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THE JACOBI FLOW
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For Wlodek Tulczyjew, on the occasion of his 65th birthday.

It is well known that the geodesic flow on the tangent bundle is the flow of a
certain vector field which is called the spray S : TM → TTM . It is maybe less well
known that the flow lines of the vector field κTM ◦ TS : TTM → TTTM project
to Jacobi fields on TM . This could be called the ‘Jacobi flow’. This result was
developed for the lecture course [5], and it is the main result of this paper. I was
motivated by the paper [6] of Urbanski in these proceedings to publish it, as an
explanation of some of the uses of iterated tangent bundles in differential geometry.

1. The tangent bundle of a vector bundle. Let (E, p,M) be a vector bundle
with fiber addition +E : E×M E → E and fiber scalar multiplication mE

t : E → E.
Then (TE, πE , E), the tangent bundle of the manifold E, is itself a vector bundle,
with fiber addition denoted by +TE and scalar multiplication denoted by mTE

t .
If (Uα, ψα : E � Uα → Uα × V )α∈A is a vector bundle atlas for E, such that

(Uα, uα) is a manifold atlas for M , then (E � Uα, ψ′α)α∈A is an atlas for the manifold
E, where

ψ′α := (uα × IdV ) ◦ ψα : E � Uα → Uα × V → uα(Uα)× V ⊂ Rm × V.

Hence the family (T (E � Uα), Tψ′α : T (E � Uα) → T (uα(Uα) × V ) = uα(Uα) ×
V × Rm × V )α∈A is the atlas describing the canonical vector bundle structure of
(TE, πE , E). The transition functions are in turn:

(ψα ◦ ψ−1β )(x, v) = (x, ψαβ(x)v) for x ∈ Uαβ
(uα ◦ u−1β )(y) = uαβ(y) for y ∈ uβ(Uαβ)

(ψ′α ◦ (ψ′β)−1)(y, v) = (uαβ(y), ψαβ(u−1β (y))v)

(Tψ′α ◦ T (ψ′β)−1)(y, v; ξ, w) =
(
uαβ(y), ψαβ(u−1β (y))v; d(uαβ)(y)ξ,

(d(ψαβ ◦ u−1β )(y))ξ)v + ψαβ(u−1β (y))w
)
.
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So we see that for fixed (y, v) the transition functions are linear in (ξ, w) ∈ Rm×V .
This describes the vector bundle structure of the tangent bundle (TE, πE , E).

For fixed (y, ξ) the transition functions of TE are also linear in (v, w) ∈ V × V .
This gives a vector bundle structure on (TE, Tp, TM). Its fiber addition will be
denoted by T (+E) : T (E ×M E) = TE ×TM TE → TE, since it is the tangent
mapping of +E . Likewise its scalar multiplication will be denoted by T (mE

t ). One
may say that the second vector bundle structure on TE, that one over TM , is the
derivative of the original one on E.

The space {Ξ ∈ TE : Tp.Ξ = 0 in TM} = (Tp)−1(0) is denoted by V E and
is called the vertical bundle over E. The local form of a vertical vector Ξ is
Tψ′α.Ξ = (y, v; 0, w), so the transition functions are (Tψ′α ◦ T (ψ′β)−1)(y, v; 0, w) =

(uαβ(y), ψαβ(u−1β (y))v; 0, ψαβ(u−1β (y))w). They are linear in (v, w) ∈ V × V for

fixed y, so V E is a vector bundle over M . It coincides with 0∗M (TE, Tp, TM),
the pullback of the bundle TE → TM over the zero section. We have a canon-
ical isomorphism VlE : E ×M E → V E, called the big vertical lift, given by
VlE(ux, vx) := ∂t|0(ux + tvx), which is fiber linear over M . We will mainly use
the small vertical lift vlE : E → TE, given by vlE(vx) = ∂t|0t.vx = VlE(0x, vx).
The local representation of the vertical lift is (Tψ′α◦vlE ◦(ψ′α)−1)(y, v) = (y, 0; 0, v).

If ϕ : (E, p,M) → (F, q,N) is a vector bundle homomorphism, then we have
vlF ◦ϕ = Tϕ ◦ vlE : E → V F ⊂ TF . So vl is a natural transformation between
certain functors on the category of vector bundles and their homomorphisms. The
mapping vrpE := pr2 ◦Vl−1E : V E → E is called the vertical projection.

2. The second tangent bundle of a manifold. All of 1 is valid for the second
tangent bundle TTM of a manifold, but here we have one more natural structure
at our disposal. The canonical flip or involution κM : TTM → TTM is defined
locally by

(TTu ◦ κM ◦ TTu−1)(x, ξ; η, ζ) = (x, η; ξ, ζ),

where (U, u) is a chart on M . Clearly this definition is invariant under changes of
charts (Tuα equals ψ′α from 1).

The flip κM has the following properties:

(1) κN ◦ TTf = TTf ◦ κM for each f ∈ C∞(M,N).
(2) T (πM ) ◦ κM = πTM and πTM ◦ κM = T (πM ).
(3) κ−1M = κM .
(4) κM is a linear isomorphism from the vector bundle (TTM, T (πM ), TM)

to the bundle (TTM, πTM , TM), so it interchanges the two vector bundle
structures on TTM .

(5) It is the unique smooth mapping TTM → TTM which satisfies

∂t∂sc(t, s) = κM∂s∂tc(t, s)

for each c : R2 →M .

All this follows from the local formula given above. A quite early use of κM is in
[4].



THE JACOBI FLOW 3

3. Lemma. For vector fields X, Y ∈ X(M) we have

[X,Y ] = vrpTM ◦(TY ◦X − κM ◦ TX ◦ Y ),

TY ◦X −TM κT ◦ TX ◦ Y = VlTM (Y, [X,Y ])

= (vlTM ◦[X,Y ]) T (+TM ) (0TM ◦ Y ).

See [3] 6.13, 6.19, or 37.13 for different proofs of this well known result.

4. Linear connections and their curvatures. Let (E, p,M) be a vector bun-
dle. Recall that a linear connection on the vector bundle E can be described by
specifying its connector K : TE → E. This notions seems to be due to [2]. Any
smooth mapping K : TE → E which is a (fiber linear) homomorphism for both
vector bundle structures on TE,
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u
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E w
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M TM w
πM M

and which is a left inverse to the vertical lift, K ◦ vlE = IdE : E → TE → E,
specifies a linear connection. Namely: The inverse image H := K−1(0E) of the
zero section 0E ⊂ E, it is a subvector bundle for both vector bundle structures,
and for the vector bundle stucture πE : TE → E the subbundle H turns out to
be a complementary bundle for the vertical bundle V E → E. We get then the
associated horizontal lift mapping

C : TM ×M E → TE, C( , u) =
(
Tp| ker(K : TuE → Ep(u))

)−1
which has the following properties

(Tp, πE) ◦ C = IdTM×ME ,

C( , u) : Tp(u)M → TuE is linear for each u ∈ E,
C(Xx, ) : Ex → (Tp)−1(Xx) is linear for each Xx ∈ TxM.

Conversely given a smooth horizontal lift mapping C with these properties one can
reconstruct a connector K.

For any manifold N , smooth mapping s : N → E along f = p ◦ s : N →M , and
vector field X ∈ X(N) a connector K : TE → E defines the covariant derivative of
s along X by

(1) ∇Xs := K ◦ Ts ◦X : N → TN → TE → E.

See the following diagram for all the mappings.
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In canonical coordinates as in 1 we have then

C((y, ξ), (y, v)) = (y, v; ξ,Γy(v, ξ)),

K(y, v; ξ, w) = (y, w − Γy(v, ξ)),

∇(y,ξ)(Id, s) = (Id, ds(y)ξ − Γy(s(y), ξ)),

where the Christoffel symbol Γy(v, ξ) is smooth in y and bilinear in (v, ξ). Here
the sign is the negative of the one in many more traditional approaches, since Γ
parametrizes the horizontal bundle.

Let C∞f (N,E) denote the space of all sections along f of E, isomorphic to the

space C∞(f∗E) of sections of the pullback bundle. The covariant derivative may
then be viewed as a bilinear mapping ∇ : X(N)× C∞f (N,E)→ C∞f (N,E). It has
the following properties which follow directly from the definitions:

(3) ∇Xs is C∞(N,R)-linear in X ∈ X(N). For x ∈ N also we have ∇X(x)s =
K.Ts.X(x) = (∇Xs)(x) ∈ E.

(4) ∇X(h.s) = dh(X).s+ h.∇Xs for h ∈ C∞(N,R).
(5) For any manifold Q, smooth mapping g : Q → N , and Yy ∈ TyQ we have
∇Tg.Yy

s = ∇Yy
(s ◦ g). If Y ∈ X(Q) and X ∈ X(N) are g-related, then we

have ∇Y (s ◦ g) = (∇Xs) ◦ g.

For vector fields X, Y ∈ X(M) and a section s ∈ C∞(E) the curvature R ∈
Ω2(M,L(E,E)) of the connection is given by

(6) R(X,Y )s = ([∇X ,∇Y ]−∇[X,Y ])s

Theorem. Let K : TE → E be the connector of a linear connection on a vector
bundle (E, p,M). If s : N → E is a section along f := p ◦ s : N →M then we have
for vector fields X, Y ∈ X(N)

∇X∇Y s−∇Y∇Xs−∇[X,Y ]s =(7)

= (K ◦ TK ◦ κE −K ◦ TK) ◦ TTs ◦ TX ◦ Y =

= R ◦ (Tf ◦X,Tf ◦ Y )s : N → E,

where R ∈ Ω2(M ;L(E,E)) is the curvature.

Proof. Let first mE
t : E → E denote the scalar multiplication. Then we have

∂t|0mE
t = vlE where vlE : E → TE is the vertical lift. We use then lemma 3 and

some obvious commutation relations to get in turn:

vlE ◦K = ∂t|0mE
t ◦K = ∂t|0K ◦mTE

t = TK ◦ ∂t|0mTE
t = TK ◦ vl(TE,πE ,E) .

∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

= K ◦ T (K ◦ Ts ◦ Y ) ◦X −K ◦ T (K ◦ Ts ◦X) ◦ Y −K ◦ Ts ◦ [X,Y ]

K ◦ Ts ◦ [X,Y ] = K ◦ vlE ◦K ◦ Ts ◦ [X,Y ]

= K ◦ TK ◦ vlTE ◦Ts ◦ [X,Y ] = K ◦ TK ◦ TTs ◦ vlTN ◦[X,Y ]

= K ◦ TK ◦ TTs ◦ ((TY ◦X − κN ◦ TX ◦ Y ) (T−) 0TN ◦ Y )

= K ◦ TK ◦ TTs ◦ TY ◦X −K ◦ TK ◦ TTs ◦ κN ◦ TX ◦ Y − 0.
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Now we sum up and use TTs◦κN = κE ◦TTs to get the first result. If in particular
we choose f = IdM so that s is a section of E → M and X,Y are vector fields on
M , then we get the curvature R.

To see that in the general case (K ◦TK ◦κE−K ◦TK)◦TTs◦TX ◦Y coincides
with R(Tf ◦X,Tf ◦ Y )s one has to write out (1) and (TTs ◦ TX ◦ Y )(x) ∈ TTE
in canonical charts induced from vector bundle charts of E. �

5. Torsion. Let K : TTM → M be a linear connector on the tangent bundle, let
X,Y ∈ X(M). Then the torsion is given by

Tor(X,Y ) = (K ◦ κM −K) ◦ TX ◦ Y.
If moreover f : N →M is smooth and U, V ∈ X(N) then we get also

Tor(Tf.U, Tf.V ) = ∇U (Tf ◦ V )−∇V (Tf ◦ U)− Tf ◦ [U, V ]

= (K ◦ κM −K) ◦ TTf ◦ TU ◦ V.

Proof. (9) We have in turn

Tor(X,Y ) = ∇XY −∇YX − [X,Y ]

= K ◦ TY ◦X −K ◦ TX ◦ Y −K ◦ vlTM ◦[X,Y ]

K ◦ vlTM ◦[X,Y ] = K ◦ ((TY ◦X − κM ◦ TX ◦ Y ) (T−) 0TM ◦ Y )

= K ◦ TY ◦X −K ◦ κM ◦ TX ◦ Y − 0.

An analogous computation works in the second case, and that (K ◦κM−K)◦TTf ◦
TU ◦ V = Tor(Tf.U, Tf.V ) can again be checked in local coordinates. �

6. Sprays. Given a linear connector K : TTM →M on the tangent bundle with
its horizontal lift mapping C : TM ×M TM → TTM , then S := C ◦ diag : TM →
TM ×M TM → TTM is called the spray. This notion is due to [1]. The spray has
the following properties:

πTM ◦ S = IdTM a vector field on TM,

T (πM ) ◦ S = IdTM a second order differential equation,

S ◦mTM
t = T (mTM

t ) ◦mTTM
t ◦ S ‘quadratic’,

where mE
t is the scalar multiplication by t on a vector bundle E. From S one can

reconstruct the torsion free part of C. The following result is well known:

Lemma. For a spray S : TM → TTM on M , for X ∈ TM

geoS(X)(t) := πM (FlSt (X))

defines a geodesic structure on M , where FlS is the flow of the vector field S.

The abstract properties of a geodesic structure are obvious:

geo : TM × R ⊃ U →M

geo(X)(0) = πM (X), ∂t|0 geo(X)(t) = X

geo(tX)(s) = geo(X)(ts)

geo(geo(X)′(t))(s) = geo(X)(t+ s)

From a geodesic structure one can reconstruct the spray by differentiation.
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7. Theorem. Let S : TM → TTM be a spray on a manifold M . Then κTM ◦TS :
TTM → TTTM is a vector field. Consider a flow line

Y (t) = FlκTM◦TS
t (Y (0))

of this field. Then we have:

c := πM ◦ πTM ◦ Y is a geodesic on M .
ċ = πTM ◦ Y is the velocity field of c.
J := T (πM ) ◦ Y is a Jacobi field along c.

J̇ = κM ◦ Y is the velocity field of J .
∇∂tJ = K ◦ κM ◦ Y is the covariant derivative of J .
The Jacobi equation is given by:

0 = ∇∂t∇∂tJ +R(J, ċ)ċ+∇∂t Tor(J, ċ)

= K ◦ TK ◦ TS ◦ Y.

This implies that in a canonical chart induced from a chart on M the curve Y (t)
is given by

(c(t), c′(t); J(t), J ′(t)).

Proof. Consider a curve s 7→ X(s) in TM . Then each t 7→ πM (FlSt (X(s))) is a
geodesic in M , and in the variable s it is a variation through geodesics. Thus J(t) :=

∂s|0πM (FlSt (X(s))) is a Jacobi field along the geodesic c(t) := πM (FlSt (X(0))), and
each Jacobi field is of this form, for a suitable curve X(s). We consider now the

curve Y (t) := ∂s|0 FlSt (X(s)) in TTM . Then by 2.(6) we have

∂tY (t) = ∂t∂s|0 FlSt (X(s)) = κTM∂s|0∂t FlSt (X(s)) = κTM∂s|0S(FlSt (X(s)))

= (κTM ◦ TS)(∂s|0 FlSt (X(s))) = (κTM ◦ TS)(Y (t)),

so that Y (t) is a flow line of the vector field κTM ◦TS : TTM → TTTM . Moreover
using the properties of κ from section 2 and of S from section 6 we get

TπM .Y (t) = TπM .∂s|0 FlSt (X(s)) = ∂s|0πM (FlSt (X(s))) = J(t),

πMTπMY (t) = c(t), the geodesic,

∂tJ(t) = ∂tTπM .∂s|0 FlSt (X(s)) = ∂t∂s|0πM (FlSt (X(s))),

= κM∂s|0∂tπM (FlSt (X(s))) = κM∂s|0∂tπM (FlSt (X(s)))

= κM∂s|0TπM .∂t FlSt (X(s)) = κM∂s|0(TπM ◦ S) FlSt (X(s))

= κM∂s|0 FlSt (X(s)) = κMY (t),

∇∂tJ = K ◦ ∂tJ = K ◦ κM ◦ Y.

Finally let us express the well known Jacobi expression, where we put γ(t, s) :=

πM (FlSt (X(s))) for short and use most of the expressions from above:

∇∂t∇∂tJ +R(J, ċ)ċ+∇∂t Tor(J, ċ) =

= ∇∂t∇∂t .Tγ.∂s +R(Tγ.∂s, Tγ.∂t)Tγ.∂t +∇∂t Tor(Tγ.∂s, Tγ.∂t)

= K.T (K.T (Tγ.∂s).∂t).∂t

+ (K.TK.κTM −K.TK).TT (Tγ.∂t).T∂s.∂t

+K.T ((K.κM −K).TTγ.T∂s.∂t).∂t
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Note that for example for the term in the second summand we have

TTTγ.TT∂t.T∂s.∂t = T (T (∂tγ).∂s).∂t = ∂t∂s∂tγ = ∂t.κM .∂t.∂sγ = TκM .∂t.∂t.∂sγ

which at s = 0 equals TκM J̈ . Using this we get for the Jacobi expression at s = 0:

∇∂t∇∂tJ +R(J, ċ)ċ+∇∂t Tor(J, ċ) =

= (K.TK +K.TK.κTM .TκM −K.TK.TκM +K.TK.TκM −K.TK).∂t∂tJ =

= K.TK.κTM .TκM .∂t∂tJ = K.TK.κTM .∂tY = K.TK.TS.Y,

where we used ∂t∂tJ = ∂t(κM .Y ) = TκM∂tY = TκM .κTM .TS.Y . Finally the
validity of the Jacobi equation 0 = K.TK.TS.Y follows trivially from K ◦ S =
0TM . �
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