THE JACOBI FLOW

Peter W. Michor
Erwin Schrödinger Institut für Mathematische Physik, Pasteurgasse 6/7, A-1090 Wien, Austria

For Wlodek Tulczyjew, on the occasion of his 65th birthday.

It is well known that the geodesic flow on the tangent bundle is the flow of a certain vector field which is called the spray $S: T M \rightarrow T T M$. It is maybe less well known that the flow lines of the vector field $\kappa_{T M} \circ T S: T T M \rightarrow T T T M$ project to Jacobi fields on $T M$. This could be called the 'Jacobi flow'. This result was developed for the lecture course [5], and it is the main result of this paper. I was motivated by the paper [6] of Urbanski in these proceedings to publish it, as an explanation of some of the uses of iterated tangent bundles in differential geometry.

1. The tangent bundle of a vector bundle. Let (E, p, M) be a vector bundle with fiber addition $+_{E}: E \times_{M} E \rightarrow E$ and fiber scalar multiplication $m_{t}^{E}: E \rightarrow E$. Then $\left(T E, \pi_{E}, E\right)$, the tangent bundle of the manifold E, is itself a vector bundle, with fiber addition denoted by $+_{T E}$ and scalar multiplication denoted by $m_{t}^{T E}$.

If $\left(U_{\alpha}, \psi_{\alpha}: E \upharpoonright U_{\alpha} \rightarrow U_{\alpha} \times V\right)_{\alpha \in A}$ is a vector bundle atlas for E, such that $\left(U_{\alpha}, u_{\alpha}\right)$ is a manifold atlas for M, then $\left(E \upharpoonright U_{\alpha}, \psi_{\alpha}^{\prime}\right)_{\alpha \in A}$ is an atlas for the manifold E, where

$$
\psi_{\alpha}^{\prime}:=\left(u_{\alpha} \times \operatorname{Id}_{V}\right) \circ \psi_{\alpha}: E \upharpoonright U_{\alpha} \rightarrow U_{\alpha} \times V \rightarrow u_{\alpha}\left(U_{\alpha}\right) \times V \subset \mathbb{R}^{m} \times V
$$

Hence the family $\left(T\left(E \upharpoonright U_{\alpha}\right), T \psi_{\alpha}^{\prime}: T\left(E \upharpoonright U_{\alpha}\right) \rightarrow T\left(u_{\alpha}\left(U_{\alpha}\right) \times V\right)=u_{\alpha}\left(U_{\alpha}\right) \times\right.$ $\left.V \times \mathbb{R}^{m} \times V\right)_{\alpha \in A}$ is the atlas describing the canonical vector bundle structure of $\left(T E, \pi_{E}, E\right)$. The transition functions are in turn:

$$
\begin{aligned}
\left(\psi_{\alpha} \circ \psi_{\beta}^{-1}\right)(x, v)= & \left(x, \psi_{\alpha \beta}(x) v\right) \quad \text { for } x \in U_{\alpha \beta} \\
\left(u_{\alpha} \circ u_{\beta}^{-1}\right)(y)= & u_{\alpha \beta}(y) \quad \text { for } y \in u_{\beta}\left(U_{\alpha \beta}\right) \\
\left(\psi_{\alpha}^{\prime} \circ\left(\psi_{\beta}^{\prime}\right)^{-1}\right)(y, v)= & \left(u_{\alpha \beta}(y), \psi_{\alpha \beta}\left(u_{\beta}^{-1}(y)\right) v\right) \\
\left(T \psi_{\alpha}^{\prime} \circ T\left(\psi_{\beta}^{\prime}\right)^{-1}\right)(y, v ; \xi, w)= & \left(u_{\alpha \beta}(y), \psi_{\alpha \beta}\left(u_{\beta}^{-1}(y)\right) v ; d\left(u_{\alpha \beta}\right)(y) \xi,\right. \\
& \left.\left.\left(d\left(\psi_{\alpha \beta} \circ u_{\beta}^{-1}\right)(y)\right) \xi\right) v+\psi_{\alpha \beta}\left(u_{\beta}^{-1}(y)\right) w\right) .
\end{aligned}
$$

[^0]So we see that for fixed (y, v) the transition functions are linear in $(\xi, w) \in \mathbb{R}^{m} \times V$. This describes the vector bundle structure of the tangent bundle $\left(T E, \pi_{E}, E\right)$.

For fixed (y, ξ) the transition functions of $T E$ are also linear in $(v, w) \in V \times V$. This gives a vector bundle structure on ($T E, T p, T M$). Its fiber addition will be denoted by $T\left(+_{E}\right): T\left(E \times_{M} E\right)=T E \times_{T M} T E \rightarrow T E$, since it is the tangent mapping of $+_{E}$. Likewise its scalar multiplication will be denoted by $T\left(m_{t}^{E}\right)$. One may say that the second vector bundle structure on $T E$, that one over $T M$, is the derivative of the original one on E.

The space $\{\Xi \in T E: T p . \Xi=0$ in $T M\}=(T p)^{-1}(0)$ is denoted by $V E$ and is called the vertical bundle over E. The local form of a vertical vector Ξ is $T \psi_{\alpha}^{\prime} \cdot \Xi=(y, v ; 0, w)$, so the transition functions are $\left(T \psi_{\alpha}^{\prime} \circ T\left(\psi_{\beta}^{\prime}\right)^{-1}\right)(y, v ; 0, w)=$ $\left(u_{\alpha \beta}(y), \psi_{\alpha \beta}\left(u_{\beta}^{-1}(y)\right) v ; 0, \psi_{\alpha \beta}\left(u_{\beta}^{-1}(y)\right) w\right)$. They are linear in $(v, w) \in V \times V$ for fixed y, so $V E$ is a vector bundle over M. It coincides with $0_{M}^{*}(T E, T p, T M)$, the pullback of the bundle $T E \rightarrow T M$ over the zero section. We have a canonical isomorphism $\mathrm{Vl}_{E}: E \times_{M} E \rightarrow V E$, called the big vertical lift, given by $\mathrm{Vl}_{E}\left(u_{x}, v_{x}\right):=\left.\partial_{t}\right|_{0}\left(u_{x}+t v_{x}\right)$, which is fiber linear over M. We will mainly use the small vertical lift $\mathrm{vl}_{E}: E \rightarrow T E$, given by $\mathrm{vl}_{E}\left(v_{x}\right)=\left.\partial_{t}\right|_{0} t . v_{x}=\mathrm{Vl}_{E}\left(0_{x}, v_{x}\right)$. The local representation of the vertical lift is $\left(T \psi_{\alpha}^{\prime} \circ \mathrm{vl}_{E} \circ\left(\psi_{\alpha}^{\prime}\right)^{-1}\right)(y, v)=(y, 0 ; 0, v)$.

If $\varphi:(E, p, M) \rightarrow(F, q, N)$ is a vector bundle homomorphism, then we have $\mathrm{vl}_{F} \circ \varphi=T \varphi \circ \mathrm{vl}_{E}: E \rightarrow V F \subset T F$. So vl is a natural transformation between certain functors on the category of vector bundles and their homomorphisms. The mapping $\operatorname{vrp}_{E}:=p r_{2} \circ \mathrm{Vl}_{E}^{-1}: V E \rightarrow E$ is called the vertical projection.
2. The second tangent bundle of a manifold. All of 1 is valid for the second tangent bundle $T T M$ of a manifold, but here we have one more natural structure at our disposal. The canonical fip or involution $\kappa_{M}: T T M \rightarrow T T M$ is defined locally by

$$
\left(T T u \circ \kappa_{M} \circ T T u^{-1}\right)(x, \xi ; \eta, \zeta)=(x, \eta ; \xi, \zeta)
$$

where (U, u) is a chart on M. Clearly this definition is invariant under changes of charts ($T u_{\alpha}$ equals ψ_{α}^{\prime} from 1).

The flip κ_{M} has the following properties:
(1) $\kappa_{N} \circ T T f=T T f \circ \kappa_{M}$ for each $f \in C^{\infty}(M, N)$.
(2) $T\left(\pi_{M}\right) \circ \kappa_{M}=\pi_{T M}$ and $\pi_{T M} \circ \kappa_{M}=T\left(\pi_{M}\right)$.
(3) $\kappa_{M}^{-1}=\kappa_{M}$.
(4) κ_{M} is a linear isomorphism from the vector bundle ($\left.T T M, T\left(\pi_{M}\right), T M\right)$ to the bundle $\left(T T M, \pi_{T M}, T M\right)$, so it interchanges the two vector bundle structures on TTM.
(5) It is the unique smooth mapping $T T M \rightarrow T T M$ which satisfies

$$
\partial_{t} \partial_{s} c(t, s)=\kappa_{M} \partial_{s} \partial_{t} c(t, s)
$$

$$
\text { for each } c: \mathbb{R}^{2} \rightarrow M \text {. }
$$

All this follows from the local formula given above. A quite early use of κ_{M} is in [4].
3. Lemma. For vector fields $X, Y \in \mathfrak{X}(M)$ we have

$$
\begin{aligned}
{[X, Y] } & =\operatorname{vrp}_{T M} \circ\left(T Y \circ X-\kappa_{M} \circ T X \circ Y\right), \\
T Y \circ X-T M \kappa_{T} \circ T X \circ Y & =\operatorname{Vl}_{T M}(Y,[X, Y]) \\
& =\left(\operatorname{vl}_{T M} \circ[X, Y]\right) T\left(++_{T M}\right)\left(0_{T M} \circ Y\right) .
\end{aligned}
$$

See [3] 6.13, 6.19 , or 37.13 for different proofs of this well known result.
4. Linear connections and their curvatures. Let (E, p, M) be a vector bundle. Recall that a linear connection on the vector bundle E can be described by specifying its connector $K: T E \rightarrow E$. This notions seems to be due to [2]. Any smooth mapping $K: T E \rightarrow E$ which is a (fiber linear) homomorphism for both vector bundle structures on $T E$,

and which is a left inverse to the vertical lift, $K \circ \mathrm{vl}_{E}=\operatorname{Id}_{E}: E \rightarrow T E \rightarrow E$, specifies a linear connection. Namely: The inverse image $H:=K^{-1}\left(0_{E}\right)$ of the zero section $0_{E} \subset E$, it is a subvector bundle for both vector bundle structures, and for the vector bundle stucture $\pi_{E}: T E \rightarrow E$ the subbundle H turns out to be a complementary bundle for the vertical bundle $V E \rightarrow E$. We get then the associated horizontal lift mapping

$$
C: T M \times_{M} E \rightarrow T E, \quad C(\quad, u)=\left(T p \mid \operatorname{ker}\left(K: T_{u} E \rightarrow E_{p(u)}\right)\right)^{-1}
$$

which has the following properties

$$
\begin{aligned}
& \left(T p, \pi_{E}\right) \circ C=\operatorname{Id}_{T M \times_{M} E} \\
& C(, u): T_{p(u)} M \rightarrow T_{u} E \text { is linear for each } u \in E \\
& C\left(X_{x}, \quad\right): E_{x} \rightarrow(T p)^{-1}\left(X_{x}\right) \text { is linear for each } X_{x} \in T_{x} M
\end{aligned}
$$

Conversely given a smooth horizontal lift mapping C with these properties one can reconstruct a connector K.

For any manifold N, smooth mapping $s: N \rightarrow E$ along $f=p \circ s: N \rightarrow M$, and vector field $X \in \mathfrak{X}(N)$ a connector $K: T E \rightarrow E$ defines the covariant derivative of s along X by

$$
\begin{equation*}
\nabla_{X} s:=K \circ T s \circ X: N \rightarrow T N \rightarrow T E \rightarrow E . \tag{1}
\end{equation*}
$$

See the following diagram for all the mappings.

In canonical coordinates as in 1 we have then

$$
\begin{aligned}
& C((y, \xi),(y, v))=\left(y, v ; \xi, \Gamma_{y}(v, \xi)\right), \\
& K(y, v ; \xi, w)=\left(y, w-\Gamma_{y}(v, \xi)\right) \\
& \nabla_{(y, \xi)}(\operatorname{Id}, s)=\left(\operatorname{Id}, d s(y) \xi-\Gamma_{y}(s(y), \xi)\right),
\end{aligned}
$$

where the Christoffel symbol $\Gamma_{y}(v, \xi)$ is smooth in y and bilinear in (v, ξ). Here the sign is the negative of the one in many more traditional approaches, since Γ parametrizes the horizontal bundle.

Let $C_{f}^{\infty}(N, E)$ denote the space of all sections along f of E, isomorphic to the space $C^{\infty}\left(f^{*} E\right)$ of sections of the pullback bundle. The covariant derivative may then be viewed as a bilinear mapping $\nabla: \mathfrak{X}(N) \times C_{f}^{\infty}(N, E) \rightarrow C_{f}^{\infty}(N, E)$. It has the following properties which follow directly from the definitions:
(3) $\nabla_{X} s$ is $C^{\infty}(N, \mathbb{R})$-linear in $X \in \mathfrak{X}(N)$. For $x \in N$ also we have $\nabla_{X(x)} s=$ K.Ts. $X(x)=\left(\nabla_{X} s\right)(x) \in E$.
(4) $\nabla_{X}(h . s)=d h(X) . s+h . \nabla_{X} s$ for $h \in C^{\infty}(N, \mathbb{R})$.
(5) For any manifold Q, smooth mapping $g: Q \rightarrow N$, and $Y_{y} \in T_{y} Q$ we have $\nabla_{T g . Y_{y}} s=\nabla_{Y_{y}}(s \circ g)$. If $Y \in \mathfrak{X}(Q)$ and $X \in \mathfrak{X}(N)$ are g-related, then we have $\nabla_{Y}(s \circ g)=\left(\nabla_{X} s\right) \circ g$.
For vector fields $X, Y \in \mathfrak{X}(M)$ and a section $s \in C^{\infty}(E)$ the curvature $R \in$ $\Omega^{2}(M, L(E, E))$ of the connection is given by

$$
\begin{equation*}
R(X, Y) s=\left(\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}\right) s \tag{6}
\end{equation*}
$$

Theorem. Let $K: T E \rightarrow E$ be the connector of a linear connection on a vector bundle (E, p, M). If $s: N \rightarrow E$ is a section along $f:=p \circ s: N \rightarrow M$ then we have for vector fields $X, Y \in \mathfrak{X}(N)$

$$
\begin{align*}
\nabla_{X} \nabla_{Y} s & -\nabla_{Y} \nabla_{X} s-\nabla_{[X, Y]} s= \tag{7}\\
& =\left(K \circ T K \circ \kappa_{E}-K \circ T K\right) \circ T T s \circ T X \circ Y= \\
& =R \circ(T f \circ X, T f \circ Y) s: N \rightarrow E,
\end{align*}
$$

where $R \in \Omega^{2}(M ; L(E, E))$ is the curvature.
Proof. Let first $m_{t}^{E}: E \rightarrow E$ denote the scalar multiplication. Then we have $\left.\partial_{t}\right|_{0} m_{t}^{E}=\mathrm{vl}_{E}$ where $\mathrm{vl}_{E}: E \rightarrow T E$ is the vertical lift. We use then lemma 3 and some obvious commutation relations to get in turn:

$$
\begin{aligned}
& \mathrm{vl}_{E} \circ K=\left.\partial_{t}\right|_{0} m_{t}^{E} \circ K=\left.\partial_{t}\right|_{0} K \circ m_{t}^{T E}=\left.T K \circ \partial_{t}\right|_{0} m_{t}^{T E}=T K \circ \mathrm{vl}_{\left(T E, \pi_{E}, E\right)} . \\
& \nabla_{X} \nabla_{Y} s-\nabla_{Y} \nabla_{X} s-\nabla_{[X, Y]} s \\
&=K \circ T(K \circ T s \circ Y) \circ X-K \circ T(K \circ T s \circ X) \circ Y-K \circ T s \circ[X, Y] \\
& K \circ T s \circ[X, Y]=K \circ \mathrm{vl}_{E} \circ K \circ T s \circ[X, Y] \\
&=K \circ T K \circ \mathrm{vl}_{T E} \circ T s \circ[X, Y]=K \circ T K \circ T T s \circ \mathrm{vl}_{T N} \circ[X, Y] \\
&=K \circ T K \circ T T s \circ\left(\left(T Y \circ X-\kappa_{N} \circ T X \circ Y\right)(T-) 0_{T N} \circ Y\right) \\
&=K \circ T K \circ T T s \circ T Y \circ X-K \circ T K \circ T T s \circ \kappa_{N} \circ T X \circ Y-0 .
\end{aligned}
$$

Now we sum up and use $T T s \circ \kappa_{N}=\kappa_{E} \circ T T s$ to get the first result. If in particular we choose $f=\operatorname{Id}_{M}$ so that s is a section of $E \rightarrow M$ and X, Y are vector fields on M, then we get the curvature R.

To see that in the general case $\left(K \circ T K \circ \kappa_{E}-K \circ T K\right) \circ T T s \circ T X \circ Y$ coincides with $R(T f \circ X, T f \circ Y) s$ one has to write out (1) and $(T T s \circ T X \circ Y)(x) \in T T E$ in canonical charts induced from vector bundle charts of E.
5. Torsion. Let $K: T T M \rightarrow M$ be a linear connector on the tangent bundle, let $X, Y \in \mathfrak{X}(M)$. Then the torsion is given by

$$
\operatorname{Tor}(X, Y)=\left(K \circ \kappa_{M}-K\right) \circ T X \circ Y
$$

If moreover $f: N \rightarrow M$ is smooth and $U, V \in \mathfrak{X}(N)$ then we get also

$$
\begin{aligned}
\operatorname{Tor}(T f . U, T f . V) & =\nabla_{U}(T f \circ V)-\nabla_{V}(T f \circ U)-T f \circ[U, V] \\
& =\left(K \circ \kappa_{M}-K\right) \circ T T f \circ T U \circ V .
\end{aligned}
$$

Proof. (9) We have in turn

$$
\begin{aligned}
\operatorname{Tor}(X, Y) & =\nabla_{X} Y-\nabla_{Y} X-[X, Y] \\
& =K \circ T Y \circ X-K \circ T X \circ Y-K \circ \mathrm{vl}_{T M} \circ[X, Y] \\
K \circ \mathrm{vl}_{T M} \circ[X, Y] & =K \circ\left(\left(T Y \circ X-\kappa_{M} \circ T X \circ Y\right)(T-) 0_{T M} \circ Y\right) \\
& =K \circ T Y \circ X-K \circ \kappa_{M} \circ T X \circ Y-0 .
\end{aligned}
$$

An analogous computation works in the second case, and that $\left(K \circ \kappa_{M}-K\right) \circ T T f \circ$ $T U \circ V=\operatorname{Tor}(T f . U, T f . V)$ can again be checked in local coordinates.
6. Sprays. Given a linear connector $K: T T M \rightarrow M$ on the tangent bundle with its horizontal lift mapping $C: T M \times_{M} T M \rightarrow T T M$, then $S:=C \circ \operatorname{diag}: T M \rightarrow$ $T M \times_{M} T M \rightarrow T T M$ is called the spray. This notion is due to [1]. The spray has the following properties:

$$
\begin{array}{ll}
\pi_{T M} \circ S=\mathrm{Id}_{T M} & \text { a vector field on } T M \\
T\left(\pi_{M}\right) \circ S=\mathrm{Id}_{T M} & \text { a second order differential equation, } \\
S \circ m_{t}^{T M}=T\left(m_{t}^{T M}\right) \circ m_{t}^{T T M} \circ S & \text { 'quadratic', }
\end{array}
$$

where m_{t}^{E} is the scalar multiplication by t on a vector bundle E. From S one can reconstruct the torsion free part of C. The following result is well known:
Lemma. For a spray $S: T M \rightarrow T T M$ on M, for $X \in T M$

$$
\operatorname{geo}^{S}(X)(t):=\pi_{M}\left(\mathrm{Fl}_{t}^{S}(X)\right)
$$

defines a geodesic structure on M, where Fl^{S} is the flow of the vector field S.
The abstract properties of a geodesic structure are obvious:

$$
\begin{aligned}
& \text { geo }: T M \times \mathbb{R} \supset U \rightarrow M \\
& \operatorname{geo}(X)(0)=\pi_{M}(X),\left.\quad \partial_{t}\right|_{0} \operatorname{geo}(X)(t)=X \\
& \operatorname{geo}(t X)(s)=\operatorname{geo}(X)(t s) \\
& \operatorname{geo}\left(\operatorname{geo}(X)^{\prime}(t)\right)(s)=\operatorname{geo}(X)(t+s)
\end{aligned}
$$

From a geodesic structure one can reconstruct the spray by differentiation.
7. Theorem. Let $S: T M \rightarrow T T M$ be a spray on a manifold M. Then $\kappa_{T M} \circ T S$: $T T M \rightarrow T T T M$ is a vector field. Consider a flow line

$$
Y(t)=\mathrm{Fl}_{t}^{\kappa_{T M} \circ T S}(Y(0))
$$

of this field. Then we have:
$c:=\pi_{M} \circ \pi_{T M} \circ Y$ is a geodesic on M.
$\dot{c}=\pi_{T M} \circ Y$ is the velocity field of c.
$J:=T\left(\pi_{M}\right) \circ Y$ is a Jacobi field along c.
$\dot{J}=\kappa_{M} \circ Y$ is the velocity field of J.
$\nabla_{\partial_{t}} J=K \circ \kappa_{M} \circ Y$ is the covariant derivative of J.
The Jacobi equation is given by:

$$
\begin{aligned}
0 & =\nabla_{\partial_{t}} \nabla_{\partial_{t}} J+R(J, \dot{c}) \dot{c}+\nabla_{\partial_{t}} \operatorname{Tor}(J, \dot{c}) \\
& =K \circ T K \circ T S \circ Y .
\end{aligned}
$$

This implies that in a canonical chart induced from a chart on M the curve $Y(t)$ is given by

$$
\left(c(t), c^{\prime}(t) ; J(t), J^{\prime}(t)\right)
$$

Proof. Consider a curve $s \mapsto X(s)$ in $T M$. Then each $t \mapsto \pi_{M}\left(\mathrm{Fl}_{t}^{S}(X(s))\right)$ is a geodesic in M, and in the variable s it is a variation through geodesics. Thus $J(t):=$ $\left.\partial_{s}\right|_{0} \pi_{M}\left(\mathrm{Fl}_{t}^{S}(X(s))\right)$ is a Jacobi field along the geodesic $c(t):=\pi_{M}\left(\mathrm{Fl}_{t}^{S}(X(0))\right)$, and each Jacobi field is of this form, for a suitable curve $X(s)$. We consider now the curve $Y(t):=\left.\partial_{s}\right|_{0} \mathrm{Fl}_{t}^{S}(X(s))$ in $T T M$. Then by $2 .(6)$ we have

$$
\begin{aligned}
\partial_{t} Y(t) & =\left.\partial_{t} \partial_{s}\right|_{0} \mathrm{Fl}_{t}^{S}(X(s))=\left.\kappa_{T M} \partial_{s}\right|_{0} \partial_{t} \mathrm{Fl}_{t}^{S}(X(s))=\left.\kappa_{T M} \partial_{s}\right|_{0} S\left(\mathrm{Fl}_{t}^{S}(X(s))\right) \\
& =\left(\kappa_{T M} \circ T S\right)\left(\left.\partial_{s}\right|_{0} \mathrm{Fl}_{t}^{S}(X(s))\right)=\left(\kappa_{T M} \circ T S\right)(Y(t))
\end{aligned}
$$

so that $Y(t)$ is a flow line of the vector field $\kappa_{T M} \circ T S: T T M \rightarrow T T T M$. Moreover using the properties of κ from section 2 and of S from section 6 we get

$$
\begin{aligned}
T \pi_{M} . Y(t) & =\left.T \pi_{M} \cdot \partial_{s}\right|_{0} \mathrm{Fl}_{t}^{S}(X(s))=\left.\partial_{s}\right|_{0} \pi_{M}\left(\mathrm{Fl}_{t}^{S}(X(s))\right)=J(t) \\
\pi_{M} T \pi_{M} Y(t) & =c(t), \text { the geodesic } \\
\partial_{t} J(t) & =\left.\partial_{t} T \pi_{M} \cdot \partial_{s}\right|_{0} \mathrm{Fl}_{t}^{S}(X(s))=\left.\partial_{t} \partial_{s}\right|_{0} \pi_{M}\left(\mathrm{Fl}_{t}^{S}(X(s))\right) \\
& =\left.\kappa_{M} \partial_{s}\right|_{0} \partial_{t} \pi_{M}\left(\mathrm{Fl}_{t}^{S}(X(s))\right)=\left.\kappa_{M} \partial_{s}\right|_{0} \partial_{t} \pi_{M}\left(\mathrm{Fl}_{t}^{S}(X(s))\right) \\
& =\left.\kappa_{M} \partial_{s}\right|_{0} T \pi_{M} \cdot \partial_{t} \mathrm{Fl}_{t}^{S}(X(s))=\left.\kappa_{M} \partial_{s}\right|_{0}\left(T \pi_{M} \circ S\right) \mathrm{Fl}_{t}^{S}(X(s)) \\
& =\left.\kappa_{M} \partial_{s}\right|_{0} \mathrm{Fl}_{t}^{S}(X(s))=\kappa_{M} Y(t) \\
\nabla_{\partial_{t}} J & =K \circ \partial_{t} J=K \circ \kappa_{M} \circ Y
\end{aligned}
$$

Finally let us express the well known Jacobi expression, where we put $\gamma(t, s):=$ $\pi_{M}\left(\mathrm{Fl}_{t}^{S}(X(s))\right)$ for short and use most of the expressions from above:

$$
\begin{aligned}
& \nabla_{\partial_{t}} \nabla_{\partial_{t}} J+R(J, \dot{c}) \dot{c}+\nabla_{\partial_{t}} \operatorname{Tor}(J, \dot{c})= \\
&= \nabla_{\partial_{t}} \nabla_{\partial_{t}} \cdot T \gamma \cdot \partial_{s}+R\left(T \gamma \cdot \partial_{s}, T \gamma \cdot \partial_{t}\right) T \gamma \cdot \partial_{t}+\nabla_{\partial_{t}} \operatorname{Tor}\left(T \gamma \cdot \partial_{s}, T \gamma \cdot \partial_{t}\right) \\
&= K \cdot T\left(K \cdot T\left(T \gamma \cdot \partial_{s}\right) \cdot \partial_{t}\right) \cdot \partial_{t} \\
&+\left(K \cdot T K \cdot \kappa_{T M}-K \cdot T K\right) \cdot T T\left(T \gamma \cdot \partial_{t}\right) \cdot T \partial_{s} \cdot \partial_{t} \\
&+K \cdot T\left(\left(K \cdot \kappa_{M}-K\right) \cdot T T \gamma \cdot T \partial_{s} \cdot \partial_{t}\right) \cdot \partial_{t}
\end{aligned}
$$

Note that for example for the term in the second summand we have
$T T T \gamma \cdot T T \partial_{t} \cdot T \partial_{s} \cdot \partial_{t}=T\left(T\left(\partial_{t} \gamma\right) \cdot \partial_{s}\right) \cdot \partial_{t}=\partial_{t} \partial_{s} \partial_{t} \gamma=\partial_{t} \cdot \kappa_{M} \cdot \partial_{t} \cdot \partial_{s} \gamma=T \kappa_{M} \cdot \partial_{t} \cdot \partial_{t} \cdot \partial_{s} \gamma$
which at $s=0$ equals $T \kappa_{M} \ddot{J}$. Using this we get for the Jacobi expression at $s=0$:

$$
\begin{aligned}
\nabla_{\partial_{t}} & \nabla_{\partial_{t}} J+R(J, \dot{c}) \dot{c}+\nabla_{\partial_{t}} \operatorname{Tor}(J, \dot{c})= \\
& =\left(K . T K+K \cdot T K \cdot \kappa_{T M} \cdot T \kappa_{M}-K \cdot T K \cdot T \kappa_{M}+K \cdot T K \cdot T \kappa_{M}-K \cdot T K\right) \cdot \partial_{t} \partial_{t} J= \\
& =K \cdot T K \cdot \kappa_{T M} \cdot T \kappa_{M} \cdot \partial_{t} \partial_{t} J=K \cdot T K \cdot \kappa_{T M} \cdot \partial_{t} Y=K \cdot T K \cdot T S . Y,
\end{aligned}
$$

where we used $\partial_{t} \partial_{t} J=\partial_{t}\left(\kappa_{M} \cdot Y\right)=T \kappa_{M} \partial_{t} Y=T \kappa_{M} \cdot \kappa_{T M} \cdot T S . Y$. Finally the validity of the Jacobi equation $0=$ K.TK.TS.Y follows trivially from $K \circ S=$ $0_{T M}$.

References

1. Ambrose, W; Palais, R.S., Singer I.M., Sprays, Acad. Brasileira de Ciencias 32 (1960), 163178.
2. Gromoll, D.; Klingenberg, W.; Mayer, W., Riemannsche Geometrie im Großen, Lecture Notes in Math. 55, Springer-Verlag, Berlin, Heidelberg, 1968.
3. Kolář, Ivan; Michor, Peter W.; Slovák, Jan, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
4. Losik, M.V., On infinitesimal connections in tangential stratifiable spaces, Izv. Vyssh. Uchebn. Zaved., Mat. 5(42) (1964), 54-60. (Russian)
5. Michor, Peter W., Riemannsche Differentialgeometrie, Lecture course at the Universität Wien, 1988/89.
6. Urbanski, P., Double vector bundles in classical mechanics. Geometrical structures for physical theories, II (Vietri, 1996), Rend. Sem. Mat. Univ. Politec. Torino 54 (1996), 405-421.

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, AusTRIA

E-mail address: Peter.Michor@esi.ac.at

[^0]: 1991 Mathematics Subject Classification. 53C22.
 Key words and phrases. Spray, geodesic flow, Jacobi flow, higher tangent bundles.
 Supported by 'Fonds zur Förderung der wissenscahftlichen Forschung, Projekt P 10037 PHY'.

