΩt + iXtdΩt + dωα)

= f ∗t
(
− dα− iXt(ω ∧ Ωt) + dωα

)
= f ∗t

(
ω ∧ α− (iXtω)Ωt + ω ∧ iXtΩt

)

= −(f ∗t iXtω)(f
∗
t Ωt) = −(inc

∗
t i∂tf

∗ω)(f ∗t Ωt) = −
ȧt
at
(f ∗t Ωt)

with at := exp
( ∫ t

0
inc∗s i∂tf

∗ωds
)
. Since the solution of such a differential equation is

unique we obtain f ∗t Ωt =
1
at
Ω0. Moreover by the definition of at we have f

∗
t ω = ω+d ln |at|

and hence especially (U, f ∗1Ω1, f
∗
1ω)

a1∼ (U,Ω0|U , ω|U).

3.2.8. Definition. Let M be a manifold. J ∈ T ∗M ⊗ TM is called an almost complex
structure if J2 = −id. Let Ω ∈ Ω2(M) be non-degenerated. Then J is called Ω-compatible
if the following two conditions are satisfied:

1. Ω(X, JX) > 0 for all 0 6= X ∈ TM

2. Ω(JX, Y ) + Ω(X, JY ) = 0 for all X,Y ∈ TxM , x ∈M

3.2.9. Lemma. Let Ω be a non-degenerated 2-form on M . Then the space of all Ω-
compatible almost complex structures is non-empty and contractible.

Proof. Let R(M) denote the space of Riemannian metrics on M and J(M,Ω) the space of
all Ω-compatible almost complex structures on M . We have a mapping:

i : J(M,Ω)→ R(M) J 7→ gJ where gJ(X,Y ) := Ω(X, JY )

Given a Riemannian metric g we define A ∈ T ∗M ⊗ TM by Ω(X,AY ) = g(X,Y ). Then

g(AX, Y ) = Ω(AX,AY ) = −Ω(AY,AX) = −g(AY,X) = −g(X,AY ) = −g(A∗X,Y )

and hence A∗ = −A. Moreover A is invertible and so using polar decomposition there exist
unique B, J ∈ T ∗M ⊗ TM such that B∗ = B, B > 0, JJ∗ = id and A = BJ . From

BJ = A = −A∗ = −J∗B∗ = −J∗B = (J∗BJ)(−J∗)
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and the uniqueness of the polar decomposition we obtain −J ∗ = J and BJ = JB. So
J2 = −id. Moreover we have:

Ω(BX, JBX) = Ω(BX,AX) = g(BX,X) > 0 ∀X 6= 0

and

Ω(JBX,BY ) + Ω(BX, JBY ) = Ω(AX,BY ) + Ω(BX,AY )

= −g(BY,X) + g(BX, Y )

= −g(Y,BX) + g(BX, Y ) = 0

Since B is onto this shows that Jg := J is a Ω-compatible almost complex structure. So
we have another mapping

r : R(M)→ J(M,Ω) g 7→ Jg

One readily sees that r ◦ i = id and hence J(M,Ω) is a retract of R(M). Since the latter
is non-empty and contractible J(M,Ω) is so too.

3.2.10. Lemma. Let (M,Ω0, ω0) and (M,Ω1, ω1) be two locally conformally symplectic
structures on M , suppose i : L → M is a Lagrangian submanifold for both structures and
[i∗ω0] = [i∗ω1] ∈ H1(L). Then there exist open neighborhoods U , V of L and a diffeomor-
phism f : U → V , which is the identity on L, such that (U, f ∗Ω1, f

∗ω1) is conformally
equivalent to (U,Ω0|U , ω0|U).

Proof. Choose Ωi-compatible almost complex structures Ji on M , i = 0, 1. Since L is
a Lagrangian submanifold we obtain Ji(TL) ⊕ TL = TM |L. Moreover Ωi induces an
isomorphism of vector bundles [i : Ji(TL) ∼= T ∗L. We define an isomorphism of vector
bundles A : TM |L → TM |L by

A|TL = id and A|J0(TL) = [−11 [0 : J0(TL)→ J1(TL)

One easily checks

Ω1(AX,AY ) = Ω0(X,Y ) ∀X,Y ∈ TxL, x ∈ L.

Denote by Ā : N(L) → N(L) the isomorphism induced from A, where N(L) denotes the
normal bundle of L in M . Next choose a tubular neighborhood g : N(L) → U of L and
define a diffeomorphism h := g ◦ Ā◦g−1 : U → U . Then we obtain h|L = id and h∗Ω1 = Ω0

along L. Moreover we have i∗(h∗ω1) = i∗ω1 = i∗ω0 and we may apply lemma 3.2.7 to finish
the proof.

3.2.11. Corollary. Let (M,Ω, ω) be a locally conformally symplectic manifold and let
i : L → M be a Lagrangian submanifold. Then there exists an open neighborhood U
of the zero section in T ∗L, an open neighborhood V of L in M and a diffeomorphism
f : U → V such that (U, f ∗Ω, f ∗ω) is conformally equivalent to (U, dπ

∗i∗ωΘ|U , π
∗i∗ω|U) (cf.

example 3.2.4).

Proof. Choose a compatible almost complex structure J on (M,Ω, ω). Then J(TL) is a La-
grangian complement to TL, i.e. TM |L ∼= TL⊕ J(TL) and hence N(TL) := TM |L/TL ∼=
J(TL). Moreover Ω induces an isomorphism J(TL) ∼= T ∗L. Now choose a tubular
neighborhood g : T ∗L ∼= N(L) → U ⊆ M of L. Then the image of the zero section
s : L → T ∗L is a Lagrangian submanifold for (T ∗L, g∗Ω, g∗ω) and (T ∗L, dπ

∗i∗ωΘ, π∗i∗ω).
Moreover s∗g∗ω = i∗ω = s∗π∗i∗ω and we can apply lemma 3.2.10.
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3.2.12. Lemma. Let M be compact and ω a closed 1-form on M . Suppose (M,Ω0, ω)
and (M,Ω1, ω) are two locally conformally symplectic structures, which are C0-close and
such that [Ω1] = [Ω0] ∈ H

2
dω(M). Then there exists a diffeomorphism f ∈ Diff∞(M)◦ such

that (M, f ∗Ω1, f
∗ω) is conformally equivalent to (M,Ω0, ω).

Proof. Ωt := t(Ω1−Ω0)+Ω0 is non-degenerated for all t ∈ I, since Ω1 and Ω0 are C
0-close.

Since [Ω1] = [Ω0] ∈ H
2
dω(M) there exists α ∈ Ω1(M) such that dωα = Ω1 −Ω0 =

∂
∂t
Ωt. Let

Xt be the time dependent vector field on M defined by iXtΩt = −α and ft the curve of
diffeomorphisms corresponding to it. The same calculation as in the proof of lemma 3.2.7
yields f ∗t Ωt =

1
at
Ω0 and f ∗t ω = ω + d ln |at|, hence f1 is the desired diffeomorphism.

3.3 Jacobi Manifolds

Let Xk(M) denote the set of all skew symmetric multi vector fields on M , i.e. the sections
of the vector bundle ΛkTM . Recall that the Scouten bracket

[·, ·] : Xp(M)× Xq(M)→ Xp+q−1(M)

is the bilinear extension of the Lie derivative which has the following properties

[P,Q] = (−1)pq[Q,P ]

[P,Q ∧R] = [P,Q] ∧R + (−1)pq−qQ ∧ [P,R]

0 = (−1)p(r−1)[P, [Q,R]] + (−1)q(p−1)[Q, [R,P ]] + (−1)r(p−1)[R, [P,Q]]

where p = degP , q = degQ and r = degR. Moreover one has

i[P,Q]α = (−1)q(p+1)iPdiQα + (−1)piQdiPα− i(P ∧Q)dα (3.1)

for P ∈ Xp(M), Q ∈ Xq(M) and α ∈ Ωp+q−1(M). See [Vai94] for all this.
In the next lemma we collect a few formulas we will need in the sequel.

3.3.1. Lemma. Let Λ ∈ X2(M) and σ ∈ Ω1(M). Then we have

1
2
[Λ,Λ](α, β, γ) =

∑

cycl(α,β,γ)

Λ(dΛ(α, β), γ) (3.2)

1
2
[Λ,Λ](α, β) = Λ(dΛ(α, β))− [Λ(α),Λ(β)] (3.3)

[Λ(σ),Λ](α, β) = (dσ)(Λ(α),Λ(β))− 1
2
[Λ,Λ](σ, α, β) (3.4)

for closed 1-forms α, β, γ.

Proof. The first equation follows immediately from (3.1). For the second use again (3.1)
to compute

γ
(
1
2
[Λ,Λ](α, β)

)
= iΛdiΛ(α ∧ β ∧ γ)

= Λ(dΛ(α, β), γ) + Λ(dΛ(β, γ), α) + Λ(dΛ(γ, α), β)

= γ
(
Λ(dΛ(α, β))

)
− LΛ(α)iΛ(β)γ + iΛ(β)LΛ(α)γ

= γ
(
Λ(dΛ(α, β))

)
− i[Λ(α),Λ(β)]γ

= γ
(
Λ(dΛ(α, β))− [Λ(α),Λ(β)]

)
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Remains to prove the third. On the one hand we have

(dσ)(Λ(α),Λ(β)) = LΛ(α)σ(Λ(β))− LΛ(β)σ(Λ(α))− σ([Λ(α),Λ(β)])

= iΛ(α)dΛ(β, σ)− iΛ(β)dΛ(α, σ)− σ(Λ(dΛ(α, β))) + σ( 1
2
[Λ,Λ](α, β))

= Λ(α, dΛ(β, σ))− Λ(β, dΛ(α, σ))− Λ(dΛ(α, β), σ) + 1
2
[Λ,Λ](α, β, σ)

= −
∑

cycl(α,β,σ)

Λ(dΛ(α, β), σ) + 1
2
[Λ,Λ](σ, α, β)

and on the other hand

[Λ(σ),Λ](α, β) = (LΛ(σ)Λ)(α, β) = LΛ(σ)(Λ(α, β))− Λ(LΛ(σ)α, β)− Λ(α,LΛ(σ)β)

= iΛ(σ)dΛ(α, β)− Λ(diΛ(σ)α, β)− Λ(α, diΛ(σ)β)

= Λ(σ, dΛ(α, β))− Λ(dΛ(σ, α), β)− Λ(α, dΛ(σ, β))

= −
∑

cycl(α,β,σ)

Λ(dΛ(α, β), σ)

which proves the third equation.

3.3.2. Definition. A Jacobi manifold is a manifold together with a Lie bracket {·, ·} on
C∞(M,R) which is local, i.e. supp({f, g}) ⊆ supp(f) ∩ supp(g).

One can show (see [GL84] and [DLM91]) that such brackets are in one-to-one corre-
spondence with triples (M,Λ, E), where Λ is a skew symmetric bivector field and E is an
ordinary vector field on M which satisfies the following relations

[Λ,Λ] = 2E ∧ Λ and LEΛ = [E,Λ] = 0 (3.5)

The bracket is then given by:

{f, g} = Λ(df, dg) + fdg(E)− gdf(E) (3.6)

We only show the following:

3.3.3. Lemma. Let Λ be a skew symmetric bivector field on M and E ∈ X(M). Then
(3.6) defines a skew symmetric bilinear bracket on C∞(M,R) which is local. It satisfies the
Jacobi identity if and only if (3.5) are satisfied.

Proof. Since the Lie derivative commutes with contractions we have

(LEΛ)(α, β) = LE(Λ(α, β))− Λ(LEα, β)− Λ(α,LEβ) (3.7)

for 1-forms α, β. Next we calculate

{{f, g}, h} = Λ
(
d(Λ(df, dg)), dh

)

− E(df)Λ(dg, dh)− E(dg)Λ(dh, df) + E(dh)Λ(df, dg)

+ fΛ(LEdg, dh) + gΛ(dh, LEdf)− hLE(Λ(df, dg))

+ fdg(E)dh(E)− gdh(E)df(E) + ghLELEf − hfLELEg

Taking the sum over all cyclic permutations in (f, g, h) and using (3.2) and (3.7) we obtain
∑

cycl(f,g,h)

{{f, g}, h} =
(
1
2
[Λ,Λ]− E ∧ Λ

)
(df, dg, dh)−

∑

cycl(f,g,h)

f(LEΛ)(dg, dh)

and hence the Jacobi identity is equivalent to (3.5).
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Suppose {·, ·} is a bracket as above and a is a nowhere vanishing function on M then
one can define a new Jacobi bracket by {f, g}a := 1

a
{af, ag}. If {f, g} = Λ(df, dg) +

fdg(E)− gdf(E) then we obtain

1
a
{af, ag} = 1

a
Λ(fda+ adf, gda+ adg) + fa(dg)(E)− ga(df)(E)

= (aΛ)(df, dg) + f(dg)(aE + Λ(da))− g(df)(aE + Λ(da))

and hence the bracket {·, ·}a corresponds to (Λa, Ea), where Λa = aΛ, Ea = aE + Λ(da).
A mapping h ∈ Diff(M) is called Poisson diffeomorphism iff {f, g} ◦ h = {f ◦ h, g ◦ h}a

for a nowhere vanishing function a and all f, g ∈ C∞(M,R). Since we have

{f, g} ◦ h = h∗
(
Λ(df, dg) + fdg(E)− gdf(E)

)

= (h∗Λ)(dh∗f, dh∗g) + (h∗f)(dh∗g)(h∗E)− (h∗g)(dh∗f)(h∗E)

{f ◦ h, g ◦ h}a = Λa(dh
∗f, dh∗g) + (h∗f)(dh∗g)(Ea)− (h∗g)(dh∗f)(Ea)

this is the case if and only if h∗Λ = Λa and h∗E = Ea.

3.3.4. Definition. If (M,Λ, E) is a Jacobi manifold and f ∈ C∞(M,R) then Xf :=
Λ(df) + fE is called the Hamiltonian vector field to f .

3.3.5. Lemma. We have X{f,g} = [Xf , Xg].

Proof. Since we have 1
2
[Λ,Λ] = E ∧ Λ equation (3.3) gives

Λ(dΛ(df, dg))− [Λ(df),Λ(dg)] = (LEf)Λ(dg)− (LEg)Λ(df) + Λ(df, dg)E (3.8)

Moreover LEΛ = 0 yields 0 = (LEΛ)(df) = LE(Λ(df))− Λ(LEdf) and so

[E,Λ(df)] = Λ(LEdf) (3.9)

Using (3.8) and (3.9) we obtain

X{f,g} = Λ(d{f, g}) + {f, g}E

= Λ(dΛ(df, dg)) + Λ(d(fLEg))− Λ(d(gLEf)) + {f, g}E

= Λ(dΛ(df, dg)) + fΛ(LEdg) + (LEg)Λ(df)− gΛ(LEdf)− (LEf)Λ(dg) + {f, g}E

= [Λ(df),Λ(dg)] + Λ(df, dg)E + f [E,Λ(dg)] + g[Λ(df), E] + {f, g}E

On the other hand we have

[Xf , Xg] = [Λ(df) + fE,Λ(dg) + gE]

= [Λ(df),Λ(dg)] + g[Λ(df), E] + (LΛ(df)g)E + f [E,Λ(dg)]− (LΛ(dg)f)E

+ f(LEg)E − g(LEf)E

= [Λ(df),Λ(dg)] + g[Λ(df), E] + Λ(df, dg)E + f [E,Λ(dg)]− Λ(dg, df)E

+ f(LEg)E − g(LEf)E

= [Λ(df),Λ(dg)] + g[Λ(df), E] + f [E,Λ(dg)] + Λ(df, dg)E + {f, g}E
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So the Hamiltonian vector fields Xf span a generalized distribution which is involutive.
One can show that it is integrable and on every leave there exists a unique induced Jacobi
structure. So one is led to the study of so called transitive Jacobi manifolds, that is
Jacobi manifolds where this foliation consists only of one leave. A proof of the following
proposition (using local coordinates) can be found in [GL84].

3.3.6. Proposition. There exists a natural one to one correspondence between even di-
mensional, transitive Jacobi manifolds and locally conformally symplectic manifolds. A
diffeomorphism is a Jacobi diffeomorphism iff it preserves the corresponding locally con-
formally symplectic structure up to conformal change. Moreover if (M,Ω, ω) corresponds
to (M,Λ, E) and a is a nowhere vanishing function on M then (M,Ωa, ωa) corresponds to
(M,Λa, Ea), where Ωa =

1
a
Ω, ωa = ω + d ln |a|, Λa = aΛ and Ea = aE + Λ(da).

Proof. If (Ω, ω) is given then ]−1 = [ : X(M) → Ω1(M), [X := iXΩ is a C∞(M,R)-linear
isomorphism. We define E := ]ω ∈ X(M) and Λ ∈ X2(M) by

Λ(α, β) := Ω(]β, ]α) = β(]α) = −α(]β)

Notice that Λ(α) = ]α. Suppose conversely (Λ, E) is given. Then Λ(T ∗xM) = TxM , for
Λ(df) + fE span TM , Λ(T ∗xM) is even dimensional (Λ is skew symmetric) and M is even
dimensional. So [−1 = ] : Ω1(M)→ X(M), ]α := Λ(α) is a C∞(M,R)-linear isomorphism.
We define ω := [(E) ∈ Ω1(M) and Ω ∈ Ω2(M) by Ω(X,Y ) := Λ([Y, [X) = Y ([X).
Obviously these constructions are inverse to each other.

Next we show that dω = 0, dωΩ = 0 are equivalent to LEΛ = 0, [Λ,Λ] = 2E ∧ Λ. For
closed 1-forms α, β, γ we obtain form (3.2) and (3.3)

(dΩ)(]α, ]β, ]γ) = L]αΩ(]β, ]γ)− L]βΩ(]α, ]γ) + L]γΩ(]α, ]β)

− Ω([]α, ]β], ]γ) + Ω([]α, ]γ], ]β)− Ω([]β, ]γ], ]α)

=
∑
i]αdΛ(γ, β) +

∑
γ([]α, ]β])

=
∑

Λ(α, dΛ(γ, β)) +
∑

Λ(dΛ(α, β), γ)−
∑

1
2
[Λ,Λ](α, β, γ)

= [Λ,Λ](α, β, γ)− 3
2
[Λ,Λ](α, β, γ) = − 1

2
[Λ,Λ](α, β, γ)

where the sums are over all cyclic permutations of α, β, γ. Moreover we have

(ω ∧ Ω)(]α, ]β, ]γ) =
∑
ω(]α)Ω(]β, ]γ) = −

∑
α(E)Λ(γ, β) = (E ∧ Λ)(α, β, γ)

and so we obtain

(dωΩ)(]α, ]β, ]γ) =
(
− 1

2
[Λ,Λ] + E ∧ Λ

)
(α, β, γ)

This shows that dωΩ = 0 is equivalent to [Λ,Λ] = 2E ∧ Λ. Finally we have

1
2
[Λ,Λ](ω) = (E ∧ Λ)(ω) = E(ω)Λ− E ∧ Λ(ω) = Ω(E,E)Λ− E ∧ E = 0

So (3.4) gives

[E,Λ](α, β) = (dω)(]α, ]β)

and LEΛ = 0 is equivalent to dω = 0, provided that [Λ,Λ] = 2E ∧ Λ.
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If a is a nowhere vanishing function then [a(X) = iXΩa = 1
a
iXΩ = 1

a
[X. So [a = 1

a
[

and ]a = a]. Therefore we have

]a(ωa) = a](ω + d ln |a|) = aE + ]da = aE + Λ(da) = Ea

and
Ωa(]aβ, ]aα) =

1
a
Ω(a]β, a]α) = aΩ(]β, ]α) = aΛ(α, β) = Λa(α, β)

Let h ∈ Diff∞(M). From

(h∗Λ)(h∗ω) = h∗(Λ(ω)) = h∗E

(h∗Λ)(α, β) = h∗
(
Λ(h∗α, h∗β)

)
= h∗

(
Ω(Λ(h∗β),Λ(h∗α))

)
= (h∗Ω)

(
(h∗Λ)(β), (h∗Λ)(α)

)

we see that the locally conformally symplectic structure corresponding to (M,h∗Λ, h∗E)
is (M,h∗Ω, h∗ω). Now h is a Jacobi diffeomorphism iff (M,h∗Λ, h∗E) = (M,Λa, Ea) for
a nowhere vanishing a and this holds iff (M,h∗Ω, h∗ω) = (M,Ωa, ωa), i.e. h preserves the
corresponding locally conformally symplectic structure up to conformal change.

3.3.7. Remark. On a locally conformally symplectic manifold we have

Xf = Λ(df) + fE = ](df) + f]ω = ](df + fω) = ](dωf)

for the Hamiltonian vector field Xf , and

{f, g} = Λ(df, dg) + fdg(E)− gdf(E) = −
(
Ω(]df, ]dg) + fω(]dg)− gω(]df))

)

for f, g ∈ C∞(M,R).

Recall that a contact manifold is an odd dimensional manifold together with a 1-form η,
such that η(dη)n is a volume form. If a is a nowhere vanishing function then (M, ηa :=

1
a
η)

is again a contact manifold. h ∈ Diff∞(M) is called contact diffeomorphism iff h∗η = ηa
for some a. A proof of the following proposition using local coordinates can be found in
[GL84].

3.3.8. Proposition. There exists a natural one to one correspondence between odd dimen-
sional, transitive Jacobi manifolds and contact manifolds. A diffeomorphism is a Jacobi
diffeomorphism iff it is a contact diffeomorphism for the corresponding contact manifold.
Moreover if (M,Λ, E) corresponds to (M, η) and a is a nowhere vanishing function then
(M,Λa, Ea) corresponds to (M, ηa), where Λa = aΛ, Ea = aE + Λ(da) and ηa =

1
a
η.

Proof. Given a contact manifold (M, η) we consider the C∞(M,R)-linear mapping [ :
X(M) → Ω1(M), [X := iXdη + (iXη)η. It is injective since [X = 0 yields 0 = iX[X =
(iXη)

2, so iXη = 0, hence iXdη = 0 thus iX(η(dη)
n) = 0 and finally X = 0 since η(dη)n is a

volume form. Consequently ]−1 = [ : X(M)→ Ω1(M) is an C∞(M,R)-linear isomorphism
and we set E := ]η ∈ X(M). If one contracts E’s defining equation iEdη+(iEη)η = η with
E one obtains (iEη)

2 = iEη. So either iEη = 1 or iEη = 0, but the latter is impossible
for then iEdη = η, hence iE(η(dη)

n) = 0 and E = 0, a contradiction. So E is the unique
vector field satisfying iEη = 1, iEdη = 0 and it is called the Reeb vector field. Moreover
we define Λ ∈ X2(M) by

Λ(α, β) := (dη)(]α, ]β) = −i]α
(
β − (i]βη)η

)
= η(]β)η(]α)− β(]α) = β

(
α(E)E − ]α

)
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where we used iEα = iE(i]αdη + (i]αη)η) = i]αη for the last equation. So we have ]α =
−Λ(α) + α(E)E. From LEη = diEη + iEdη = 0 we obtain

LEα = LE
(
i]αdη + (i]αη)η

)

= LEi]αdη + (LEi]αη)η + (i]αη)LEη

= i[E,]α]dη + i]αLEdη + (i[E,]α]η)η + (i]αLEη)η

= i[E,]α]dη + (i[E,]α]η)η

and so [E, ]α] = ]LEα. From this we get

0 = (ddη)(E, ]α, ]β)

= LE(dη(]α, ]β))− L]α(dη(E, ]β)) + L]β(dη(E, ]α))

− dη([E, ]α], ]β) + dη([E, ]β], ]α)− dη([]α, ]β], E)

= LE(dη(]α, ]β))− dη(]LEα, ]β) + dη(]LEβ, ]α)

= LE(Λ(α, β))− Λ(LEα, β)− Λ(α,LEβ) = (LEΛ)(α, β)

and so LEΛ = 0. In a similar way one shows [Λ,Λ] = 2E ∧ Λ.
Suppose conversely (M,Λ, E) is given. Since it is transitive we have a C∞(M,R)-

linear isomorphism [−1 = ] : Ω1(M) → X(M), ]α := −Λ(α) + α(E)E. Moreover we set
η := [E ∈ Ω1(M). Contracting η’s defining equation E = −Λ(η) + η(E)E with η yields
η(E) = η(E)2 and hence η(E) = 1, for η(E) = 0 would contradict the transversality. So
we also get Λ(η) = 0 and

0 = LEE = LE
(
− Λ(η) + η(E)E

)

= −(LEΛ)(η)− Λ(LEη) + (LEη)(E)E = ]LEη = ]iEdη

and therefore iEdη = 0. Together with (3.4) we obtain

(dη)(]α, ]β) = dη
(
− Λ(α) + α(E)E,−Λ(β) + β(E)E

)

= dη(Λ(α),Λ(β)) = [Λ(η),Λ](α, β) + 1
2
[Λ,Λ](η, α, β)

= (E ∧ Λ)(η, α, β) = Λ(α, β)

and using η(]α) = η(−Λ(α) + α(E)E) = α(E) we get:

i]β
(
i]αdη + (i]αη)η

)
= Λ(α, β) + α(E)β(E) = i−Λ(β)α + iβ(E)Eα = i]βα

So i]αdη + (i]αη)η = α and the constructions are inverse to each other. For a nowhere
vanishing function a, we have

]a(ηa) = −aΛ(
1
a
η) + 1

a
η(aE + Λ(da))Ea = Ea

hence ηa = [aEa and (M,Λa, Ea) corresponds to (M, ηa). To show the last assertion let
h ∈ Diff(M). From

−(h∗Λ)(h∗η) + (h∗η)(h∗E)h∗E = h∗
(
− Λ(η) + η(E)E

)
= h∗E

one sees that the corresponding contact manifold to (M,h∗Λ, h∗E) is (M,h∗η). Now h
is a Jacobi diffeomorphism iff (M,h∗Λ, h∗E) = (M,Λa, Ea) for some a, and this holds iff
(M,h∗η) = (M, ηa), i.e. h is a contact diffeomorphism.
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3.4 Infinitesimal Invariants

Parts of the following lemma can be found in [GL84].

3.4.1. Lemma. Let X be a compactly supported vector field onM . Then X ∈ Xc(M,Ω, ω)
if and only if there exists a locally constant function cX ∈ C

∞(M,R) with dω([X) = cXΩ.
In this case cX is unique and we have cX = iXω − fX where fX is the function satisfying
LXΩ = −fXΩ and LXω = dfX . Moreover Xc(M,Ω, ω) is a Lie algebra and the mapping

ϕ : Xc(M,Ω, ω)→ H0
c (M) X 7→ [cX ]

is a Lie algebra homomorphism, where H0
c (M) is considered as abelian Lie algebra. If M

is compact it is surjective iff Ω is dω-exact.
If (M,Ω, ω) ∼ (M,Ω′, ω′) then Xc(M,Ω, ω) = Xc(M,Ω′, ω′) and ϕ = ϕ′. Let g ∈

Diff∞(M) and (M,Ω′′, ω′′) := (M, g∗Ω, g∗ω). Then g∗ : Xc(M,Ω, ω) ∼= Xc(M,Ω′′, ω′′) and
ϕ′′ ◦ g∗ = g∗ ◦ ϕ.

Proof. For any vector field we have dω([X) = dωiXΩ = LXΩ + iXω ∧ Ω − iXd
ωΩ =

LXΩ + iXω ∧ Ω which yields immediately the first statement. One easily shows

[[X,Y ] = dω(iXiYΩ)− cX[Y + cY [X ∀X,Y ∈ Xc(M,Ω, ω) (3.10)

hence dω([[X,Y ]) = −cXcYΩ + cY cXΩ = 0 and so c[X,Y ] = 0. To show equation (3.10) we
calculate as follows:

i[X,Y ]Ω = LXiYΩ− iYLXΩ = diXiYΩ− iXdiYΩ− iY diXΩ− iY iXdΩ

= diXiYΩ− iXd[Y − iY d[X + iY iX(ω ∧ Ω)

= diXiYΩ + iXd[Y − iY d[X + iXω ∧ iYΩ− iY ω ∧ iXΩ + ω ∧ iY iXΩ

= diXiYΩ + iX(ω ∧ [Y + d[Y )− iY (d[X + ω ∧ [X) + ω ∧ iXiYΩ

= dωiXiYΩ + iXd
ω[Y − iY d

ω[X = dωiXiYΩ + cY [X − cX[Y

If Ω′ = 1
a
Ω, ω′ = ω + da

a
then [′ = 1

a
[ and dω

′
◦ 1
a
= 1

a
◦ dω. So the equation dω([X) = cXΩ

is equivalent to dω
′
([′X) = cXΩ

′. Let g ∈ Diff∞(M). Then g∗ ◦ [ = [′′ ◦ g∗ and hence
the equation dω([X) = cXΩ is equivalent to dω

′′
([′′(g∗X)) = (g∗cX)Ω′′. But this gives

g∗ : Xc(M,Ω, ω) ∼= Xc(M,Ω′′, ω′′) and ϕ′′ ◦ g∗ = g∗ ◦ ϕ.

3.4.2. Remark. Notice that the homomorphism ϕ vanishes if (M,Ω, ω) is conformally
equivalent to a symplectic structure, since H0

c (M) 6= 0 only if M has a compact com-
ponent, but in this case Ω is not dω-exact since an exact symplectic structure can only
exist on non-compact manifolds. This is because Ω exact implies that the volume form
Ωn is exact too, but this contradicts the fact that H2n(M) ∼= R for connected, compact,
orientable, 2n-dimensional M .

But ϕ does not vanish in general. For example let T 4 = S1 × S1 × S1 × S1 be the 4-
dimensional torus and let dx, dy, dx′, dy′ denote the generators ofH1(T 4). We take ω := dx,
α := sin(y)dx′+cos(y)dy′ and Ω := dωα. An easy calculation shows Ω2 = 2dx∧dy∧dx′∧dy′,
so (T 4,Ω, ω) is a compact, dω-exact locally conformally symplectic manifold, and ϕ is non-
trivial by lemma 3.4.1. Another example of a locally conformally symplectic manifold with
non-vanishing ϕ is the one in example 3.2.5.
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3.4.3. Lemma. We have a surjective Lie algebra homomorphism

ψ : kerϕ→ H1
dωc
(M) X 7→ [[X]

where H1
dωc
(M) is considered as abelian Lie algebra. If (M,Ω, ω)

a
∼ (M,Ω′, ω′) then kerϕ =

kerϕ′ and 1
a
◦ ψ = ψ′. Let g ∈ Diff∞(M) and (M,Ω′′, ω′′) := (M, g∗Ω, g∗ω). Then g∗ :

kerϕ ∼= kerϕ′′ and ψ′′ ◦ g∗ = g∗ ◦ ψ.

Proof. ψ is a Lie algebra homomorphism by formula (3.10). If [σ] ∈ H1
dωc
(M) then ]σ ∈

kerϕ and ψ(]σ) = [σ], so ψ is onto. If (M,Ω, ω)
a
∼ (M,Ω′, ω′) then ϕ = ϕ′ and 1

a
[ = [′.

Hence kerϕ = kerϕ′ and 1
a
ψ = ψ′. Let g ∈ Diff∞(M). From lemma 3.4.1 we get g∗ :

kerϕ ∼= kerϕ′′ and since we have [′′ ◦ g∗ = g∗ ◦ [ we also obtain ψ′′ ◦ g∗ = g∗ ◦ ψ.

3.4.4. Lemma. Let (M,Ω, ω) be a 2n-dimensional locally conformally symplectic mani-
fold. Then we have another surjective Lie algebra homomorphism

ρ := kerψ → H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
X 7→ [hΩn]

where the right hand side is considered as abelian Lie algebra, and h is a compactly sup-
ported function on M such that [X = dωh.

If (M,Ω, ω)
a
∼ (M,Ω′, ω′) then kerψ = kerψ′ and 1

an+1 ◦ ρ = ρ′. Let g ∈ Diff∞(M) and
(M,Ω′′, ω′′) := (M, g∗Ω, g∗ω). Then g∗ : kerψ ∼= kerψ′′ and ρ′′ ◦ g∗ = g∗ ◦ ρ.

Proof. If h, h′ are two functions satisfying dωh = [X = dωh′ then dω(h − h′) = 0 and
[(h− h′)Ωn] ∈ H0

dωc (M)(M) ∧ [Ωn], so

[hΩn] = [h′Ωn] + [(h− h′)Ωn] = [h′Ωn] ∈ H2n

d
(n+1)ω
c

(M)/H0
dωc
(M) ∧ [Ωn].

This shows that ρ is well defined. Let [X = dωh and [Y = dωk. From formula (3.10) we
get [[X,Y ] = dω(iXiYΩ) and since

(iXiYΩ)Ω
n = niYΩ ∧ iXΩ ∧ Ωn−1 = ndωk ∧ dωh ∧ Ωn−1 = nd(n+1)ω

(
kdωh ∧ Ωn−1)

we see that ρ vanishes on brackets. Given any [σ] ∈ H2n

d
(n+1)ω
c

(M) we may write σ = hΩn for

some h ∈ C∞c (M,R), since Ω is non-degenerated. But then ](dωh) ∈ kerψ and ρ(](dωh)) =
[σ]. So ρ is onto.

If (M,Ω, ω)
a
∼ (M,Ω′, ω′) then lemma 3.4.3 yields kerψ = kerψ′. Moreover (n+1)ω′ =

(n + 1)ω + d(ln |an+1|) so 1
an+1 : H2n

d
(n+1)ω
c

(M) ∼= H2n

d
(n+1)ω′
c

(M) and 1
an+1 : H0

dωc
(M) ∧ [Ωn] ∼=

H0
dω

′
c
(M)∧ [Ω′n]. If [X = dωh then [′X = 1

a
[X = 1

a
dωh = dω

′
( 1
a
h) and so ρ′(X) = [ 1

a
hΩ′n] =

[ 1
an+1hΩ

n] = 1
an+1ρ(X).

Let g ∈ Diff∞c (M). From lemma 3.4.3 we get g∗ : kerψ ∼= kerψ′′. If [X = dωh then
[′′(g∗X) = dω

′′
(g∗h) and hence ρ′′(g∗X) = [g∗hΩ′′n] = [g∗(hΩn)] = g∗ρ(X).

3.4.5. Remark. Notice that X ∈ ker ρ if and only if there exist h ∈ Ω0
c(M) and α ∈

Ω2n−1
c (M) such that [X = dωh and hΩn = d(n+1)ωα.
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3.4.6. Remark. Suppose M is connected. If ω is not exact then H2n

d
(n+1)ω
c

(M) = 0 by

example 3.1.7. Moreover, if M is compact then H2n(M)/
(
R ∧ [Ωn]

)
= 0. For connected

M we thus have

H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
∼=





R
if M is non-compact and conformally equivalent

to a symplectic manifold

0 otherwise

So for connected M , ρ 6= 0 if and only if (M,Ω, ω) is conformally equivalent to a non-
compact, symplectic manifold.

The short exact sequence of Lie algebras

0→ kerϕ→ Xc(M,Ω, ω)
ϕ
−→ Im(ϕ)→ 0 (3.11)

admits a splitting and we obtain a semi direct sum

Xc(M,Ω, ω) ∼= kerϕ⊕α Im(ϕ)

where the action α : Im(ϕ) → Der(kerϕ) is given by α(c)(X) = c[X0, X], where X0 ∈
Xc(M,Ω, ω) is such that ϕ(X0) = 1, i.e. dω[X0 = Ω, on the compact components of M on
which Ω is dω-exact.

On a locally conformally symplectic manifold (M,Ω, ω) one has the so called symplectic
pairing

{·, ·} : H1
dωc
(M)×H1

dωc
(M)→ H2n

d
(n+1)ω
c

(M) {α, β} := α ∧ β ∧ [Ωn−1].

It is non-zero only if M has components which are conformally equivalent to symplectic
manifolds (cf. example 3.1.7). If M is a connected symplectic manifold this is the usual
symplectic pairing up to Poincaré duality. For X,Y ∈ kerϕ we have [X,Y ] ∈ kerψ and
[[X,Y ] = dωiXiYΩ by equation (3.10). So ρ([X,Y ]) = [(iXiYΩ)Ω

n] = n[iYΩ∧ iXΩ∧Ω
n−1]

and

ρ([X,Y ]) = −n{ψ(X), ψ(Y )} ∀X,Y ∈ kerϕ (3.12)

In the symplectic case this is the infinitesimal version of a formula due to G. Rousseau,
see [Rou78] and proposition 3.7.20 below. It shows that, in the case where the symplectic
pairing {·, ·} : H1

dωc
(M)×H1

dωc
(M)→ H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
is not identically zero,

the short exact sequence

0→ kerψ → kerϕ
ψ
−→ H1

c (M)→ 0

does not split, for a section should satisfy [s(α), s(β)] = s([α, β]) = s(0) = 0 and so
0 = ρ([s(α), s(β)]) = −n{α, β} by equation (3.12).

The short exact sequence

0→ ker ρ→ kerψ
ρ
−→H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
→ 0 (3.13)

splits and we obtain a semidirect sum

kerψ ∼= ker ρ⊕α H
2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)

where the action α : H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
→ Der(ker ρ) is given by α(t)(X) =

t[X0, X], for a suitable X0 ∈ kerψ.
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3.4.7. Lemma. kerψ is an ideal in Xc(M,Ω, ω) and we have a semi direct sum

Xc(M,Ω, ω)/ kerψ ∼= H1
dωc
(M)⊕α Im(ϕ)

where the action α : Im(ϕ)→ Der(H1
dωc
(M)) is given by α(t)(β) = −t ∧ β.

Proof. From (3.10) we obtain immediately

ψ([X,Y ]) = −ϕ(X) ∧ ψ(Y ) ∀X ∈ Xc(M,Ω, ω), Y ∈ kerϕ (3.14)

Especially kerψ is an ideal in Xc(M,Ω, ω) and we have commutative diagram

kerψ
Ä _

²²

kerψ // //
Ä _

²²

0
Ä _

²²

kerϕ Â Ä //

ψ
²²²²

Xc(M,Ω, ω)

²²²²

ϕ
// // Im(ϕ)

H1
dωc
(M) Â Ä ]

// Xc(M,Ω, ω)/ kerψ
ϕ

// // Im(ϕ)

with exact rows and columns (for the third row use the nine lemma). It follows from (3.14)
that the action is as stated.

3.4.8. Lemma. ker ρ is an ideal in kerϕ and we have a central extension

kerϕ/ ker ρ ∼= H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
⊕c H

1
c (M)

where the cocycle c :
∧2H1

c (M) → H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
is given by c(α, β) =

−n{[α], [β]}.

Proof. Equation (3.12) shows [kerϕ, kerψ] ⊆ ker ρ. Especially we see that ker ρ is an ideal
in kerϕ and we have a commutative diagram

ker ρ
Ä _

²²

ker ρ // //
Ä _

²²

0
Ä _

²²

kerψ Â Ä //

ρ
²²²²

kerϕ

²²²²

ψ
// // H1

dωc
(M)

H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
Â Ä i // kerϕ/ ker ρ

ψ
// // H1

dωc
(M)

where all rows and columns are exact (for the third row use the nine lemma). Since we
have [kerϕ, kerψ] ⊆ ker ρ the last row is a central extension. The 2-cocycle c corresponding
to this extension is c(α, β) = ρ([]α, ]β]− 0) = −n{α, β} by equation (3.12).

3.5 Derived Series of Xc(M,Ω, ω)

If (M,Ω, ω) is a locally conformally symplectic manifold and U ⊆M is an open subset then
(U,Ω|U , ω|U) is a locally conformally symplectic manifold too. In this case we write ϕU ,
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ψU , ρU for the invariants of (U,Ω|U , ω|U). Moreover we identify Xc(U) with {X ∈ Xc(M) :
supp(X) ⊆ U}, via restriction resp. extension by 0. So ϕU(X), ψU(X), ρU(X) do make
sense for X ∈ Xc(M) with support in U . Finally let U ⊆ V ⊆ M be two open subsets of
M , and let i : U → V denote the inclusion. Then we have commutative diagrams

Xc(U,Ω|U , ω|U)
ϕU

//

²²

H0
c (U)

i∗
²²

Xc(V,Ω|V , ω|V )
ϕV

// H0
c (V )

kerϕU
ψU

//

²²

H1

d
ω|U
c

(U)

i∗
²²

kerϕV
ψV

// H1

d
ω|V
c

(V )

and kerϕU ⊆ kerϕV , kerψU ⊆ kerψV , as well as a commutative diagram

kerψU
ρU

//

²²

H2n

d
(n+1)ω|U
c

(U)/
(
H0

d
ω|U
c

(U) ∧ [Ωn|U ]
)

i∗
²²

kerψV
ρV

// H2n

d
(n+1)ω|V
c

(V )/
(
H0

d
ω|V
c

(V ) ∧ [Ωn|V ]
)

and ker ρU ⊆ ker ρV . But one should not expect something like kerψV ∩XU(M) = kerψU .
The following crucial lemma is due to E. Calabi.

3.5.1. Lemma. Let U,U1 be open sets in R2n such that Ū ⊆ U1 and let Ω = dx1∧dx2+· · ·
be the standard symplectic form. Then for all X ∈ ker ρU there exist Yi, Zi ∈ ker ρU1 such
that X =

∑2n
i=1[Yi, Zi]. Especially ker ρU ⊆ [ker ρU1 , ker ρU1 ].

Proof. We follow the proof in [ALDM74]. Since X ∈ ker ρU we have iXΩ = dh and
hΩn = dα with supph ⊆ U and suppα ⊆ U (cf. remark 3.4.5). Let A be the vector field
defined by iAΩ

n = α, write A =
∑2n

i=1A
i ∂
∂xi

and define Z̃i := ]dAi. Obviously we have

Z̃i ∈ kerψU . Next we have

hΩn = dα = LAΩ
n =

∑2n
i=1 LAi ∂

∂xi
Ωn =

∑2n
i=1A

iL ∂

∂xi
Ωn + dAi ∧ i ∂

∂xi
Ωn

=
∑2n

i=1

∑2n
k=1

∂Ai

∂xk
dxk ∧ i ∂

∂xi
Ωn =

∑2n
i=1

∂Ai

∂xi
dxi ∧ i ∂

∂xi
Ωn =

(∑2n
i=1

∂Ai

∂xi

)
Ωn

and hence h =
∑2n

i=1
∂Ai

∂xi
. So we obtain

i∑2n
i=1[

∂

∂xi
,Z̃i]

Ω =
∑2n

i=1 L ∂

∂xi
iZ̃i

Ω− iZ̃i
L ∂

∂xi
Ω

=
∑2n

i=1 L ∂

∂xi
dAi = d

∑2n
i=1 L ∂

∂xi
Ai = dh = iXΩ

and hence X =
∑2n

i=1[
∂
∂xi
, Z̃i]. Now choose an open set U 1

2
such that Ū ⊆ U 1

2
⊆ Ū 1

2
⊆ U1

and functions yi supported on U 1
2
with

∫
U1
yiΩn = 0 and ]dyi|U = ∂

∂xi
|U . Then Yi := ]dyi ∈

ker ρU1 and X =
∑2n

i=1[Yi, Z̃i], since supp(Z̃i) ⊆ U . Similarly since Z̃i ∈ kerψU ⊆ kerψU1

we find functions zi supported on U1 with
∫
U1
ziΩn = 0 and ]dzi|U 1

2

= Z̃i|U 1
2

. Then

Zi := ]dzi ∈ ker ρU1 and X =
∑2n

i=1[Yi, Zi], since supp(Yi) ⊆ U 1
2
.

3.5.2. Lemma. Let (M,Ω, ω) be a locally conformally symplectic manifold and let U be
an open covering of M . Then for every X ∈ ker ρ there exist N ∈ N, U1, . . . , UN ∈ U and
Xi ∈ ker ρUi

such that X =
∑N

i=1Xi.
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Proof. Since X ∈ ker ρ there exist h ∈ Ω0
c(M) and α ∈ Ω2n−1

c (M) such that [X = dωh and
d(n+1)ωα = hΩn, see remark 3.4.5.

Choose N ∈ N and U1, . . . , UN ∈ U which cover suppα and choose a partition of
unity {λ0, . . . , λN} subordinated to {M \ suppα,U1, . . . , UN}. Define hi ∈ C

∞
c (M,R) by

hiΩ
n := d(n+1)ω(λiα) and set Xi := ]dωhi. Since we have

∑N
i=0 hiΩ

n = d(n+1)ω(
∑N

i=0 λiα) = d(n+1)ωα = hΩn

we get
∑N

i=0 hi = h and so
∑N

i=0Xi = ]dω
∑N

i=0 hi = ]dωh = X. Moreover X0 = 0 and
Xi ∈ ker ρUi

, for 1 ≤ i ≤ N .

3.5.3. Corollary. Let (M,Ω, ω) be a locally conformally symplectic manifold. Then ker ρ
is perfect, i.e. ker ρ = [ker ρ, ker ρ].

Proof. We show ker ρ ⊆ [ker ρ, ker ρ], the other inclusion is trivial. Since we have the
fragmentation lemma 3.5.2 it suffices to prove this locally, but the local statement follows
from lemma 3.5.1.

The derived series of a Lie algebra g is defined inductively byD0g := g, D1g := [g, g] and
Dk := [Dk−1g, Dk−1g], where [g, g] denotes the Lie algebra generated by all commutators.

3.5.4. Corollary. Let (M,Ω, ω) be a connected locally conformally symplectic manifold
and let g := Xc(M,Ω, ω) for the moment. Then we have:

D0g = g D1g D2g D3g

M compact,

[Ω] = 0 ∈ H2
dω(M)

g kerϕ kerψ = ker ρ D2g

M compact,

[Ω] 6= 0 ∈ H2
dω(M)

g = kerϕ kerψ = ker ρ D1g D1g

M not compact,

[ω] 6= 0 ∈ H1(M)
g = kerϕ kerψ = ker ρ D1g D1g

M not compact,

[ω] = 0, {·, ·} = 0
g = kerϕ ker ρ D1g D1g

M not compact,

[ω] = 0, {·, ·} 6= 0
g = kerϕ kerψ ker ρ D2g

Proof. Since ker ρ is perfect (see corollary 3.5.3) we obtain

[kerψ, kerψ] ⊆ ker ρ = [ker ρ, ker ρ] ⊆ [kerψ, kerψ]

and so we always have

[kerψ, kerψ] = ker ρ. (3.15)

Moreover if ρ = 0 then kerψ = ker ρ is perfect and we get

[kerϕ, kerϕ] ⊆ kerψ = [kerψ, kerψ] ⊆ [kerϕ, kerϕ]

and we obtain

[kerϕ, kerϕ] = kerψ = ker ρ if ρ = 0. (3.16)
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Now consider the first case, i.e. ϕ 6= 0. Remark 3.4.6 gives ρ = 0 and so it remains to show
[g, g] ⊇ kerϕ. To see this choose X0 ∈ g, such that ϕ(X0) = 1. For X ∈ kerϕ we obtain
from (3.14) ψ([X0, X]) = −ϕ(X0) ∧ ψ(X) = −ψ(X), hence

[X0, X] +X ∈ kerψ = [kerψ, kerψ] ⊆ [g, g]

and thus X ∈ [g, g]. In the second and third case we have ϕ = 0 and ρ = 0 and hence
everything follows from equation (3.16). In the forth and fifth case we also have ϕ = 0 and

ker ρ = [kerψ, kerψ] ⊆ [kerϕ, kerϕ] ⊆ kerψ.

Since ker ρ has codimension 1 in kerψ we either have [kerϕ, kerϕ] = kerψ or [kerϕ, kerϕ] =
ker ρ. Now use equation (3.12).

3.5.5. Remark. In the forth case of corollary 3.5.4 we also have [kerψ, kerψ] = ker ρ, but
kerψ 6= ker ρ since ρ 6= 0 and kerψ 6= kerϕ in general. So this is the only case where not
all kernels of our invariants do appear in the derived series.

3.6 Pursell-Shanks-Omori like Theorem

A well known theorem of L. E. Pursell and M. E. Shanks see [PS54] states, roughly speak-
ing, that a smooth manifold is completely determined by its Lie algebra of vector fields.
More precisely, if there exists an isomorphism of the Lie algebras of vector fields then
there exists a unique diffeomorphism between the manifolds, inducing the given Lie alge-
bra isomorphism. Omori proved several generalizations, namely the Lie algebra of vector
fields preserving a symplectic form resp. a volume form uniquely determines the manifold
together with the symplectic resp. volume structure up to multiplication with a constant,
see [Omo74]. We will show an analogous statement for locally conformally symplectic
structures, i.e. any of the Lie algebras Xc(M,Ω, ω), kerϕ, kerψ, ker ρ uniquely determines
the locally conformally symplectic manifold (M,Ω, ω) up to conformal equivalence, see
Theorem 3.6.8.

3.6.1. Lemma. Let (M,Ω, ω) be a locally conformally symplectic manifold, x ∈ M and
X ∈ kerϕ with X(x) 6= 0. Then there exists a chart (U, u) centered at x such that
X|U = ∂

∂u1 and (U,Ω|U , ω|U) ∼ (U, du1 ∧ du2 + · · ·+ du2n−1 ∧ du2n, 0).

Proof. Choose a chart (V, v) centered at x such that v(V ) is a ball with center 0 and X|V =
∂
∂v1

. Since ω|V is exact we may assume that (V,Ω|V , ω|V ) is symplectic, that is ω|V = 0 and
dΩ|V = 0. Since we have X ∈ kerϕ we obtain LXΩ|V = diXΩ|V = dω[X|V = 0. Choose
fij ∈ C

∞(V,R) with Ω|V =
∑

i<j fijdv
i ∧ dvj and set

σ1 :=
2n∑

j=2

f1jdv
j ∈ Ω1(V ) σ2 :=

∑

2≤i<j≤2n
fijdv

i ∧ dvj ∈ Ω2(V )

We immediately obtain

Ω|V = dv1 ∧ σ1 + σ2, dv1 ∧ dσ1 = dσ2 and σn−12 6= 0 on V .
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The last statement follows from 0 6= Ωn|V = (dv1 ∧ σ1 + σ2)
n = ndv1 ∧ σ1 ∧ σ

n−1
2 . Next we

have

0 = LXΩ|V = L ∂

∂v1

∑
i<j fijdv

i ∧ dvj =
∑

i<j(L ∂

∂v1
fij)dv

i ∧ dvj

and thus L ∂

∂v1
fij = 0. So

dσ2 =
2n∑

k=1

∑

2≤i<j≤2n

∂fij
∂vk

dvk ∧ dvi ∧ dvj =
2n∑

k=2

∑

2≤i<j≤2n

∂fij
∂vk

dvk ∧ dvi ∧ dvj

and

dv1 ∧ dσ1 =
2n∑

k=1

2n∑

j=2

∂f1j
∂vk

dv1 ∧ dvk ∧ dvj =
2n∑

k=2

2n∑

j=2

∂f1j
∂vk

dv1 ∧ dvk ∧ dvj

and since dσ2 = dv1 ∧ dσ1, both terms have to vanish. That is, dσ2 = 0 and dσ1 =
i ∂

∂v1
(dv1 ∧ dσ1) = 0.

Let π : R2n → R2n−1, π(v1, . . . , v2n) = (v2, . . . , v2n) and choose f ∈ Ω0(π(v(V ))) with
(π ◦ v)∗df = σ1 and θ ∈ Ω1(π(v(V ))) with (π ◦ v)∗dθ = σ2 and such that θ ∧ dθn−1 6= 0

locally around 0 ∈ R2n−1. This is possible since we have dσn−12 6= 0,
∂fij
∂v1

= 0 and π(v(V ))
is a ball, hence contractible.

So θ is a contact form locally around 0 and by Darboux’s theorem (see [ABK+92] for
example) we find a chart (W,w) centered at 0 ∈ R2n−1 such that θ|W = dw1 + w2dw3 +
· · ·+ w2n−2dw2n−1. We are now able to define the desired chart (U, u) by:

(π ◦ v)−1(W ) =: U → R2n u := (v1, f ◦ π ◦ v, w2 ◦ π ◦ v, . . . , w2n−1 ◦ π ◦ v)

First of all we have X|U = ∂
∂v1
|U = ∂

∂u1 . Moreover

Ω|U = (dv1 ∧ σ1 + σ2)|U =
(
dv1 ∧ (π ◦ v)∗df + (π ◦ v)∗dθ

)
|U

= dv1 ∧ d(f ◦ π ◦ v)|U + (π ◦ v)∗(dw2 ∧ dw3 + · · ·+ dw2n−2 ∧ dw2n−1)|U

= du1 ∧ du2 + · · ·+ du2n−1 ∧ du2n

But this also shows that Ωn|U = 1
n!
du1∧· · ·∧du2n and hence u is a local diffeomorphism.

3.6.2. Lemma. Let (M,Ω, ω) be a locally conformally symplectic manifold, let U ⊆ M
be a small open ball in M and let V be an open subset with V ⊆ V̄ ⊆ U . Then for every
X ∈ kerϕ there exists Y ∈ ker ρU ⊆ ker ρ such that X|V = Y |V . Moreover if X ∈ X(U)
with dω|U [X = 0 then there exists Y ∈ ker ρU ⊆ ker ρ such that Y |V = X|V .

Proof. Since U is contractible we find in both cases h ∈ Ω0(U) with dωh = [X|U . Let λ be a
bump function with suppλ ⊆ U and λ|V = 1. Then λh ∈ Ω0

U(M), Y := [dω(λh) ∈ kerψU
and Y |V = X|V . Adding a function with support contained in U \ V̄ we may assume
[hΩn] = 0 ∈ Hn

d
(n+1)ω|U
c

(U), i.e. Y ∈ ker ρU .

3.6.3. Lemma. Let (M,Ω, ω) be a locally conformally symplectic manifold, x ∈ M and
let Z ∈ ker ρ with Z(x) 6= 0. Then there exists a neighborhood V of x such that for every
X ∈ ker ρ there exists Y ∈ ker ρ with [Z, Y ]|V = X|V .
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Proof. By lemma 3.6.1 we find a chart (U, u) centered at x such that Z|U = ∂
∂u1 and such

that Ω|U = du1 ∧ du2 + · · · + du2n−1 ∧ du2n. For r > 0 we let Cr := {u ∈ R2n : |ui| < r}.
Next we may assume that u(U) = C2ε for some ε > 0, set V := Cε and assume that
supp(X) ⊆ U (cf. lemma 3.6.2). We define Ỹ ∈ X(U) by

Ỹ (u1, . . . , u2n) :=

∫ u1

−2ε
X(t, u2, . . . , u2n)dt

Then we have

diỸΩ(u) = d
∫ u1

−2ε iXΩ(t, u2, . . . , u2n)dt

= du1 ∧ iXΩ(u) +
∫ u1

−2ε
∑

1<i du
i ∧ ∂

∂ui
(iXΩ)(t, u2, . . . , u2n)dt

= du1 ∧ iXΩ(u) +
∫ u1

−2ε
(
diXΩ− du

1 ∧ ∂
∂u1 (iXΩ)

)
(t, u2, . . . , u2n)dt

= du1 ∧ iXΩ(u)− du
1 ∧
∫ u1

−2ε
∂
∂u1 (iXΩ)(t, u2, . . . , u2n)dt = 0

So we find Y ∈ ker ρ with Y |V = Ỹ |V and hence we have

[Z, Y ] = [ ∂
∂u1 , Ỹ ] = [ ∂

∂u1 ,
∑2n

i=1 Ỹ
i ∂
∂ui

] =
∑2n

i=1
∂Ỹ i

∂u1
∂
∂ui

=
∑2n

i=1X
i ∂
∂ui

= X

on V .

3.6.4. Corollary. Let (M,Ω, ω) be a locally conformally symplectic manifold and let I ⊆
ker ρ be an ideal such that for every x ∈ M there exists Z ∈ I with Z(x) 6= 0. Then
I = ker ρ.

Proof. Let x ∈ M , Z ∈ I with Z(x) 6= 0 and let V be the neighborhood of x from
lemma 3.6.3. By the fragmentation lemma 3.5.2 it suffices to show ker ρV ⊆ I and since
we have [ker ρV , ker ρV ] = ker ρV by corollary 3.5.3 it suffices to show [ker ρV , ker ρV ] ⊆ I.
So let X,Y ∈ ker ρV . By lemma 3.6.3 there exists A ∈ ker ρ with [Z,A]|V = Y |V and

[X,Y ] = [X, [Z,A]] ∈ I

since suppX ⊆ V .

3.6.5. Proposition. Let (M,Ω, ω) be a locally conformally symplectic manifold. For ev-
ery x ∈M

Ix := {X ∈ ker ρ : X is flat at x}

is a maximal ideal in ker ρ, and x 7→ Ix is a bijection between points of M and maximal
ideals of ker ρ. Moreover for X ∈ ker ρ we have

X(x) 6= 0 ⇔ [X, ker ρ] + Ix = ker ρ

Proof. Of course Ix are ideals. If Ix ⊆ I ⊆ ker ρ is an ideal such that there exists X ∈ I
with X not flat at x, then there also exists Y ∈ I with Y (x) 6= 0 and corollary 3.6.4 yields
I = ker ρ. So Ix are maximal. Certainly Ix = Iy implies x = y and it remains to check
surjectivity. Let I be a maximal ideal in ker ρ. By corollary 3.6.4 there exists a point
x ∈ M such that X(x) = 0 for all X ∈ I. Since I is an ideal we also obtain that X is
flat at x, that is I ⊆ Ix. Since both ideals are maximal we have equality. This shows that
x 7→ Ix is a bijection of M and the maximal ideals in ker ρ.
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Suppose X(x) 6= 0. We have to show ker ρ ⊆ [X, ker ρ] + Ix. So let Y ∈ ker ρ. By
lemma 3.6.3 there exists Z ∈ ker ρ such that [X,Z] = Y locally around x, so Y −[X,Z] ∈ Ix
and hence Y = [X,Z] + (Y − [X,Z]) ∈ [X, ker ρ] + Ix.

For the other implication suppose conversely X(x) = 0. Choose a chart (U, u) centered
at x and define a linear mapping

j : ker ρ→ R2n ⊕ gl(2n) Y =
∑2n

i=1 Y
i ∂
∂ui
7→
(
(Y i(x))i, (

∂Y i

∂uj
(x))ij

)

Since X(x) = 0 we have a commutative diagram

ker ρ
j

// R2n ⊕ gl(2n)

ker ρ
j

//

adX

OO

R2n ⊕ gl(2n)

a

OO

where a(b, A) =
(
(−∂Xi

∂uj
(x))ijb, [A, (

∂Xi

∂uj
(x))ij] −

∑2n
k=1

∂2Xi

∂uk∂uj
(x)bk

)
. From the commuta-

tivity we get a : Im(j) → Im(j), and the assumption [X, ker ρ] + Ix = ker ρ shows that
this mapping is surjective. So it is an isomorphism, for a is linear. Especially the matrix
(∂X

i

∂uj
)ij 6= 0 and consequently j(X) 6= 0. But this yields a contradiction since j(X) is in

the kernel of a, for a(j(X)) = j(adX(X)) = 0.

3.6.6. Theorem. Let (Mi,Ωi, ωi), i = 1, 2 be two locally conformally symplectic manifolds
and let κ : ker ρ1 → ker ρ2 be a Lie algebra isomorphism. Then there exists a unique
diffeomorphism f :M1 →M2 such that κ = f∗. Moreover (M1,Ω1, ω1) ∼ (M1, f

∗Ω2, f
∗ω2).

Proof. By proposition 3.6.5 we may define a bijection f : M1 → M2 by If(x) = κ(Ix). For
any A ⊆Mi we have

Ā = {x ∈Mi :
⋂

y∈A
Iy ⊆ Ix}

and hence for A ⊆M1

f(Ā) = {f(x) :
⋂

y∈A
Iy ⊆ Ix} = {f(x) :

⋂

y∈A
κ(Iy) ⊆ κ(Ix)}

= {f(x) :
⋂

y∈A
If(y) ⊆ If(x)} = {p ∈M2 :

⋂

q∈f(A)
Iq ⊆ Ip} = f(A)

So f (and similarly f−1) maps closed sets to closed sets. This shows that f is a homeo-
morphism.

For X ∈ ker ρ1 we obtain from the second part of proposition 3.6.5

X(x) 6= 0⇔ [X, ker ρ1] + Ix = ker ρ1

⇔ [κ(X), ker ρ2] + If(x) = κ
(
[X, ker ρ1] + Ix

)
= κ(ker ρ1) = ker ρ2

⇔ κ(X)(f(x)) 6= 0

From this we immediately obtain

{Xi} linearly independent at x⇔ {κ(Xi)} linearly independent at f(x)
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for Xi ∈ ker ρ1. Moreover if X,Yi ∈ ker ρ1 and hi are functions on some subset A ⊆ M1

then

X|A = (
∑

i hiYi|A) ⇒ κ(X)|f(A) =
(∑

i(hi ◦ f
−1)κ(Yi)|f(A)

)
. (3.17)

This can be seen as follows. Let x ∈ A. Then X −
∑

i hi(x)Yi ∈ ker ρ1 vanishes at x. So
κ(X−

∑
i hi(x)Yi) vanishes at f(x), that is κ(X)(f(x))−

∑
i(hi◦f

−1)(f(x))κ(Yi)(f(x)) = 0.
Let x ∈ M1. Choose a chart (U, u) centered at x and a1 ∈ C∞(M1,R) such that

ω̃1 := ω1 + d ln |a1| = 0 locally around x and Ω̃1 :=
1
a1
Ω1 = du1 ∧ du2 + · · ·+ du2n−1 ∧ du2n

locally around x. Choose Xi ∈ ker ρ1 with Xi =
∂
∂ui

locally around x, cf. lemma 3.6.2.
Since Xi is a local frame near x of commuting vector fields, κ(Xi) is also a local frame near
f(x) of commuting vector fields. So it is possible to choose a chart (V, v) onM2 centered at
f(x) such that κ(Xi) =

∂
∂vi

locally around f(x). Next choose Yi ∈ ker ρ1 with Yi = uσ(i) ∂
∂ui

locally around x, where

σ : {1, . . . , 2n} → {1, . . . , 2n} σ(2i) = 2i− 1, σ(2i− 1) = 2i.

From equation (3.17) we obtain κ(Yi) = (uσ(i) ◦ f−1)κ(Xi) locally around f(x) and hence
f−1 is smooth near f(x), since κ(Yi), κ(Xi) are smooth and κ(Xi) 6= 0 locally around f(x).
This shows that f is a diffeomorphism.

Moreover we have [Xi, Yj] = δiσ(j)
∂
∂uj

locally around x and so

δiσ(j)
∂
∂vj

= κ([Xi, Yj]) = [κ(Xi), κ(Yj)] = [ ∂
∂vi
, (uσ(j) ◦ f−1) ∂

∂vj
] = ∂(uσ(j)◦f−1)

∂vi
∂
∂vj

locally around f(x). So ∂(uj◦f−1)
∂vi

= δij which yields uj ◦ f−1 = vj locally around f(x).
Especially f∗

∂
∂ui

= ∂
∂vi

on some neighborhood W of f(x). If X ∈ ker ρ1 with supp(X) ⊆

f−1(W ). Then we have X =
∑2n

i=1 λiXi with suppλi ⊆ f−1(W ) and thus

f∗(X) = f∗(
∑2n

i=1 λiXi) =
∑2n

i=1(λi ◦ f
−1)f∗(Xi)

=
∑2n

i=1(λi ◦ f
−1)κ(Xi) = κ(

∑2n
i=1 λiXi) = κ(X)

Since we have the fragmentation property this shows f∗ = κ. Uniqueness of f∗ is obvious.
Choose a2 ∈ C

∞(M2,R) such that ω̃2 = ω2 + d ln |a2| = 0 near f(x) and Ω̃2 =
1
a2
Ω2 is

closed near f(x). Near f(x) we have Ω̃2 =
∑

i<j λijdv
i∧dvj. Since we have κ(Xj), κ(Yj) ∈

ker ρ2 and κ(Yj) = vσ(j) ∂
∂vj

locally around f(x) we obtain

0 = diκ(Yj)Ω̃2 = d(vσ(j)i ∂

∂vj
Ω̃2)

= dvσ(j) ∧ i ∂

∂vj
Ω̃2 + vσ(j)di ∂

∂vj
Ω̃2 = dvσ(j) ∧ (

∑
j<i λjidv

i −
∑

i<j λijdv
i)

thus λij = 0 except i = σ(j) or j = σ(i). So we get

Ω̃2 = λ1dv
1 ∧ dv2 + · · ·+ λndv

2n−1 ∧ dv2n

near f(x). Since κ(Xi) ∈ ker ρ2 and κ(Xi) =
∂
∂vi

near f(x) we get

0 = di ∂
∂v2i

Ω̃2 = −d(λidv
2i−1) = −dλi ∧ dv2i−1
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and similarly 0 = dλi ∧ dv
2i. These both equations imply that λi is constant near f(x).

Finally choose Zij ∈ ker ρ1 such that Zij = u2i ∂
∂u2j−1−u

2j ∂
∂u2i−1 near x. Then κ(Zij) ∈ ker ρ2

and κ(Zij) = v2i ∂
∂v2j−1 − v

2j ∂
∂v2i−1 near f(x). This gives

0 = diκ(Zij)Ω̃2 = d
(
v2iλjdv

2j + v2jλidv
2i
)
= (λj − λi)dv

2i ∧ dv2j

and so λ := λ1 = · · · = λn locally around f(x). So there exists a locally around x defined
function a = a1

1
λ

1
a2◦f with

f ∗Ω2 = f ∗(a2Ω̃2) = (a2 ◦ f)f
∗Ω̃2 = (a2 ◦ f)λΩ̃1 = (a2 ◦ f)λ

1
a1
Ω1 =

(
a1

1
λ

1
a2◦f

)−1
Ω1 =

1
a
Ω1

and

f ∗ω2 = f ∗(−d ln |a2|) = −d ln |a2 ◦ f | = ω1 + d ln |a1| − d ln |a2 ◦ f | = ω1 + d ln |a|

locally around x. Since the function a is unique it is globally defined and it is smooth, for
the defining equation f ∗Ω2 =

1
a
Ω1 is smooth and f ∗Ω2 6= 0 and Ω1 6= 0.

3.6.7. Lemma. Let g be a Lie algebra such that ad : g → gl([g, g]) is injective and let
λ : g→ g be a Lie algebra homomorphism such that λ|[g,g] = id. Then λ = id.

Proof. For X ∈ g we have

[X,Y ] = λ([X,Y ]) = [λ(X), λ(Y )] = [λ(X), Y ] ∀Y ∈ [g, g]

hence ad(X − λ(X)) = 0 ∈ gl([g, g]) and hence λ(X) = X.

3.6.8. Corollary. Let (Mi,Ωi, ωi), i = 1, 2 be two locally conformally symplectic manifolds
and assume that κ is a Lie algebra isomorphism from one of the Lie algebras Xc(M1,Ω1, ω1),
kerϕ1, kerψ1, ker ρ1 onto one of the Lie algebras Xc(M2,Ω2, ω2), kerϕ2, kerψ2, ker ρ2.
Then there exists a unique diffeomorphism f : M1 → M2 such that κ = f∗. Moreover we
have (M1,Ω1, ω1) ∼ (M1, f

∗Ω2, f
∗ω2).

Proof. We have a Lie algebra isomorphism κ : g1 → g2. Hence the restriction of κ is
an isomorphism κ|D2g1

: D2g1 → D2g2. But in any case D2gi = ker ρi for i = 1, 2
by corollary 3.5.4. So we can apply theorem 3.6.6 and obtain a unique diffeomorphism
f : M1 → M2 such that κ|D2g1

= f∗|D2g1
. Moreover (M1,Ω1, ω1) ∼ (M1, f

∗Ω2, f
∗ω2). So

f ∗g2 is one of the Lie algebras Xc(M,Ω1, ω1), kerϕ1, kerψ1, ker ρ1 and we either have
f ∗g2 ⊆ g1 or f ∗g2 ⊇ g1. Assume we are in the first case (for the second consider f−1).
Then λ := f−1∗ ◦ κ = f ∗ ◦ κ : g1 → g1 is a Lie algebra homomorphism and we know that
λ|D2g1

= id. Moreover we obviously have for every vector field Z ∈ X(M1) the following
property:

[Z,X] = 0 ∀X ∈ ker ρ1 ⇒ Z = 0

Using ker ρ1 ⊆ Di+1g1 we obtain ad : Dig1 → gl([Dig1, D
ig1]) = gl(Di+1g1) is injective

for all i. So we can apply lemma 3.6.7 inductively and obtain successively λ|D2g1
= id,

λ|D1g1
= id and finally λ = λ|D0g1

= id, that is f∗ = κ.
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3.7 Integrating the Invariants

The aim of this section is to integrate the infinitesimal invariants from section 3.4. For a
brief summary see section 3.8 below.

3.7.1. Lemma. ϕ is Ad(Diff∞c (M,Ω, ω)◦) invariant, i.e. for all X ∈ Xc(M,Ω, ω) and
g ∈ Diff∞c (M,Ω, ω)◦ we have ϕ(Ad(g) ·X) = ϕ((g−1)∗X) = ϕ(X).

Proof. From lemma 3.4.1 we obtain a commutative diagram:

Xc(M,Ω, ω)
g∗

//

ϕ

²²

Xc(M,Ω, ω) = Xc(M, g∗Ω, g∗ω)

ϕ

²²

H0
c (M)

g∗
// H0

c (M)

Since g is isotopic to id we have id = g∗ : H0
c (M)→ H0

c (M).

3.7.2. Proposition. The Lie algebra homomorphism ϕ integrates to a group homomor-

phism Φ̃ : D̃iff
∞
c (M,Ω, ω)◦ → H0

c (M), i.e.

Xc(M,Ω, ω)
ϕ

//

exp=Fl
²²

H0
c (M)

exp=id

²²

D̃iff
∞
c (M,Ω, ω)◦

Φ̃ // H0
c (M)

commutes. We have the following formulas:

Φ̃(g) =
∫
I
ϕ∗(δrg) =

∫ 1
0
ϕ(ġt)dt =

[ ∫ 1
0
cġtdt

]
=
[ ∫ 1

0
g∗t cġtdt

]

If (M,Ω, ω) ∼ (M,Ω′, ω′) then D̃iff
∞
c (M,Ω, ω)◦ = D̃iff

∞
c (M,Ω′, ω′)◦ and Φ̃ = Φ̃′.

Proof. Notice that ϕ∗(δrg) ∈ Ω1(I;H0
c (M)) where H0

c (M) is a separated, complete locally
convex vector space (cf. theorem 3.1.11) and hence integration is well defined. Obviously
the various formulas for Φ̃ are equal. We have to check that they do only depend on the
homotopy type relative endpoints of g. So let G : D2 → Diff∞c (M,Ω, ω) and denote by
i : S1 ↪→ D2 the inclusion of the unit circle into the unit disk. Using Stokes and the Maurer
Cartan equation (1.2) for δrG we obtain

∫
S1 ϕ∗(δ

r(i∗G)) =
∫
S1 i

∗ϕ∗(δrG) =
∫
D2 dϕ∗(δ

rG) =
∫
D2 ϕ∗(

1
2
[δrG, δrG])

but the right hand side is zero since ϕ vanishes on brackets.
Let f, g : (I, 0) → (Diff∞c (M,Ω, ω), id). Using the Leibniz rule (1.5), the fact that

f(t) ∈ Diff∞c (M,Ω, ω)◦ for every t ∈ I and lemma 3.7.1 we obtain

ϕ∗(δ
r(fg))(t) = ϕ(ḟt) + ϕ((f(t)−1)∗ġt) = ϕ(ḟt) + ϕ(ġt) = (ϕ∗(δ

rf) + ϕ∗(δ
rg))(t)

So ϕ∗(δr(fg)) = ϕ∗(δrf) +ϕ∗(δrg) and hence Φ̃(fg) = Φ̃(f) + Φ̃(g). The rest follows from
δr(FlX) = Xdt.

The homomorphism Φ̃ has the following geometrical interpretation:
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3.7.3. Proposition. Let g : (I, 0)→
(
Diff∞c (M,Ω, ω), id

)
and denote by at the functions

satisfying g∗tΩ = 1
at
Ω, g∗tω = ω + d(ln |at|). Then for x ∈M we have

Φ̃(g)(x) =
∫
I
(gx)∗ω − ln |a1(x)|

where gx : I →M is the path t 7→ gt(x).

Proof. Differentiating the equation g∗tΩ = 1
at
Ω with respect to t we get ∂

∂t
(ln |at|) = g∗t fġt ,

where fġt are the functions satisfying LġtΩ = −fġtΩ and Lġtω = dfġt , and therefore

ln |a1| = ln |a1| − ln |a0| =
∫ 1
0

∂
∂t
(ln |at|)dt =

∫ 1
0
g∗t fġtdt

Next we have

∫
I
(gx)∗ω =

∫ 1
0
ω( ∂

∂s
|tgs(x))dt =

∫ 1
0
ω(ġt(gt(x))dt =

∫ 1
0
(g∗t iġtω)dt(x)

Putting these two equations together we obtain

∫
I
(gx)∗ω − ln |a1(x)| =

∫ 1
0
g∗t (iġtω − fġt)dt(x) =

∫ 1
0
g∗t cġtdt(x) = Φ̃(g)(x)

and we are done.

We define ∆ := Φ̃
(
π1(Diff∞c (M,Ω, ω)◦)

)
. Then Φ̃ descends to a homomorphism Φ

D̃iff
∞
c (M,Ω, ω)◦

Φ̃ //

²²²²

H0
c (M)

π
²²²²

Diff∞c (M,Ω, ω)◦
Φ // H0

c (M)/∆

If M is compact then Φ is surjective iff Ω is dω-exact. If (M,Ω, ω) ∼ (M,Ω′, ω′) then
Diff∞c (M,Ω, ω)◦ = Diff∞c (M,Ω′, ω′)◦, ∆ = ∆′ and Φ = Φ′.

3.7.4. Corollary. If M is connected and compact then H0
c (M) ∼= R and

∆ ⊆ Per(ω) := {〈ω, c〉 : c ∈ H1(M ;Z)} ⊆ R.

Especially ∆ ⊆ H0
c (M) is always countable.

3.7.5. Example. Recall the locally conformally symplectic manifold
(
S1 × S3,Ω, ω

)
from

example 3.2.5. In this example one has ]α = ∂t and g ∈ π1

(
Diff∞c (M,Ω, ω)

)
, where

gt := Fl]αt . Moreover Φ̃(g) = ϕ(]α) = 1, hence Z ⊆ ∆. Since Per(ω) = Z, corollary 3.7.4
yields ∆ = Z ⊆ R.

3.7.6. Example. Recall the example
(
S1 × S1 × S1 × S1,Ω, ω

)
in remark 3.4.2. We have

]α = ∂x and g ∈ π1

(
Diff∞c (M,Ω, ω)

)
, where gt := Fl]αt . Moreover Φ̃(g) = ϕ(]α) = 1 and

hence Z ⊆ ∆. Since Per(ω) = Z, corollary 3.7.4 yields ∆ = Z ⊆ R.

3.7.7. Corollary. Let g ∈ C∞
(
(R, 0), (Diff∞c (M,Ω, ω), id)

)
. Then

g ∈ C∞(R, kerΦ) ⇔ δrg ∈ Ω1(R; kerϕ) ⇔ ġt ∈ kerϕ

Especially FlX ∈ C∞(R, kerΦ) iff X ∈ kerϕ.
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Proof. By lemma 3.2.6 we may assume that g has values in Diff∞c (M,Ω, ω) and δrg ∈
Ω1
(
R;Xc(M,Ω, ω)

)
. For s ∈ R let µs : I → R, µs(t) := ts. We then have

Φ(gs) = π(Φ̃(µ∗sg)) = π
( ∫

I
µ∗sϕ∗(δ

rg)
)
= π

( ∫
µs(I)

ϕ∗(δrg)
)
= π

( ∫ s
0
ϕ(ġt)dt

)

So the implication ⇐ follows immediately. So let us assume that g has values in kerΦ.
Then

∫ s
0
ϕ(ġt)dt ∈ ∆ for all s ∈ I. Since this depends continuously on s and has values

in a countable subset of a separated topological vector space it has to be constant, i.e.∫ s
0
ϕ(ġt)dt = 0 for all s ∈ I. Differentiating with respect to s we obtain ġs ∈ kerϕ for all

s ∈ R.

3.7.8. Lemma. kerΦ is connected by smooth arcs, and the natural inclusion induces an
isomorphism of groups i : k̃er Φ ∼= ker Φ̃, such that ev1 ◦i = ev1.

Proof. Consider i : k̃er Φ → ker Φ̃, i(g) = g. Notice that i(g) ∈ ker Φ̃, since ġt ∈ kerϕ by
lemma 3.7.7, and i is well defined, for two curves which are homotopic relative endpoints
in kerΦ are obviously homotopic relative endpoints in Diff∞c (M,Ω, ω). Next we show that
i is onto. Let g ∈ ker Φ̃. For any s ∈ I we define hs ∈ C

∞((I, 0), (Diff∞c (M,Ω, ω), id)
)
by

δr(hs) = sδrg (cf. lemma 3.2.6). Then h0(t) = id and h1(t) = g(t). Moreover

Φ̃(hs) =
∫
I
ϕ∗(δr(hs)) = s

∫
I
ϕ∗(δrg) = sΦ̃(g) = 0,

so Φ(hs(1)) = 0 for all s ∈ I, and g is homotopic relative endpoints to s 7→ hs(1), which is
a curve in kerΦ (cf. figure 3.1). In order two show injectivity of i let g ∈ ker i, i.e. there

-

6

t

s

id

id

g(t)

hs(1)h(s, t)

Figure 3.1: A homotopy relative endpoints from t 7→ g(t) to t 7→ ht(1)

exists G ∈ C∞
(
I × I,Diff∞c (M,Ω, ω)◦

)
with G(0, t) = id, G(1, t) = g(t) and G(s, 0) =

G(s, 1) = id. For (s, u) ∈ I × I we define H(s, ·, u) ∈ C∞
(
(I, 0), (Diff∞c (M,Ω, ω)◦, id)

)
by

δrH(s, ·, u) = uδrG(s, ·). We have G(1, t) = g(t) ∈ kerΦ, so δrG(1, ·) ∈ Ω1(I; kerϕ), hence
δrH(1, ·, u) ∈ Ω1(I; kerϕ) and thus H(1, t, u) ∈ kerΦ for all t, u ∈ I. So g is homotopic
relative endpoints in kerΦ to u 7→ H(1, 1, u), for we haveH(s, t, 0) = id, H(s, 0, u) = id and
H(s, t, 1) = G(s, t). Moreover (s, u) 7→ H(s, 1, u) is a smooth homotopy relative endpoints
from id to H(1, 1, ·). We claim that it has values in kerΦ. Indeed, since Φ̃

(
G(s, ·)

)
= 0 we

have
Φ̃
(
H(s, ·, u)

)
=
∫
I
ϕ∗δrH(s, ·, u) = u

∫
I
ϕ∗δrG(s, ·) = uΦ̃

(
G(s, ·)

)
= 0

and hence Φ(H(s, 1, u)) = 0. So g is homotopic relative endpoints in kerΦ to id, i.e. i is
one-to-one.

If f ∈ kerΦ then there exists g ∈ D̃iff
∞
c (M,Ω, ω)◦ with π(g) = g(1) = f and Φ̃(g) ∈ ∆.

By multiplying g with something in π1(Diff∞c (M,Ω, ω)◦) we may assume that Φ̃(g) = 0.

So ev1 : ker Φ̃→ kerΦ is onto, and since k̃er Φ ∼= ker Φ̃ we get ev1 : k̃er Φ→ kerΦ is onto,
too. So kerΦ is connected by smooth arcs.
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From lemma 3.7.8 we obtain a commutative diagram

π1(kerΦ)
Â Ä //

Ä _

²²

π1

(
D̃iff

∞
c (M,Ω, ω)◦

) Φ̃ // //

Ä _

²²

∆
Ä _

²²

k̃er Φ ∼= ker Φ̃
Â Ä //

π=ev1

²²²²

D̃iff
∞
c (M,Ω, ω)◦

Φ̃ // //

π=ev1
²²²²

Im(ϕ) = Im(Φ̃)

π
²²²²

kerΦ
Â Ä // Diff∞c (M,Ω, ω)◦

Φ // // Im(ϕ)/∆

where all rows and columns are exact. Moreover the middle row splits and we have a semi
direct product

D̃iff
∞
c (M,Ω, ω)◦ ∼= ker Φ̃×α Im(ϕ)

cf. the extension (3.11) on page 58.

3.7.9. Lemma. ψ is Ad(kerΦ) invariant, i.e. for all X ∈ kerϕ and g ∈ kerΦ we have
ψ(Ad(g) ·X) = ψ((g−1)∗X) = ψ(X).

Proof. From lemma 3.4.3 we obtain a commutative diagram:

kerϕ
g∗

//

ψ
²²

kerϕ = kerϕ′

ψ′

²²

ψ

''OOOOOOOOOOO

H1
dωc
(M)

g∗
// H1

dg
∗ω

c

(M) a // H1
dωc
(M)

where a is such that (M,Ω, ω)
a
∼ (M, g∗Ω, g∗ω) and ϕ′, ψ′ correspond to (M, g∗Ω, g∗ω). So

it remains to show that ag∗ : H1
dωc
(M)→ H1

dωc
(M) is the identity. Since kerΦ is connected

by smooth arcs (lemma 3.7.8) there exists a curve gt ∈ kerΦ with g0 = id and g1 = g.
We define at by (M,Ω, ω)

at∼ (M, g∗tΩ, g
∗
tω), so a0 = 1 and a1 = a. Since gt ∈ kerΦ we

have ġt ∈ kerϕ by corollary 3.7.7 and hence fġt = iġtω by lemma 3.4.1. Differentiating
g∗tΩ = 1

at
Ω with respect to t and using LġtΩ = −fġtΩ we obtain

ȧt
at

= g∗t fġt = g∗t iġtω = inc∗t i∂tg
∗ω

and so at satisfies the same differential equation as at in lemma 3.1.1 and are thus equal.
But then lemma 3.1.1 yields ag∗ = a1g

∗
1 = a0g

∗
0 = id.

3.7.10. Proposition. The Lie algebra homomorphism ψ integrates to a surjective group
homomorphism Ψ̃ : k̃er Φ→ H1

dωc
(M), i.e.

kerϕ
ψ

//

exp=Fl

²²

H1
dωc
(M)

exp=id
²²

k̃er Φ
Ψ̃ // H1

dωc
(M)

commutes. We have the following formulas:

Ψ̃(g) =
∫
I
ψ∗(δrg) =

∫ 1
0
ψ(ġt)dt =

[ ∫ 1
0
iġtΩdt

]
=
[ ∫ 1

0
atg

∗
t iġtΩdt

]

where g∗tΩ = 1
at
Ω. If (M,Ω, ω)

a
∼ (M,Ω′, ω′) then k̃er Φ′ = k̃erΦ and 1

a
◦ Ψ̃′ = Ψ̃.
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Proof. The proof is exactly the same as the proof of proposition 3.7.2. Integration is
well defined since δrg ∈ Ω1(I; kerϕ) by corollary 3.7.7 and since H1

dωc
(M) is a separated,

complete locally convex vector space by theorem 3.1.11. To see that the formulas do only
depend on the homotopy type relative endpoints in kerΦ of the curve g one does the same
argument, but now one has to use that ψ vanishes on brackets, cf. lemma 3.4.3. Also the
proof that Ψ̃ is a homomorphism is similar, but one has to use that ψ is Ad(kerΦ)-invariant,
cf. lemma 3.7.9.

We let Γ := Ψ̃(π1(kerΦ)). Then Ψ̃ factors to a surjective homomorphism Ψ

k̃erΦ
Ψ̃ //

²²²²

H1
dωc
(M)

π
²²²²

kerΦ
Ψ // H1

dωc
(M)/Γ

If (M,Ω, ω)
a
∼ (M,Ω′, ω′) then kerΦ′ = kerΦ, 1

a
Γ = Γ′ and 1

a
◦Ψ′ = Ψ.

Let H loc. fin.
∗ (M,Bω) denote the homology based on locally finite chains with values in

the bundle of coefficients Bω, cf. the discussion above corollary 3.1.10. The k-chains of
this homology theory are formal infinite linear combinations

∑
i λi(σi, fi), where λi ∈ R,

σi : ∆
k → M , fi : ∆

k → R satisfying fiσ
∗
i ω + dfi = 0 and {σi} is locally finite. Using

proposition 3.1.6, theorem 3.1.9 and Poincaré duality for sheaf (co)homology (see [Bre67])
we obtain

(Hk
dωc
(M))∗ ∼= Hn−k

d−ω (M) ∼= Hn−k(M ;F−ω) ∼= Hk(M,F−ω) ∼= H loc. fin.
k (M,B−ω)

and the isomorphism Pω : H loc. fin.
k (M,B−ω) → (Hk

dωc
(M))∗ comes from the pairing 〈·, ·〉ω :

C loc. fin
k (M,B−ω)× Ωk

c (M)→ R given by the formula:

〈
∑

i λi(σi, fi), α〉ω =
∑

i λi
∫
∆k fiσ

∗
i α

Notice that only finitely many summands are non-zero since {σi} is locally finite and α
has compact support. We have: 〈∂c, α〉ω = 〈c, dωα〉ω. Indeed it suffices to check this for a
k-simplex c = (σ, f). Using Stokes and −fσ∗ω + df = 0 we get

〈∂(σ, f), α〉ω =
〈∑k

i=0(−1)
i(σ ◦ δi, f ◦ δi), α

〉
ω

=
∑k

i=0(−1)
i
∫
∆k−1(f ◦ δi)(σ ◦ δi)

∗α

=
∑k

i=0(−1)
i
∫
∆k−1 δ

∗
i (fσ

∗α)

=
∫
∆k d(fσ

∗α) =
∫
∆k df ∧ σ

∗α + fσ∗dα

=
∫
∆k fσ

∗(ω ∧ α + dα) = 〈(σ, f), dωα〉ω

Moreover if g :M1 →M2 is proper and satisfies g∗ω2 = ω1 for closed 1-forms ωi then

g∗ : C loc. fin.
∗ (M,Bω1)→ C loc. fin.

∗ (M,Bω2) g∗
(∑

i λi(σi, fi)
)
:=
∑

i λi(g ◦ σi, fi)

is well defined. Indeed, the image is locally finite since g is proper, and f(g ◦ σ)∗ω2 =
fσ∗g∗ω2 = fσ∗ω1 = df . Moreover g∗ is a chain map and we have an induced mapping in
homology:

g∗ : H
loc. fin.
∗ (M1, Bω1)→ H loc. fin.

∗ (M2, Bω2)
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The pairing is natural, i.e. we have:

〈g∗(σ, f), α〉ω2 =
∫
∆k f(g ◦ σ)

∗α =
∫
∆k fσ

∗g∗α = 〈(σ, f), g∗α〉ω1

Moreover it behaves very nice under conformal change. Recall that if ω ′ = ω+d ln |a| then
1
a
: H∗

dωc
(M)→ H∗

dω
′

c
(M) is an isomorphism. Moreover

Ba : Bω′ =M × R→M × R = Bω (x, t) 7→ (x, at)

is an isomorphism of bundles of coefficients, for we have:

B∗a(tω + dt) = atω + d(at) = a(tω + dt+ 1
a
tda) = a(tω′ + dt)

We have an induced mapping

(Ba)∗ : H loc. fin.
∗ (M,Bω′) → H loc. fin.

∗ (M,Bω) (σ, f) 7→ (σ, (σ∗a)f)

Since −ω′ = −ω + d ln | 1
a
| we get (B 1

a
)∗ : H loc. fin.

∗ (M,B−ω′)→ H loc. fin.
∗ (M,B−ω) and

〈(B 1
a
)∗c, α〉ω = 〈c, 1

a
α〉ω′

as one easily sees from a short calculation.
We have the following geometric interpretation of Ψ̃:

3.7.11. Lemma. Let g : (I, 0) → (kerΦ, id) and g∗tΩ = 1
at
Ω. For c =

∑
i λi(σi, fi) ∈

C loc. fin.
1 (M,B−ω) we have

〈c, Ψ̃(g)〉ω = 〈g ∗ c,Ω〉ω

where g ∗ c =
∑

i λi(g ∗σi, g ∗ fi) ∈ C
loc. fin.
2 (M,B−ω) and g ∗σi : I× I →M , (g ∗σi)(s, t) =

gt(σi(s)), g ∗ fi : I × I → R, (g ∗ fi)(s, t) = fi(s)at(σi(s)).

Proof. It suffices to check everything for a simplex c = (σ, f) ∈ C loc. fin.
1 (M,B−ω), that

is −fσ∗ω + df = 0. Now (g ∗ f, g ∗ σ) defines a 2-chain in C loc. fin.
2 (M,B−ω) iff β :=

−(g ∗ f)(g ∗ σ)∗ω + d(g ∗ f) = 0. Since gt ∈ kerΦ we have atg
∗
t iġtω = ȧt and therefore

(i∂tβ)(s, t) = −f(s)at(σ(s))ω
(
∂
∂t
gt(σ(s))

)
+ ∂

∂t

(
f(s)at(σ(s))

)

= −f(s)at(σ(s))(iġtω)
(
gt(σ(s))

)
+ f(s)ȧt(σ(s))

= −f(s)(atg
∗
t iġtω)(σ(s)) + f(s)ȧt(σ(s)) = 0

Using g∗tω = ω + d ln |at| and −fσ
∗ω + df = 0 we obtain

inc∗t β = −f(σ∗at)σ∗g∗tω + d(fσ∗at)

= −f(σ∗at)σ∗ω − f(σ∗at)σ∗d ln |at|+ fσ∗dat + (df)σ∗at

= −f(σ∗at)
1

σ∗at
σ∗dat + fσ∗dat = 0

So β = 0, i.e. g ∗ c defines a 2-chain in C loc. fin.
2 (M,B−ω). Next we have

∫
I
fσ∗Ψ̃(g) =

∫ 1
0
f(s)

( ∫ 1
0
atg

∗
t iġtΩdt

)
( ∂
∂s
σ(s))ds

=
∫ 1
0

∫ 1
0
f(s)at(σ(s))Ω

(
ġt(gt(σ(s))), T gt ·

∂
∂s
σ(s)

)
dsdt

=
∫ 1
0

∫ 1
0
(g ∗ f)(s, t)Ω

(
∂
∂t
gt(σ(s)),

∂
∂s
gt(σ(s))

)
dsdt

=
∫ 1
0

∫ 1
0
(g ∗ f)(s, t)((g ∗ σ)∗Ω)(∂t, ∂s)dsdt =

∫
I×I(g ∗ f)(g ∗ σ)

∗Ω

but this is 〈(σ, f), Ψ̃(g)〉ω = 〈(g ∗ σ, g ∗ f),Ω〉ω.
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3.7.12. Corollary. Every continuous curve in Γ is constant.

Proof. Let c =
∑

i λi(σi, fi) ∈ C
loc. fin.
1 (M,B−ω) and let S ⊆ B−ω be the smallest subbundle

of coefficients such that (σi, fi) ∈ C
loc. fin.
1 (M,S). The fibers of S are countable and hence

Hk(M,S) is countable. This can be shown using a countable good covering of M , Mayer
Vietoris sequence and the fact that H∗(U, S|U) is countable for a contractible U ⊆ M .
Suppose g ∈ π1(kerΦ) and ∂c = 0. Then g ∗ c ∈ C loc. fin.

2 (M,S) and ∂(g ∗ c) = 0.
Moreover g ∗ c − id ∗c is a finite chain and thus [g ∗ c] ∈ [id ∗c] + j(H2(M,S)), where
j : Hk(M,S)→ H loc. fin.

k (M,S) is the map induced from the inclusion of finite chains into
locally finite chains. From lemma 3.7.11 we obtain

〈c, Ψ̃(g)〉ω = 〈g ∗ c,Ω〉ω = Pω([g ∗ c])([Ω]) ⊆ Pω
(
[id ∗c] + j(H2(M,S))

)
([Ω]) ⊆ R

Since the latter is countable we see that Pω([c])(Γ) ⊆ R is countable for every [c]. So,
if h is a continuous curve in Γ, then Pω([c]) ◦ h is constant for every [c]. But {Pω([c]) :
[c] ∈ H loc. fin.

1 (M,B−ω)} is point separating since Pω is onto (H1
dωc
(M))∗, thus h has to be

constant.

3.7.13. Lemma. Let g ∈ C∞
(
(R, 0), (Diff∞c (M,Ω, ω), id)

)
. Then

g ∈ C∞(R, kerΨ) ⇔ δrg ∈ Ω1(R; kerψ) ⇔ ġt ∈ kerψ

Especially FlX ∈ C∞(R, kerΨ) iff X ∈ kerψ.

Proof. By corollary 3.7.7 we may assume g ∈ C∞(R, kerΦ) and δr ∈ Ω1(R, kerϕ). As in the
proof of 3.7.7 one shows Ψ(gs) = π

( ∫ s
0
ψ(ġt)dt

)
. Again the implication ⇐ is now obvious.

Moreover if g has values in kerΨ this equation shows
∫ s
0
ψ(ġt)dt ∈ Γ. By corollary 3.7.12 it

has to be constant = 0. Differentiating with respect to s yields ġs ∈ kerψ for all s ∈ R.

3.7.14. Lemma. kerΨ is connected by smooth arcs, and the natural inclusion induces an
isomorphism of groups i : k̃erΨ ∼= ker Ψ̃, such that ev1 ◦i = ev1.

Proof. The proof is similar to the proof of lemma 3.7.8.

So we have again a commutative diagram

π1(kerΨ) Â Ä //

Ä _

²²

π1(kerΦ)
Ψ̃ // //

Ä _

²²

Γ
Ä _

²²

k̃erΨ ∼= ker Ψ̃
Â Ä //

π=ev1

²²²²

k̃er Φ
Ψ̃ // //

π=ev1

²²²²

H1
dωc
(M)

π
²²²²

kerΨ
Â Ä // kerΦ

Ψ // // H1
dωc
(M)/Γ

with exact rows and columns. The middle row does not split in general, cf. (3.12) on page
58 and remark 3.7.21.

3.7.15. Proposition. Suppose (M,Ω, ω) is an exact locally conformally symplectic man-

ifold, i.e. Ω = dωα. Then for g ∈ k̃er Φ we have

Ψ̃(g) = [a1g
∗
1α− α] ∈ H

1
dωc
(M)

where g∗tΩ = 1
at
Ω and g∗tω = ω + d(ln |at|). Especially Γ = 0 in this situation.
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Proof. First of all we have

iġtΩ = iġtd
ωα = Lġtα + iġtω ∧ α− d

ω(iġtα)

Since gt ∈ kerΦ the at are the same as the at of lemma 3.1.1 (cf. proof of lemma 3.7.9).
So we get

[atg
∗
t iġtΩ] = [atg

∗
t (Lġtα + iġtω ∧ α+ dω(iġtα))] = [atg

∗
t (Lġtα + iġtω ∧ α)]

Since ġt ∈ kerϕ we have ∂
∂t
at = atg

∗
t fġt = atg

∗
t iġtω and hence

atg
∗
t (Lġtα + iġtω ∧ α) = at

∂
∂t
(g∗tα) + ( ∂

∂t
at)g

∗
tα = ∂

∂t
(atg

∗
tα)

Putting all together we obtain

Ψ̃(g) =
∫ 1
0
[atg

∗
t iġtΩ]dt =

[ ∫ 1
0

∂
∂t
(atg

∗
tα)dt

]
= [a1g

∗
1α− a0g

∗
0α] = [a1g

∗α− α]

3.7.16. Lemma. ρ is Ad(kerΨ) invariant, i.e. for all X ∈ kerψ and g ∈ kerΨ we have
ρ(Ad(g) ·X) = ρ((g−1)∗X) = ρ(X).

Proof. From lemma 3.4.4 we obtain a commutative diagram:

kerψ
ρ

//

g∗

²²

H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)

g∗

²²

kerψ = kerψ′
ρ′

//

ρ

**UUUUUUUUUUUUUUUUUUU

H2n

d
(n+1)g∗ω
c

(M)/
(
H0

dg
∗ω

c

(M) ∧ [g∗Ωn]
)

an+1

²²

H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)

where a is such that (M,Ω, ω)
a
∼ (M, g∗Ω, g∗ω) and ψ′, ρ′ correspond to (M, g∗Ω, g∗ω). So

it remains to show that an+1g∗ : H2n

d
(n+1)ω
c

(M)→ H2n

d
(n+1)ω
c

(M) is the identity. Since kerΨ is

connected by smooth arcs (lemma 3.7.14) there exists a curve gt ∈ kerΨ with g0 = id and
g1 = g. We define at by (M,Ω, ω)

at∼ (M, g∗tΩ, g
∗
tω). As in the proof of lemma 3.7.9 one sees

that at is at from lemma 3.1.1 and hence an+1t is at from lemma 3.1.1 with (n + 1)ω. But
then lemma 3.1.1 yields an+1g∗ = an+11 g∗1 = an+10 g∗0 = id : H2n

d
(n+1)ω
c

(M)→ H2n

d
(n+1)ω
c

(M).

3.7.17. Proposition. Let (M,Ω, ω) be a 2n-dimensional locally conformally symplectic
manifold. Then the Lie algebra homomorphism ρ integrates to a surjective group homo-
morphism R̃ : k̃erΨ→ H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
, i.e.

kerψ
ρ

//

exp=Fl

²²

H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)

exp=id

²²

k̃erΨ
R̃ // H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)
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commutes. We have the following formulas:

R̃(g) =
∫
I
ρ∗(δrg) =

∫ 1
0
ρ(ġt)dt =

[ ∫ 1
0
htΩ

ndt
]
=
[ ∫ 1

0
at(g

∗
t ht)Ω

ndt
]

where g∗tΩ = 1
at
Ω and dωht = [ġt. If (M,Ω, ω)

a
∼ (M,Ω′, ω′) then k̃erΨ = k̃erΨ′ and

1
an+1 ◦ R̃ = R̃′.

Proof. The proof is exactly the same as the proof of proposition 3.7.2.

We let Λ := R̃(π1(kerΨ)). Then R̃ descends to a surjective homomorphism R

k̃erΨ
R̃ //

²²²²

H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)

²²²²

kerΨ
R //

(
H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

))/
Λ

If (M,Ω, ω)
a
∼ (M,Ω′, ω′) then kerΨ = kerΨ′, 1

an+1Λ = Λ′ and 1
an+1 ◦ R = R′. The

homomorphisms R̃ and R are due to G. Rousseau, see [Rou78], where it is also shown that
Λ is countable, especially every continuous curve in Λ is constant.

3.7.18. Lemma. Let (M,Ω, ω) be a 2n-dimensional locally conformally symplectic man-
ifold. Then for every g ∈ C∞

(
(R, 0), (Diff∞c (M,Ω, ω), id)

)
we have

g ∈ C∞(R, kerR) ⇔ δrg ∈ Ω1(R; ker ρ) ⇔ ġt ∈ ker ρ

Especially FlX ∈ C∞(R, kerR) iff X ∈ ker ρ. For the implication ⇐ the assumption on Λ
is superfluous.

Proof. The proof is similar to the proof of corollary 3.7.7.

3.7.19. Lemma. kerR is connected by smooth arcs, and the natural inclusion induces an
isomorphism of groups i : k̃erR ∼= ker R̃, such that ev1 ◦i = ev1.

Proof. The proof is similar to the proof of lemma 3.7.8.

In the situation of lemma 3.7.19 we have a commutative diagram

π1(kerR)
Â Ä //

Ä _

²²

π1(kerΨ)
R̃ // //

Ä _

²²

Λ
Ä _

²²

k̃erR ∼= ker R̃
Â Ä //

π=ev1

²²²²

k̃erΨ
R̃ // //

π=ev1

²²²²

H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)

π
²²²²

kerR
Â Ä // kerΨ

R // //

(
H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

))
/Λ

with exact rows and columns. The middle row splits and gives rise to a semi direct product

k̃erΨ ∼= k̃erR×α H
2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)

cf. the extension (3.13) on page 58.
The following formula is due to Rousseau, see [Rou78].
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3.7.20. Proposition. For g, h ∈ k̃er Φ we have [g, h] ∈ k̃erΨ and

R̃([g, h]) = n{Ψ̃(g), Ψ̃(h)}

where {·, ·} is the symplectic pairing, cf. formula (3.12) on page 58. Moreover the symplectic
pairing descends to

{·, ·} :
(
H1
dωc
(M)/Γ

)
×
(
H1
dωc
(M)/Γ

)
→
(
H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

))/
Λ (3.18)

and for g, h ∈ kerΦ we have R([g, h]) = n{Ψ(g),Ψ(h)}.

Proof. Notice first that (s, t) 7→ [gs+(1−s)t, ht] is a homotopy relative endpoints in kerΨ

from [gt, ht] to [g1, ht], so R̃([g, h]) = R̃([g1, h]). Since both sides of the equation in ques-
tion transform in the same way under conformal change, and since both sides vanish if
(M,Ω, ω) is not conformally equivalent to a symplectic manifold, we may assume that M
is symplectic. Using δr(gh)(∂t)(t) = ġt + (g−1t )∗ḣt and δr(g−1)(∂t)(t) = −(gt)∗ġt (which is
an immediate consequence of the first equation) one obtains

δr([g1, h])(∂t)(t) = (g−11 )∗
(
ḣt − (htg1h

−1
t )∗ḣt

)

and from lemma 3.1.1 for ω = 0

iδr([g1,h])(∂t)(t)Ω = −(g−11 )∗
(
(htg1h

−1
t )∗iḣtΩ− iḣtΩ

)

= −(g−11 )∗d
( ∫ 1

0
(htgsh

−1
t )∗i(h−1

t )∗ġs
iḣtΩds

)

Using (iXiYΩ)Ω
n = −niXΩ ∧ iYΩ ∧ Ωn−1 we get

ρ
(
δr([g1, h])(∂t)(t)

)
= −

∫ 1
0

[
(g−11 )∗(htgsh

−1
t )∗(i(h−1

t )∗ġs
iḣtΩ)Ω

n
]
ds

= n
∫ 1
0
[iġsΩ] ∧ [iḣtΩ] ∧ [Ωn−1]ds = nΨ̃(g) ∧ ψ(ḣt) ∧ [Ωn−1]

So
R̃([g, h]) = R̃([g1, h]) = nΨ̃(g) ∧ Ψ̃(h) ∧ [Ωn−1] = n{Ψ̃(g), Ψ̃(h)}

Remains to check (3.18). We will show a little more, namely the symplectic pairing induces
a mapping:

{·, ·} :
(
H1
dωc
(M)/Γ

)
×
(
H1
dωc
(M)/Γ

)
→ H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)

Indeed, if α ∈ Γ and β ∈ H1
dωc
(M) there exist g ∈ π1(kerΦ) and h ∈ k̃er Φ with Ψ̃(g) = α

and Ψ̃(h) = β. Hence

{α, β} = {Ψ̃(g), Ψ̃(h)} = 1
n
R̃([g, h]) = 1

n
R̃(id) = 0

since [g, h] is homotopic relative endpoints in kerΨ to [g1, h] = [id, h] = id.

3.7.21. Remark. Proposition 3.7.20 shows that the short exact sequence

0→ ker Ψ̃→ ker Φ̃
Ψ̃
−→ H1

dωc
(M)→ 0

does not split in general, since a section s should satisfy [s(α), s(β)] = id and hence
0 = R̃([s(α), s(β)]) = n{α, β}.
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3.7.22. Corollary. Let (M,Ω, ω) be a 2n-dimensional locally conformally symplectic man-
ifold. Then kerR is an ideal in kerΦ and kerΦ/ kerR is a central extension of H 1

c (M)/Γ
by
(
H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

))/
Λ.

Proof. From proposition 3.7.20 we get [ker Φ, kerΨ] ⊆ kerR. Especially kerR is an ideal
in kerΦ. We have the following commutative diagram

kerR
Ä _

²²

kerR // //
Ä _

²²

0
Ä _

²²

kerΨ
Â Ä //

R
²²²²

kerΦ
Ψ // //

²²²²

H1
dωc
(M)/Γ

(
H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

))/
Λ Â Ä i // kerΦ/ kerR Ψ // // H1

dωc
(M)/Γ

with exact rows and columns. Since [kerΦ, kerΨ] ⊆ kerR the last row is a central exten-
sion.

3.7.23. Proposition. Let (M,Ω, ω) be an exact, 2n-dimensional locally conformally sym-

plectic manifold, Ω = dωα. For g ∈ k̃erΨ we have

R̃(g) = 1
n+1

[kΩn] = 1
n+1

[(a1g
∗
1α) ∧ α ∧ Ωn−1] ∈ H2n

d
(n+1)ω
c

(M)

where k ∈ C∞c (M,R) is the unique function satisfying dωk = a1g
∗
1α − α (cf. proposi-

tion 3.7.15). Especially we have Λ = 0 in this situation.

Proof. If ω is not exact then by example 1.6 H0
dωc
(M) = 0, and if ω is exact then (M,Ω, ω)

is conformally equivalent to a symplectic structure and it is well known that this can only
happen if M is not compact, i.e. 0 = H0

c (M) ∼= H0
dωc
(M). So we always have H0

dωc
(M) = 0

and so k is unique.
Let ht be the functions satisfying [ġt = dωht and recall the homotopy operator from

lemma 3.1.1. Then we have

a1g
∗
1α− α = H(dωα) + dωH(α) = H(Ω) + dωH(α)

and
H(Ω) =

∫ 1
0
atg

∗
t iġtΩdt =

∫ 1
0
atg

∗
t (d

ωht)dt =
∫ 1
0
dω(atg

∗
t ht)dt

Together this yields

a1g
∗
1α− α = dω

( ∫ 1
0
atg

∗
t htdt

)
+ dω

( ∫ 1
0
atg

∗
t iġtαdt

)

and so
k =

∫ 1
0
atg

∗
t htdt+

∫ 1
0
atg

∗
t iġtαdt =: k1 + k2

Next we have

(atg
∗
t iġtα) ∧ Ωn = an+1t g∗t (iġtα ∧ Ωn) = nan+1t g∗t (α ∧ iġtΩ ∧ Ωn−1)

= nan+1t g∗t (α ∧ d
ωht ∧ Ωn−1)

= nan+1t g∗t (htΩ
n)− nan+1t g∗t d

(n+1)ω(αhtΩ
n−1)

= nan+1t g∗t (htΩ
n)− d(n+1)ω(nan+1t g∗t (αhtΩ

n−1))
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and therefore [k2Ω
n] = n[k1Ω

n] ∈ H2n

d
(n+1)ω
c

(M). So

1
n+1

[kΩn] =
∫ 1
0
[an+1t g∗t (htΩ

n)]dt =
∫ 1
0
[htΩ

n]dt =
∫ 1
0
ρ(ġt)dt = R̃(g)

The second expression follows now easily:

[kΩn] = [kdωα ∧ Ωn−1] = [d(n+1)ω(k ∧ α ∧ Ωn−1)− (dωk) ∧ α ∧ Ωn−1]

= [(a1g
∗
1α− α) ∧ α ∧ Ωn−1] = [(a1g

∗
1α) ∧ α ∧ Ωn−1]

3.7.24. Lemma. For g ∈ D̃iff
∞
c (M,Ω, ω)◦ and X ∈ kerϕ we have g∗1X ∈ kerϕ and

ψ(g∗1X) = e−Φ̃(g)ψ(X).

Proof. Recall at = exp
( ∫ t

0
inc∗s i∂tg

∗ωds
)
= exp

( ∫ t
0
g∗s iġsωds

)
from lemma 3.1.1. Moreover

let bt denote the functions satisfying g∗tΩ = 1
bt
Ω and g∗tω = ω + d ln bt. Differentiating the

first we obtain g∗t fġt = ∂
∂t
ln bt, where fġt is the function satisfying LġtΩ = −fġtΩ. From

lemma 3.4.1 we obtain

at = exp
( ∫ t

0
g∗s iġsωds

)
= exp

( ∫ t
0
g∗sfġsds+

∫ t
0
g∗scġsds

)

= exp
( ∫ t

0
∂
∂s

ln bsds
)
· exp

( ∫ t
0
ϕ(ġs)ds

)
= bt exp

( ∫ t
0
ϕ(ġs)ds

)

and hence a1 = b1e
Φ̃(g). So we get

ψ(g∗1X) = b1g
∗
1ψ(X) = a1e

−Φ̃(g)g∗1ψ(X) = e−Φ̃(g)a0g
∗
0ψ(X) = e−Φ̃(g)ψ(X)

where we used lemma 3.4.3 for the first equality and lemma 3.1.1 for the third one.

3.7.25. Corollary. If (M,Ω, ω) is a connected locally conformally symplectic manifold
and H1

dωc
(M) 6= 0, then ∆ = 0.

Proof. Suppose conversely ∆ 6= 0 and choose g ∈ π1

(
Diff∞c (M,Ω, ω)◦

)
with Φ̃(g) 6= 0 and

X ∈ kerϕ with ψ(X) 6= 0. Then lemma 3.7.24 yields

ψ(X) = ψ(id∗X) = ψ(g∗1X) = e−Φ̃(g)ψ(X)

a contradiction since ψ(X) 6= 0 and e−Φ̃(g) 6= 1.

3.7.26. Corollary. kerΨ is an ideal in Diff∞c (M,Ω, ω)◦ and we have a semi direct product

Diff∞c (M,Ω, ω)◦/ kerΨ ∼= (H1
dωc
(M)/Γ)×α (Im(ϕ)/∆)

where the action α : Im(ϕ)/∆→ Aut
(
H1
dωc
(M)/Γ

)
is given by α(c)(β) = ecβ.

Proof. We first show:

Ψ̃(ghg−1) = eΦ̃(g)Ψ̃(h) ∀g ∈ D̃iff
∞
c (M,Ω, ω)◦, h ∈ k̃er Φ (3.19)
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Notice that (s, t) 7→ gs+(1−s)thtg
−1
s+(1−s)t is a homotopy relative endpoints in kerΦ from

t 7→ gthtg
−1
t to t 7→ g1htg

−1
1 and so we obtain from lemma 3.7.24

Ψ̃(ghg−1) = Ψ̃(g1hg
−1
1 ) =

∫ 1
0
ψ
(
δr(g1hg

−1
1 )(∂t)(t)

)
dt

=
∫ 1
0
ψ
(
(g−11 )∗ḣt

)
dt =

∫ 1
0
eΦ̃(g)ψ(ḣt)dt = eΦ̃(g)Ψ̃(h)

which is precisely (3.19). From (3.19) we immediately obtain:

Ψ(ghg−1) = eΦ(g)Ψ(h) ∀g ∈ Diff∞c (M,Ω, ω)◦, h ∈ kerΦ (3.20)

The latter equation makes sense, because on the components of M on which Im(ϕ) 6= 0
and H1

dωc
(M) 6= 0 we have Γ = 0 by proposition 3.7.15 and ∆ = 0 by corollary 3.7.25.

Especially kerΨ is an ideal in Diff∞c (M,Ω, ω)◦ and we have a commutative diagram

kerΨ
Ä _

²²

kerΨ // //
Ä _

²²

0
Ä _

²²

kerΦ
Â Ä //

Ψ
²²²²

Diff∞c (M,Ω, ω)◦
Φ // //

²²²²

Im(ϕ)/∆

H1
dωc
(M)/Γ Â Ä // Diff∞c (M,Ω, ω)◦/ kerΨ

Φ // // Im(ϕ)/∆

with exact rows and columns. If H1
dωc
(M) = 0 we are done. So assume H1

dωc
(M) 6= 0. Then

∆ = 0 by corollary 3.7.25 and the middle row splits since the middle row (and thus the
bottom row) of the big diagram on page 71 splits. So the bottom row of the diagram above
splits too, and Diff∞c (M,Ω, ω)◦/ kerΨ is a semi direct product of H1

dωc
(M)/Γ and Im(ϕ)/∆.

The corresponding action is as stated, for we have (3.20).

3.8 Summary of the Various Invariants

In this section we give a brief summary of the invariants we have considered up to now.
We have seen that a vector field X ∈ Xc(M) is an infinitesimal automorphism of the
locally conformally symplectic manifold (M,Ω, ω) iff there exists a locally constant function
cX ∈ C

∞
c (M,R) such that dω([X) = cXΩ. If cX = 0 then [X defines a cohomology class

in H1
dωc
(M), and if in addition this cohomology class vanishes, then there exists a function

hX ∈ C
∞
c (M,R) with [X = dωhX . We have shown in section 3.4 that the following are

well defined homomorphisms of Lie algebras:

ϕ : Xc(M,Ω, ω)→ H0
c (M) ϕ(X) = [cX ]

ψ : kerϕ→ H1
dωc
(M) ψ(X) = [[X]

ρ : kerψ → H2n

d
(n+1)ω
c

(M)/(H0
dωc
(M) ∧ [Ωn]) ρ(X) = [hXΩ

n]

If g : I → Diff∞c (M,Ω, ω) is a smooth curve then δrg ∈ Ω1
(
I;Xc(M,Ω, ω)

)
and the

following are well defined homomorphisms of groups, integrating ϕ:

D̃iff
∞
c (M,Ω, ω)◦

π

²²

Φ̃ // H0
c (M)

π

²²

Diff∞c (M,Ω, ω)◦
Φ // H0

c (M)/∆

Φ̃(g) =
∫
I
ϕ∗(δrg)

∆ = Φ̃
(
π1(Diff∞c (M,Ω, ω)◦)

)
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If g has values in kerΦ then δrg ∈ Ω1(I; kerϕ) and the following are well defined homo-
morphisms of groups, integrating ψ:

k̃er Φ
Ψ̃ //

π

²²

H1
dωc
(M)

π

²²

kerΦ
Ψ // H1

dωc
(M)/Γ

Ψ̃(g) =
∫
I
ψ∗(δrg)

Γ = Ψ̃(π1(kerΦ))

If g has values in kerΨ then δrg ∈ Ω1(I; kerψ) and the following are well defined homo-
morphisms of groups, integrating ρ:

k̃erΨ
R̃ //

π

²²

H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

)

π

²²

kerΨ
R //

(
H2n

d
(n+1)ω
c

(M)/
(
H0
dωc
(M) ∧ [Ωn]

))/
Λ

R̃(g) =
∫
I
ρ∗(δrg)

Λ = R̃(π1(kerΨ))

All this can be found in section 3.7.

3.9 A Chart for Diff∞
c (M,Ω, ω)

3.9.1. Theorem. Let (M,Ω, ω) be a connected locally conformally symplectic manifold
and assume that Ω is not dωc -exact. Then Diff∞c (M,Ω, ω) = kerΦ is a Lie group in the
sense of [KM97] modeled on the convenient vector space Xc(M,Ω, ω) = kerϕ.

Proof. Notice first that the assumption “Ω is not dωc -exact” is satisfied iff ϕ = 0 (see
lemma 3.4.1). We consider the locally conformally symplectic manifold (T ∗M,Ω′, ω′),
where ω′ = π∗ω, Ω′ = dω

′
Θ and π : T ∗M → M is the projection (see example 3.2.4).

For α ∈ Ω1
c(M) we have α∗Ω′ = dωα and hence

α∗Ω′ = 0 ⇔ dωα = 0. (3.21)

Let p1, p2 : M ×M → M denote the projections on the first and second factor, and let
∆ ⊆M ×M be the diagonal. Since p∗2ω − p

∗
1ω is closed and vanishes when pulled back to

∆, there exists a function λ, defined locally around ∆, such that

p∗2ω − p
∗
1ω = d lnλ and λ|∆ = 1.

On a neighborhood of ∆ we consider the locally conformally symplectic structure (Ω̃, ω̃),
where ω̃ := p∗1ω and Ω̃ := p∗1Ω− λp

∗
2Ω. Indeed we have

dω̃Ω̃ = dp
∗
1ω
(
p∗1Ω− λp

∗
2Ω
)
= 0− dp

∗
1ω(λp∗2Ω) = −λd

p∗2ωp∗2Ω = 0

and Ω̃ is of course non-degenerated. We claim that for g ∈ Diff∞c (M) near the identity we
have

g ∈ Diff∞c (M,Ω, ω) ⇔ (id, g)∗Ω̃ = 0 (3.22)

where (id, g) :M →M ×M . Indeed from (id, g)∗Ω̃ = 0 we get

0 = (id, g)∗Ω̃ = (id, g)∗
(
p∗1Ω− λp

∗
2Ω
)
= Ω− ((id, g)∗λ)g∗Ω
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i.e. g∗Ω = 1
(id,g)∗λ

Ω. Moreover

g∗ω = (id, g)∗p∗2ω = (id, g)∗(p∗1ω + d lnλ) = ω + d ln((id, g)∗λ)

and hence g ∈ Diff∞c (M,Ω, ω). Suppose conversely g ∈ Diff∞c (M,Ω, ω) with g∗Ω = 1
a
Ω

and g∗ω = ω + d ln a. From the last equation and g∗ω = ω + d ln((id, g)∗λ) we obtain
a

(id,g)∗λ
= c, where c is a constant. It remains to show c = 1, for then

(id, g)∗Ω̃ = Ω− ((id, g)∗λ)g∗Ω = Ω− ag∗Ω = 0.

Notice that outside a compact set c = 1 and therefore we are done if M is non-compact.
So assume M compact and c 6= 1. Since Ω̃ is dω̃-closed and vanishes when pulled back to
∆ we obtain from corollary 3.1.2 a 1-form β, locally defined around ∆, such that dω̃β = Ω̃.
Then we have

Ω = ag∗Ω = c((id, g)∗λ)g∗Ω = −c(id, g)∗Ω̃ + cΩ

and hence

Ω = c
c−1(id, g)

∗Ω̃ = c
c−1(id, g)

∗dω̃β = c
c−1d

ω
(
(id, g)∗β

)
= dω

(
c
c−1(id, g)

∗β
)

a contradiction to the assumption that Ω is not dωc -exact.
If exp : TM → M ×M denotes the exponential mapping of a Riemannian metric on

M we obtain a diffeomorphism

exp ◦] : T ∗M ⊇ V → W ⊆M ×M

where V is an open neighborhood of the zero-section and W is an open neighborhood of
∆ which maps the zero-section identically (in the natural way) onto ∆. Now (V,Ω′, ω′)
and

(
V, (exp ◦])∗Ω̃, (exp ◦])∗ω̃

)
are two locally conformally symplectic structures, the zero-

section is a common Lagrangian submanifold, and the 1-forms ω′, (exp ◦])∗ω̃ equal when
pulled back to the zero-section. So we may apply lemma 3.2.10 to obtain a diffeomorphism,
mapping the first structure to the second up to conformal change. Summing up we obtain
possibly smaller neighborhoods V , W of the zero-section resp. ∆ and a diffeomorphism

γ : T ∗M ⊇ V → W ⊆M ×M

which maps the zero section identically onto ∆, and such that (V, γ∗Ω̃, γ∗ω̃) is confor-
mally equivalent to (V,Ω′, ω′). It is well known (see [KM97]) that there exists an open
neighborhood U of the id ∈ Diff∞c (M) such that

u : Diff∞c (M) ⊇ U → u(U) ⊆ Ω1
c(M) u(g) := γ−1 ◦ (id, g) ◦

(
π ◦ γ−1 ◦ (id, g)

)−1

is a chart for Diff∞c (M), centered at id. Its inverse is:

u−1 : Ω1
c(M) ⊇ u(U)→ U ⊆ Diff∞c (M) u−1(α) = p2 ◦ γ ◦ α ◦

(
p1 ◦ γ ◦ α

)−1

For g ∈ U we obtain from the equations (3.21) and (3.22)

g ∈ Diff∞c (M,Ω, ω)⇔ (id, g)∗Ω̃ = 0⇔ (γ−1 ◦ (id, g))∗Ω′ = 0

⇔ (u(g))∗Ω′ = 0⇔ dω(u(g)) = 0.
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Therefore
u
(
U ∩Diff∞c (M,Ω, ω)

)
= u(U) ∩ {α ∈ Ω1

c(M) : dωα = 0}

and so u is a submanifold chart for Diff∞c (M,Ω, ω) ⊆ Diff∞c (M). Especially Diff∞c (M,Ω, ω)
is a Lie group modeled on the convenient vector space of dω-closed 1-forms, but via ] this
is isomorphic to kerϕ = Xc(M,Ω, ω).

3.9.2. Remark. Notice that the assumption in theorem 3.9.1 is satisfied if and only if ϕ = 0.
So, if (M,Ω, ω) is conformally equivalent to a symplectic manifold the assumption is always
satisfied, see remark 3.4.2. In this case the chart constructed in the proof of theorem 3.9.1
is precisely the Weinstein chart, see [Wei71], [Wei77] or [KM97]. Moreover if M is not
compact then the assumption of theorem 3.9.1 is always satisfied too.

3.9.3. Theorem. Let (M,Ω, ω) be a connected, locally conformally symplectic manifold
such that Ω is dωc -exact. Then M is compact and Diff∞(M,Ω, ω) is a Lie group in the
sense of [KM97] modeled on the convenient vector space X(M,Ω, ω).

Proof. By assumption there exists β ∈ Ω1
c(M) with dωβ = Ω, especially M is compact.

Recall from the proof of theorem 3.9.1 that there exist open neighborhoods V , W of the
zero-section resp. the diagonal ∆ and a diffeomorphism

γ : T ∗M ⊇ V → W ⊆M ×M

such that γ∗(p∗1Ω − λp∗2Ω) equals dπ
∗ωΘ up to multiplication with a nowhere vanishing

function. Let Ω2 := dπ
∗ωΘ ∈ Ω2(V × R) and κ2 := dt ∈ Ω1(V × R). Here, and from now

on, π denotes the projection T ∗M×R→M and Θ is the pull back of the canonical 1-form
on T ∗M to T ∗M×R. Next we define Ω3 := p∗1Ω−λp

∗
2Ω ∈ Ω2(W×R), κ3 := dt ∈ Ω1(W×R),

where p1, p2 :M ×M × R→M denote the two projections onto M . The diffeomorphism

ρ2 := γ × idR : V2 := V × R→ W × R =: V3

has the property that ρ∗2κ3 = κ2 and ρ∗2Ω3 equals Ω2 up to multiplication with a nowhere
vanishing function. Moreover for α ∈ Ω1(M) consider the diffeomorphism τα : T ∗M →
T ∗M , τα(e) = e+ α(π(e)), let

ρ1 := (τ−tβ, t) : T
∗M × R→ T ∗M × R

and set V1 := ρ−11 (V2). We have ρ∗1Ω2 = Ω1 := dπ
∗ωΘ − tπ∗Ω ∈ Ω2(V1) and ρ∗1κ2 =

κ1 := dt ∈ Ω1(V1). Indeed ρ∗1Ω2 = (τ−tβ, t)∗dπ
∗ωΘ = dπ

∗ω(τ ∗−tβΘ) = dπ
∗ω(Θ + π∗(−tβ)) =

dπ
∗ωΘ− tπ∗dωβ = Ω1, cf. lemma 4.3.2. Next we consider the diffeomorphism

ρ3 :M ×M × R→M ×M × R ρ3(x, y, t) :=
(
x,Fl]βt (y), t

)

and set V4 := ρ−13 (V3). We have ρ∗3Ω3 = Ω4 := p∗1Ω − e
tλp∗2Ω ∈ Ω2(V4) and ρ∗3κ3 = κ4 :=

dt ∈ Ω1(V4). Indeed ρ∗3Ω3 = ρ∗3(p
∗
1Ω − λp

∗
2Ω) = p∗1Ω − (ρ∗3λ)p

∗
2(Fl

]β
t )∗Ω and thus it suffices

to show etλp∗2Ω = (ρ∗3λ)p
∗
2(Fl

]β
t )∗Ω. For t = 0 this is obviously true and one easily shows

that both sides satisfy the same differential equation with respect to t. Finally let

ρ4 :M ×M × R→M ×M × (0,∞) ρ4(x, y, t) :=
(
x, y, etλ(x, y)

)

and V5 := ρ4(V4). A simple calculation shows ρ∗4Ω5 = Ω4 and ρ∗4κ5 = κ4, where Ω5 :=
p∗1Ω− tp

∗
2Ω ∈ Ω2

(
M ×M × (0,∞)

)
and κ5 := p∗1ω − p

∗
2ω + d ln t ∈ Ω1

(
M ×M × (0,∞)

)
.
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Summing up we have open neighborhoods V1, V5 of the zero-section in T ∗M × R resp.
∆× {1} and a diffeomorphism

ρ := ρ4 ◦ ρ
−1
3 ◦ ρ2 ◦ ρ1 : T

∗M × R ⊇ V1 → V5 ⊆M ×M × (0,∞)

which maps the zero section identically onto the diagonal, i.e. ρ(0x, 0) = (x, x, 1). Moreover
ρ∗κ5 = κ1 and ρ

∗Ω5 equals Ω1 up to multiplication with a nowhere vanishing function. Now
consider the semi direct product

Diff∞(M)× C∞(M,R∗) (g, a) · (h, b) :=
(
g ◦ h, (h∗a)b

)

where R∗ := R \ {0}. With the help of ρ we obtain a chart for this group

u : Diff∞(M)× C∞(M,R∗) ⊇ U → u(U) ⊆ Γ(T ∗M × R→M)

u(g, a) := ρ−1 ◦ (id, g, a) ◦
(
π ◦ ρ−1 ◦ (id, g, a)

)−1

where U is an open, sufficiently small neighborhood of (id, 1). Its inverse is:

u−1(s) =
(
p2 ◦ ρ ◦ s ◦

(
p1 ◦ ρ ◦ s

)−1
, p3 ◦ ρ ◦ s ◦

(
p1 ◦ ρ ◦ s

)−1)

We have a homomorphism of groups

i : Diff∞(M,Ω, ω)→ Diff∞(M)× C∞(M,R∗) i(g) := (g, a)

where g∗Ω = 1
a
Ω, which is a homeomorphism onto its image. Moreover

j : X(M,Ω, ω)→ Γ(T ∗M × R→M) j(X) := ([X, c)

where the constant c is defined by dω([X) = cΩ (cf. lemma 3.4.1), is a linear homeomor-
phism onto its image. For (g, a) ∈ U we have

(g, a) ∈ Im(i)⇔ g∗Ω = 1
a
Ω and g∗ω = ω + d ln a

⇔ (id, g, a)∗Ω5 = 0 and (id, g, a)∗κ5 = 0

⇔ (ρ−1 ◦ (id, g, a))∗Ω1 = 0 and (ρ−1 ◦ (id, g, a))∗κ1 = 0

⇔ (u(g, a))∗Ω1 = 0 and (u(g, a))∗κ1 = 0

⇔ dω(u1(g, a)) = u2(g, a)Ω and d(u2(g, a)) = 0

⇔ u(g, a) ∈ Im(j)

where u1(g, a) ∈ Ω1(M), u2(g, a) ∈ C∞(M,R) denote the two components of u(g, a) ∈
Γ(T ∗M×R) ∼= Ω1(M)×C∞(M,R). So u(U∩Im(i)) = u(U)∩Im(j) and u is a submanifold
chart for Diff∞(M,Ω, ω) ⊆ Diff∞(M) × C∞(M,R∗). Especially Diff∞(M,Ω, ω) is a Lie
group modeled on the convenient vector space Im(j) ∼= X(M,Ω, ω).

3.10 Fragmentation Lemmas

Let i : U → V denote the inclusion of two open subsets in M . Similar to the discussion at
the beginning of section 3.5 we have commutative diagrams

D̃iff
∞
c (U,Ω|U , ω|U)◦

Φ̃U //

²²

H0
c (U)

i∗

²²

D̃iff
∞
c (V,Ω, ω)◦

Φ̃V // H0
c (V )

Diff∞c (U,Ω|U , ω|U)◦
ΦU //

²²

H0
c (U)/∆U

i∗
²²

Diff∞c (V,Ω, ω)◦
Φ̃V // H0

c (V )/∆V
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and hence kerΦU ⊆ kerΦV . Moreover we have commutative diagrams

k̃er ΦU

Ψ̃U //

²²

H1
dωc
(U)

i∗
²²

k̃er ΦV

Ψ̃V // H1
dωc
(V )

kerΦU
ΨU //

²²

H1
dωc
(U)/ΓU

i∗
²²

kerΦV
ΨV // H1

dωc
(V )/ΓV

and hence kerΨU ⊆ kerΨV . Finally the diagrams

k̃erΨU

R̃U //

²²

H2n

d
(n+1)ω
c

(U)/
(
H0
dωc
(U) ∧ [Ωn|U ]

)

i∗
²²

k̃erΨV

R̃V // H2n

d
(n+1)ω
c

(V )/
(
H0
dωc
(V ) ∧ [Ωn|V ]

)

and

kerΨU
RU //

²²

(
H2n

d
(n+1)ω
c

(U)/
(
H0
dωc
(U) ∧ [Ωn|U ]

))/
ΛU

i∗
²²

kerΨV
RV //

(
H2n

d
(n+1)ω
c

(V )/
(
H0
dωc
(V ) ∧ [Ωn|V ]

))/
ΛV

commute and so kerRU ⊆ kerRV .

3.10.1. Lemma. Let (M,Ω, ω) be a locally conformally symplectic manifold and let U
be an open covering of M . Then any g ∈ C∞

(
(I, 0), (kerΨ, id)

)
has a decomposition

g = g1 · · · gn, where each gi is supported in some Ui ∈ U and gi ∈ C
∞((I, 0), (kerΨUi

, id)
)

Proof. Fix a compact set K ⊆M and define

HK : C∞
(
I,Ω0

K(M)
)
→ C∞

(
(I, 0), (kerΨ, id)

)
α 7→ Evol

(
(] ◦ dω)∗α

)

that is the defining equation for g = HK(α) is [ġt = dωαt with initial condition g0 = id, cf.
lemma 3.7.13. We define the structure of a topological group on the left hand side space
such that HK becomes a continuous homomorphism. Namely we set

(αβ)(t) := α(t) + (HK(α)(t)
−1)∗( 1

at
β(t)) (3.23)

where HK(α)(t)
∗Ω = 1

at
Ω. If α, β ∈ C∞

(
I,Ω0

K(M)
)
and g = HK(α), h = HK(β) we have

dω
(
αt + (g−1t )∗( 1

at
βt)
)
= [ġt + (g−1t )∗( 1

at
dωβt) = [ġt + (g−1t )∗( 1

at
[ḣt)

= [ġt + [
(
(g−1t )∗ḣt

)
= [
(
δr(gh)(∂t)(t)

)

so HK is a homomorphism, provided (3.23) defines a group structure on C∞
(
I,Ω0

K(M)
)
.

To see this notice first that 0 ∈ C∞
(
I,Ω0

K(M)
)
is the neutral element and (α−1)(t) :=

−at(HK(α)(t))
∗(α(t)) is the inverse of α. So the only non-trivial thing to check is asso-

ciativity. So let α, β, γ ∈ C∞
(
I,Ω0

K(M)
)
, g = HK(α), h = HK(β), k = HK(γ) and let

g∗tΩ = 1
at
Ω, h∗tΩ = 1

bt
Ω. Since we already know that HK(αβ)(t) = gtht we get

((αβ)γ)(t) = αt + (g−1t )∗( 1
at
βt) + ((gtht)

−1)∗( 1
(h∗t at)bt

γt)
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which is equal to:

(α(βγ))(t) = αt + (g−1t )∗
(
1
at

(
βt + (h−1t )∗( 1

bt
γt)
))

From lemma 3.7.13 and corollary 3.1.12 we get
⋃
K ImHK = C∞

(
(I, 0), (kerΨ, id)

)
and so

we only have to show that every g ∈ Im(HK) has the desired decomposition.
Now choose U1, . . . , Un ∈ U covering K, open sets Vi, Wi with W̄i ⊆ Vi ⊆ V̄i ⊆ Ui

such that Wi still cover K and a partition of unity {λ0, . . . , λn} subordinated to {M \
K,W1, . . . ,Wn}. Consider the open neighborhoods Wi of the identity

Wi :=
{
g ∈ C∞

(
(I, 0), (Diff∞c (M,Ω, ω), id)

)
: gt(M \ V̄i) ⊆M \ W̄i ∀t ∈ I

}

and define an open neighborhood of 0 ∈ C∞
(
I,Ω0

K(M)
)
by

WK :=
{
α ∈ C∞

(
I,Ω0

K(M)
)
: HK(

∑i−1
j=0 λjα) ∈ Wi ∀1 ≤ i ≤ n

}

SinceWK is open it generates C∞
(
I,Ω0

K(M)
)
as group and so HK(WK) generates Im(HK).

Consequently it suffices to show that every g ∈ HK(WK) has the desired decomposition.
For α ∈ WK we set fi := HK(

∑i
j=0 λjα), i = 0, . . . , n. Then we have f0 = id,

fn = HK(α), and if we let gi := f−1i−1fi, i = 1, . . . , n, we obtain HK(α) = g1 · · · gn. It
remains to show that gi ∈ C

∞((I, 0), (kerΨUi
, id)

)
, but this follows from

gi = f−1i−1fi

= HK

(
t 7→ −ai−1(t)fi−1(t)∗(

∑i−1
j=0 λjαt) + fi−1(t)∗

(
f−1i−1(t)

∗(ai−1(t))
∑i

j=0 λjαt
))

= HK

(
t 7→ ai−1(t)fi−1(t)

∗(λiαt)
)

where, f ∗i Ω = 1
ai
Ω, for we have supp

(
t 7→ ai−1(t)fi−1(t)∗(λiαt)

)
⊆ V̄i ⊆ Ui.

3.10.2. Corollary. Let (M,Ω, ω) be a locally conformally symplectic manifold and let U
be an open covering of M . Then every g ∈ kerΨ has a decomposition g = g1 · · · gn, where
every gi is supported in some Ui ∈ U and gi ∈ kerΨUi

.

Proof. This is an immediate consequence of lemma 3.10.1 and the fact that kerΨ is con-
nected by smooth arcs, see lemma 3.7.14.

3.10.3. Lemma. Let (M,Ω, ω) be a locally conformally symplectic manifold and let U
be an open covering of M . Then every g ∈ C∞

(
(I, 0), (kerR, id)

)
has a decomposition

g = g1 · · · gn, where every gi is supported in some Ui ∈ U and gi ∈ C
∞((I, 0), (kerRUi

, id)
)
.

Proof. Fix a compact set K ⊆M and define

HK : C∞
(
I,Ω2n−1

K (M)
)
→ C∞

(
(I, 0), (kerR, id)

)
α 7→ Evol

(
(] ◦ dω)∗u

)

where u ∈ C∞
(
I,Ω0

K(M)
)
is the unique function satisfying d(n+1)ωαt = utΩ

n. So the defin-
ing equation for g = HK(α) is [ġt = dωut with initial condition g0 = id, cf. lemma 3.7.18
and remark 3.4.5. We define the structure of a topological group on the left hand side
space such that HK becomes a continuous homomorphism. Namely we set

(αβ)(t) := αt + (HK(α)(t)
−1)∗

(
1

an+1
t

βt
)

(3.24)



3.11. THE SYMPLECTIC TORUS 87

where HK(α)(t)
∗Ω = 1

at
Ω. Let α, β ∈ C∞

(
I,Ω2n−1

K (M)
)
, u, v ∈ C∞

(
I,Ω0

K(M)
)
such that

d(n+1)ωαt = utΩ
n, d(n+1)ωβt = vtΩ

n and g := HK(α), h := HK(β). Then we have

d(n+1)ω
(
(αβ)(t)

)
= utΩ

n + (g−1t )∗
(

1
an+1
t

d(n+1)ωβt
)

= utΩ
n + (g−1t )∗

(
1
at
vtg

∗
tΩ

n
)

=
(
ut + (g−1t )∗( 1

at
vt)
)
Ωn

and since we have [
(
δr(gh)(∂t)(t)

)
= dω

(
ut + (g−1t )∗( 1

at
vt)
)
from the proof of lemma 3.10.1

we see that HK is a homomorphism, provided (3.24) defines a group structure, but this
follows as in the proof of lemma 3.10.1.

From lemma 3.7.18, remark 3.4.5 and corollary 3.1.12 we immediately get
⋃
K ImHK =

C∞
(
(I, 0), (kerR, id)

)
and so we only have to show that every g ∈ Im(HK) has the desired

decomposition. From now on the proof is similar to the proof of lemma 3.10.1.

3.10.4. Corollary. Let (M,Ω, ω) be a locally conformally symplectic manifold and let U
be an open covering of M . Then every g ∈ kerR has a decomposition g = g1 · · · gn, where
every gi is supported in some Ui ∈ U and gi ∈ kerRUi

.

Proof. This is an immediate consequence of lemma 3.10.3 and the fact that kerR is con-
nected by smooth arcs, see lemma 3.7.19.

3.10.5. Remark. There is no fragmentation lemma for kerΦ. Indeed let g ∈ kerΦ \ kerΨ.
If there would be a fragmentation lemma we would find contractible Ui and gi ∈ kerΦUi

with g = g1 · · · gn. Since Ui is contractible we have H1
dωc
(Ui) = 0 and thus ΨUi

(gi) = 0.
So gi ∈ kerΨUi

⊆ kerΨ and thus g ∈ kerΨ, a contradiction. So Ψ(g) is the obstruction
to fragmentation in kerΦ. A similar argument shows that g ∈ Diff∞c (M,Ω, ω)◦ can be
fragmented, with respect to arbitrary (contractible) coverings, iff Φ(g) = 0 and Ψ(g) = 0.

3.10.6. Lemma. Let (M,Ω, ω) be a locally conformally symplectic manifold and U ⊆ V
open subsets such that V is contractible. If g ∈ C∞

(
(I, 0), (ker Φ, id)

)
with

⋃
t∈I gt(U) ⊆ V

then there exists h ∈ C∞
(
(I, 0), (kerRV , id)

)
satisfying gt|U = ht|U for all t ∈ I.

Proof. Since g is a curve in kerΦ we get dω[ġt = 0. Since V is contractible we find ut ∈
C∞(V,R) with [ġt|V = dωut. Now choose a bump function λ with suppλ ⊆ V , λ = 1 on⋃
t∈I gt(U) and define h such that ḣt = dω(λut) ∈ kerψV . Then h ∈ C

∞((I, 0), (kerΨV , id)
)

and gt = ht on U . To see that h can be chosen to have values in kerRV one simply multiplies
h with a curve f supported in V \

⋃
t∈I gt(U) which satisfies RV (ht) = −RV (ft).

3.11 The Symplectic Torus

Consider the torus T 2n with the symplectic structure:

Ω = dx1 ∧ dx2 + · · ·+ dx2n−1 ∧ dx2n

We have ∂i :=
∂
∂xi
∈ X(T 2n,Ω) and ψ(∂i) = [(−1)i−1dxσ(i)] ∈ H1(T n) ∼= R2n, where

σ : {1, . . . , 2n} → {1, . . . , 2n} σ(2i) = 2i− 1, σ(2i− 1) = 2i.
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Since Fl∂i1 = id we have Fl∂it ∈ π1

(
Diff∞(T 2n,Ω)◦

)
and so

[(−1)i−1dxσ(i)] = ψ(∂i) = Ψ̃(Fl∂it ) ∈ Γ ⊆ H1(T 2n),

i.e. Z2n ⊆ Γ ⊆ H1(T 2n) ∼= R2n. On the other hand for g ∈ π1

(
Diff∞(T 2n,Ω)◦

)
lemma 3.7.11

yields 〈c, Ψ̃(g)〉 = 〈g ∗ c,Ω〉 ∈ Per(Ω) = Z, for all c ∈ H1(T
2n;Z), where Per(Ω) denotes

the periods of Ω. Consequently Γ ⊆ Z2n ∼= H1(T 2n;Z) ⊆ H1(T 2n). So we have shown:

Z2n = Γ ⊆ H1(T 2n) ∼= R2n

If we consider T 2n as subgroup of Diff∞(T 2n,Ω), via α 7→ Rα, where Rα denotes rotation
by α, the preceding also shows that Ψ|T 2n : T 2n → H1(T 2n)/Γ ∼= R2n/Z2n ∼= T 2n is given
by:

Ψ|T 2n(x1, . . . , xn) = (x2,−x1, . . . , x2n, x2n−1)

Notice that Φ = 0 since (T 2n,Ω) is a symplectic manifold and R = 0 since (T 2n,Ω) is
compact, cf. remark 3.4.6.

3.11.1. Theorem. Consider the symplectic torus (T 2n,Ω). Then k̃erΨ = k̃erR is perfect.

Proof. We have to show k̃erΨ ⊆ [k̃erΨ, k̃erΨ]. Choose γ ∈ T 2n satisfying a diophantic

equation. If g ∈ C∞
(
(I, 0), (k̃erΨ, id)

)
is sufficiently close to id theorem 1.5.3 yields

λ ∈ C∞
(
(I, 0), (T 2n, 0)

)
and f ∈ C∞

(
(I, 0), (Diff∞(T 2n)◦, id)

)
with

Rγg = Rλf
−1Rγf i.e. g = Rλ[R

−1
γ , f−1]

From gt ∈ kerΨ we obtain

Ω = g∗tΩ = f ∗t R
∗
γ(f

−1
t )∗(R−1γ )∗(Rλt)

∗Ω = f ∗t R
∗
γ(f

−1
t )∗Ω

and so (f−1t )∗Ω is Rγ-invariant. If (f
−1
t )∗Ω =

∑
i<j aijdx

i∧dxj we thus obtain aij ◦Rγ = aij
and since Rγ generates a dense subgroup of T 2n the aij are constant. Moreover since f−1t
is homotopic to id we must have [(f−1t )∗Ω] = [Ω] ∈ H2(T 2n) and so (f−1t )∗Ω = Ω. Hence
f ∈ C∞

(
(I, 0), (Diff∞(T 2n,Ω)◦, id)

)
and we get:

0 = Ψ(gt) = Ψ(Rλt)−Ψ(Rγ)−Ψ(ft) + Ψ(Rγ) + Ψ(ft) = Ψ(Rλt)

Since Ψ|T 2n : T 2n → H1(T 2n)/Γ is one-to-one this yields λt = 0 ∈ T 2n and we have
g = [R−1γ , f−1]. Now choose a path α in T 2n from 0 to γ. Then (s, t) 7→ [R−1α(s+(1−s)t), f

−1
t ]

is a homotopy relative endpoints in kerΨ from t 7→ [R−1αt , f
−1
t ] to g and so:

g = [R−1γ , f−1] = [R−1α , f−1] ∈ k̃erΨ

Up to now we have shown: k̃erΨ ⊆ [D̃iff
∞
(T 2n,Ω)◦, D̃iff

∞
(T 2n,Ω)◦]. Now choose a path

β ∈ C∞
(
(I, 0), (T 2n, 0)

)
with Ψ(Rβt) = Ψ(ft). Then h := f−1Rβ ∈ C

∞((I, 0), (kerΨ, id)
)

and
g = [R−1α , f−1] = [R−1α , f−1Rβ] = [R−1α , h] ∈ k̃erΨ

since rotations commute. Next choose open balls Ui, Vi ⊆ T 2n such that
⋃
t∈I R

−1
αt (Ui) ⊆ Vi

and such that Ui cover T 2n. This is possible since α can be chosen close to the con-
stant path 0 if γ was close to 0 ∈ T 2n. From the cut-off lemma 3.10.6 we obtain
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ki ∈ C∞
(
(I, 0), (kerΨ, id)

)
with ki(t)|Ui

= R−1αt |Ui
for all t ∈ I. Moreover the frag-

mentation lemma 3.10.1 yields hj ∈ C∞
(
(I, 0), (kerΨ, id)

)
with supphj ⊆ Ui(j) and

h = h1 · · ·hl. From ki(t)|Ui
= R−1αt |Ui

we obtain k−1i (t) = Rαt on R−1αt (Ui) and therefore
R−1αt hj(t)Rαt = ki(j)(t)hj(t)k

−1
i(j)(t) on T

2n. So

g = [R−1α , h] = (R−1α h1Rα) · · · (R
−1
α hlRα)h

−1
l · · ·h

−1
1

= (ki(1)h1k
−1
i(1)) · · · (ki(l)hlk

−1
i(l))h

−1
l · · ·h

−1
1

= 0 ∈ k̃erΨ/[k̃erΨ, k̃erΨ]

since every factor is in k̃erΨ and up to the ordering the product is the identity. So we have
shown g ∈ [k̃erΨ, k̃erΨ].

3.11.2. Corollary. For the symplectic torus (T 2n,Ω) we have

H1

(
BkerΨ;Z

)
= H1

(
BkerR;Z

)
= 0

and kerΨ = kerR is perfect too.

Proof. This is an immediate consequence of theorem 3.11.1 and proposition 1.4.5.

3.12 Derived Series of Diff∞
c (M,Ω, ω)◦

A well known theorem of W. P. Thurston states that Diff∞c (M)◦ is a simple group, cf.
[Thu74]. His proof used a theorem of Epstein (see theorem 1.3.2 or [Eps70]) and a theorem
due to Herman (see corollary 1.5.5 or [Her73]). Mather proved that Diff rc(M)◦ is simple
for ∞ > r 6= dim(M) + 1, see [Mat74] and [Mat75]. As far as I know it is still unsolved if
this holds for r = dim(M)+ 1 too. Mather’s proof is ‘elementary’ but very tricky. Epstein
managed to generalize Mather’s construction and reproved the simplicity of Diff∞c (M)◦,
see [Eps84]. The group of volume preserving diffeomorphisms is not simple in general, but
there exists a homomorphism and its kernel is simple. This was shown by Thurston, see
[Ban97] for a proof. Banyaga showed an analogous statement in the symplectic case.

The difficult part of such theorems is the perfectness, simplicity then follows either from
Epstein’s theorem or proposition 1.3.1, roughly speaking. There doesn’t seem to exist a
way to obtain perfectness of the group from perfectness of the corresponding Lie algebra,
which is much more easier to show.

In the sequel we will show a simplicity theorem for locally conformally symplectic
manifolds, see theorem 3.12.3, and compute the derived series of Diff∞c (M,Ω, ω)◦, see
corollary 3.12.4.

3.12.1. Lemma. Let (M,Ω, ω) be a connected locally conformally symplectic manifold.
Then kerR acts k-transitive for all k ∈ N.

Proof. From lemma 3.6.2 we obtain immediately that ker ρ acts infinitesimal k-transitive
for all k ∈ N, cf. definition 1.2.5. Since we have lemma 3.7.18 the statement follows from
proposition 1.2.6.

Using a Weinstein chart one can identify simplices of Sp(BkerR) with 1-forms on ∆p×
M . To these one can apply the fragmentation mapping from section 2.2, and so the next
proposition follows from corollary 3.11.2, see [Ban97].
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3.12.2. Proposition. Consider the symplectic manifold (U,Ω, 0), where U ⊆ R2n is an
open ball equipped with the standard symplectic form Ω = dx1 ∧ dx2 + · · ·+ dx2n−1 ∧ dx2n.
Then kerR is perfect, i.e. kerR = [kerR, kerR].

The following theorem is due to A. Banyaga in the symplectic case, see [Ban78] or
[Ban97].

3.12.3. Theorem. Let (M,Ω, ω) be a connected locally conformally symplectic manifold.
Then kerR is simple, i.e. kerR has no non-trivial normal subgroups. Especially there do
not exist non-trivial homomorphisms defined on kerR.

Proof. We want to apply proposition 1.3.1 for G = kerR. Let U be the set of all symplectic
balls in M , i.e. open sets U in M such that there exists a diffeomorphism onto an open
ball in R2n mapping the locally conformally symplectic structure of M to the standard
symplectic structure on R2n, up to conformal change. A locally conformally symplectic
structure is locally conformally equivalent to a symplectic structure. So U is a basis of
the topology, for we have Darboux’s theorem for symplectic manifolds. For U ∈ U we let
GU := kerRU ⊆ kerR. Then GU is perfect by proposition 3.12.2. Remains to check the
three assumptions in proposition 1.3.1. The first is a special case of lemma 3.12.1. The
second is precisely corollary 3.10.4. The third assumption is obvious, but see the discussion
at the beginning of section 3.10 and recall that kerR remains the same if one changes the
locally conformally symplectic structure conformally.

The derived series DiG of a group G is defined inductively, D0G := G, D1G = [G,G],
DiG := [Di−1G,Di−1G], where [G,G] denotes the subgroup generated by all commutators
of G.

3.12.4. Corollary. Let (M,Ω, ω) be a connected locally conformally symplectic manifold
and let G := Diff∞c (M,Ω, ω)◦ for the moment. Then we have:

D0G = G D1G D2G D3G

M compact,

[Ω] = 0 ∈ H2
dω(M)

G kerΦ kerΨ = kerR D2G

M compact,

[Ω] 6= 0 ∈ H2
dω(M)

G = kerΦ kerΨ = kerR D1G D1G

M not compact,

[ω] 6= 0 ∈ H1(M)
G = kerΦ kerΨ = kerR D1G D1G

M not compact,

[ω] = 0, {·, ·} = 0
G = kerΦ kerR D1G D1G

M not compact,

[ω] = 0, {·, ·} 6= 0
G = kerΦ kerΨ kerR D2G

Proof. Since kerR is simple (theorem 3.12.3) it is perfect too and we get:

[kerΨ, kerΨ] ⊆ kerR = [kerR, kerR] ⊆ [kerΨ, kerΨ]

So we always have:

[kerΨ, kerΨ] = kerR (3.25)
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Moreover, if ρ = 0 then R = 0, hence kerΨ = kerR is perfect and we get

[ker Φ, kerΦ] ⊆ kerΨ = [kerΨ, kerΨ] ⊆ [ker Φ, kerΦ]

and hence

[kerΦ, kerΦ] = kerΨ = kerR if ρ = 0. (3.26)

In the first case we have ϕ 6= 0 and ρ = 0 by remark 3.4.6. So in this case it remains to show
[G,G] ⊇ kerΦ. To see this choose g ∈ G, such that Φ(g) = ln 2. From (3.20) on page 80 we
obtain Ψ(ghg−1) = 2Ψ(h) for all h ∈ kerΦ, and hence Ψ([g, h]h−1) = Ψ(ghg−1)− 2Ψ(h) =
0. Using (3.26) this gives

[g, h]h−1 ∈ kerΨ = [kerΦ, kerΦ] ⊆ [G,G] ∀h ∈ kerΦ

and thus h ∈ [G,G]. In the second and the third case we have ρ = 0, ϕ = 0, thus R = 0,
Φ = 0 and everything follows from (3.26). In the forth and fifth case we also have Φ = 0
and

kerR = [kerΨ, kerΨ] ⊆ [ker Φ, kerΦ] ⊆ kerΨ. (3.27)

The fourth case now follows immediately from proposition 3.7.20. In the fifth case it
remains to check [kerΦ, kerΦ] ⊇ kerΨ. So see this let g ∈ kerΨ. Since the symplectic
pairing is non-zero it is surjective and so there exist h, k ∈ kerΦ with R([h, k]) = R(g), by
proposition 3.7.20 and the fact that Ψ is onto. Using (3.27) we obtain [h, k]g−1 ∈ kerR ⊆
[ker Φ, kerΦ] and thus g ∈ [ker Φ, kerΦ].

3.12.5. Remark. Notice that corollary 3.12.4 is precisely the integral counterpart of corol-
lary 3.5.4

3.12.6. Remark. In the fourth case of corollary 3.12.4 we also have [kerΨ, kerΨ] = kerR,
but kerΨ 6= kerR since R 6= 0 and in general kerΨ 6= kerΦ. So this is the only case where
not all kernels of the various invariants do appear in the derived series.

3.13 Filipkiewicz type Theorem

Filipkiewicz showed that a smooth manifold is uniquely determined by its group of diffeo-
morphisms. That is, if two manifold have isomorphic diffeomorphism groups then the un-
derlying manifolds are diffeomorphic, see [Fil82]. He used techniques developed in [Whi63]
and [Tak79] who proved an analogous statement in the topological setting. There were
many generalizations to other geometric structures, see [Ban86], [Ban88], [BM95] and
[Ryb95b] for some non-transitive geometric structures. In the sequel we will show the
analogous statement for locally conformally symplectic manifolds, see theorem 3.13.1 and
corollary 3.13.3.

3.13.1. Theorem. Let (Mi,Ωi, ωi), i = 1, 2 be two locally conformally symplectic mani-
folds and suppose κ : kerR1 → kerR2 is an isomorphism of groups. Then there exists a
unique homeomorphism f : M1 → M2 such that κ(g) = f ◦ g ◦ f−1 for all g ∈ kerR1.
Moreover f is a diffeomorphism and (M1,Ω1, ω1) ∼ (M1, f

∗Ω2, f
∗ω2).
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Proof. This is an application of a theorem due to T. Rybicki, see [Ryb95b]. We have
to verify that kerR satisfies the four axioms of [Ryb95b]. The first is a fragmentation
property, see corollary 3.10.4. The second axiom states that for every sufficiently small
open ball U in M and x ∈ U there exists g ∈ kerR such that Fix(g) = (M \ U) ∪ {x}.
Such a g is easily constructed using a Darboux chart. The third axiom states that kerR
acts 3-transitive on M , we have shown this in lemma 3.12.1. The fourth axiom requires
the existence of a Pursell-Shanks-Omori like theorem, see theorem 3.6.6.

3.13.2. Lemma. Let G be a group such that conj : G → Aut([G,G]) is injective and let
λ : G → G be a homomorphism of groups, such that λ|[G,G] = id. Then λ = id. (cf.
lemma 3.6.7).

Proof. For g ∈ G we have

[g, h] = λ([g, h]) = [λ(g), λ(h)] = [λ(g), h] ∀h ∈ [G,G]

hence conjg−1λ(g) = id ∈ Aut([G,G]), and by injectivity λ(g) = g.

3.13.3. Corollary. Consider two locally conformally symplectic manifolds (Mi,Ωi, ωi).
Let G1 be one of the groups Diff∞c (M1,Ω1, ω1)◦, kerΦ1, kerΨ1, kerR1 and G2 be one of
the groups Diff∞c (M2,Ω2, ω2)◦, kerΦ2, kerΨ2, kerR2, and assume that κ : G1 → G2 is an
isomorphism of groups. Then there exists a unique homeomorphism f : M1 → M2 such
that κ(g) = f ◦ g ◦ f−1 for all g ∈ G1. Moreover f is a diffeomorphism and (M1,Ω1, ω1) ∼
(M1, f

∗Ω2, f
∗ω2).

Proof. The restriction of κ is an isomorphism κ|D2G1
: D2G1 → D2G2. In any case D2Gi =

kerRi for i = 1, 2, by corollary 3.12.4. So we may apply theorem 3.13.1 and obtain a
unique homeomorphism f : M1 → M2 such that κ(g) = fgf−1 for all g ∈ kerR1 = D2G1.
Moreover f is a diffeomorphism and (M1,Ω1, ω2) ∼ (M1, f

∗Ω2, f
∗ω2). So it remains to

show that κ(g) = conjf (g) := fgf−1 for all g ∈ G1. From (M1,Ω1, ω2) ∼ (M1, f
∗Ω2, f

∗ω2)
we see that conjf−1(G2) ⊆ G1 or conjf−1(G2) ⊇ G1. Assume we are in the first case (for
the second consider f−1). Then λ := conjf−1 ◦κ : G1 → G1 is a homomorphism and
λ|D2G1

= id. Moreover, for g ∈ Diff∞(M1) we have:

[g, h] = id ∀h ∈ kerR1 ⇒ g = id

since kerR1 acts 2-transitive on M1. Using kerR1 ⊆ Di+1G1 we obtain conj : DiG1 →
Aut([DiG1, D

iG1]) = Aut(Di+1G1) is injective for all i. So we may apply lemma 3.13.2
inductively and obtain successively λ|D2G1

= id, λ|D1G1
= id and finally λ = λD0G1

= id,
i.e. κ = (conjf )|G1.

3.13.4. Remark. Since kerΨ also satisfies all four axioms in [Ryb95b], we could derive
corollary 3.13.3 for kerΨ from Rybickis theorem, too. But kerΦ and Diff∞c (M,Ω, ω)◦ do
not have the fragmentation property (see remark 3.10.5) and are therefore not covered by
[Ryb95b].



4. Extension and Transgression of the Flux

4.1 Cohomology of Groups

Let G be a group and let M be a G-module. We recall briefly the definition of cohomology
groups H∗(G;M). Choose a projective resolution

· · · → F2 → F1 → F0 → Z

of the trivial G-module Z, consider the induced cochain complex

0→ HomG(F0,M)→ HomG(F1,M)→ HomG(F2,M)→ · · ·

and define the cohomology groups H∗(M ;G) to be the cohomology groups of the complex
above. It is well known that this does not depend on the choice of the resolution. Since
the HomG functor is left-exact we immediately obtain H0(G;M) = HomG(Z,M) =MG :=
{m ∈M : gm = m ∀g ∈ G}.

Let Cp(G) denote the free G-module with generators [g1| · · · |gp] and define a G-module
homomorphism ∂ : Cp(G)→ Cp−1(G) by:

∂([g1| · · · |gp]) := g1[g2| · · · |gp]−
∑p−1

i=1 [g1| · · · |gigi+1| · · · |gp] + (−1)p[g1| · · · |gp−1]

Moreover let ε : C0(G) → Z be the G-module homomorphism, defined by ε([]) := 1, the
usual augmentation mapping. For this notice that C0(G) is generated by []. It is well
known that

· · ·
∂
−→C2(G)

∂
−→C1(G)

∂
−→C0(G)

ε
−→Z→ 0

is a free (hence projective) resolution of Z. It is called the bar resolution. Consequently, if
we set Cp(G;M) := Map(Gp,M) ∼= HomG(Cp(G),M), then the complex

0→ C0(G;M)
δ
−→C1(G;M)

δ
−→C2(G;M)

δ
−→· · ·

computes the cohomology groups H∗(G;M). Here δ : Cp−1(G;M)→ Cp(G;M) is induced
from ∂, i.e.

δ(c)(g1, . . . , gp) = g1c(g2, . . . , gp) +
∑p−1

i=1 c(g1, . . . , gigi+1, . . . , gp) + (−1)pc(g1, . . . , gp−1)

for c ∈ Cp−1(G;M).

4.1.1. Example. Let c ∈ C1(G;M). Then we have (δc)(g1, g2) = g1c(g2) − c(g1g2) + c(g1)
and so δc = 0 iff c ∈ Der(G,M) := {d ∈ Map(G,M) : d(gh) = gd(h) + d(g) ∀g, h ∈ G}.
Moreover c = δu if and only if c(g) = gu − u for some u ∈ M . These c are called inner
derivations (Inn(G,M)). Summing up we have seen H1(G;M) = Der(G,M)/ Inn(G,M).

93



94 CHAPTER 4. EXTENSION AND TRANSGRESSION OF THE FLUX

4.1.2. Example. Let 0 → A
i
−→ G

p
−→ H → 0 be an extension of H by A and assume

that A is abelian. Since i(A) = ker p is a normal subgroup, G acts by conjugation on A.
Moreover since A is abelian this action descends to an H-action on A. We call two such
extensions 0→ A→ G1 → H → 0 and 0→ A→ G2 → H → 0 equivalent if there exists a
homomorphism ϕ : G1 → G2 such that the diagram

0 // A //

id

²²

G1
//

ϕ

²²

H //

id

²²

0

0 // A // G2
// H // 0

commutes. Then ϕ turns out to be an isomorphism by the five-lemma. We want to describe
the set of equivalence classes of extensions of H by A which give rise to this H-action on
A. Choose a set theoretic section of p, such that s(e) = e and define c ∈ C2(H;A) by
s(h)s(k) = i(c(h, k))s(hk). Moreover define ϕ : A ×H → G, ϕ(a, h) := i(a)s(h). Then ϕ
is bijective and the group multiplication of G on A×H is the following

(a, h)(b, k) = (a+ hb+ c(h, k), hk) (4.1)

for we have i(a)s(h)i(b)s(k) = i(a)i(hb)s(h)s(k) = i(a + hb + c(h, k))s(hk). An easy
calculation shows that (4.1) defines a group multiplication on A×H iff δc = 0 and c(e, e) =
0. So, for every such c we have an extension we denote by A×cH. Moreover the cohomology
class [c] ∈ H2(H;M) does not depend on the choice of s, for if s1, s2 are two sections there
exists u ∈ Map(H,A) with s2(h) = i(u(h))s1(h), therefore

i
(
c2(h, k)− c1(h, k)

)
= s2(h)s2(k)s2(hk)

−1s1(hk)s1(k)
−1s1(h)

−1

= i(u(h))s1(h)i(u(k))s1(k)
(
i(u(hk))s1(hk)

)−1
s1(hk)s1(k)

−1s1(h)
−1

= i
(
u(h) + h

(
u(k)− k(hk)−1u(hk)

))

= i
(
u(h) + hu(k)− u(hk)

)
= i
(
(δu)(h, k)

)

and so c2 = c1 + δu. Next one shows that equivalent extensions give rise to the same
cohomology class. Indeed let ϕ : G1 → G2 be an isomorphism of extensions. If s1 is a
section of p1 then s2 := ϕ ◦ s1 is a section of p2. Since ϕ is the identity on A we obtain

i(c2(h, k)) = s2(h)s2(k)s2(hk)
−1

= ϕ(s1(h)s1(k)s1(hk)
−1) = ϕ

(
i(c1(h, k))

)
= i(c1(h, k))

and thus [c1] = [c2] ∈ H
2(H;A). So we can associate a cohomology class [c] ∈ H2(M ;A)

to every equivalence class of extensions, and this mapping is onto since every class in
H2(M ;A) has a representative satisfying c(e, e) = 0. Finally we show that this mapping
is one-to-one. So suppose G1 and G2 are two extensions which give rise to the same
cohomology class, i.e. there exists u ∈ C1(H;A) such that c1− c2 = δu. It suffices to show
that the extensions A×c1 H and A×c2 H are equivalent. An equivalence is given by:

ϕ : A×c1 H → A×c2 H ϕ((a, h)) = (a+ u(h), h)

Notice that u(e) = 0 since ci(e, e) = 0 and we have c1 − c2 = δu.
Summing up we have a natural one-to-one correspondence of H2(H;A) and the set of

equivalence classes of extensions of H by A which give rise to the fixed H-action on A.
Obviously the semi direct product of H and A defined by this action of H on A corresponds
to 0 ∈ H2(G;A), since it possesses a section, which is a homomorphism.
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We will make use of the following so called five-term exact sequence, due to Hochschild
and Serre.

4.1.3. Theorem. Let 0 → H
i
−→G

p
−→Q → 0 be an arbitrary extension and let M be a

Q-module. Then the following sequence is exact and natural:

0→ H1(Q;M)
p∗

−→ H1(G;M)
i∗
−→ HomQ(Hab,M)

t
−→H2(Q;M)

p∗

−→ H2(G;M)

Here M is considered as G-module via p and as trivial H-module. Moreover Hab :=
H/[H,H] denotes the abelianization of H, considered as Q-module via the conjugate action.
Finally the mapping t is given by t(ϕ) = ϕ∗([c]), where [c] ∈ H2(Q;Hab) is the cohomology
class corresponding to the extension 0→ Hab → G/i([H,H])→ Q→ 0, cf. example 4.1.2.

A proof can be found for example in [Bro82]. In fact one shows that there exists a
spectral sequence converging to H∗(G;M) with E2-term Epq

2 = Hp(Q;Hq(H;M)). The
five-term exact sequence is an immediate consequence of this and the fact thatH1(H;M) ∼=
Hom(Hab,M).

4.2 The Flux on Loops

The following is well known and can be found in [Ban97] for example.

4.2.1. Proposition. Let θ ∈ Ωp(M) be closed. Then Sθ(g) :=
∫ 1
0
g∗t iġtθdt defines a ho-

momorphism
Sθ : π1

(
Diff∞c (M)◦

)
→ Hp−1

c (M).

Moreover Sθ only depends on the cohomology class [θ] ∈ Hp(M), in particular Sθ = 0 if θ
is exact.

Proof. First of all the formula defines a cohomology class since we have:

d
( ∫ 1

0
g∗t iġtθdt

)
=
∫ 1
0
g∗t diġtθdt =

∫ 1
0
g∗tLġtθdt =

∫ 1
0

∂
∂t
g∗t θdt = g∗1θ − g

∗
0θ = 0

Next we have to show that Sθ(g) does only depend on the homotopy type relative endpoints
of g. So let G : I × I → Diff∞c (M)◦ be such a homotopy, i.e. G(s, 0) = G(s, 1) = id. We
have to show: ∫ 1

0
G∗1,tiδrG(∂t)θdt =

∫ 1
0
G∗0,tiδrG(∂t)θdt

Using equation 1.4 and lemma 1.2.3 we get

∂
∂s
G∗s,tiδrG(∂t)θ = G∗s,tLδrG(∂s)iδrG(∂t)θ +G∗s,t

∂
∂s

(
iδrG(∂t)θ

)

= G∗s,ti[δrG(∂s),δrG(∂t)]θ +G∗s,tiδrG(∂t)LδrG(∂s)θ +G∗s,ti ∂
∂s
δrG(∂t)

θ

= G∗s,ti ∂
∂t
δrG(∂s)

θ +G∗s,tiδrG(∂t)diδrG(∂s)θ

= G∗s,t
∂
∂t

(
iδrG(∂s)θ

)
+G∗s,tLδrG(∂t)iδrG(∂s)θ −G

∗
s,tdiδrG(∂t)iδrG(∂s)θ

= ∂
∂t

(
G∗s,tiδrG(∂s)θ

)
− d
(
G∗s,tiδrG(∂t)iδrG(∂s)θ

)

and so
∫ 1
0
G∗1,tiδrG(∂t)θdt−

∫ 1
0
G∗0,tiδrG(∂t)θdt =

∫ 1
0

∫ 1
0

∂
∂s
G∗s,tiδrG(∂t)θdtds

=
∫ 1
0

∫ 1
0

∂
∂t
G∗s,tiδrG(∂s)θdtds− d

( ∫ 1
0

∫ 1
0
G∗s,tiδrG(∂t)iδrG(∂s)θdsdt

)

=
∫ 1
0
G∗s,1iδrG(∂s)θds−

∫ 1
0
G∗s,0iδrG(∂s)θds− d(· · · ) = −d(· · · )
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since the endpoints are fixed and thus δrG(∂s)(s, t) = 0 for t = 0 and t = 1. Recall that
the product of g, h ∈ π1

(
Diff∞c (M)◦

)
is represented by the loop

k(t) =

{
g(2t) 0 ≤ t ≤ 1

2

h(2t− 1) 1
2
≤ t ≤ 1

since this is homotopic relative endpoints to t 7→ gtht. To avoid smoothness difficulties at
t = 1

2
one can reparametrize g, h such that gt = ht = id for t ≤ 1

3
and t ≥ 2

3
. Then we have

k̇t =

{
2ġ2t 0 ≤ t ≤ 1

2

2ḣ2t−1
1
2
≤ t ≤ 1

and thus

Sθ(gh) = Sθ(k) =
∫ 1

2

0
g∗2ti2ġ2tθdt+

∫ 1
1
2
h∗2t−1i2ḣ2t−1

θdt

=
∫ 1
0
g∗t iġtθdt+

∫ 1
0
h∗t ḣtθdt = Sθ(g) + Sθ(h)

So Sθ is a homomorphism. Finally notice that Sθ depends linearly on θ, and for θ = dα
we have

Sθ(g) =
∫ 1
0
g∗t iġtdαdt =

∫ 1
0
g∗tLġtαdt−

∫ 1
0
g∗t diġtαdt

=
∫ 1
0

∂
∂t
g∗tαdt− d

( ∫ 1
0
g∗t iġtαdt

)
= g∗1α− g

∗
0α = 0 ∈ Hp−1

c (M)

and so Sθ only depends on the cohomology class of θ.

4.2.2. Proposition. Let (M,Ω, ω) be a locally conformally symplectic manifold and let
i : Diff∞c (M,Ω, ω)◦ → Diff∞c (M)◦ denote the inclusion. Then the diagram

π1

(
Diff∞c (M,Ω, ω)◦

) Φ̃ //

i]
²²

H0
c (M)

π1

(
Diff∞c (M)◦

) Sω

66mmmmmmmmmmmmm

commutes.

Proof. Let g be a closed loop in Diff∞c (M,Ω, ω)◦ starting at id. Let at be the functions
satisfying g∗tΩ = 1

at
Ω and fġt the functions satisfying Lġt = −fġtΩ. Recall that we have

∂
∂t
ln |at| = g∗t fġt and therefore

Φ̃(g) =
∫ 1
0
g∗t cġtdt =

∫ 1
0
g∗t (iġtω − fġt)dt =

∫ 1
0
g∗t iġtωdt−

∫ 1
0
g∗t fġtdt

= Sω(i](g))−
∫ 1
0

∂
∂t
ln |at|dt = Sω(i](g))− ln |a1|+ ln |a0| = Sω(i](g))

4.2.3. Proposition. Let ω be a closed 1-form and θ ∈ Ωp(M) be dω-closed. Then Sθ(g) :=∫ 1
0
atg

∗
t iġtθdt defines a homomorphism

Sθ : π1

(
Diff∞c (M)◦

)
⊇ kerSω → Hp−1

dωc
(M)

where at := exp
( ∫ t

0
inc∗s i∂sg

∗ωds
)
= exp

( ∫ t
0
g∗s iġsωds

)
. Moreover Sθ only depends on the

dω-cohomology class [θ] ∈ Hp
dω(M), especially Sθ = 0 if θ is dω-exact.
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Proof. Again we first check that the formula defines a dω-cohomology class. Using dωiXα+
iXd

ωα = LXα + iXω ∧ α and ∂
∂t
at = atg

∗
t iġtω we obtain:

dω
( ∫ 1

0
atg

∗
t iġtθdt

)
=
∫ 1
0
atg

∗
t d

ωiġtθdt =
∫ 1
0
atg

∗
tLġtθdt+

∫ 1
0
atg

∗
t (iġtω ∧ θ)dt

=
∫ 1
0
at

∂
∂t
(g∗t θ)dt+

∫ 1
0
( ∂
∂t
at) ∧ g

∗
t θdt

=
∫ 1
0

∂
∂t
(atg

∗
t θ)dt = a1g

∗
1θ − a0g

∗
0θ =

(
eSω(g) − 1

)
θ = 0

Let G : I × I → Diff∞c (M)◦ be a homotopy relative endpoints, such that gs := G(s, ·) ∈
kerSω. In fact it suffices that g0 ∈ kerSω, for then gs ∈ kerSω by proposition 4.2.1. Set
a(s, t) := exp

( ∫ t
0
G∗s,uiδrG(∂t)ωdu

)
. A calculation very similar to the corresponding one in

the proof of proposition 4.2.1 yields:

∂
∂s

(
as,tG

∗
s,tiδrG(∂t)θ

)
= ∂

∂t

(
as,tG

∗
s,tiδrG(∂s)θ

)
− dω(· · · )

Consequently
∫ 1
0
a1,tG

∗
1,tiδrG(∂t)θdt−

∫ 1
0
a0,tG

∗
0,tiδrG(∂t)θdt =

∫ 1
0

∫ 1
0

∂
∂s
as,tG

∗
s,tiδrG(∂t)θdtds

=
∫ 1
0

∫ 1
0

∂
∂t
as,tG

∗
s,tiδrG(∂s)θdtds− d

ω(· · · )

=
∫ 1
0
as,1G

∗
s,1iδrG(∂s)θds−

∫ 1
0
as,0G

∗
s,0iδrG(∂s)θds− d

ω(· · · ) = dω(· · · )

and so Sθ(g) does only depend on the homotopy type relative endpoints of g. Next we
show that Sθ is a homomorphism. Let g, h be closed curves and k their product, as in the
proof of proposition 4.2.1. Moreover let at, bt, ct correspond to g, h, k respectively. Then
one easily shows

ct =

{
a2t 0 ≤ t ≤ 1

2

eSω(g)b2t−1 = b2t−1
1
2
≤ t ≤ 1

and we obtain:

Sθ(gh) = Sθ(k) =
∫ 1

2

0
a2sg

∗
2si2ġ2sθds+

∫ 1
1
2
b2s−1h∗2s−1i2ḣ2s−1

θds = Sθ(g) + Sθ(h)

Finally for θ = dωα we have

Sθ(g) =
∫ 1
0
atg

∗
t iġtd

ωαdt =
∫ 1
0
atg

∗
t

(
Lġtα + iġtω ∧ α− d

ωiġtα
)
dt

=
∫ 1
0

(
at

∂
∂t
g∗tα + atg

∗
t iġtω ∧ g

∗
tα
)
dt− dω(· · · )

=
∫ 1
0

∂
∂t

(
atg

∗
tα
)
dt = a1g

∗
1α− a0g

∗
0α = 0 ∈ Hp−1

dωc
(M)

and so Sθ only depends on the dω-cohomology class of θ.

4.2.4. Proposition. Let (M,Ω, ω) be a locally conformally symplectic manifold. Then
the diagram

π1(kerΦ)
Ψ̃ //

i]

²²

H1
dωc
(M)

kerSω

Sω

88qqqqqqqqqq

commutes, where i : ker Φ→ Diff∞c (M)◦ denotes the inclusion.

Proof. The inclusion i induces a mapping i] : π1(kerΦ) → kerSω ⊆ π1

(
Diff∞c (M)◦

)
, for

we have proposition 4.2.2 and since a closed curve with values in kerΦ is contained in
ker Φ̃. We have Ψ̃(g) =

∫ 1
0
atg

∗
t iġtΩdt, where g

∗
tΩ = 1

at
Ω, but since gt ∈ kerΦ we also have

at = exp
( ∫ t

0
g∗s iġsωds

)
, as mentioned several times.
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4.3 Extensions of Diffeomorphism Groups

Recall that there exists a canonical p-form Θp ∈ Ωp
(∧p T ∗M

)
, generalizing the canonical

1-form on T ∗M . It is given by

Θp(e)(X1, . . . , Xp) := e(Teπ ·X1, . . . , Teπ ·Xp)

where π :
∧p T ∗M → M denotes the projection. Let Affc(

∧p T ∗M) denote the fiber wise
affine diffeomorphisms g of π :

∧p T ∗M →M such that π(supp(g)) is compact.

4.3.1. Lemma. For α ∈ Ωp(M), considered as mapping α : M →
∧p T ∗M , one has

α∗Θp = α. Moreover for f ∈ Diff∞c (M) we have f̃ :=
∧p(Tf−1)∗ ∈ Affc(

∧p T ∗M) and
f̃ ∗Θp = Θp. Finally for α ∈ Ωp(M) and f ∈ Diff∞(M) we have f ∗α = f̃−1 ◦ α ◦ f .

Proof. To show the first assertion we calculate as follows:

(α∗Θp)(x)(X1, . . . , Xp) = Θp(α(x))
(
Txα ·X1, . . . , Txα ·Xp

)

= α(x)
(
Tα(x)πTxα ·X1, . . . , Tα(x)πTxα ·Xp

)
= α(x)(X1, . . . , Xp)

In order to see the second assertion we have

(f̃ ∗Θp)(e)(X1, . . . , Xp) = Θp(f̃(e))
(
Tef̃ ·X1, . . . , Tef̃ ·Xp

)

= f̃(e)
(
Tf̃(e)πTef̃ ·X1, . . . , Tf̃(e)πTef̃ ·Xp

)

=
(∧p(Tf−1)∗

)
(e)
(
Tπ(e)fTeπ ·X1, · · · , Tπ(e)fTeπ ·Xp

)

= e
(
Tf(π(e))f

−1Tπ(e)fTeπ ·X1, · · · , Tf(π(e))f
−1Tπ(e)fTeπ ·Xp

)

= e
(
Teπ ·X1, . . . , Teπ ·Xp

)
= Θp(e)(X1, . . . , Xp)

where we used π ◦ f̃ = f ◦ π. The third assertion now follows easily:

f̃−1 ◦ α ◦ f = (f̃−1 ◦ α ◦ f)∗Θp = f ∗α∗(f̃−1)∗Θp = f ∗α∗Θp = f ∗α

4.3.2. Lemma. Consider the mapping τ : Ωp
c(M) → Affc(

∧p T ∗M) given by τα(e) :=
τ(α)(e) = e+ α(π(e)). Then one has τ ∗αΘp = Θp + π∗α for all α ∈ Ωp

c(M).

Proof. Indeed we have

(τ ∗αΘp)(e)(X1, . . . , Xp) = Θp(τα(e))
(
Teτα ·X1, . . . , Teτα ·Xp

)

= (τα(e))
(
Tτα(e)πTeτα ·X1, . . . , Tτα(e)πTeτα ·Xp

)

=
(
e+ α(π(e))

)(
Teπ ·X1, . . . , Teπ ·Xp

)

= (Θp + π∗α)(X1, . . . , Xp)

since π ◦ τα = π.

Since every element of Affc(
∧p T ∗M) preserves the fibers we obtain a homomorphism

q : Affc(
∧p T ∗M)→ Diff∞c (M).
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4.3.3. Proposition. Let ϑ ∈ Ωp(M) be a closed form. Then the sequence

0→ Zp−1
c (M)

τ
−→Affc

(∧p−1 T ∗M,dΘp−1 + π∗ϑ
) q
−→Diff∞c (M, [ϑ])→ 0

is exact, where Affc(
∧p−1 T ∗M,dΘp−1 + π∗ϑ) consists of those g ∈ Affc(

∧p−1 T ∗M) which
in addition preserve the closed p-form dΘp−1+π∗ϑ and Diff∞c (M, [ϑ]) denotes the group of
all g ∈ Diff∞c (M) such that g∗ϑ− ϑ = dα for some α ∈ Ωp−1

c (M). Moreover the action of
g ∈ Diff∞c (M, [ϑ]) on Zp−1

c (M) defined by this extension is simply pullback by g−1.

Proof. For α ∈ Ωp−1
c (M) we obtain from lemma 4.3.2

τ ∗α(dΘp−1 + π∗ϑ) = dτ ∗αΘp−1 + (π ◦ τα)
∗ϑ = d(Θp−1 + π∗α) + π∗ϑ

and so τα preserves dΘp−1 + π∗ϑ if and only if α ∈ Zp−1
c (M), for π∗ is injective. Moreover

τ is obviously one-to-one. Let g ∈ Affc
(∧p−1 T ∗M,dΘp−1 + π∗ϑ

)
. We have to show that

q(g) preserves the cohomology class [ϑ] ∈ Hp(M). We have g∗(dΘp−1+π∗ϑ) = dΘp−1+π∗ϑ
and therefore

π∗
(
q(g)∗ϑ− ϑ

)
= g∗π∗ϑ− π∗ϑ = dΘp−1 − g

∗dΘp−1 = d
(
Θp−1 − g

∗Θp−1
)
.

So π∗
(
q(g)∗ϑ − ϑ

)
is exact and since π∗ : H∗(M) → H∗(

∧p−1 T ∗M) is an isomorphism
q(g)∗ϑ − ϑ is exact too. Moreover it is clear that q ◦ τ = id. Next we check ker q ⊆
Im τ . Let g ∈ ker q and let X be a vertical vector field on

∧p−1 T ∗M . Then we have
iX(g

∗Θp−1 −Θp−1) = 0, for g∗X is vertical as well. Moreover we have

d(g∗Θp−1 −Θp−1) = g∗dΘp−1 − dΘp−1 = π∗ϑ− g∗π∗ϑ = π∗ϑ− π∗ϑ = 0

and thus LX(g
∗Θp−1 − Θp−1) = 0. Hence there exists α ∈ Ωp−1

c (M) such that g∗Θp−1 −
Θp−1 = π∗α. If s denotes any section of

∧p−1 T ∗M , i.e. s ∈ Ωp−1(M) we get

g ◦ s− s = (g ◦ s)∗Θp−1 − s
∗Θp−1 = s∗π∗α = α

and consequently g = τα ∈ Im τ . Next we will show that q is onto. Let f ∈ Diff∞c (M, [ϑ])
and choose α ∈ Ωp−1

c (M) such that f ∗ϑ− ϑ = dα. From lemma 4.3.1 and lemma 4.3.2 we
obtain

(f̃ ◦ τ−α)
∗(dΘp−1 + π∗ϑ) = dτ ∗−αf̃

∗Θp−1 + τ ∗−απ
∗f ∗ϑ = dτ ∗−αΘp−1 + π∗f ∗ϑ

= d(Θp−1 − π
∗α) + π∗(ϑ+ dα) = dΘp−1 + π∗ϑ

so f̃ ◦ τ−α ∈ Affc
(∧p−1 T ∗M,dΘp−1 + π∗ϑ

)
and obviously q(f̃ ◦ τ−α) = f . At last we want

to show that the action of Diff∞c (M, [ϑ]) on Zp−1
c (M) induced from this extension is simply

g · β = (g−1)∗β. For this we have to show

f̃ ◦ τ−α ◦ τβ ◦ τ
−1
−α ◦ f̃

−1 = f̃ ◦ τβ ◦ f̃
−1 = τ(f−1)∗β

for all β ∈ Zp−1
c (M), where α is as above. Indeed we have

(f̃ ◦ τβ ◦ f̃
−1)(e) = f̃

(
f̃−1(e) + β(π(f̃−1(e)))

)
= e+ (f̃ ◦ β ◦ π ◦ f̃−1)(e)

= e+ (f̃ ◦ β ◦ f−1 ◦ π)(e) = e+ ((f−1)∗β)(π(e)) = τ(f−1)∗β(e)

where we used again lemma 4.3.1.
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4.4 Transgression of the Flux

The following theorem can be found in [Ban97].

4.4.1. Theorem. Let ϑ be a closed p-form. Then we have

−t(Sϑ) = p∗j
∗c ∈ H2

(
Diff∞c (M)◦;H

p−1
c (M)

)

where
t : Hom

(
π1

(
Diff∞c (M)◦

)
;Hp−1

c (M)
)
→ H2

(
Diff∞c (M)◦;H

p−1
c (M)

)

is the transgression homomorphism associated to the central extension

0→ π1

(
Diff∞c (M)◦

)
→ D̃iff

∞
c (M)◦

π
−→Diff∞c (M)◦ → 0 (4.2)

and the trivial Diff∞c (M)◦-module Hp−1
c (M), defined in theorem 4.1.3, c is the cohomology

class corresponding to the extension constructed in proposition 4.3.3, j : Diff∞c (M)◦ →
Diff∞c (M, [ϑ]) denotes the inclusion and p : Zp−1

c (M)→ Hp−1
c (M) the usual projection.

Proof. Choose a set theoretic section s of (4.2) such that s(id) = id. By theorem 4.1.3
t(Sϑ) is represented by the 2-cocycle:

t(Sϑ)(g, h) = Sϑ
(
s(g)s(h)s(gh)−1

)

Since t 7→
(
s(g)s(h)s(gh)−1

)
(t) is homotopic relative endpoints to

t 7→





s(h)(3t) 0 ≤ t ≤ 1
3

s(g)(3t− 1)h 1
3
≤ t ≤ 2

3

s(gh)(3− 3t) 2
3
≤ t ≤ 1

we obtain

t(Sϑ)(g, h) = Sϑ
(
s(g)s(h)s(gh)−1

)

=
[ ∫ 1

3

0
s(h)∗3ti3δr(s(h))(∂t)(3t)ϑdt+

∫ 2
3
1
3

h∗s(g)∗3t−1i3δr(s(g))(∂t)(3t−1)ϑdt

+
∫ 1

2
3
s(gh)∗3−3ti−3δr(s(gh))(∂t)(3−3t)ϑdt

]

=
[ ∫ 1

0
s(h)∗t iδr(s(h))∂tϑdt+ h∗

( ∫ 1
0
s(g)∗t iδr(s(g))∂tϑdt

)
−
∫ 1
0
s(gh)∗t iδr(s(gh))∂tϑdt

]

= [α(h) + h∗α(g)− α(gh)]

with α(g) :=
∫ 1
0
s(g)∗t iδr(s(g))∂tϑdt. An easy calculation shows d(α(g)) = g∗ϑ− ϑ and so

σ : Diff∞c (M)◦ → Affc
(∧p−1 T ∗M,dΘp−1 + π∗ϑ

)

σ(g) := g̃ ◦ τ−α(g)

is a set theoretic section of the extension from proposition 4.3.3 restricted to Diff∞c (M)◦.
Moreover we have

g̃τ−α(g)h̃τ−α(h)
(
g̃hτ−α(gh)

)−1
= g̃τ−α(g)h̃τα(gh)−α(h)h̃

−1g̃−1

= g̃τ(h−1)∗(α(gh)−α(h))−α(g)g̃
−1

= τ
(
((gh)−1)∗(α(gh)− α(h)− h∗α(g))

)
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and so p∗j∗c is represented by

(g, h) 7→p
(
τ−1
(
σ(g)σ(h)σ(gh)−1

))

= [((gh)−1)∗(α(gh)− α(h)− h∗α(g))]

= [α(gh)− α(h)− h∗α(g)] = −t(Sϑ)(g, h)
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[ABK+92] B. Aebischer, M. Borer, M. Kälin, Ch. Leuenberger, and H. M. Reimann.
Symplectic Geometry. Birkhäuser Verlag, 1992.
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