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THE JACOBI FLOW
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It is well known that the geodesic flow on the tangent bundle is the flow of a
certain vector field which is called the spray S : TM — TTM. It is maybe less well
known that the flow lines of the vector field kppr o TS : TTM — TTTM project
to Jacobi fields on TM. This could be called the ‘Jacobi flow’. This result was
developed for the lecture course [5], and it is the main result of this paper. I was
motivated by the paper [6] of Urbanski in these proceedings to publish it, as an
explanation of some of the uses of iterated tangent bundles in differential geometry.

1. The tangent bundle of a vector bundle. Let (E,p, M) be a Vector bundle
with fiber addition +g : E Xy ' — FE and fiber scalar multiplication mt :E— FE.
Then (TE, ng, E), the tangent bundle of the manifold E, is itself a vector bundle,
with fiber addition denoted by +7 and scalar multiplication denoted by m!Z.

If (Up,Yo : E | Uy = Uy X V)aea is a vector bundle atlas for E, such that
(Uq, uq) is a manifold atlas for M, then (E | Uy, ¥.,)aca is an atlas for the manifold
E, where

Pl i= (U X Idy) 0 thy : E [ Uy = Uy XV = ug(Uy) x VCR™ x V.

Hence the family (T(E | Uy,), TY., : T(E | Us) = T(ua(Us) X V) = ua(Uy) X
V X R™ x V)qea is the atlas describing the canonical vector bundle structure of
(TE,ng, E). The transition functions are in turn:

= (z,Yap(x)v) for x € Uyg
=uap(y) fory € ug(Uap)
(Ua ( ) Yas(uz ' (y))v)
= (uap(y): Yas(uz’ (y))v; d(uap) (Y)E,
<wwou;x>kw+ww( H(W)w).

(Yo 0 5" ) (2,0
(ua 0uz)(y
(¥4 0 (W)~ (y,v) =
(T, o T() ")y, v; &, w
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So we see that for fixed (y,v) the transition functions are linear in (§,w) € R™ x V.
This describes the vector bundle structure of the tangent bundle (TE, 7g, E).

For fixed (y, &) the transition functions of TE are also linear in (v,w) € V x V.
This gives a vector bundle structure on (TE,Tp,TM). Its fiber addition will be
denoted by T'(+g) : T(E xp E) = TE xpp TE — TE, since it is the tangent
mapping of +p. Likewise its scalar multiplication will be denoted by T'(mf). One
may say that the second vector bundle structure on T'E, that one over T'M, is the
derivative of the original one on FE.

The space {£ € TE : Tp.= = 0in TM} = (Tp)~(0) is denoted by VE and
is called the wvertical bundle over FE. The local form of a vertical vector = is
Ty!,.Z = (y,v;0,w), so the transition functions are (T4, o T(¢3)~")(y, v;0,w) =
(uag(y),@[Jag(ugl(y))v;07¢a5(u/§1(y))w). They are linear in (v,w) € V x V for
fixed y, so VE is a vector bundle over M. It coincides with 0%},(TE,Tp, TM),
the pullback of the bundle TE — T M over the zero section. We have a canon-
ical isomorphism Vlg : E xj)y E — VE, called the big vertical lift, given by
Vig(ug, vs) i= O¢lo(uz + tvy), which is fiber linear over M. We will mainly use
the small vertical lift vlg : E — TE, given by vlg(v,) = 0t|ot.vy = V1ig(04,vs).
The local representation of the vertical lift is (79!, ovlg o(¥,) 1) (y,v) = (y,0;0,v).

If o : (E,p,M) — (F,q,N) is a vector bundle homomorphism, then we have
vlpop =Tpovlg : E - VF C TF. So vl is a natural transformation between
certain functors on the category of vector bundles and their homomorphisms. The
mapping vrpg := prg o Vl]f;1 : VE — E is called the vertical projection.

2. The second tangent bundle of a manifold. All of 1 is valid for the second
tangent bundle TT'M of a manifold, but here we have one more natural structure
at our disposal. The canonical flip or involution kyy : TTM — TTM is defined
locally by

(TTuo kipg o TTu ") (2, &n,¢) = (2,1m;€,€),

where (U, u) is a chart on M. Clearly this definition is invariant under changes of
charts (T'u, equals 1/, from 1).
The flip kps has the following properties:

1) kyoTTf=TTf okryp for each f € C°(M,N).

2) T(wpr) o kg = mrar and g o kpr = T(mwar).

3) Kyp = K-

4) kpr is a linear isomorphism from the vector bundle (TTM,T(mwp ), TM)
to the bundle (T'T'M,wrp, T M), so it interchanges the two vector bundle
structures on TT'M.

(5) Tt is the unique smooth mapping TTM — TTM which satisfies

O0p0sc(t, 8) = kpr0s0:c(t, 8)

for each ¢ : R? — M.

All this follows from the local formula given above. A quite early use of ks is in

[4].
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3. Lemma. For vector fields X, Y € X(M) we have
(X, Y] =viprpyo(TY o X —kpyoTX oY),
TY o X —pp ko TX oY =Vipy (Y, [X,Y])
= (Vloas o[ X, Y]) T(+1ar) (Oras 0 Y).

See [3] 6.13, 6.19, or 37.13 for different proofs of this well known result.

4. Linear connections and their curvatures. Let (F,p, M) be a vector bun-
dle. Recall that a linear connection on the vector bundle FE can be described by
specifying its connector K : TE — E. This notions seems to be due to [2]. Any
smooth mapping K : TE — E which is a (fiber linear) homomorphism for both
vector bundle structures on TF,

TE I | TE K |
U EJ PJ TpJ pJ
E—2 m ™ —TM 0
and which is a left inverse to the vertical lift, K ovlg = Idg : E - TE — E,
specifies a linear connection. Namely: The inverse image H := K~ 1(0g) of the

zero section 0p C F, it is a subvector bundle for both vector bundle structures,
and for the vector bundle stucture g : TE — E the subbundle H turns out to
be a complementary bundle for the vertical bundle VE — E. We get then the
associated horizontal lift mapping

-1
C:TMxy E—TE, C( ,u)= (Tp| ker(K : T,E — Ep(u)))
which has the following properties

(Tp7 ﬂ-E) o C = IdTMX]uEa

C( ,u):TywyM — Ty E is linear for each u € E,

C(Xz, ):E,— (Tp)~*(X,) is linear for each X, € T, M.
Conversely given a smooth horizontal lift mapping C with these properties one can
reconstruct a connector K.

For any manifold N, smooth mapping s : N — F along f =pos: N — M, and

vector field X € X(NV) a connector K : TE — E defines the covariant derivative of
s along X by

(1) Vxsi=KoTsoX:N—TN —TE — E.
See the following diagram for all the mappings.
TFE
27w N
(2) TN E E
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In canonical coordinates as in 1 we have then

C((y’§)7 (y,?])) = (yvv;ga Fy(v7€))a
K(y,v;&,w) = (y,w — Py(v>€))’
v(y,{)(Ida 5) = (Id, ds(y)f - Fy(s(y)7 g))a

where the Christoffel symbol T'y(v,&) is smooth in y and bilinear in (v,§). Here
the sign is the negative of the one in many more traditional approaches, since I"
parametrizes the horizontal bundle.

Let CJ‘?O(N , E) denote the space of all sections along f of E, isomorphic to the
space C™(f*E) of sections of the pullback bundle. The covariant derivative may
then be viewed as a bilinear mapping V : X(N) x C°(N, E) — C¥(N, E). It has
the following properties which follow directly from the definitions:

(3) Vxsis C°(N,R)-linear in X € X(N). For x € N also we have V(s =
KTsX(z)=(Vxs)(z) € E.

(4) Vx(h.s) =dh(X).s + h.Vxs for h € C°(N,R).

(5) For any manifold @, smooth mapping g : @ — N, and Y, € T,Q we have
Vrgy,s =Vy,(sog). If Y € X(Q) and X € X(N) are g-related, then we
have Vy(sog) = (Vxs)og.

For vector fields X, Y € X(M) and a section s € C*°(FE) the curvature R €
O%(M, L(E, E)) of the connection is given by

(6) R(X,Y)s = ([Vx,Vy] = Vix,y])s

Theorem. Let K : TE — E be the connector of a linear connection on a vector
bundle (E,p, M). If s: N — E is a section along f :=pos: N — M then we have
for vector fields X, Y € X(N)

(7) VvaS—VyVXS—V[X)y]SZ
=(KoTKokgp—KoTK)oTTsoTX oY =
=Ro(TfoX,TfoY)s: N = E,

where R € Q?(M; L(E, E)) is the curvature.

Proof. Let first m¥ : E — E denote the scalar multiplication. Then we have
d¢lom¥P = vlg where vlg : E — TE is the vertical lift. We use then lemma 3 and
some obvious commutation relations to get in turn:

vlg oK = Oiomy o K = 00K om{¥ =TK 0 0jom{ ¥ =TK oVlirp rp ) -
VvaS—vYVXS—V[X’y]S
=KoT(KoTsoY)oX —KoT(KoTsoX)oY —KoTso[X,Y]
KoTso[X,Y]=KovlgoKoTso[X,Y]
=KoTKovlrgoTso[X,Y]=KoTK oTTsovlryo[X,Y]
=KoTKoTTso(TYoX —kyoTXoY)(T-)0rnoY)
=KoTKoTTsoTYoX —KoTKoTTsorkyoTXoY —0.
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Now we sum up and use TTsoky = kg oTTs to get the first result. If in particular
we choose f = Idj; so that s is a section of E — M and X,Y are vector fields on
M, then we get the curvature R.

To see that in the general case (KoTKokgy—KoTK)oTTsoTX oY coincides
with R(T'f o X,Tf oY)s one has to write out (1) and (TTsoTX oY)(zx) € TTE
in canonical charts induced from vector bundle charts of £. [

5. Torsion. Let K : TTM — M be a linear connector on the tangent bundle, let
X, Y € X(M). Then the torsion is given by

Tor(X,Y)=(Koky —K)oTXoY.
If moreover f: N — M is smooth and U,V € X(N) then we get also
Tor(TfUTFV)=Vy(TfoV)—=Vy(TfoU)—-Tfo[U,V]
— (Kory —K)oTTfoTUoV.

Proof. (9) We have in turn
Tor(X,Y)=VxY - VyX — [X,Y]
=KoTYoX -—KoTXoY — Kovlryo[X,Y]
Kovlpyo[X,) Y| =Ko ((TYoX —kpyoTX oY) (T—)O0pp0Y)
=KoTYoX —-—KogrpyoTXoY —0.

An analogous computation works in the second case, and that (Kory —K)oTT fo
TU oV =Tor(Tf.U,Tf.V) can again be checked in local coordinates. O

6. Sprays. Given a linear connector K : TT M — M on the tangent bundle with
its horizontal lift mapping C : TM xp; TM — TTM, then S := C odiag: TM —
TM xp TM — TTM is called the spray. This notion is due to [1]. The spray has
the following properties:
mrym 0 S = Idrym a vector field on T'M,
T(mpr) oS =1Idras a second order differential equation,
SomIM =T(mI'"M)omI™ o8 ‘quadratic’,
where mP is the scalar multiplication by ¢ on a vector bundle E. From S one can
reconstruct the torsion free part of C'. The following result is well known:
Lemma. For a spray S:TM — TTM on M, for X € TM
geo® (X)(t) := mar (F17 (X))
defines a geodesic structure on M, where F1° is the flow of the vector field S.
The abstract properties of a geodesic structure are obvious:
geo: TMxRDOU - M
geo(X)(0) = mpr(X), Oelogeo(X)(t) = X
geo(tX)(s) = geo(X)(ts)
geo(geo(X)'(t))(s) = geo(X)(t + s)

From a geodesic structure one can reconstruct the spray by differentiation.
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7. Theorem. Let S :TM — TTM be a spray on a manifold M. Then kpproT'S :
TTM — TTTM is a vector field. Consider a flow line

Y (1) = FIF™ T (v (0))
of this field. Then we have:
c:=mp ompp oY s a geodesic on M.
¢=mpp oY is the velocity field of c.
J:=T(mp) oY is a Jacobi field along c.
J =k oY is the velocity field of J.
Vo, J = Kokp oY is the covariant derivative of J.
The Jacobi equation is given by:

0=Vy,Vs,J+ R(J,é)é+ Vy, Tor(J, ¢)
=KoTKoTSoY.
This implies that in a canonical chart induced from a chart on M the curve Y (t)

is given by

(c(t), ¢ (t); I (1), J' (1))
Proof. Consider a curve s — X(s) in TM. Then each t — mp(FIZ(X(s))) is a
geodesic in M, and in the variable s it is a variation through geodesics. Thus J(t) :=
dsomar (F17(X (s))) is a Jacobi field along the geodesic ¢(t) := ma(F17 (X (0))), and
each Jacobi field is of this form, for a suitable curve X (s). We consider now the
curve Y (t) := 0slo Flf(X(s)) in TTM. Then by 2.(6) we have
OY (t) = 8,050 FI7 (X (5)) = krar0s|ody F19 (X (5)) = krards|oS(FIY (X (s)))
= (krar 0 TS)(0s)o FIY (X (5))) = (wrar 0 TS)(Y (1)),
so that Y (¢) is a flow line of the vector field kpp 0TS : TTM — TTTM. Moreover
using the properties of x from section 2 and of .S from section 6 we get
T Y (t) = Trar.0slo FIZ (X (s)) = 9s|omar (FIZ (X (5))) = J (1),
T Y () = c(t), the geodesic,
A J(t) = 0, Tar.0slo FIY (X (s)) = 8,0 |omar (FIS (X (5))),

= KM85|08157TM(F1§(X(8))) = IQM83|08157TM(F1§(X(8)))

= krOsloTpr. 0, FIZ (X (5)) = kpr@s|o(Tmar 0 S) IS (X (5))

= kar0slo FIZ (X (5)) = ks Y (1),

Vo, J=KodJ=KorpyoY.
Finally let us express the well known Jacobi expression, where we put (¢, s) :=
7 (F17 (X (s))) for short and use most of the expressions from above:
Vo,Vo,J + R(J,¢)é+ Vi, Tor(J, ¢) =
=Vy,Vo, Tv.05s + R(T7.0s, Tv.01)T7.0r + Vo, Tor(T.0s, T7.0;)
+ (KTK.kpy — KTK).TT(T7.0:).T9s.0;
+ KT(K.ky — K).TT~.T05.04).0;
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Note that for example for the term in the second summand we have
TTT~.TT0;.TOs.0y = T(T(0¢).05).0y = 01050y = Op-kins.0p.0sy = Thipr.0p.0¢.057
which at s = 0 equals Trard. Using this we get for the Jacobi expression at s = 0:

Vo,Va,J + R(J,é)é + Vo, Tor(J,é) =
=(KTK + KTK.kry Ty — KTK.Tky + KTK Tky — KTK).0:0,J =
= K.TK.HTM.TKJM.atatJ = K.TK.HTM.&Y = KTKTSY,

where we used 010;J = Oi(kp.Y) = Thp0 Y = Thprkry. TS.Y. Finally the
validity of the Jacobi equation 0 = K. TK.TS.Y follows trivially from K o S =
Oprp. O
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