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“I’m riding through the desert on a horse with

no name . . .”

. . . sang die zerfahrene Stimme aus dem Radio mitten in das Chaos der unzähligen

Schachteln und Kisten eines typischen Wohnungswechsels. Den Text des Songs

in bildliche Vorstellung übersetzend ertappte ich mich bei der Suche nach . . . —

ich weiß heute noch nicht wonach. Ähnlich sah ich mich in diesen Tagen durch

unvertrautes mathematisches Gelände rechnen mit Werkzeugen, die für mich

noch keine klare Bedeutung hatten. Die Oase versprach ich mir von der ge-

naueren Ausarbeitung eines konkreten Beispiels, in dem die abstrakten Namen

Gestalt annehmen konnten. Mag sein, daß ich zu lange Zeit beim erfrischen-

den Wasser verweilt war und den Aufbruch zu gewagteren Strukturen verpaßte.

Doch erzählte die Beobachtung des Einwirkens von allgemeineren Strukturen

auf eine konkrete Situation mir von der Entstehung einer ersten Annäherung an

neue Begriffe.

In diesem Sinne wird in vorliegender Arbeit ab Abschnitt 2 der Raum R(N)

unter das Vergrößerungsglas gelegt und kein Blick mehr durch das Fernglas

angeboten. Dies liegt auch darin begründet, daß meine Idee zu diesem Thema

entstand, als ich (vergeblich) versuchte die Konstruktionen in [G/W] vollständig

zu verstehen.

Ein Großteil der Dissertation enstand aus meinem Vortrag und harten Diskus-

sionen der noch unausgereiften Entwürfe im Seminar von Peter Michor und

Andreas Kriegl. Wesentliche Hilfestellung für den dritten Teil erhielt ich von

Andreas Cap, dem an dieser Stelle mein aufrichtiger Dank gilt. Für die Diskus-

sion und den Hinweis zur Vereinfachung des Beweises von Proposition 3.2 sowie

die Auseinandersetzung mit dem Nebenthema (“Riding through the desert . . .”)

bedanke ich mich schließlich bei Niki.

Günther Hörmann, Wien im Juni 1993
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Notes on Notation

A special comment has to be made about usage of the symbol ~ in this thesis.

We will use it to stand for any real non-zero number representing the “height” of

a fixed orbit of interest. Though the usual convention in mathematical physics

is the assumption of units of measurement yielding ~ = 1 we will take care to

make the dependence on this “constant parameter” explicit in all computations

— on the other hand we will not attempt to give estimates by inserting the

number 1, 054589 · 10−34 into the resulting expressions. We only “see” that this

is a non-zero number (i. e. of absolute value greater than some epsilon).

Aut(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . smooth group automorphisms

Autc(G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .continuous group automorphisms

C∞(G,V )K . . . . . . . . . . . . . . . . . . . . . . . . . . K-equivariant smooth functions G→ V

End(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . smooth endomorphisms

Γ(B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .smooth sections of the bundle B

GL(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . linear diffeomorphisms

h(., .) . . . . . . . . . . . . . . . . . . . . . . . . . . standard Hermitian form of complex sequences

〈.|.〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (complex or real) inner product

〈., .〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .action of a functional

im . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . image of a mapping

Im . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . imaginary part of a complex vector

Ωk(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . differential forms of degree k

Re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . real part of a complex vector

S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . one-dimensional sphere

σ̌ . . . . . . . . . . . . . . . . . . . . . . . . . . embedding E ↪→ E∗ associated to σ, σ̌(x) = σ(x, .)

Sp(E, σ). . . . . . . . . . . . . . . . . . . . . . . .continuous σ-symplectic endomorphisms on E

S(V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . symmetric algebra over the vector space V

U(V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unitary operators on the Hilbert space V

V (Y ) . . . . . . . . . . . . . . . . . . . functions Y → V (V vector space) with finite support
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Chapter I

THE HEISENBERG

GROUP

1 General Algebraic Setting

Let E be a real vector space with a bilinear form σ : E × E → R having the

following properties:

(i) σ is skew symmetric, i.e. ∀x, y ∈ E : σ(x, y) = −σ(y, x)

(ii) σ is non-degenerate, i.e. σ̌ : E → E∗, σ̌(x) = σ(x, .) is injective

σ is said to be a weak symplectic form and the pair (E, σ) is a weak symplectic

vector space.

1.1. Examples:

(i) If E = R2n then the symplectic structure is essentially unique (up to base

transformations) and given by

σ(x, y) = 〈x1|y2〉 − 〈x2|y1〉 ,
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where x = x1 + x2, y = y1 + y2 according to the decomposition R2n =

Rn ⊕ Rn and 〈.|.〉 denotes the standard inner product on Rn.

(ii) Let V be a complex vector space equipped with a complex inner product

h : V × V → C (conjugate linear in the first entry). Then

σ(x, y) := Im h(x, y) ∀x, y ∈ V

defines a weak symplectic form on the underlying real space E := VR.

Note that the situation of (i) is reproduced now by choosing V to be Cn.

The main example we will be concerned with is built up from V = C(N) :=
⊕

n∈N
C with the standard Hermitian form h(x, y) =

∑
j∈N

x̄jyj . Once

again we can write σ(x, y) = 〈x1|y2〉 − 〈x2|y1〉, where x1, y1 (resp. x2, y2)

denote the real (resp. imaginary) part of x, y and 〈.|.〉 is the standard inner

product on R(N).

(iii) Examples of a very different kind arise from function spaces corresponding

to certain symplectic field theories in physics (see [Woo, 7.9]). The sym-

plectic forms are constructed by integrating skew symmetric combinations

of the functions and their derivatives. We do not present the details here

because in later sections we will concentrate on situations described in (ii).

1.2. Definition: Let (E, σ) be a weak symplectic vector space. Consider

the central extension of the commutative group (E,+) with (R,+) defined by

the cocycle c(x, y) = 1
2σ(x, y), i.e. introduce a group multiplication on the set

Ec := E × R by setting

(x, r) · (y, s) = (x+ y, r + s+
1

2
σ(x, y)) . (I.1)

The group (Ec, ·) is the (simply connected) Heisenberg group over (E, σ) and

will be denoted by H(E, σ) (or just H if σ and E are fixed).
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1.3. Remark:

(i) The factor 1
2 in the definition of c is due to physics, where Heisenberg’s

uncertainty relation for the observables a and b in a state ν reads

∆ν(a)∆ν(b) ≥
1

2
|ν(ab− ba)| ,

with ∆ν(a) :=
√
ν(a2) − ν(a)2. So if qp − pq = i~ Id then we obtain the

well known form of the uncertainty principle for position and momentum

∆ν(q)∆ν(p) ≥
~

2
.

(ii) H(E, σ) is the simply connected covering group associated to the central

extension of E by S1 and the cocycle eiσ(x,y)/2 equipped with the product

topology of a vector space topology on E and the usual one on S1. This

central extension is also referred to as Heisenberg group in the literature

and will be denoted by H0(E, σ).

(iii) Note that the identity element of H(E, σ) is (0, 0) ∈ E×R and the inverse

element of (x, r) ∈ H(E, σ) is just (−x,−r).

1.4. Lemma:

(i) The centre Z(H(E, σ)) of the Heisenberg group is {0} × R

(ii) H is nilpotent of class 2.

Proof:

(i) Since (y, r) · (0, s) = (y, r+ s) = (0, s) · (y, r) we have {0} ×R ⊆ Z(H). If

(x, r) ∈ Z(H) and (y, s) ∈ H arbitrary then the condition (x, r) · (y, s) =

= (y, s) · (x, r) leads to σ(x, y) = σ(y, x) and hence by skew symmetry to

σ(x, y) = 0, which in turn forces x = 0 since σ is non-degenerate.
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(ii) Let H1 = [H,H] be the subgroup generated by all commutators in H.

Direct computation shows (x, r) · (y, s) · (−x,−r) · (−y,−s) = (0, σ(x, y))

and hence H1 = Z(H) 6= {(0, 0)}. Therefore H2 = [H,H1] = {(0, 0)} ¥

The above Lemma indicates the algebraic basis of the attempt to apply Kir-

illov’s orbit method for nilpotent (finite dimensional) Lie groups to construct

representations of an infinite dimensional Heisenberg group.

1.5. Remark:

(i) If W ⊆ E is a subspace then W × R constitutes a normal subgroup of

H(E, σ).

(ii) If F ⊆ E is a symplectic subspace (i.e. σ |F×F is non-degenerate) then

the subset F × R ⊆ H(E, σ) defines a normal subgroup isomorphic to

H(F, σ |F×F ).

(iii) If L ⊆ E is an isotropic subspace (i.e. σ |L×L= 0) then we have the

associated commutative subgroups L× {0} and L× R.

2 Topological and Smooth Structure

In Algebraic Quantum Theory one studies representations of the Weyl relations

(W) W (x)W (y) = e
i~
2 σ(x,y)W (x+ y) (I.2)

by a family of unitary operators (W (x))x∈E on a Hilbert space satisfying the

following Regularity Condition

(R) ∀x ∈ E : t 7→W (tx) is strongly continuous (I.3)

where strong continuity means that W (tx) converges pointwise to W (sx) as

t→ s in R.
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2.1. Remark:

(i) The set of unitary operators on a Hilbert space equipped with the topology

of pointwise convergence (or strong operator-topology) is a topological

group with respect to multiplication of operators.

(ii) Property (R) guarantees the existence of the anti-self-adjoint (unbounded)

generator of the 1-parameter group (W (tx))t∈R, which can be recovered

by (pointwise) differentiation on a dense subspace of the Hilbert space.

In a physical context the self-adjoint operators Φ(x) = −i ddt |0 W (tx) are

called field operators. In the early times of Quantum Field Theory these

objects together with their commutation relations served as starting point

for “quantized field theories”

(iii) The relation of the Heisenberg group H(E, σ) to the abstract C∗-algebra

arising from the relations (W), the Weyl algebra, is sketched in the Ap-

pendix to this chapter (see p. 17).

Relation (W) defines a unitary projective representation of the group (E,+)

with multiplier e
i~
2 σ(x,y) on a Hilbert space V . We can translate such a rep-

resentation into a group homomorphism π : H(E, σ) → U(V ) of the central

extension into the group of unitary operators by defining

π(x, r) = ei~rW (x) . (I.4)

Thus π is a unitary representation of the Heisenberg group H(E, σ) which is

one dimensional when restricted to the centre {0} × R. Note that if ρ : H →
GL(W ) is an arbitrary irreducible representation then ρ |Z(H) is necessarily

one dimensional, i.e. a character of R. The converse does not hold (see the

constructions in [Sla]).

On the other hand each unitary representation π ofH with the property π(0, r) =

ei~rId defines a representation of the Weyl relations (W) by setting

W (x) := π(x, 0) . (I.5)
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Let us now study condition (R) in more detail. Our aim is to equip H(E, σ)

with a topological structure having the property that continuity of a unitary

representation (with respect to the strong operator-topology) is characterized

exactly by condition (R). In order to do so we first translate the formulation

of condition (R) into a statement about continuity along finite dimensional

subspaces of E.

2.2. Lemma: Let π : H(E, σ) → U(V ) be a group homomorphism with

π(0, r) = ei~rId ∀r ∈ R. Denote by F be the family of all finite dimensional

subspaces of E. Then the following are equivalent:

(i) The operators W (x) = π(x, 0) (x ∈ E) satisfy condition (R)

(ii) For all F ∈ F the restricted homomorphism π |F×R: F × R → U(V )

is continuous with respect to the product of the (unique) locally convex

topology on F with the usual one on R and the strong operator topology

on U(V ).

Proof:

(i)→(ii) F × R is a finite dimensional nilpotent Lie group (note that σ |F×F :

F × F → R is smooth) with Lie algebra F ⊕ R. So exp : F ⊕ R → F × R

is a global diffeomorphism and choosing a base X1, . . . , Xn of E and 1 in

R we can write

π(x, r) = π(exp(t1X1) · · · exp(tnXn) · (0, r)) =

= π(exp(t1X1)) · · ·π(exp(tnXn))e
i~r .

Now each single factor depends continuously on tk (k = 1, . . . , n) and on

r by assumption. Since exp is a diffeomorphism and by strong continuity

of multiplication on the set of unitary operators the assertion follows.

(ii)→(i) set F = span{x} then (i) is just a special case of (ii) ¥

The previous Lemma points out that the adequate topology on H(E, σ) should

come up from the product of the Euclidean topology ε on R and the inductive
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limit topology with respect to the embeddings of finite dimensional subspaces.

Thus we equip E with its finest locally convex topology τ . To ensure that the

corresponding topological space (H(E, σ), τ × ε) becomes a topological group

under the multiplication I.1 one has to show the continuity of σ : E × E →
R. Since on (E, τ) every linear functional is continuous the symplectic form

σ is at least separately continuous. But in general a separately continuous

bilinear form need not be continuous and even in the present special case of

finest locally convex topologies I was not able to clarify the situation. However,

this uncertainty is no dramatic restriction for two reasons.

The first is that in further course of this work we will use a more concrete

example which is easily seen to have the desired continuity property. Second

we note that in order to have smoothness properties in the sense of [F/K] it is

necessary and sufficient to show boundedness of the bilinear form (see [K/M,

Global Analysis: 3.4]). Since the bounded subsets of E are exactly the bounded

subsets contained in finite dimensional subspaces ([Sch, II,Ex 7]) and a funda-

mental system of bounded subsets of E × E is given by products of bounded

sets each bilinear form on E is bounded. Therefore σ : E × E → R is smooth

and yields also smoothness of the group multiplication in H(E, σ).

From now on we will consider a concrete symplectic space (E, σ) and work

out some methods for constructing representations of the associated Heisenberg

group.

2.3. Phase space for an arbitrary number of particles:

One can think of the (classical) phase space of an open thermodynamic system

with arbitrary (variable and finite) number of particles as the space

E = R2(N) := R(N) ⊕ R(N) (I.6)

where the direct sum decomposition corresponds to position and momentum

part of the phase space. It is convenient to identify R2(N) with C(N) (as real

vector space), so the momentum coordinates constitute the imaginary part.

We equip E with the canonical weak symplectic form given in 1.1(ii),i.e.

σ(x, y) = Im h(x, y) ∀x, y ∈ E. (I.7)
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2.4. Remark:

(i) The finest locally convex topology τ on C(N) =
⊕

n∈N
C is equivalent to the

locally convex direct sum topology. (C(N), τ) is therefore a non-metrizable

nuclear (LB)-space which is continuously embedded into `2
C
(N). Since

(C(N))∗ = CN we obtain a so-called Gelfand triplet if CN is given the

(usual) product topology:

C(N) ↪→ `2C(N) ↪→ CN

Note that C(N) is a dense subspace in `2
C
(N) and CN with respect to the

corresponding coarser topologies. So the out-left and out-right spaces

approximate the (“physicist’s”) separable Hilbert space in some sense.

(ii) The only extensive attempt to classify representations of infinitely many

canonical commutation relations was made in [G/W, 1954]. Though their

methods are spectral- and measure-theoretic there is the structural back-

ground of the Heisenberg group H(C(N), Imh(., .)) behind. So the hope of

a future comparison with a new approach towards classification could be

one more motivation to focus our attention mainly on this example.

(iii) There would be no gain in starting with the popular “one particle Hilbert

space” E = L2
C
(R3) because the necessary change of the topology to the

finest locally convex topology would bring up a totally different (and no

more well known) structure on L2
C
(R3).

(iv) Let δn := (δkn)k∈N (n ∈ N) then {δ1, δ2, . . . , iδ1, iδ2 . . .} is a R-Hamel base

in C(N). If we define En = span{δ1, . . . , δn, iδ1, . . . , iδn} and σn = σ |En×En
then (En, σn) is a 2n-dimensional symplectic subspace of (E = C(N), σ)

and the Heisenberg group H can be described as (algebraic) direct limit

of the finite dimensional Heisenberg groups H(En, σn) for n ∈ N.

With the notation of 2.4 (iv) we can give Lemma 2.2 a more concrete form.
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2.5. Lemma: If π : H(C(N), σ) → U(V ) is a group homomorphism with

π(0, r) = ei~rId and W : C(N) → U(V ) is the corresponding projective represen-

tation (cf. equation I.5) then the following are equivalent:

(i) W satisfies condition (R)

(ii) ∀n ∈ N : π |H(En,σn) is strongly continuous

Proof: Each finite dimensional subspace of C(N) is contained in some En for n

large enough. Hence the result follows from Lemma 2.2 ¥

Now we are in a position to state our desired result about characterization of

continuity of irreducible unitary representations of the Heisenberg group.

2.6. Corollary: Let π : H → U(V ) be a group homomorphism with the

property π(0, r) = ei~r and W be the corresponding projective representation

of C(N). Then the following are equivalent:

(i) π is continuous with respect to the strong operator topology on U(V )

(ii) W satisfies the regularity condition (R)

Proof:

(i)→(ii) this is obvious

(ii)→(i) we show that the inductive limit topology τ on C(N) is equivalent to

the final topology τf (in the sense of general topology) with respect to the

embeddings En ↪→ C(N). Then the result follows from Lemma 2.5.

By definition we have τ ¹ τf . To show τ º τf we consider an arbitrary τf -

neighbourhood U(x) of x ∈ C(N). Then ∀n ∈ N : ∃δn > 0 : U ∩En ⊇ xn +

Bnδn where xn = (x1, . . . , xn, 0, 0, . . .) and Bnε denotes the 2n-dimensional

open box of width ε around 0 ∈ En. Now the set

U0 = {(zn)n∈N ∈ C(N) |
∑

n

|zn| ≤ 1, |zn| < minδk, k ≤ n}

9



is a typical τ -neighbourhood of 0 ∈ C(N) (cf. [Sch, II.6]) and clearly x +

U0 ⊆ U by construction. ¥

2.7. Lie group structure on H(C(N), σ):

The topology onH is actually the locally convex direct sum topology of C(N)⊕R.

Therefore H is homeomorphic to the nuclear (LB)-space R(N) which serves as

the modelling space for the manifold structure on H. It fits in this way into

the concept of infinite dimensional Differential Geometry developed in [K/M,

Global Analysis] upon smooth structures in convenient spaces.

As we noted in the discussion on page 7 the symplectic form σ is smooth and

hence the group multiplication is smooth H × H → H. Since the inversion

(x, r)−1 = (−x,−r) is clearly smooth H → H we can thus speak of H as a

(non-metrizable) nuclear (LB)-Lie group.

It is the aim of this thesis to use this point of view for transferring construc-

tions like Kirillov’s Method of Orbits (cf. [Kir, 1962]) and Kostant’s Geometric

Quantization (cf. [Kos, 1970]) to the infinite dimensional situation. On the way

we will realize that the adequate notion of a representation turns out to be that

of smooth representation, i.e. smooth actions of H on convenient vector spaces.

Further construction of unitary representations is on the one hand, by lack of

Haar measure, not as natural as in the finite dimensional case and on the other

hand does destroy smoothness properties, since the derived field operators in a

unitary representation of H are necessarily unbounded. Nevertheless note that

we used Hilbert space structure and continuity properties from the physical con-

text to motivate (and actually define) our topological and henceforth smooth

structure on the Heisenberg group.
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3 Automorphisms of the Heisenberg Group

The set of (continuous or smooth) automorphisms on the Heisenberg group

H(C(N), σ) plays a rôle in representation theory for at least two reasons:

• if π : H → GL(V ) is a representation and α is an automorphism of H

then π ◦ α defines a representation which is in general not equivalent to

π; in physical terms each α induces a ∗-automorphism of the algebra of

observables which need not be a “spatial” equivalence

• inner automorphisms are leading to the adjoint and coadjoint representa-

tion on the Lie algebra and its dual vector space; stabilizer groups and

orbits with respect to these actions are the basic objects in geometric

quantization and orbit theory

We will give an explicit description of a parametrization of the set Autc(H) of

continuous automorphisms in Proposition 3.2 showing how the group Autc(H)

itself could be considered as infinite dimensional Lie group. Furthermore we

will deduce that Autc(H) ⊆ Aut(H), where Aut(H) denotes the smooth auto-

morphisms.

3.1. Examples of automorphisms:

(i) inner automorphisms: let (y, s) ∈ H then conj(y,s) ∈ Aut(H) is com-

puted as follows:

(y, s) · (x, r) · (y, s)−1 = (x+ y, r + s+
1

2
σ(y, x)) · (−y,−s) =

= (x, r +
1

2
(σ(y, x) − σ(x, y))) = (x, r + σ(y, x))

and hence

conj(y,s)(x, r) = (x, r + σ(y, x)) (I.8)

(ii) symplectic action: let T ∈ Sp(E, σ) = {S ∈ GL(E) | ∀x, y ∈ E :

σ(Sx, Sy) = σ(x, y)} and define αT ∈ Aut(H) by setting αT (x, r) =

(Tx, r). We have the relation

αT ◦ conj(y,s) = conjαT (y,s) ◦ αT

11



(iii) generalizes (i): if we take f ∈ E∗, t ∈ R \ {0} then ϕ(f,t)(x, r) =

= (
√
|t|x, f(x) + tr) defines an automorphism

(iv) combining (ii) and (iii) now yields an automorphism β induced from

T ∈ Sp(E, σ), f ∈ E∗, t2 ∈ R+:

β(x, r) = (tTx, f(x) + t2r) (I.9)

in other “words”

β = αT ◦ ϕ(f,t2) = ϕ(f◦T,t2) ◦ αT

3.2. Proposition: Each continuous automorphism of H(C(N), σ) is of

the form given in 3.1 (iv) and is therefore smooth. Hence the set Autc(H) is

parameterized by the set Sp(C(N), σ) × CN × R+.

Proof: Let ϕ ∈ Aut(H) then

ϕ(x, r) = ϕ((x, 0) · (0, r)) = ϕ(x, 0) · ϕ(0, r) .

Now since Z(H) is ϕ-invariant we have ϕ(0, r) = ϕ(0, γ(r)) for some γ : R → R.

Let ϕ(x, 0) = (α(x), β(x)) with α : C(N) → C(N) and β : C(N) → R, so we may

write

ϕ(x, r) = (α(x), β(x) + γ(r)) .

Step 1: γ ∈ GL(R)

ϕ((0, r) · (0, s)) = ϕ(0, r + s) = (0, γ(r + s))

on the other hand

ϕ((0, r) · (0, s)) = ϕ(0, r) · ϕ(0, s) = (0, γ(r) + γ(s))

which shows that γ has to be additive and continuous and hence homo-

geneous by well known arguments (first deduce γ(ns) = nγ(s) for n ∈ N;

then mγ(n s
m ) = nmγ( sm ) = nγ(s) gives γ(qs) = qγ(s) for rational q and

the result follows by density of Q ⊆ R). Since ϕ is onto γ is given by

multiplication with a non-zero constant, i.e. ∃t ∈ R \ {0} : γ(r) = tr
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To obtain information about α and β we compute as follows

ϕ((x, 0) · (y, 0)) = ϕ(x+ y,
1

2
σ(x, y)) = (α(x+ y), β(x+ y) +

t

2
σ(x, y))

on the other hand this has to be equal to

ϕ(x, 0) · ϕ(y, 0) = (α(x), β(x)) · (α(y), β(y)) =

= (α(x) + α(y), β(x) + β(y) +
1

2
σ(α(x), α(y)))

yielding the equations

(A) α(x+ y) = α(x) + α(y)

(B) β(x+ y) = β(x) + β(y) +
1

2
(σ(α(x), α(y)) − tσ(x, y))

Step 2: α ∈ GLR(C(N))

since C(N) is a topological vector space the continuity of scalar multiplica-

tion makes the usual arguments work to show that an additive continuous

mapping is R-homogeneous.

Step 3: |t|− 1
2α ∈ Sp(C(N), σ)

equation (B) and skew symmetry of σ implies

0 = β(x+ y) − β(y + x) = σ(α(x), α(y)) − tσ(x, y)

and shows that T := |t|− 1
2α is symplectic

Step 4: β ∈ E∗

from step 3 together with equation (B) we deduce that β is additive and

since it is continuous once again the linearity follows by the standard

argument

To summarize we collect the results in the equation

ϕ(x, r) = (α(x), β(x) + γ(r)) = (
√

|t|Tx, β(x) + tr) .

Smoothness is clear from boundedness of the involved linear operators. ¥
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4 The Lie Algebra and the Canonical

Commutation Relations

The definition of the Lie algebra associated to a Lie group depends on the

notion of tangent space, tangent bundle and vector field. Whereas in general

infinite dimensional geometry the two concepts of kinematical tangent vectors

(derivatives of smooth curves) and operational tangent vectors (derivations of

the algebra of function germs) are no longer equivalent our modelling (and in

any sense) convenient space R(N) avoids such difficulties.

4.1. Tangent bundle and vector fields:

As stated in [K/M, Global Analysis: 13.6] the two sufficient properties a mod-

elling vector space of a manifold should have to guarantee equivalence of the

kinematical and operational tangent bundle are reflexivity and the bornological

approximation property (i.e. E∗ ⊗E has to be dense in End(E) with respect to

the bornological locally convex topology). Both of these conditions are satisfied

for the space R(N) which is the modelling vector space for H(C(N), σ) (cf. [J,

11.4.5,d and 18.2.6]).

Clearly the kinematical tangent space at an arbitrary point of H is isomor-

phic to C(N) ⊕ R and the tangent bundle is given by the trivial bundle TH =

H × (C(N) ⊕R). Smooth vector fields are therefore identified with smooth map-

pings H → C(N) ⊕ R or equivalently with bounded derivations of C∞(H,R).

An explicit correspondence is given by the mapping D : C∞(H,C(N) ⊕ R) →
Derb(C

∞(H,R)),

(D(f)(ϕ))(h) = 〈dϕ(h), f(h)〉 f ∈ C∞(H,C(N) ⊕ R), ϕ ∈ C∞(H,R). (I.10)

4.2. Left invariant vector fields and Lie bracket:

If (y, s) ∈ H we denote by λ(y,s) the left translation onH by (y, s), i.e. λ(y,s)(x, r) =

(x + y, r + s + 1
2σ(y, x)). Then the derivative Tλ(y,s) : H × (C(N) ⊕ R) →

H × (C(N) ⊕ R) is given by ((x, r), (u, a)) 7→ (λ(y,s)(x, r), (u, a+ 1
2σ(y, u))). We
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define the left invariant vector field ξ(u,a) ∈ C∞(H,C(N) ⊕ R) corresponding to

(u, a) ∈ h := T(0,0)H ∼= C(N) ⊕ R by the equation

ξ(u,a)(x, r) = T(0,0)λ(x,r) = (u, a+
1

2
σ(x, u)) . (I.11)

It clearly satisfies (λ(y,s))
∗ξ(u,a) = (Tλ(y,s))−1 ◦ ξ(u,a) ◦ λ(y,s) = ξ(u,a), the

left invariance. Conversely each left invariant vector field is seen to be of

the above form exactly as in the finite dimensional theory. Hence the Lie

bracket on the vector space h := T(0,0)H can be introduced by this isomor-

phism via the commutator of the derivations corresponding to left invariant

vector fields. According to equation I.10 the derivation D(ξ(u,a)) is acting by

(D(ξ(u,a))ϕ)(x, r) = 〈dϕ(x,r), (u, a+ 1
2σ(x, u))〉.

The Lie bracket can now be obtained by direct (simple but careful) computation

of the commutator D(ξ[(u,a),(v,b)]) := D(ξ(u,a)) ◦D(ξ(v,b))−D(ξ(v,b)) ◦D(ξ(u,a))

or simply by using the inductive limit structure of h and the finite dimensional

results (note that two fixed elementsX,Y ∈ h are always contained in some finite

dimensional Heisenberg algebra and so is their Lie bracket [X,Y ]). Both ways

end up with the perfect analogue to the finite dimensional situation, namely

[(u, a), (v, b)] = (0, σ(u, v)) . (I.12)

4.3. Remark:

(i) The canonical commutation relations do now have a precise meaning with-

out reference to any representation and are obtained as a special case of

equation I.12. Define Qj := (δj , 0) (“position operator”), Pk := (iδk, 0)

(“momentum operator”) and Id := (0, 1) then we can write

[Qj , Pk] = (0, σ(δj , iδk)) = δjkId (I.13)

(ii) If c(t) = (x(t), f(t)) is a smooth curve c : R → H the differential equa-

tion ċ(t) = ξ(u,a)(c(t)) with initial condition c(0) = 0 corresponds to the
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equations

ẋ(t) = u, x(0) = 0

ḟ(t) = a+
1

2
σ(u, x(t)), f(0) = 0

with the unique solution x(t) = tu and f(t) = ta. Hence the exponential

map exp : h → H is just given by exp(u, a) = Flξ(u,0)(1, (0, 0)) = (u, a),

which is trivially a global diffeomorphism.

5 Coadjoint Orbits

5.1. Coadjoint action:

We have H = C(N) × R and h = C(N) ⊕ R hence the dual of the Heisenberg

algebra is h∗ = CN ⊕ R.

Starting with the adjoint representation Ad : H → GL(h), Ad(x,r)(u, a) =

T(0,0)conj(x,r) · (u, a) = (u, a+ σ(x, u)) the coadjoint representation Ad∗ : H →
GL(h∗) is defined by

Ad∗
(x,r)f = f ◦ Ad−1

(x,r) ∀f ∈ h∗ .

So if f = (u∗, a) ∈ h∗ and (v, b) ∈ h :

〈Ad∗
(x,r)(u

∗, a), (v, b)〉 = 〈(u∗, a),Ad(−x,−r)(v, b)〉 = 〈(u∗, a), (v, b− σ(x, v))〉
= 〈u∗, v〉 + a(b− σ(x, v)) = 〈u∗, v〉 + ab− 〈aσ̌(x), v〉
= 〈u∗ − aσ̌(x), v〉 + ab = 〈(u∗ − aσ̌(x), a), (v, b)〉

or in a more compact form

Ad∗
(x,r)(u

∗, a) = (u∗ − aσ̌(x), a) . (I.14)
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5.2. Corollary:

If (u∗, a) ∈ h∗ then the orbit O(u∗,a) of (u∗, a) with respect to the coadjoint

action falls in exactly one of the following two classes:

(i) If a = 0 then O(u∗,a) = {(u∗, a)}

(ii) If a 6= 0 then O(u∗,a) = {(u∗ + v∗, a) | v∗ ∈ im σ̌} = (u∗ + im σ̌) × {a}

5.3. Remark: Restriction to the finite dimensional case Cn would reproduce

the result of [Kir, 1962] since then (Cn)∗ ∼= Cn. In case of infinitely many

degrees of freedom the hyperplanes at each “height” (0, ~) ∈ h∗ break up into

uncountably many translates of the subset im σ̌ ∼= C(N). This should be the

first hint to the existence of the immense number of non-equivalent irreducible

unitary representations.

APPENDIX: The Weyl Algebra

This appendix is meant as a short note on the connection to the C∗-algebraic

framework of large quantum systems based on the Weyl relations (R) on p. 4

as it can be found for example in [P],[B/R] or [T]. The constructions sketched

in the following arose in a discussion with Peter Michor.

Let (E, σ) be a weak symplectic space and H0 be the associated Heisenberg

group obtained by central extension with S1 (cf. 1.3(ii)). Our aim is to con-

struct the Weyl algebra W(E, σ) as a certain subalgebra of the group C∗-algebra

C∗(H0).

Equip H0 = E × S1 with the product topology τ0 of the discrete topology

on E and the usual one on S1. Then (H0, τ0) is a locally compact topological

group possessing a compact neighborhood of the identity (0, 1) which is invariant

under all inner automorphisms, namely {0} × S1 is one. Hence by [D, 14.3] it
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is a unimodular group. Define the group ∗-algebra A to be the set Cc(H0,C) of

continuous functions with compact support with the multiplication law

(F ? G)(x,w) =
∑

y∈E

∫

S1

F (y, z)G((x,w) · (y, z)−1) dz =

=
∑

y∈E

∫

S1

F (y, z)G(x− y, wze
i
2σ(y,x)) dz

and the involution F ∗(x,w) = F (−x,w).

Consider the subset W0 := C(E) ⊗ IdS1 of A. W0 is a ∗-subalgebra of A:

(f ⊗ Id) ? (g ⊗ Id)(x,w) =
∑

y∈E

∫

S1

(f ⊗ Id)(y, z)(g ⊗ Id)(x− y, wze
i
2σ(y,x)) dz =

=
∑

y∈E

∫

S1

f(y)zg(x− y)wze
i
2σ(y,x) dz =

∑

y∈E

f(y)g(x− y)e
i
2σ(y,x) ·

∫

S1

w dz =

=: (f ? g ⊗ Id)(x,w)

(f ⊗ Id)∗(x,w) = f(−x) ⊗ w = f(−x) ⊗ w =: (f∗ ⊗ Id)(x,w)

So W0 induces a ∗-algebra structure on the vector space C(E). The Weyl rela-

tions can now be recovered by setting W (x) = δx ∈ C(E), since

W (x) ? W (y) = δx ? δy =
∑

v∈E

δx(v)δy(.− v)e
i
2σ(v,.) =

= δy(.− x)e
i
2σ(x,.) = δx+y(.)e

i
2σ(x,y) = e

i
2σ(x,y)W (x+ y) .

Finally let W(E, σ) be the completion of W0 with respect to the norm inherited

from C∗(H0) (which is induced by the operator norms in all non-degenerate
∗-representations). W(E, σ) is the unique C∗-algebra (up to ∗-isomorphism)

generated by a set of unitary elements satisfying the Weyl relations (see [P,

2.1]) and each representation of the Weyl relations yields a ∗-representation of

W(E, σ). Since on the other hand each regular ∗-representation of the Weyl

algebra defines a continuous representation of the Heisenberg group (cf. I.4) we

have therefore sketched the equivalence of these concepts.
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Chapter II

ORBIT METHOD

The original paper [Kir, 1962] presented as a first prominent example the ex-

plicit correspondence between coadjoint orbits and the (equivalence classes of)

irreducible unitary representations of the Heisenberg group.

This chapter starts with a description of adapted constructions leading to smooth

representations of H(C(N), σ) in spaces of sections of a complex line bundle over

certain quotients of the Heisenberg group. In contrast to the finite dimensional

theory there is no obvious procedure to turn these into unitary representations

(by lack of an invariant measure on spaces which are not locally compact). Nev-

ertheless we are able to give explicit formulas of actions on spaces of smooth

functions of infinitely many variables mirroring exactly the degrees of freedom

in the underlying physical system. Furthermore we obtain the canonical com-

mutation relations now satisfied by bounded (equivalently smooth) operators.

The input to the whole algorithm is the choice of a coadjoint orbit and an

arbitrary point in it (which turns out to be not essential). The crucial point

seems to be the further choice of an associated admissible subalgebra of the Lie

algebra. Later sections will deal with special arrangements of the objects in

question.

Complexification of the constructions will yield representations in spaces of holo-

morphic functions. This will enable us to recover the well known Fock repre-
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sentations of mathematical physics and to compute its associated generalized

momentum mapping (see [M, 1990]).

6 Adjusting Kirillov’s Construction

In 5.2 we listed the possible orbits of the coadjoint action of H = C(N) × R on

h∗ = CN ⊕ R. There came up two classes:

a) each single point of the hyperplane CN × {0}

b) at height ~ the affine subspaces (u∗ + im σ̌) × {~} ⊆ CN × {~}

The representations of H corresponding to orbits of class a) are the one dimen-

sional representations χu
∗

: H → S1,

χu
∗

(x, r) = ei〈u
∗,x〉 (II.1)

which can be considered as characters of the additive group C(N). To investigate

representations arising from orbits of class b) let us fix such a typical orbit, say

O = (u∗+imσ̌)×{~} ∼= (u∗+C(N))×{~}, and take (u∗, ~) ∈ O as a representative

of O.

6.1. Admissible subalgebras of hC:

Let hC = h ⊗R C be the complexification of the Heisenberg algebra h. A subal-

gebra n of hC is said to be subordinated to the functional (u∗, ~) ∈ O if

〈(u∗, ~), [X,Y ]〉 = 0 ∀X,Y ∈ n . (II.2)

This is equivalent to the assertion of X 7→ 〈(u∗, ~), X〉 being a (one-dimensional)

Lie algebra representation of n. A maximal (u∗, ~)-subordinated subalgebra n

is called admissible. If σ is extended to the complexification EC = E ⊗R C

by σC(x ⊗ λ, y ⊗ µ) := λµσ(x, y) we can write down equation II.2 in the more

concrete form (set X = (v, a), Y = (w, b) and use I.12)

0 = 〈(u∗, ~), (0, σC(v, w))〉 = ~σC(v, w)
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which in turn together with maximality forces n to be of the form

n = L⊕ C , (II.3)

where L is a maximally isotropic (Lagrangian) subspace of EC. Now let K be

the (closed) subgroup of H corresponding to the (real) subalgebra k = n ∩ h.

Since exp : h → H is the identity map (cf. 4.3 (ii)) we can identify K as a set

with k. Note that K is a normal subgroup of H.

6.2. A one-dimensional representation of K:

Define the Lie algebra homomorphism ρ : n → C by (let X = (v, a) ∈ n)

ρ(X) = i〈(u∗, ~), X〉 = i〈u∗, v〉 + i~a .

By exponentiation ρ yields a one-dimensional (unitary) representation U of K:

U(expX) = eρ(X) ∀X ∈ k or explicitly

U(y, s) = ei〈u
∗,y〉+i~s ∀(y, s) ∈ K ⊆ H . (II.4)

6.3. Induced representation in a space of sections:

Since H carries the finest locally convex topology and K ⊇ {0} × R the quo-

tient group H/K can be identified (as a topological space) with the topo-

logical vector space h/k which carries again the finest locally convex topol-

ogy (cf. [Sch, II.ex 7]). Therefore we can speak of the principal fibre bundle

(H, p,H/K,K) with total space H, p : H → H/K the canonical surjection,

H/K the base manifold and the structure group K. The induced representa-

tion π = indHKU can be realized in the space Γ(H[C]) of sections of the as-

sociated vector bundle over H/K with the fibre C (the representation space

of U). As in the finite dimensional theory (cf. [M, Lect.Notes: 15.12]) one

obtains a natural isomorphism Γ(H[C]) ∼= C∞(H,C)K , where C∞(H,C)K de-

notes the space of K-equivariant smooth functions (i.e. ϕ : H → C smooth

with ϕ(hk) = U(k−1)ϕ(h) ∀h ∈ H, k ∈ K), given by the following diagram
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(ϕ ∈ C∞(H,C)K):

H × C

H H/K

H[C]

6
Id × ϕ

-

p

6
sϕ

-

So π = indHKU is equivalently given by translation action on the space C∞(H,C)K

(by abuse of notation we denote this again by π):

(π(h)ϕ)(g) = ϕ(h−1g) = ϕ ◦ λh−1(g) ∀h, g ∈ H . (II.5)

6.4. Smoothness of the representation π:

C∞(H,C)K is a subspace of C∞(H,C) which is topologized in the following way:

first equip C∞(R,C) with the topology of uniform convergence on compact sets

of each derivative separately; for c : R → H smooth define the linear map

c∗ : C∞(H,C) → C∞(R,C) by c∗(ϕ) = ϕ ◦ c; now define the locally convex

topology to be the initial topology with respect to the family (c∗ : C∞(H,C) →
C∞(R,C))c∈C∞(R,H); in this way C∞(H,C) becomes a convenient vector space

(see [K/M, Global Analysis,1.19 and 4.8]).

Since we have

C∞(H,C)K =
⋂

k∈K

{ϕ ∈ C∞(H,C) | ϕ(hk) = U(k−1)ϕ(h)}

and each subspace in the intersecting family is closed we conclude that C∞(H,C)K

is a closed subspace. Hence it is a convenient vector space.

Proposition: Let π = indHKU then the mapping

π̂ : H × C∞(H,C)K → C∞(H,C)K , π̂(h, ϕ) = π(h) · ϕ, is smooth.
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Proof:

Step 1: ∀h ∈ H : π(h) is smooth C∞(H,C)K → C∞(H,C)K

Since π(h) is linear it is sufficient to show continuity (even bounded-

ness would suffice). C∞(H,C)K carries an initial topology, so continu-

ity can be checked by composition with smooth curves c : R → H,

i.e. ϕ 7→ c∗(π(h)ϕ) = c∗ ◦ λ∗h−1(ϕ) = (λh−1 ◦ c)∗ϕ should be continu-

ous C∞(H,C)K → C∞(R, H). But (λh−1 ◦ c)∗ϕ = ϕ ◦ λh−1 ◦ c and

t 7→ (λh−1 ◦ c)(t) = h−1c(t) is clearly a smooth curve into H; denote this

curve by d. Now c∗(π(h)) = d∗ is continuous by definition of the ini-

tial topology. Since c was arbitrary we have proved continuity and hence

smoothness of π(h).

So π : H → GL(C∞(H,C)K) ⊆ C∞(C∞(H,C)K , C∞(H,C)K) and smoothness

of π̂ can be proved by using Cartesian closedness, i.e. π̂ is smooth if and only if

π is smooth (cf. [K/M, Global Analysis,1,21]).

Step 2: ∀ϕ ∈ C∞(H,C)K : h 7→ π(h)ϕ is smooth H → C∞(H,C)K (therefore

C∞(H,C)K consists entirely of smooth vectors)

C∞(H,C)K is a closed subspace, therefore it is enough to show smoothness

of h 7→ π(h)ϕ, H → C∞(H,C). But this is again by Cartesian closedness

equivalent to showing smoothness of (h, g) 7→ (π(h)ϕ)(g), H × H → C.

Now finally, if m and inv denote the (smooth) group operations multipli-

cation and inversion in H,

(π(h)ϕ)(g) = ϕ(h−1g) = (ϕ ◦ m)(inv(h), g)

is clearly smooth in (h, g).

Step 3: π : H → GL(C∞(H,C)K) is smooth

Since π takes values in the closed subspace End(C∞(H,C)K) of smooth

linear mappings it suffices by [K/M, Global Analysis,4.11] to show that

evϕ ◦ π : H → End(C∞(H,C)k) → C∞(H,C)K is smooth for all ϕ ∈
C∞(H,C)K . But this requires exactly h 7→ π(h)ϕ to be smooth, i.e. ϕ to

be a smooth vector, which was shown in step 2. ¥
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6.5. Remark: The result of 6.4 enables us to give another characterization

of the subspace C∞(H,C)K in C∞(H,C) by differential equations. Let ϕ ∈
C∞(H,C)K and U be the representation of K given in 6.2. Then for k ∈ K we

have ϕ(hk) = U(k−1)ϕ(h) or if k = expX with X ∈ k

ϕ(h expX) = U(exp(−X))ϕ(h) = e−ρ(X)ϕ(h) . (II.6)

So by replacing X by tX and differentiating at t = 0 we compute

d

dt
|0 ϕ(h exp tX) =

d

dt
|0 (ϕ ◦ λh)(exp tX) = 〈dϕ(h), Teλh ·X〉 = ξX(ϕ)(h) ,

where ξX denotes the left invariant vector field corresponding to X (cf. 2.2).

On the other hand
d

dt
|0 e−ρ(tX)ϕ(h) = −ρ(X)ϕ(h)

yielding the differential equation

ξX(ϕ) + ρ(X)ϕ = 0 . (II.7)

More concrete if X = (v, a), h = (y, s) this reads (by 4.2 and 6.2)

〈dϕ(y,s), (v, a+
1

2
σ(y, v))〉 + i(〈u∗, v〉 + ~a)ϕ(y, s) = 0 . (II.8)

Now by maximality of k clearly k ⊇ {0} × R so (0, 1) ∈ k. Therefore the above

equations contains as a special case

〈dϕ, (0, 1)〉 + i~ϕ = 0

or equivalently

dϕ

ds
(y, s) + i~ϕ(y, s) = 0 ∀(y, s) ∈ H .

Fix y ∈ E and let ϕy be the smooth function ϕy(s) = ϕ(y, s). Then the last

equation means

ϕ′
y = −i~ϕ (II.9)

and therefore ϕy(s) = ϕ(y, 0)e−i~s. Considering a decomposition of E into La-

grange subspaces one can obtain information about dependence on “polarized”

coordinates in the same way. We will use such techniques in section 13. To

summarize the above discussion we state the following
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Lemma: For all ϕ ∈ C∞(H,C)K there exists a unique function ψ ∈ C∞(E,C)

such that

ϕ(y, s) = ψ(y)e−i~s . (II.10)

ψ has the following property (reflecting the equivariance of ϕ):

∀(v, 0) ∈ k : ψ(y + v) = e−i〈u
∗,v〉+ i~

2 σ(y,v)ψ(y) .

Conversely each function ψ ∈ C∞(E,C) having this property defines a function

ϕ ∈ C∞(H,C)K by equation II.10.

Proof: set ψ(y) = ϕ(y, 0) then

ψ(y + v) = ϕ(y + v, 0) = ϕ((y, 0) · (v,−1

2
σ(y, v))) =

= U(−v, 1
2
σ(y, v))ϕ(y, 0) = e−i〈u

∗,v〉+ i~
2 σ(y,v)ψ(y) .

The converse is clear by construction. ¥

If we were dealing with a finite dimensional Lie group the further procedure of

constructing an irreducible unitary representation out of (π,C∞(H,C)K) would

be routine. The choice of a translation invariant measure on H and completion

of the subspace of square-integrable functions in the ‖.‖2-norm would guide to

the desired aim. However there exists no such concept in our situation, even

for this (in all senses) convenient example, and the general construction ends

up with the (only ?) advantage that the resulting representation is smooth in a

precise sense.

6.6. Remark:

(i) In section 8 we will describe in some detail a special situation where the

physical context suggests a recipe for constructing a Hilbert space on which

the above representation acts unitarily.

(ii) Even if the building of a Hilbert space fails one (or at least I) will con-

jecture that irreducibility of the representation still holds in the modified

framework.
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7 Generalized Schrödinger Representations

Now we are in a position to apply the concept developed in the previous section

to special choices of admissible subalgebras n ⊆ hC. It was shown that such

an n has to be of the form n = L ⊕ C, where L is an appropriate Lagrangian

subspace of EC with respect to σC.

Let

L = Re (C(N)) ⊗R C ⊆ EC , (II.11)

i.e. L = span{x ⊗ λ | x̄ = x, λ ∈ C} ∼= R(N) ⊗R C (where x̄ means complex

conjugation in each component). L is isotropic since for x, y ∈ ReC(N), λ, µ ∈ C

σC(x⊗ λ, y ⊗ µ) = λµσ(x+ i0, y + i0) = λµ(〈x|0〉 − 〈0|y〉) = 0

and on the other hand if 0 6= iy ⊗ µ ∈ iR(N) ⊗ C

σC(y ⊗ 1, iy ⊗ µ) = µσ(y, iy) = µ〈y|y〉 6= 0 ,

so L is also maximal. Hence L⊕ C is an admissible subalgebra.

Note that n = kC where

k = (Re C(N)) ⊕ R ⊆ h (II.12)

is a real subalgebra.

The corresponding subgroup is K = exp k = Re C(N) × R with the associated

representation U : K → S1, U(l, r) = ei〈u
∗,l〉+i~r (l ∈ L, r ∈ R). The base

manifold of the vector bundle H[C] is now H/K ∼= {0} × iR(N) × {0} ∼= R(N):

H × C

H H/K ∼= R(N)

H[C]

?

pr1

-

p

?

p̄

-
q

where q : H × C → H[C] sends an element (h, λ) to its corresponding K-orbit
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under the right action R : H × C ×K → H × C,

R((h, λ), k) = (hk, U(k−1)λ) (II.13)

which reads in more explicit terms as follows (x = x1 + ix2, l ∈ Re C(N)):

R(((x, r), λ), (l, s)) = (x1 + l + ix2, r + s− 1

2
〈x2|l〉, e−i〈u

∗,l〉−i~sλ) . (II.14)

By choosing an appropriate representative of the set

[x, r, λ] := {R(((x, r), λ), (l, s)) | (l, s) ∈ K}

one obtains a trivialization of the vector bundle H[C].

7.1. Lemma: The smooth mapping q0 : H × C → R(N) × C given

by qo((x, r), λ) = (x2, e
i〈u∗,x1〉+i~r+

i~
2 〈x1|x2〉λ) factors to a bijection

Ψ : H[C] → R(N) × C, i.e.

H × C

H[C]

R(N) × C

Z
Z
Z
Z
Z~

q

½
½
½
½
½>

Ψ

-
q0

Proof:

q0 is R-invariant:

(q0 ◦R(l,s))((x, r), λ) =

= q0((x+ l, r + s− 1

2
〈x2|l〉), e−i〈u

∗,l〉−i~sλ) =

= (x2, e
i〈u∗,x1+l〉+

i~
2 〈x1+l|x2〉+i~r+i~s−

i~
2 〈x2|l〉e−i〈u

∗,l〉−i~sλ) =

= (x2, e
i〈u∗,x1〉+i~r+

i~
2 〈x1|x2〉λ) = q0((x, r), λ)

q0 is one-to-one: if q0((x, r), λ) = q0((y, s), µ) we have

(x2, e
i〈u∗,x1〉+

i~
2 〈x1|x2〉+i~rλ) = (y2, e

i〈u∗,y1〉+
i~
2 〈y1|y2〉+i~sµ)
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and hence x2 = y2 together with

λ = e−i〈u∗, x1 − y1〉 −
i~

2
〈x1 − y1|y2〉 − i~(r − s)µ.

So by putting l = x1 − y1, t = r − s + 1
2 〈l|y2〉 we obtain R(((y, s), µ), (l, t)) =

((x, r), λ) or equivalently [x, r, λ] = [y, s, µ].

q0 is onto: take (x, λ) ∈ R(N) × C arbitrary then clearly Ψ([ix, 0, λ]) =

= q0((ix, 0), λ) = (x, λ) ¥

Using the trivialization Ψ of the bundle H[C] we are able to identify the space

of sections Γ(H[C]) ∼= C∞(H,C)K with the function space C∞(R(N),C) and

carry over the induced representation π of H to it.

7.2. Lemma: Let Ψ∗ : C∞(H,C)K → C∞(R(N),C) be defined by the

following diagram (ϕ ∈ C∞(H,C)K):

H × C

H H/K R(N)

R(N) × CH[C]

6
Id × ϕ

-q

6
sϕ

-Ψ

6
Id × Ψ∗(ϕ)

-
p

Then Ψ∗ is a linear diffeomorphism and we have the explicit formulas

Ψ∗(ϕ) = ϕ |{0}×iR(N)×{0} ∀ϕ ∈ C∞(H,C)K

and

Ψ−1
∗ (f)(x, r) = e−i〈u

∗,x1〉−i~r−
i~
2 〈x1|x2〉f(x2) .

Proof: Take ϕ ∈ C∞(H,C)K ; starting with a point (x, r) ∈ H at the left lower

corner of the diagram we get

((Id × Ψ∗(ϕ)) ◦ p)(x, r) = (Id × Ψ∗(ϕ))(x2) = (x2,Ψ∗(ϕ)(x2)) .
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On the other hand

(Ψ ◦ q ◦ (Id × ϕ))(x, r) = (Ψ ◦ q)((x, r), ϕ(x, r)) = q0((x, r), ϕ(x, r)) =

= (x2, e
i〈u∗,x1〉+i~r+

i~
2 〈x1|x2〉ϕ(x, r)) = (now use K-equivariance of ϕ)

= (x2, e
i〈u∗,x1〉+i~r+

i~
2 〈x1|x2〉e−i〈u

∗,x1〉−i~r−
i~
2 〈x1|x2〉ϕ(ix2, 0)) =

= (x2, ϕ(ix2, 0))

yields the equation Ψ∗(ϕ) = ϕ |iR(N) . The formula for Ψ−1
∗ is suggested by the

equivariance condition and is shown to be correct by direct calculation.

To show that Ψ∗ is a diffeomorphism we prove smoothness of Ψ∗ and Ψ−1
∗

separately. First we show continuity of Ψ∗ which yields smoothness by linearity.

We will use the universal property of the initial topology on C∞(R(N),C) with

respect to the family (c∗ : C∞(R(N),C) → C∞(R,C))c∈C∞(R,R(N)). So let c :

R → R(N) be smooth and denote by c̃ the associated curve intoH ⊇ {0}×iR(N)×
{0} according to the embedding x 7→ (0 + ix, 0). Then for all ϕ ∈ C∞(H,C)K

one can write (c∗ ◦ Ψ∗)(ϕ) = c̃∗(ϕ) which shows continuity by definition of the

initial topology on C∞(H,C)K . Smoothness of Ψ−1
∗ is seen directly from the

formula since smooth curves t 7→ ft are only multiplied by a factor independent

of t. ¥

7.3. Proposition: Define the representation S : H → GL(C∞(R(N),C))

by means of the following diagram (h ∈ H,π = indHKU):

C∞(R(N),C)

C∞(H,C)K C∞(H,C)K

C∞(R(N),C)

6
Ψ∗

-

π(h)

6
Ψ∗

-
S(h)

Then we obtain a smooth action H×C∞(R(N),C) → C∞(R(N),C) given explic-
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itly by the formula

(S(x, r)f)(z) = ei~r−
i~
2 〈x1|x2〉+i〈u

∗,x1〉ei~〈x1|z〉f(z − x2) . (II.15)

Proof: Take f ∈ C∞(R(N),C) arbitrarily and compute

(S(x, r)f)(z) = (Ψ∗ ◦ π(x, r) ◦ Ψ−1
∗ )(f)(z) =

= (Ψ∗ ◦ π(x, r))((y, s) 7→ e−i〈u
∗,y1〉−i~s−

i~
2 〈y1|y2〉f(y2))(z) =

= Ψ∗((y, s) 7→ e−i〈u
∗,y1−x1〉−i~(s−r− 1

2σ(x,y))− i~
2 〈y1−x1|y2−x2〉f(y2 − x2))(z) =

= e−i〈u
∗,0−x1〉−i~(0−r− 1

2σ(x,iz))− i~
2 〈0−x1|z−x2〉f(z − x2) =

= ei~r+〈u∗,x1〉−
i~
2 〈x1|x2〉ei~〈x1|z〉f(z − x2)

To show smoothness of S : H → GL(C∞(R(N),C)) let c ∈ C∞(R, H) and

consider S ◦ c : R → GL(C∞(R(N),C)). It suffices to show that for all f ∈
C∞(R(N),C) the mapping t 7→ S(c(t))f is smooth R → C∞(R(N),C). But

S(c(t))f = (Ψ∗ ◦ π(c(t)) ◦ Ψ−1
∗ )(f) = Ψ∗(π(c(t))Ψ−1

∗ (f)) is smooth since Ψ∗ is

and Ψ−1
∗ (f) is a smooth vector by step 2 in the proof of Proposition 6.4 on page

23. ¥

7.4. Remark:

(i) Proposition 7.3 enables us to define the derived Lie algebra representation

S′ = T(0,0)S : h → End(C∞(R(N),C)) and therefore to compute the phys-

ical field operators Φ(x) = −iS ′(x, 0) (forx ∈ E) which are now bounded

operators — in contrast to their “brothers” arising from unitary represen-

tations in Hilbert spaces. The formula for the action of h is derived (in

both senses) by direct computation and reads

(S′(x, r)f)(z) = (i~r + i〈u∗, x1〉 + i~〈x1|z〉)f(z) − 〈df(z), x2〉 . (II.16)

Especially by setting Qj = Φ(δj , 0), Pk = Φ(iδk, 0) one can recover the

position and momentum operators acting according to

Qjf = (Re u∗j + ~δ∗j )f, Pkf = i〈df, δk〉 . (II.17)
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(ii) The dependence of the representation S upon the orbit O and the func-

tional (u∗, ~) ∈ O is reflected by the appearance of ~ and the “phase

correction” 〈u∗, x1〉. A straightforward calculation shows that the choice

of a special representative (u∗, ~) ∈ O is not essential: translating the

functional to (u∗ + v, ~) with v = v1 + iv2 ∈ C(N) yields exactly the same

representation as intertwining S with translation by 1
~
v1 on the function

space C∞(R(N),C).

(iii) The dependence of S upon the choice of the maximally isotropic subspace

L ⊆ EC is non-transparent and in section 8 we will notice that at least in

further construction of unitary representations it is essential – in contrast

to the finite dimensional case.

(iv) The non-equivalence of representations constructed with the same admis-

sible subalgebra given in II.12 but corresponding to orbits at different

heights is seen by restricting S to the centre of H: the parameter ~ char-

acterizes the representation r 7→ ei~r uniquely.

7.5. Other admissible real subalgebras:

Only trivial changes are to be made if we choose L = Im (C(N)) ⊗R C. The

resulting representation is just the above S where the rôles of x1 and x2 are

changed.

Another simple choice is to take L = span{x+ix | x ∈ R(N)}⊗R C =: E+⊗R C ⊆
EC leading to the subgroup K = {(x + ix, r) | x ∈ R(N), r ∈ R} with one-

dimensional representation U : K → S1, U(x + ix, r) = ei〈u
∗,x+ix〉+i~r. The

quotient group is then given by

H/K ∼= {(x− ix, 0) | x ∈ R(N)} =: E− (II.18)

according to the decomposition

y =
y1 + y2

2
+ i

y1 + y2
2

+
y1 − y2

2
− i

y1 − y2
2

∀y ∈ C(N) (II.19)
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or in short notation E = E+ ⊕ E−, y = y+ + y−. The trivialization of the

associated vector bundle is now given by

Ψ([x, r, λ]) = (x−, e
i〈u∗,x+〉− i~

2 σ(x−,x+)+i~rλ)

yielding the representation T : H → GL(C∞(E−,C),

(T (x, r)f)(y−) = ei~r+i〈u
∗,x+〉− i~

2 σ(x+,x−)ei~σ(x+,y−)f(y− − x−) . (II.20)

The derived Lie algebra representation T ′ : h → End(C∞(E−,C)) is therefore

given by

T ′(x, r)f = (i~r + i〈u∗, x+〉 + i~σ̌(x+))f − 〈df, x−〉 . (II.21)

7.6. A “totally complex” admissible subalgebra:

It is straightforward to show that the subspace L+ = spanC{x ⊗ 1 + ix ⊗ i |
x ∈ C(N)} is maximally isotropic. Hence n = L+ ⊕ C defines an admissible

subalgebra which has the property

n ∩ n̄ = {0} ⊕ C .

The corresponding real subalgebra is therefore very small: k = n∩ h = {0}⊕R.

So the further construction starts with the character representation U(0, r) =

ei~r defining the associated vector bundle H[C] over the base manifold

H/K ∼= C(N) . (II.22)

Trivialization is now obtained by the mapping Ψ : H[C] → C(N)×C, Ψ([x, r, λ]) =

(x, ei~rλ) leading to the following representation V : H → GL(C∞(C(N),C)),

(V (x, r)f)(y) = ei~re
i~
2 σ(x,y)f(y − x) (II.23)

Note that L+ contains no real subspace of E and therefore “gets lost” after

restriction to the real Lie algebra. The next section will show how the situation

changes if one stays in the complex world during Kirillov’s construction and

restricts afterwards to the real Heisenberg group.

32



7.7. Summary of the common features:

To carry out the trivialization of the associated line bundle H[C] in the general

case the only thing to do is to describe the choice of a representative for each or-

bit under the right action R : H×C×K → H×C, R((h, λ), k) = (hk, U(k−1)λ).

This is easily done using the special structure K = L×R and E = L⊕ L̄, where

L̄ is a complementary σ-Lagrangian subspace (note that all subspaces of E are

closed, so the decomposition is also topological). Therefore H/K ∼= L̄ and

decomposing x = xL + x̄L we can define the mapping Ψ : H[C] → L̄× C,

[(x, r), λ]R 7→ (x̄L, e
i~r+ i~

2 σ(x̄L,xL)+i〈u∗,xL〉λ) (II.24)

which is seen to be one-to-one and onto exactly as in the above examples. This

trivialization defines an isomorphism C∞(H,C)K ∼= C∞(L̄,C) (denoted by Ψ∗)

and the representation π on K-equivariant functions is turned into the action

Θ : H → GL(C∞(L̄,C)), Θ(h) := Ψ∗ ◦ π(h) ◦ Ψ−1
∗ ,

(Θ(x, r)f)(z̄) = ei~r+i〈u
∗,xL〉−

i~
2 σ(x̄L,xL)ei~σ(xL,z̄)f(z̄ − x̄L) . (II.25)

8 Holomorphic Induction and Fock

Representations

We will now make use of the general notion of admissible subalgebra as complex

subalgebra of the complex hull hC of the Heisenberg algebra. There is a natural

complexification of the Heisenberg group H(E, σ), namely HC = EC × C with

σC as defined in 6.1, which corresponds to the Lie algebra hC. So the procedure

described in section 6 can be carried out with the natural changes of notions like

smooth to holomorphic (again in the sense of [K/M, Global Analysis]) yielding

holomorphic representations of the complex Heisenberg group HC in spaces of

holomorphic sections. Trivializations of the appearing vector bundles will again

transform them into representations acting on “ordinary” function spaces (now

holomorphic functions of countably many variables). The advantage of doing
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all this once again now looking through “complex glasses” (to say it in Harald

Rindler’s words) is the possibility of developing some of the arising representa-

tions further and turning them into certain regular representations of the Weyl

relations (cf. I.2 and I.3) well known to physicists as Fock representations.

Since the details of the constructions are much the same as in the real case we

will only sketch the story until the point of restriction to the “original” (real)

Heisenberg group is reached.

8.1. The standard example:

We take up the situation of 7.6 beginning with the admissible subalgebra

n = L+ ⊕ C = span{x⊗ 1 + ix⊗ i | x ∈ C(N)} ⊕ C (II.26)

subordinated to the functional (0, ~) ∈ h∗ (the elements of h∗ are thought as

being extended to hC by the usual C-linear extension). We obtain a holomorphic

representation of the corresponding subgroup N = L+ × C by

UC(ξ+, α) = ei~α ∀(ξ+, α) ∈ N . (II.27)

Note that with L− = span{x⊗ 1− ix⊗ i | x ∈ C(N)} we have the decomposition

EC = L+ ⊕ L− (II.28)

and we will use the notation ξ = ξ+ + ξ−, ξ+ ∈ L+. Furthermore we have

HC/N ∼= L− and the corresponding vector bundle HC[C] over this base manifold

is trivialized by the diffeomorphism Ψ : HC[C] → L− × C,

Ψ([ξ, α, λ]) = (ξ−, e
i~α+ i~

2 σC(ξ+,ξ−)λ) . (II.29)

Exactly as in the real case the representation πC = indHC

N UC is carried over to

a representation F̃ : HC → GL(Hol(L−)) given explicitly by

(F̃ (ξ, α)f)(z−) = ei~α−
i~
2 σC(ξ+,ξ−)ei~σC(ξ+,z−)f(z− − ξ−) (II.30)
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8.2. Restriction to the real Heisenberg group:

H is embedded as a subgroup into HC by (x, r) 7→ (x ⊗ 1, r) ( note that the

embedding has to respect the symplectic structure on EC and E) hence F :=

F̃ |H yields a representation of H acting on a space of holomorphic functions:

to put the resulting action into a convenient form we note first that

x⊗ 1 = (
x

2
⊗ 1 + i

x

2
⊗ i) + (

x

2
⊗ 1 − i

x

2
⊗ i) = (x⊗ 1)+ + (x⊗ 1)−

and σC((x⊗ 1)+, (y ⊗ 1)−) = − i
2h(x, y) where h(., .) denotes the standard her-

mitian form on C(N) (cf. 1.1 (ii)), so β(x, y) = i~σC((x ⊗ 1)+, (y ⊗ 1)−) de-

fines a complex inner product on C(N); finally we identify L− with C(N) by

z− 7→ z− + z− =: z ⊗ 1 (where x⊗ 1 − ix⊗ i = x ⊗ 1 + ix ⊗ i); then the

representation F : H → GL(Hol(C(N))) can be written as follows

(F (x, r)f)(z) = ei~−
1
2β(x,x)eβ(x,z)f(z − x) (II.31)

8.3. The Fock space:

The following is essentially an elaboration of constructions given in [P/S, 9.5].

Different approaches in the sense of C∗-algebras can be found in [B/R, 5.2],

[P, ch.4] or [T, 1.3].

Let S(C(N)) be the symmetric algebra over C(N), i.e.

S(C(N)) =
⊕

n≥0

snC(N) , (II.32)

where snC(N) denotes the n-fold symmetric tensor product of C(N). S(C(N))

can be equipped with an inner product induced from (C(N), β(., .)), defined on

the generating subset of monomials c1 · · · cm (m ∈ N, ci ∈ C(N)), as follows:

〈a1 · · · ak|b1 · · · bl〉 :=

{
0 if k 6= l

∑
τ∈Sk

β(a1, bτ(1)) · · · β(ak, bτ(k)) if k = l
(II.33)

where Sk denotes the group of permutations of k elements. The Hilbert space V

obtained by completion with respect to the corresponding norm ‖a‖ =
√
〈a|a〉

is called (bosonic) Fock space.
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Lemma: For a ∈ C(N) let fa ∈ Hol(C(N)) be defined by fa(z) = eβ(a,z).

Then on span{fa | a ∈ C(N)} ⊆ Hol(C(N)) we have the inner product (fa|fb) :=

eβ(a,b) and the completion W with respect to the associated norm is canonically

isomorphic to V .

Proof:

Step 1 embedding S(C(N)) into Hol(C(N))

define ι : S(C(N)) → Hol(C(N)) to be ι(a1 · · · an)(z) := β(a1, z) · · · β(an, z),

i.e. ι is the natural extension of β̌ : C(N) → (C(N))∗; ι is clearly one-to-one

since for a1 · · · an 6= 0 ∈ S(C(N)) arbitrary one can find a z ∈ C(N) such

that β(aj , z) 6= 0, j = 1, . . . , n; now the inner product II.33 (and hence

the norm) can be carried over to ι(S(C(N))); we identify the arising Hilbert

space with V

Step 2 W ↪→ ι(S(C(N)))
‖.‖

isometrically

• for a ∈ C(N) consider the power series expansion

fa(z) =

∞∑

n=0

β(a, z)n

n!
=

∞∑

n=0

ι(an)(z)

n!
;

since

‖
N∑

n=0

ι(an)

n!
‖ ≤

N∑

n=0

‖ι(an)‖
n!

=

N∑

n=0

‖a‖n√
n!

the series
∑ ι(an)

n! is absolutely convergent and defines fa within

ι(S(C(N)))
‖.‖

• we compute straightforward

〈fa|fb〉 =
∑

n,m

〈ι(an)|ι(bm)〉
n!m!

=
∑

n

n!β(a, b)n

n!2
= eβ(a,b)

(using definition II.33) which is equal to (fa|fb)

Step 3 W is dense in V

the curve t 7→ fta =
∑ tnι(an)

n! is smooth R → V since the series converges
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absolutely; so differentiating at t = 0 yields

dk

dtk
|0 fta = ι(a)k ∀k ∈ N,

d2

dt2
|0 ft(a+b) = (ι(a) + ι(b))2

and so on ... showing ι(S(C(N))) ⊆W ; ¥

8.4. Proposition: The action of H according to II.31 defines a unitary

representation F : H → U(W ) (we keep to the symbol F ).

Proof: the action of H on a function fa is given by

(F (x, r)fa)(z) = ei~r−
1
2β(x,x)eβ(x,z)fa(z − x) =

= ei~r−
1
2β(x,x)eβ(x,z)+β(a,z−x) = ei~r−

1
2β(x,x)e−β(a,x)fa+x(z) ,

which means

F (x, r)fa = ei~r−
1
2‖x‖

2−β(a,x)fa+x . (II.34)

So W is F -invariant and unitarity of the action is proved by

〈F (x, r)fa|F (x, r)fb〉 = e−‖x‖2−β(a,x)+β(b,x)〈fa+x|fb+x〉 =

= e−β(x,x)−β(a,x)−β(x,b)eβ(a+x,b+x) = eβ(a,b) = 〈fa|fb〉

¥

8.5. Remark:

(i) F is continuous with respect to the topology of pointwise convergence on

U(W ):

‖F (x, r)fa − F (0, 0)fa‖2 = 〈F (x, r)fa − fa|F (x, r)fa − fa〉 =

= 2(eβ(a,a) − Re (ei~r−β(x,x)/2−β(a,x)eβ(a+x,a)))
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which tends to 0 if (x, r) → (0, 0) inH; hence by application of the Banach-

Steinhaus theorem (note that the set of unitary operators is bounded) and

the fact that F is a group homomorphism we conclude that F (x, r)f →
F (y, s)f whenever (x, r) → (y, s).

(ii) From equation II.34 we deduce that 11 := f0 ∈ W is a cyclic vector for

the representation F since F (x, r)11 = const · fx ∀(x, r) ∈ H. Therefore

F induces a cyclic representation of the Weyl algebra (cf. Appendix to

chapter I, p. 17) with vacuum state

ω(F (x, 0)) := 〈11|F (x, 0)11〉 = e−
~

4 ‖x‖
2
2 (II.35)

which is exactly the well known Fock state. Hence F is equivalent to the

Gelfand-Neumark-Segal representation associated to the Fock state, i.e. F

is equivalent to the irreducible Fock representation (cf. [P, 3 and 4]).

(iii) In the history of representation theory of the Weyl relations Fock rep-

resentations always served as an explicit playground for development of

new constructions. The first hint to an enormous number of (pairwise)

inequivalent representations arising on Fock space is given in [F, 1953] and

was made precise in [Seg, 1956,1958]. In our context the construction can

be sketched as follows:

if α ∈ Aut(H) we can define the new representation F ◦ α acting again

on Fock space; especially for automorphisms αT induced from symplectic

transformations on (C(N), σ) (cf. 3.1 (ii)) a remarkable phenomenon can

be observed. The representations arising from “mixing” with the trans-

formations x1 + ix2 7→ λx1 + i 1
λx2 (λ > 0) on C(N) fall into (pairwise)

disjoint equivalence classes as λ varies in the positive real numbers. Since

irreducibility is not effected the above family gives uncountably many dif-

ferent irreducible (regular) representations. The result could be sharpened

in [Sha, 1962] as stated in Theorem 8.6. So the essential contrast to the

theory of finitely many degrees of freedom was obvious. It became clear

that a special representation corresponds to an investigation of the phys-

ical system in a fixed state. This was the (or one?) starting point for the

development of C∗-algebraic Quantum Field Theory.
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We will state without proof the result of D.Shale on the deformed Fock represen-

tations FT := F ◦ αT (T ∈ Sp(C(N), σ)), where αT denotes the automorphism

(x, r) 7→ (Tx, r) (cf. 3.1 (ii)).

8.6. Theorem (D.Shale 1962): If S, T ∈ Sp(C(N), σ) and FT , FS are

the associated Fock representations then the following are equivalent:

(i) S − T ∈ End(C(N)) extends to a Hilbert-Schmidt operator on `2
C
(N)

(ii) The representations FT and FS are unitarily equivalent

8.7. Remark:

(i) Since on the finite dimensional Hilbert space (Cn, h(., .)) all operators are

trivially Hilbert-Schmidt the above theorem includes the von Neumann

uniqueness result from 1931 (cf. [vN]).

(ii) Each S ∈ Sp(E, σ) defines a decomposition of EC into maximally isotropic

subspaces L+ ⊕ L− by simply setting

L+ = eigenspace of SC corresponding to eigenvalue +i

where SC denotes the usual complex linear extension of S. On the other

hand if EC = L+ ⊕ L− with isotropic subspaces such that the hermitian

form

〈ξ|η〉 := −i~(σC(ξ+, η−) + σC(ξ−, η+))

is positive definite, then SC defined by SCξ := iξ+ − iξ− corresponds to a

symplectic operator S on E (for details see [Woo, 4.9]).

Now by 6.1 in turn such polarizations of EC define admissible subalgebras

for the Kirillov construction. In this way we obtain some insight into the

sensible dependence of unitary equivalence classes of the representations

FT (F ∈ Sp(E, σ) on the “initial data”, namely the choice of an orbit and

a subordinated subalgebra of hC.
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9 The Moment Mapping for the Fock

Representation

The unitary Fock representation F of Proposition 8.4 defines by regularity (see

Remark 8.5 (i)) a Lie algebra homomorphism from h into a set of unbounded self-

adjoint operators (the generators of the one-parameter subgroups) on a certain

(common) dense domain W∞, the smooth vectors in W . There is a way of

going back from the representation to the “source” orbit. It is modelled on the

classical situation of a symplectic action of a Lie group on a symplectic manifold

and was carried over to unitary representations by Peter Michor (cf. [M, 1990] or

[Wik] and [B] for more relations to physics and orbit theory). This “inversion”

µ : W∞ → h∗, the moment mapping , is defined as follows.

9.1. Definition of the moment mapping:

Equip W∞ with the weak symplectic form Ω(., .) = Im 〈.|.〉. Let

F ′(v, a)f :=
d

dt
|0 (F (tv, ta)f) ∀(v, a) ∈ h, f ∈W∞

be the Lie algebra representation associated to F . Then the moment mapping

µ : W∞ → h∗ is given by

〈µ(f), (v, a)〉 := Ω(F ′(v, a)f, f) ∀(v, a) ∈ h, f ∈W∞ . (II.36)

We will study the moment mappings associated to the deformed Fock repre-

sentations FT (T ∈ Sp(C(N), σ)) and state a result which is near to the finite

dimensional analogue.

9.2. Proposition: If FT denotes the deformed Fock representation corre-

sponding to T ∈ Sp(C(N), σ) and µT is the associated moment mapping then we

have (we write F, µ instead of FId, µId):

(i) W∞ ⊇ {fa | a ∈ C(N)} independent of T
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(ii) im µT = im µ ∀T and µ(©W∞) ⊇ O(0,~), where ©W∞ denotes the unit

sphere.

Proof:

(i) Since αT is smooth H → H and FT = F ◦ αT it is enough to show

smoothness of (x, r) → F (x, r)fa, H →W ∀a ∈ C(N). Let (x(t), r(t)) be

a smooth curve in H; since

F (x(t), r(t))fa = ei~r(t)−
1
2 (β(x(t),x(t))−β(a,a))ei~σ(x(t),a)

︸ ︷︷ ︸
smooth

·F (a, 0)fx(t)

it is enough to show that t 7→ fx(t) is smooth R →W .

To show first weak differentiability we will apply the Banach-Steinhaus

theorem to the net (gs,t :=
fx(t)−fx(s)

t−s )t6=s∈R considered as a net in W ∗ ∼=
W (note that we use the one implication of the classical theorem which is

valid for nets):

• pointwise convergence on a dense subset:

〈fx(t) − fx(s)

t− s
|fy〉 =

〈fx(t)|fy〉 − 〈fx(s)|fy〉
t− s

=
eβ(x(t),y) − eβ(x(s),y)

t− s

tends to β(ẋ(s), y)eβ(x(s),y) as t→ s;

• boundedness in norm:

note that for elements inW ∗ the operator norm is equal to the Hilbert

space norm; now

‖fx(t) − fx(s)

t− s
‖2 =

=
1

(t− s)2
(eβ(x(t),x(t) − eβ(x(t),x(s)) − eβ(x(s),x(t)) + eβ(x(s),x(s))) =

. . . set ψ(t, s) = eβ(x(t),x(s)). . .

=
1

(t− s)2
(ψ(t, t) − ψ(t, s) − (ψ(s, t) − ψ(s, s)))

which is bounded on a neighborhood of (s, s) ∈ R2 since it converges

to ∂12ψ(s, s) as t → s by smoothness of ψ (write the difference quo-

tients in integral form; see [F/K, 1.3] for more general results).
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So in a first step we may conclude that gs,t → ι(ẋ(s))fx(s) =: g weakly as

t→ s. But using power series expansion one can easily compute

‖ι(ẋ(s))fx(s)‖2 = (β(ẋ(s), ẋ(s)) + β(ẋ(s), x(s)))eβ(x(s),x(s))

which is exactly the expression for ∂12ψ(s, s) as straightforward differen-

tiation shows. So we have a weakly convergent net (gs,t)s6=t of vectors in

W such that the net (‖gs,t‖)s6=t of norms converges to the norm ‖g‖ of its

weak limit. Hence the strong (norm) convergence follows now from the

standard equation

‖gs,t − g‖2 = ‖gs,t‖2 − 2Re 〈gs,t|g〉 + ‖g‖2 .

The investigation of higher derivatives can be reduced to the above case

since by induction the nth derivative of fx(t) with respect to t is of the

form p(t)fx(t), where p(t) is a polynomial in ι(ẋ(t)), . . . , ι(x(n)(t)). So each

derivative is again a product of differentiable functions. So smoothness of

t 7→ fx(t) is proved.

(ii) We first compute (using the above result for the derivative of fx(t))

FT
′(v, r)fa =

d

dt
|0 (ei~tr−t

2 1
2β(Tv,Tv)−tβ(a,Tv)fa+tTv)

= (i~r − β(a, Tv) + ι(Tv))fa

and get further by

〈µT (fa), (v, r)〉 = Im 〈FT ′(v, r)fa|fa〉 =

= Im (i~r〈fa|fa〉 − β(a, Tv)〈fa|fa〉 + 〈ι(Tv)fa|fa〉) =

. . . now use again power series to compute 〈bfa|fa〉. . .
= eβ(a,a)Im (i~r − β(a, Tv) + β(Tv, a)) = eβ(a,a)(~r + 2Im β(Tv, a)) =

= 〈fa|fa〉(~r + ~Im h(Tv, a)) = 〈fa|fa〉(~r − ~σ(a, Tv)) =

= ‖fa‖2 · 〈(−~T ∗σ̌(a), ~), (v, r)〉 .

Since a ∈ C(N) was arbitrary and T is an isomorphism the result follows. ¥

42



9.3. Remark: It is not obvious wether point (ii) of Proposition 9.2 should

really read µ(©W∞) = O(0,~). Since O(0,~) is not closed in h∗ = CN ⊕ R no

continuity argument for µ can work.
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Chapter III

GEOMETRIC

QUANTIZATION

Emphasizing the geometrical and physical contents of the orbit method geo-

metric quantization came into being as a tool for constructing unitary repre-

sentations of Lie groups out of a symplectic action on classical phase space. A

crucial point for the basis of the theory is that each such action can be con-

sidered in essence as coadjoint action on an orbit of the group or its central

extension (cf. [Kir, 1976: 15.2,Th.1]). We will not present the theory here but

mainly restrict to the aspects arising from working out its methods for our con-

crete infinite dimensional Heisenberg group. So the following story will hardly

comment on the background of the ideas of geometric quantization and the re-

quirements of Dirac correspondence between classical and quantum mechanical

systems. For details of the (finite dimensional) theory we refer to [Kos] (the ori-

gin), [Wik] (describing connections to the moment mapping (compare 9)) and

[Woo] (presenting physical applications).

In the following three sections we will compute and present explicitly the build-

ing blocks for geometric quantization of the coadjoint action of the Heisenberg

group. These are the concepts of connection, curvature and the Dirac principle

— an intuitively motivated correspondence of functions on phase space C(N)
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and operators on sections of a line bundle over the orbit. The last section will

then investigate restrictions of the arising representations suggested by certain

polarizations of the underlying symplectic orbit manifold.

10 Orbits as Symplectic Manifolds

Once again we fix an (arbitrary) coadjoint orbit O = (u∗ + im σ̌) × {~} which

will now be considered as manifold modelled on C(N) ∼= im σ̌ (note that the

topology on im σ̌ ⊆ CN is therefore not the relative topology but strictly finer).

If G(u∗,~) denotes the stabilizer of (u∗, ~) with respect to the coadjoint action

of H on O we have

G(u∗,~) = {(x, r) ∈ H | u∗ − ~σ̌(x) = u∗} = {(0, r) | r ∈ R} (III.1)

since σ̌ is one-to-one. Therefore we can identify O with H/G(u∗,~) — a well

known general fact for any finite dimensional Lie group.

10.1. Fundamental vector fields:

Using the kinematical definition of tangent vectors we can write TO = O× im σ̌

and therefore consider vector fields on O simply as smooth mappings O → im σ̌.

The fundamental vector field mapping ζ : h → X(O) corresponding to

Ad∗ : H ×O → O is defined as follows

∀(v, a) ∈ h : ζ(v,a)(z
∗, ~) = T(0,0)Ad∗(., (v, a)) · (v, a) ∀(z∗, ~) ∈ O .

Since by I.14 Ad∗(., (z∗, ~)) : (x, r) 7→ (z∗ − ~σ̌(x), ~) is affine in the first com-

ponent and constant in the second one we have

ζ(v,a)(z
∗, ~) = −~σ̌(v) ∀(z∗, ~), (III.2)

i.e. the fundamental vector fields are constant and reproduce their generators

(up to the factor −~). Furthermore we observe the familiar property that the

tangent space T(z∗,~)O to each point (z∗, ~) ∈ O is spanned by the values of the

fundamental vector fields.
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10.2. Symplectic structure on O:

We define a 2-form Ω ∈ Ω2(O) by the pointwise prescription

(Ω(ζ(v,a), ζ(w,b)))(z
∗, ~) := 〈(z∗, ~), [(v, a), (w, b)]〉 = ~σ(v, w) (III.3)

or equivalently pointwise as bilinear form on the tangent space im σ̌

Ω(z∗,~)(σ̌(v), σ̌(w)) =
1

~
σ(v, w) . (III.4)

Lemma: Ω is a non-degenerate closed 2-form on O, i.e. (O,Ω) is a weak

symplectic manifold. The coadjoint action of H on O is a symplectic action

(i.e. preserves the symplectic form).

Proof: one can reduce the proof to the finite dimensional case: each instance

of fixed vector fields into Ω or dΩ keeps all computations in a finite dimensional

subspace. Nevertheless we will give also a direct proof since one special part

will be used later.

• nondegeneracy is clear from the corresponding property of σ

• we show that Ω is exact (and therefore closed):

define a 1-form ω on O by putting

ω(z∗,~)(σ̌(v)) =
1

2~
〈z∗, v〉 ∀(z∗, ~) ∈ O, v ∈ C(N); (III.5)

now we directly calculate as follows:

dω(ζ(v,a), (w, b))(z∗,~) =

= ζ(v,a)(ω(ζ(w,b)))(z∗,~) − ζ(w,b)(ω(ζ(v,a)))(z∗,~) − ω([ζ(v,a), ζ(w,b)](z∗,~) =

. . . now the ζ’s act by directional derivation and the commutator

of the constant vector fields inside the last term vanishes . . .

=
d

dt
|0 (ω(z∗−t~σ̌(v),~)(−~σ̌(w))) − d

dt
|0 (ω(z∗−t~σ̌(v),~)(−~σ̌(v))) =

=
1

2~

d

dt
|0 (〈z∗ − t~σ̌(v),−~w〉 − 〈z∗ − t~σ̌(w),−~v〉) =

=
1

2~
(~2〈σ̌(v), w〉 − ~2〈σ̌(w), v〉) =

~

2
(σ(v, w) − σ(w, v)) =

= ~σ(v, w) = Ω(ζ(v,a), ζ(w,b))(z∗,~)
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• H acts by symplectomorphisms: for fixed (x, r) ∈ H the operator Ad∗(x, r)

is just constant translation by −~σ̌(x), the corresponding tangent map-

ping is the identity and translating the foot point does not change the

value of Ω(ζ(v,a), ζ(w,b)). ¥

10.3. A character representation of G(u∗,~):

If g(u∗,~)
∼= R denotes the Lie algebra of G(u∗,~) one can define a Lie algebra

homomorphism χ′ : g(u∗,~) → R, χ′(0, a) = 〈(u∗, ~), (0, a)〉 = ~a and integrate

it to a character χ of G(u∗,~) = {0} × R

χ(0, s) = ei~s . (III.6)

Now as in chapter 2 the canonical surjection H ³ H/G(u∗,~) defines a principal

fibre bundle with structure group G(u∗,~)
∼= R and base manifold H/G(u∗,~)

∼=
O. The character χ yields the associated (complex) line bundle L = H[C, χ]

over O, which can be trivialized by the methods seen in chapter 2, 7.

Lemma: The mapping q0 : h× C → O× C, q0((x, r), λ) = (x, ei~rλ), factors

to an isomorphism ψ : L→ O × C, i.e.

H × C

L = H[C]

O × C

Z
Z
Z
Z
Z~

q

½
½
½
½
½>

ψ

-
q0

Proof: compare with the situation in 7.1; the right action is now given by

R(((x, r), λ), (0, s)) = (x, r + s, e−i~sλ) ¥

10.4. Remark: Let L1 := ψ−1(O×C+) where C+ = C\{0} ∼= GL(C). Then

L1 is the linear frame bundle GL(C, L) — a GL(C)-principal bundle associated
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to L (see [M, Lecture notes 91/92: 15.11] for a general context). Let ψ1 = ψ |L1
:

L1 → O × C+ then Tψ1 defines an isomorphism of tangent bundles and

TL1
∼= T (O × C+) = (O × C+) × (im σ̌ ⊕ C) , (III.7)

where im σ̌ represents the horizontal vectors and C constitutes the vertical

part. Since the right action on O × C+ is just scalar multiplication in the

C+-component we can define a connection form α ∈ Ω1(O × C+,C) by

α = ωC ⊕ 1

i

dz

z
(III.8)

where ωC denotes the complex extension of the symplectic potential ω given in

equation III.5. Obviously one obtains dα = pr∗1Ω. Therefore if p : L1 → O is

the projection of the bundle L1 one can define the connection form

α1 := ψ∗
1α

on L1. The next section will deal with the corresponding covariant differenti-

ation and we will show by direct computation that its curvature is exactly Ω.

11 Covariant Derivative and Curvature on the

Associated Line Bundle

In the following the conventions about the sign of the factor i appearing in

definitions are due to [Woo].

11.1. Covariant derivative:

Identifying Γ(O×C) with C∞(O,C) we define for each ξ ∈ XC(O) an endomor-

phism ∇ξ : Γ(O × C) → Γ(O × C) as follows

∇ξ(f) = ξ(f) − ifωC(ξ) ∀f ∈ C∞(O,C) (III.9)

(we will neglect the subscript C of ω from now on). So ξ 7→ ∇ξ yields a linear

mapping ∇ : X(O) → End(Γ(O × C)) with the properties
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(i) ∇ϕξ(f) = ϕξ(f) − ifω(ϕξ) = ϕ(ξ(f) − ifω(ξ)) = ϕ∇ξ(f)

(ii) ∇ξ(fg) = ξ(fg)− ifgω(ξ) = ξ(f)g+ fξ(g)− ifgω(ξ) = (gξ)(f)+ f∇ξ(g),

i.e. ∇ is a connection or covariant differentiation on L.

For later use we compute the action of ∇ζ(v,a) on functions f ∈ C∞(O,C):

∇ζ(v,a)(f)(z∗, ~) = ζ(v,a)(f)(z∗, ~) − if(z∗, ~)ω(ζ(v,a))(z∗,~) =

= 〈df(z∗,~),−~σ̌(v)〉 − if(z∗, ~)
1

2~
〈z∗,−~v〉 =

= −~〈df, σ̌(v)〉(z∗,~) +
i

2
f(z∗, ~)〈z∗, v〉

or in more compact form, if ι : C(N) → (C(N))∗∗ ∼= C(N) denotes the canonical

embedding into the bidual,

∇ζ(v,a)(f) = −~〈df, σ̌(v)〉 +
i

2
fι(v) ∀(v, a) ∈ h, f ∈ C∞(O,C) . (III.10)

11.2. The symplectic form as curvature:

The curvature of the connection ∇ is by definition the 2-form R ∈ Ω2(O,C)

satisfying

R(ξ, η)f = i([∇ξ,∇η] −∇[ξ,η])(f) ∀ξ, η ∈ XC, f ∈ C∞(O,C) , (III.11)

where the first Lie bracket on the right denotes the commutator of operators in

End(C∞(O,C)) and the subscript Lie bracket is the Lie bracket of vector fields.

Lemma: ∀(v, a), (w, b) ∈ h : R(ζ(v,a), ζ(w,b)) = Ω(ζ(v,a), ζ(w,b))

Proof: let f ∈ C∞(O,C); (v, a), (w, b) ∈ h:

• first note that [ζ(v,a), ζ(w,b)] = 0 hence the term ∇[ζ(v,a),ζ(w,b)] can be ne-

glected.

• we divide the computation of [∇ζ(v,a) ,∇ζ(w,b) ] into investigation of

∇ζ(v,a) ◦ ∇ζ(w,b) and −∇ζ(w,b) ◦ ∇ζ(v,a) separately:
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∇ζ(v,a) ◦ ∇ζ(w,b)(f) =

= ∇ζ(v,a)(−~〈df, σ̌(w)〉 +
i

2
fι(w)) =

= −~∇ζ(v,a)(〈df, σ̌(w)〉) +
i

2
∇ζ(v,a)(fι(w)) =

= −~
(
− ~〈d〈df, σ̌(w)〉, σ̌(v)〉 +

i

2
〈df, σ̌(w)〉ι(v)

)
+

+
i

2

(
− ~〈d(fι(w)), σ̌(v)〉 +

i

2
fι(w)ι(v)

)
=

= ~2d2f(σ̌(w), σ̌(v)) − i~

2
〈df, σ̌(w)〉ι(v) −

− i~
2

(
〈df, σ̌(v)〉ι(w) + f〈ι(w), σ̌(v)〉

)
− 1

4
fι(w)ι(v) =

= ~2d2f(σ̌(w), σ̌(v)) − i~

2

(
〈df, σ̌(v)〉ι(w) + 〈df, σ̌(w)〉ι(v)

)
−

−f
( i~

2
σ(v, w) +

1

4
ι(v)ι(w)

)

changing the rôles of v and w and putting a minus in front yields the expression

−∇ζ(w,b) ◦ ∇ζ(v,a) = −~2d2f(σ̌(v), σ̌(w))+

+
i~

2

(
〈df, σ̌(w)〉ι(v) + 〈df, σ̌(v)〉ι(w)

)
+ f

( i~
2
σ(w, v) +

1

4
ι(w)ι(v)

)
.

Now by symmetry of d2f we get

[∇ζ(v,a) ,∇ζ(w,b) ] = f
i~

2
(−σ(v, w) + σ(w, v)) =

= −i~σ(v, w)f =
1

i
fΩ(ζ(v,a), ζ(w,b))

¥

Since the differential operators ∇ξ and the 2-forms are local (i.e. they are defined

on germs) and {ζ(v,a) | (v, a) ∈ h} spans the tangent space to each point we can

state the following

Corollary: The curvature of ∇ is exactly the symplectic form Ω.
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12 The Dirac Correspondence

An attempt to formalize an intuitive correspondence (if there is any ?) of

quantum systems with classical systems was made by Dirac in 1926 (cf. [Woo,

ch. 5] and the references given there). This so-called Quantum Condition or

Dirac Correspondence Principle is formulated in terms of unitary representa-

tions roughly as follows:

let the classical phase space be represented by the symplectic manifold (M,Ω);

then the classical observables are just the functions ϕ ∈ C∞(M) and the Poisson

bracket {., .} defines the structure of a real Lie algebra; a quantization should be

a mapping ϕ 7→ ϕ̂ of C∞(M) into the set of self-adjoint (unbounded) operators

on a Hilbert space such that

(D1) ϕ 7→ ϕ̂ is R-linear

(D2) [ϕ̂, ψ̂] = −i{̂ϕ,ψ}

(D3) if 11(x) = 1 ∀x ∈M then 1̂1 = Id

In our context, i.e. M = O, we generalize the Dirac principle to the properties

(D1)–(D3) being required for a mapping C∞(O) → End(C∞(O,C)). We will

explicitly construct such a mapping using Hamiltonian vector fields Xϕ ∈ X

generated by (real) functions ϕ ∈ C∞(O) and defining ϕ̂ = −i∇Xϕ + ϕ.

12.1. Hamiltonian vector fields on O:

Let ϕ ∈ C∞(O), we define Xϕ ∈ X(O) by the equation

Ω(Xϕ, ξ) + 〈dϕ, ξ〉 = 0 ∀ξ ∈ X(O) (III.12)

We can compute Xϕ by explicit solutions of the above equation for ξ = ζ(v,a)

(note that X(O) ∼= C∞(O, im σ̌)).

Notation: introducing the partial derivatives

∂qjϕ := 〈dϕ, δj〉 position variation in j. component

∂pkϕ := 〈dϕ, iδk〉 momentum variation in k. component

we can write dϕ = ∂qϕ+ i∂pϕ := (∂qjϕ)j∈N + i(∂pjϕ)j∈N.
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Lemma: If ϕ ∈ C∞(O) then Xϕ = −~∂pϕ+ i~∂qϕ.

Proof: evaluate equation III.12 pointwise for ξ = ζ(v,a):

−〈dϕ(z∗,~),−~σ̌(v)〉 = Ω(z∗,~)(Xphi(z
∗, ~),−~σ̌(v))

now let Xϕ(z∗, ~) = σ̌(w) for suitable w = w1 + iw2 ∈ C(N) then

~〈dϕ(z∗,~), σ̌(v)〉 = −σ(w, v)

• v = δj yields ~〈dϕ(z∗,~), iδj〉 = wj2 or simply wj2 = ~∂pjϕ(z∗, ~)

• v = iδk yields ~〈dϕ(z∗,~),−δk〉 = −wk1 or simply wk1 = ~∂qkϕ(z∗, ~)

and hence

Xϕ(z∗, ~) = σ̌(w) = −w2 + iw1 = (−~∂pϕ+ i~∂qϕ)(z∗, ~)

¥

12.2. Remark:

(i) By the above Lemma decomposition into real and imaginary part of the

differential equation ċ = Xϕ ◦ c for a curve c : R → O, c(t) = q(t) + ip(t),

yields the following form of Hamiltonian equations:

q̇ = −~∂pϕ and ṗ = ~∂qϕ

(ii) Let qj , pk ∈ C∞(O) be defined as follows:

qj := ι(δj), i.e. qj(z
∗, ~) = 〈z∗, δj〉

pk := ι(iδk), i.e. pk(z
∗, ~) = 〈z∗, iδk〉

Now the above Lemma tells us

Xqj = i~δj = ~σ̌(δj) and Xpk = −~δk = ~σ̌(iδk) .

Therefore if v ∈ C(N) then the Hamiltonian vector field associated to the

function ϕv = −ι(v) reproduces the fundamental vector field ζ(v,0).
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12.3. Poisson bracket on C∞(O):

There are no problems in defining the Poisson bracket {., .} on C∞(O) exactly

as in the finite dimensional case by

{ϕ,ψ} = Ω(Xϕ, Xψ) ∀ϕ,ψ ∈ C∞(O) . (III.13)

Standard arguments show that (C∞(O), {., .}) is a real Lie algebra

and the mapping ϕ 7→ Xϕ defines a Lie algebra homomorphism

(C∞(O), {., .}) → (X(O), [., .]).

12.4. The Quantization map:

As announced at the beginning of this section we define the Dirac correspon-

dence ϕ 7→ ϕ̂, C∞(O) → End(C∞(O,C)), by

ϕ̂(f) = −i∇Xϕ(f) + ϕf ∀f ∈ C∞(O,C) . (III.14)

Proposition: The mapping ϕ 7→ ϕ̂ satisfies the requirements (D1)–(D3) of

Dirac’s quantum condition.

Proof:

(D1) R-linearity is guaranteed by R-linearity of ∇ and ϕ 7→ Xϕ

(D2) [ϕ̂, ψ̂](f) = ifΩ(Xϕ, Xψ) −∇[Xϕ,Xψ ](f) by straightforward computation

(using 11.2) and the result follows from 12.3

(D3) 1̂1(f) = −i∇X11
(f) + f = f since the Hamiltonian vector fields generated

by constant functions are 0 ¥

12.5. Position and momentum operator:

Using the functions qj , pk introduced in 12.2 (ii) together with equation III.10

for the vector fields Xqj = ζ(−δj ,0) and Xpk = ζ(−iδk,0) we recover the well
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known position and momentum operators:

q̂j(f) = −i∇−ζ(δj,0)
(f) + qjf = −i~〈df, σ̌(δj)〉 −

1

2
fι(δj) + qjf =

= −i~∂pjf +
1

2
qjf

and similarly

p̂k(f) = i~∂qk(f) +
1

2
pkf ,

which reads in short notation as follows

q̂j = −i~∂pj +
1

2
qj p̂k = i~∂qk +

1

2
pk . (III.15)

12.6. Remark: The quantization map yields a Lie algebra representation

ρ of h by setting

ρ(v, a) = i ̂ι(v) + a~ . (III.16)

Exponentiating this Lie algebra representation would give a representation of

the Heisenberg group H on the whole space C∞(O,C). But as in the finite

dimensional case we will first restrict to subrepresentations arising from polar-

izations of the symplectic manifold (O,Ω). This is the subject of the last section.

13 Recovering the Generalized Schrödinger

Representations

Polarizations of the symplectic manifold (O,Ω) arising from special Lagrange

distributions in TO will lead to certain subrepresentations of the Lie algebra ρ :

h → End(C∞(O,C)) defined in 12.6. With the aid of a concrete diffeomorphism

O ∼= C(N) we will be able to identify these subrepresentations as derivatives of
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the generalized Schrödinger representations corresponding to the initial choice

of the polarization by Lagrange subspaces.

13.1. Polarizations and subrepresentations:

A submanifold L ⊆ O will be called a Lagrange submanifold if the tangent space

T(z∗,~)L at each point of L is a Lagrange subspace of T(z∗,~)O.

Especially

L = (u∗ + σ̌(L)) × {~}

where L is a Lagrangian subspace of C(N) can be used to define the subspace

V = {f ∈ C∞(O,C) | ∇ζ(l,0)(f) = 0 ∀l ∈ L} ⊆ C∞(O,C) (III.17)

of “sections” parallel along L. V defines a subrepresentation of ρ since for

f ∈ V, l ∈ L, (v, a) ∈ h:

∇ζ(l,0)(ρ(v, a)f) = ∇ζ(l,0)(−∇ζ(v,a)(f) + if(−ι(v) + a~)) =

= −∇ζ(l,0) ◦ ∇ζ(v,a)(f) + ifζ(l,0)(−ι(v) + a~) + (−ι(v) + a~)∇ζ(l,0)(f) =

= −[∇ζ(l,0) ,∇ζ(v,a) ](f) + ∇[ζ(l,0),ζ(v,a)] − ifζ(l,0)(ι(v)) =

= −ifΩ(ζ(l,0), ζ(v,a)) − if〈ι(v),−~σ̌(l)〉 = i~f(−σ(l, v) + σ(l, v)) = 0 ,

so ρ(v, a)f is again in V .

13.2. Lemma: The diffeomorphism α : C(N) → O, x 7→ (u∗ − ~σ̌(x), ~),

induces a linear diffeomorphism α∗ : C∞(O,C) → C∞(C(N),C), f 7→ f ◦α, with

the following properties:

(i) α∗(qj) = Re u∗j + ~σ̌(δj), α
∗(pk) = Im u∗k + ~σ̌(iδk)

(ii) α∗(∂qjf) = 1
~
∂pjα

∗(f), α∗(∂pkf) = −1
~
∂qkα

∗(f)

Proof: smoothness in both directions is clear from smoothness of σ̌ and its

inverse on im σ̌; the above equations are obtained by direct computation:

(i) α∗(qj)(z) = qj(u
∗ − ~σ̌(z)) = 〈u∗ − ~σ̌(z), δj〉 =

= 〈u∗, δj〉 − ~〈σ̌(z), δj〉 = Re u∗j − ~σ(z, δj) = Re u∗j + ~〈σ̌(δj), z〉
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and similar for α∗(pk)

(ii) ∂pjα
∗(f) = ∂pj (f ◦ α) = 〈d(f ◦ α), iδj〉 = 〈(df) ◦ α, dα(iδj)〉 =

= −〈(df) ◦ α, ~σ̌(iδj)〉 = ~〈df, δj〉 ◦ α = ~α∗(∂qjf)

and similar for ∂qkα
∗(f). ¥

13.3. Remark:

(i) Note that the diffeomorphism α is suggested by the free action ofH/G(u∗,~)

on O since α(z) = Ad∗
(z,0)(u

∗, ~).

(ii) By construction α respects the symplectic structures on C(N) and O, i.e.

σ-Lagrange subspaces of C(N) are mapped into Ω-Lagrange submanifolds

of O.

13.4. The position-momentum polarization:

Let L = (u∗ + σ̌(ReC(N)))×{~} ⊆ O be the Lagrange submanifold arising from

the decomposition C(N) = R(N) ⊕ iR(N) into position and momentum subspaces.

The representation space V ⊆ C∞(O,C) is then characterized by the equations

0 = ∇ζ(δj,0)
(f) = −~∂pjf +

i

2
qjf j ∈ N. (III.18)

If we define q(z∗, ~) := (qj(z
∗, ~))j∈N and p(z∗, ~) := (pj(z

∗, ~))j∈N we can write

(z∗, ~) = (q(z∗, ~) + ip(z∗, ~), ~)

and consider f(z∗, ~) as a function of (q, p) (for fixed ~).

Lemma: The representation space V characterized by equation III.18 is

isomorphic to the space C∞(Oq,C) of functions depending only on q, i.e. Oq

is the submanifold of O given by the equation p(z∗, ~) = 0. The action of

the position and momentum operators on C∞(Oq,C) is given by the following

formulas (g ∈ C∞(Oq,C)):

q̂j(g) = qjg p̂k(g) = i~∂qkg (III.19)
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Proof: the differential equations III.18 can be written

∂pjf(q, p) =
i

2~
qjf(q, p) (j ∈ N)

and have the unique solution

f(q, p) = g(q)e
i
2~

〈q|p〉

where g(q) = f(q, 0) ∈ C∞(Oq,C); conversely each g ∈ C∞(Oq,C) defines a

function f ∈ V by the above equation.

We compute the actions of q̂j and p̂k on f according to III.15:

q̂j(f) = −i~∂pjf +
1

2
qjf =

1

2
qjf +

1

2
qjf = qjge

i
2~

〈q|p〉

p̂k(f) = i~∂qkf +
1

2
pkf = i~∂qk(ge

i
2~

〈q|p〉) +
1

2
pkge

i
2~

〈q|p〉 =

= i~(∂qkge
i
2~

〈q|p〉 +
i

2~
pkge

i
2~ ) +

1

2
pkge

i
2~

〈q|p〉 =

= (i~∂qkg)e
i
2~

〈q|p〉

hence q̂j and p̂k can be considered as acting on g. ¥

Now exactly as in Remark 12.6 we can define a Lie algebra representation of h

on C∞(Oq,C) by linear extension. We will again denote this representation by

ρ : h → End(C∞(O,C)). Before integrating this Lie algebra representation we

investigate its relation to derivations of previously constructed representations.

Fortunately this will release us from working out the exponentiation.

Proposition: The representation ρ : h → End(C∞(O,C)) is equivalent

to the derived Schrödinger representation S ′ on C∞(Im C(N),C) described in

7.3 and 7.4. In other words there exists an isomorphism Φ : C∞(Oq,C) →
C∞(Im C(N),C) such that

S′(v, a) ◦ Φ = Φ ◦ ρ(v, a) ∀(v, a) ∈ h. (III.20)

Proof: since α(Im C(N)) = Oq (with α from Lemma 13.2) we can set Φ =

(α |Im C(N))
∗ to get an isomorphism of the involved function spaces; it is sufficient

to prove equation III.20 for the generators (δj , 0), (iδk, 0) of h, i.e. if Qj =

−iS′(δj , 0) and Pk = −iS′(iδk, 0) (cf. 7.4) we have to show

Qj ◦ Φ = Φ ◦ q̂j and Pk ◦ Φ = Φ ◦ p̂k .
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Take g ∈ C∞(Oq,C) and compute (using the two previous Lemmata)

Φ(q̂j(g))(y) = α∗(qjg)(0 + iy) = α∗(qj)(iy)α
∗(g)(iy) =

= (Re u∗j + ~σ(δj , iy))Φ(g)(y) = (Re u∗j + ~yj)Φ(g)(y) =

= ((Re u∗j + ~δ∗j )Φ(g))(y) = (QjΦ(g))(y)

and

Φ(p̂k(g)) = Φ(i~∂qkg) = i~α∗(∂qkg) =

= i∂pkα
∗(g) = i〈dΦ(g), δk〉 = PkΦ(g)

¥

13.5. Balanced polarization:

Consider E+ = span{x + ix | x ∈ R(N)} ⊆ C(N) as in 7.5 and the Lagrange

submanifold L = (u∗ + σ̌(E+)) × {~}. Proceeding as in 13.4 we begin with an

investigation of the space V characterized by the equations

0 = ∇ζ(δj+iδj ,0)
f = ~(∂qj − ∂pj )f +

i

2
(qj − pj)f . (III.21)

Defining ∂
+

j = ∂qj+∂pj and a
+

j = qj+pj (“creation and annihilation”) we can

write this in the form

∂−j f = − i

2~
a+
j f

which is uniquely solved by

f(z+, z−) = g(z+)e−
i
2~

〈z+|z−〉

with g(z+) = f(z+, 0) ∈ C∞(O+,C), where we used the decomposition q+ ip =

z+ + z− given in 7.5 and the notation O+ for the submanifold given by z− = 0.

Lemma: The representation space V can be identified with C∞(O+,C) and

the position and momentum operators become

q̂j = − i

2~
∂+
j +

1

2
a+
j p̂k =

i

2~
∂+
k +

1

2
a+
k (III.22)

Proof: the above solution of the equation III.21 yields the isomorphism; it

remains to compute the action of q̂j and p̂k; rewriting the defining equations
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III.15 in new coordinates qj = (a+
j + a−j )/2, pj = (a+

j − a−j )/2 and differentials

δqj = (∂+
j + ∂−j )/2, ∂pj = (∂+

j − ∂−j )/2 yields

q̂j = − i~
2

(∂+
j − ∂−j ) +

1

4
(a+
j + a−j )

and

p̂k =
i~

2
(∂+
k + ∂−k ) +

1

4
(a+
k − a−k ) ;

now applying these to a function f = ge−
i
2~

〈a+|a−〉 with g ∈ C∞(O+,C) ends

up after straightforward calculations in

q̂j(ge
− i

2~
〈a+|a−〉) = (− i~

2
∂+
j g +

1

2
a+
j g)e

− i
2~

〈a+|a−〉

p̂k(ge
− i

2~
〈a+|a−〉) = (

i~

2
∂+
k g +

1

2
a+
k g)e

− i
2~

〈a+|a−〉

¥

Once again we actually recovered here a representation which appeared first in

section 7.

Proposition: The Lie algebra representation of h arising from the oper-

ators in equation III.22 on the space C∞(O+,C) is equivalent to the derived

Lie algebra representation T ′ constructed in 7.5 corresponding to the admissible

subalgebra E+ ⊕ R.

Proof: let Φ = (α |E−
)∗ : C∞(O+,C) → C∞(E−,C) be the connecting isomor-

phism; we have to show

−iT ′(δj , 0) ◦ Φ = Φ ◦ q̂j , −iT ′(iδk, 0) ◦ Φ = Φ ◦ p̂k

Take g ∈ C∞(O+,C) and go on with

Φ(q̂j(g)) =

= Φ(− i~
2
∂+
j g +

1

2
a+
j g) = − i~

2
α∗(∂qjg + ∂pjg) +

1

2
α∗(qj + pj)Φ(g) =

= − i~
2

(
1

~
∂pjΦ(g) − 1

~
∂qjΦ(g)) +

1

2
(Re u∗j + Im u∗j )Φ(g) +

~

2
σ̌(δj + iδj)Φ(g) =

=
i

2
(∂qj − ∂pj )Φ(g) +

1

2
(Re u∗j + Im u∗j )Φ(g)

~

2
σ̌(δj + iδj)Φ(g)
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which gives the correct expression for −iT ′(δj , 0) acting on Φ(g) according to

formula II.21. The computation of Φ(p̂k(g)) is much the same apart from one

minus sign. ¥
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