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ABSTRACT.
It is shown that Diff( X ), the space of diffeomorphisms of a lo»

cally compact smooth manifold X, is 2 Lie group.

This paper is a sequel of [8], where we presented a manifold
structure on the space C*( X, Y) of smooth mappings X » ¥ for (are
bitrary nonscompact) finite dimensional manifolds X, Y, using the no-
tion of differentiability C;Q of Keller [4], The main idea was the intro-
duction of a new topology,

Here we show that Diff( X), the space of diffeomorphisms of a
locally compact manifold X , equipped with the $™®-topology of [8], is
a Lie group in the same notion of differentiability C".

In Gutknecht [ 3] it is shown that Diff(X) for compact X admits
a Lie group structure in the stronger notion CF . This is done by the

functorial method of deriving the adjunction relation
CPR(X,C™(Y, 7)) =C"(XxxY, Z)

for compact Y . An easy corollary of this is the Cfg-differentiability of
the composition on Diff( X). Unit and counit of this adjunction are the
Cfo\-differentiable mappings :

X C®(Y, XXY) givenby xp(yb(x,y)),
and evaluation

Ev: XXC™(X,Y)~»Y givenby Ev(x,f)=f(x).
If Y is not compact, then the first mapping is not even continuous if

* ) Partially supported by a research grant of the City of Vienna, 1978.
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P. MICHOR

C*(Y,XXY) is equipped with the Whitney-C’topology: a continuous
curve stays constant outside some fixed compact of Y if the parameter
stays within some compact set of R. See [9] for 2 more detailed account
of this. So the above adjunction does not exist, if Y is not compact.
Therefore we are forced to prove the C -differentiability of the compo-
sition by direct «onslaught»: the proof is complicated and heavy going
and we excuse for the lack of elegance. The method of proof of [6] is

of no help, since it is wrong.

The reader is assumed to be familiar with [8], especially with
the sections dealing with topology (Sections 1, 2) and with the {}-lemma
(3.8). The manifold structure will be explained again (6.3) in a some-
what simpler form as presented in [9]. Sections will be numbered from
S onwards, following those of [ 8] (Sections 1 to 4), citations with lead-

ing number less than 5 refer to [8] (e.g. 3.8).

5. SOME TOPOLOGY AGAIN.

Let X be a smooth finite dimensional manifold. Let J*( X, X)
be the smooth fibre bundle of n-jets of smooth mappings from X to X
(see 1.1), Let J”(X,X)x,y be the fibre over (x,y)e XXX, i,e., the
space of n-jets at x of maps fe C*(X, X) with f(x) =y . Further, let
(X, X)

inv X1y be the open subset of invertible n-jets from x to y. It

is clear that
IE (X XDy =ai (GL(X,X), ),
where ) .: JMX, X))~ ]k(X, X) is the canonical projection for n 2 k
(cf. 1.3) and GL( X, X), y denotes the open subset of invertible I-jets
.1 i . . i

from x to y in J (X,X)x,y . in a canonical chart J (X,X)x,y cor-
responds to the space of all dim X X dim X -matrices and GL( X, X)x y
corresponds to the open subset of invertible ones. By the construction

of the canonical chart for /®( X, Y ) it is clear that

n — n
Va2, 4 (x,y)eUXxX]'"”(X’ Moy

is a smooth subbundle of the fibre bundle /*( X, X ).
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MANIFOLDS OF SMOOTH MAPS I

5.1. LEMMA. The mapping

. . Jn
inv:I],

(X, X)) > IE (X, X)

inv Y,x’

given by inv(o =gl for ol (X, X), ¥ ts smooth and

tnv

(X,X)~ I}, (X, X)

inv: ]f’ inv

tnv

is a smooth fibre bundle homomorphism over
(x,y) b (y,x): XXX > XXX,

P ROOF. By looking at a canonical chart we see that invf(o) = ol cor
responds just to the inverse power series of the polynomial mapping
R‘“m X, 0 - Rdimx, 0 corresponding to o, truncated at order 1. Since
the coefficients of the inverse power series are rational functions of the

coefficients of the polynomial, the assertion follows. QED

S 2. PROPOSITION. The set Diff( X) of diffeomomphisms X > X is an
open subset of C™(X,X) in the D-topology and the D™-topology.

PROOF. These two topologies are described in Sections 1, 2 respectives
ly. Diff(X) is open in the coarser Whitney-C®~topology ( see [71, Pro-

position 2.5), so the assertion follows. QED

5.3, TIIEOREM. The mapping
Inw: Diff( X)~ Diff(X), given by Inv(f)= [,
is continuous in the D-topolo gy and the D -topology.

PROOF. First we show that this is so for the P-topology. We use the
base for it described in 1.5 (c): let fe Diff(X) and let M'(L,U) be
a basic D-open neighborhood of f'l in Diff(tX), i.e., L=(L,) and
U=(U,), where each L, is compact in X with (X\L,?) being a lo-
cally finite family, and each U, is open in anU(X, X ) for each n>0.

Then
M(L,U)=tge c>(X, X) \ jn(g)(X\Ln")C U, for all n}.

We want to construct a D-open neighborhood P of f such that

Inv(PDiff(X)) CM'(L,U).
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[TeM'(L,U) means

1)U, ) > X\ for all n.
Let ! be a sequence of compacts of X such that

(R0 ) XL D X\LL D K\L,e
and such that X\L'¢? is still a locally finite family. Let
K'=f1(L), K,=f1(L,), K'=(K})) and K=(K,).

These two are sequences of compacts and (X\K}?), (X\K,?) are lo-
cally finite families. Further K/ C K,°.

Let d be a metric on X and let p be a strictly positive continuous funce

tion on X such that

0 <max{p(x)|xeK, }< distance between the compact /. and

the disjoint closed set X\L ° |

for each ne N. Such a function may be found since ( X\Lo) is locally

finite (cf. Proof of 1.4). Let
V. =inv(U,)C (X, X),

n nv

then ¥V, is open by 5.1, and let V' = (V,).
Consider the basic D-open set M'(K', V). We claim that it contains /.

Forlet n e N and x ¢ X\K? | then
) ) = il OO (x))) 5

but

so ") f(x))el,

[(x)e[(X\K')=X\L}e,
by the choice of L' . This implies
U )(x)einv(U, )=V, andso [eM'(K', V).
Now let V (([) be the D-open neighborhood
fge C(X,X) | d(f(x),g(x))<p(f(x)) forall xe X}
(cf. 1.5: (suppl/pof) is locally finite), and let |
CPEMU(KL V)NV, f(f).

We claim that Inv( PN Diff(X)) CM'(L,U).
Let ge PN Diff(X). Then g(K,)C L, forall n, since for x¢€ K, CK,
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MANIFOLLS OF SMOOTH MAPS 11

we have

dif(x),g(x)) < alf(x)), f(x)ely
and p( f(x)) is less than the distance between L, and X\L.’. So
cUX\L o) =X\g (L) c X\gTg(Ko)=X\K}2 .
Take n¢ N and xe X\[, ? | then
gl )(x) = inol P g)g (%))
x€ X\L o implies g (%) ¢ X\K!0 as we saw above, so
j”(g)(g'l(x))f V,=inv(U,)
since ge M'(K', V), so (g™ )(x)e U, . This shows g-le M' (L, U).

To see that [nv is continuous for the T™-topology too it suffices to note

that Inv is compatible with the equivalence relation from 2.1. QED

5.4. PROPOSITION. Let X, Y, 7 be smooth locally compact manifolds.

Then the canonical identification
C(X, YXZ)=C®(X,Y)xC?(X,Z)
is a homeomomhism for the D- and the P<-topologies.

REMARK. A direct proof of this fact can be given along the lines of
({21, Chapter 1I, Proposition 3.6). Lemma 1.9 plays a vital role in it,
The assertion for the D -topology will be a consequence of 6.4 below;

we will not need more than that later on.

6. DIFFERENTIATION.
6.1. The notion of differentiation: We use the notion of differentiability
C: of Keller [4], but in the formally weaker form of CC’C0 .In [4] it is
shown that C' = CT holds in general.

Let E, F be locally convex linear spaces, let f: E+F be a
mapping. [ is said to be of class C if, for all x, ye E and Ae R, we

have

Lim -)]T(/(er/\y)- f(x)) =Df(x)y

in F, where Df(x) is a linear mapping £~ F for each xe¢ E , and the
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mapping
(x,y)b Df(x)y: EXE > F
is jointly continuous.
This concept is applicable with the obvious changes if f is only

defined on some open subset of .

f is said to be of class Cg if Df is of class C(I: as a mapping
EXE > F, and so on for the higher derivatives.

We refer to [ 4] for more information.

The notion Cg was introduced by Ehresmann ( Bastiani (1], who

also showed the following - we include a proof for completeness sake.

6.2. PROPOSITION (partial derivatives ). Let E;, E,, F be locally
convex linear spaces. Let [: £ ;X E,~> F be a mapping. [ is of class
Cé iff the mappings x, b f(x] ,x2), X b f{xl,xz) are of class Cé
for each fixed x,, x; respectively, with derivatives Dy f(x;,%5 )y and
Dgf(x] » X0 )Y o respectively, which are jointly continuous in all appear

ing variables. The derivative of [ is then given by

Df(x px,)(yyy) = Dy [(x,05)y 4 Daf(%),25 )75
The same is true if f is defined on an open subset of E; X E, only.
P ROOF. Necessity:

Dyf(xgy%o)yy = lim ([ (xy thyy 5y) = f(xp ) =
:/iim()%(f((x pa) ANy 0))-f(xg,%5)) = Df(xp,2,)(y,0),

So le is jointly continuous in all appearing variables. Analogously
for Do f.
Sufficiency:

D f(xy,%xq)y; + Dof(x7,%5)y 5=

= lim Dyf(xp, %gtAya)yp® Dof(xy,25)y2 =

= lim lim l(f(ler”yl’ x2+)\y2)-f(x1,x2+)\y2))+
A->0p-0p

+lim l(f(xl,x2+ﬂy2)'f("1»x2)):
poOp
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MANIFOLDS OF SMOOTH MAPS II

:#li"})é(f(xl+“yl’x2+”y2)' [(x;, xotpyy))t
+é(f(x1,x2+#y2)-f(x1,xg)) =

=£L;m() -i(f((xz,xg)Jru(y],yg))- f(x1,%9))=Df(x1,x,)(yp, %)

The joint continuity of D in all appearing variables is clear from the

same property of D; f and Dyf. QED

6.3. The manifold structure. We give a short review of the manifold struc-
ture on C7(X,Y), X, Y being locally compact smooth manifolds. We
use a simplified form of the manifold structure set up in 3.3, 3.4 and 3.6;
this version is described in ([9], 8).

Let 7: TY> Y be a smooth mapping such that for each y in ¥V
the mapping 7 TY->Y is a diffeomorphism onto an open neighbor-
hood of y in Y, and Ty(oy) =y. Such a map may be constructed by
an exponential map following an appropriate fibre respecting diffeomor-
phism from TY onto the open neighborhood of the zero sectien, on which
the exponential map is diffeomorphic. If 7, TY-s Y denotes the cano-
nical projection, then the mapping (7,7y J: TV > ¥ XY is a diffeomor-
phism onto an open neighborhood of the diagonal in Y X Y . In Seip [11]
these maps (which need not be defined globally there) are called «local
additions», We will adopt the same name for convenience sake.

I fc C°{X,V), consider the pullback f*TY which is a vector
bundle over X, and the space (D(f*TY) of all smooth sections with
compact support of this bundle, equipped with the 9 -topology ( which
coincides with the D-topology here). This is a locally convex dually
nuclear (LF)-space, being the straightforward generalization of the space
9 of test functions with compact support in distribution theory. See 2.7
for further information.

Let ‘/ff-' PDf*TY) » €°(X,Y) be the mapping
Wpls)(x) =10 )slx)e Y.

Denote by U, the image of (/;, which is an open subset of C*(X,Y);
for let Zf = xeux({ %} Xr/(x)( Tf(x)Y)) be the open neighborhood of
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the graph i1(x,f(x)) | xe X} of f in XXV =J%X,Y) (in fact a
tubular neighborhood with vertical projection, cf. 3.3-3.5). Then Uf
consists of all ge C*( X, Y) such that the graph of g is contained in
Zf and g~ [ (i.e., g and [ differ only on a relatively compact subset
of X ), so Uf is O-open.

‘/ff is continuous by 2.5 and has a continuous inverse

cf)f: Uf—> fD(f*]Y) given by ¢f(g)(x) = Tf'(]x)(g(x)) =

= (T,ny)'l(g,f)(x),

as is easily checked up.

(Uf, (/)f,ff)(f*TY)) will serve as canonical chart centered at f.
Now let us check the coordinate change. Let f, gc C*( X, Y) with:
UfﬂUg E®.Forsc (;’)f((/fﬁ(]g) we have

b K 2D = D = ot ),
so the map
d)g(/'f: d)f(UfﬂUg)C DETY) > D(g*TY)
1s given by
) -
(1 orp)e = ((7ymy) 1 ol ldy, g)o (r,nf*,ry))*,
by pushing forward sections by a fibre preserving (locally defined) dif-

feomorphism. So the coordinate change is continuous and of differentia-

bility class C by the (}-Lemma 3.8.

6.4 PROPOSITION. Let X, Y, Z be smooth locally compact manifolds.

Then the canvnical identification

C¥(X, YXZ)=C®(X,Y)XC>(X,Z)
is of class C7. The identification is compatible with the choice of ca-
nonical charts. _
PROOF. Let (f,g)e C°(X,Y)XC®(X,Z). We write again (f, g) for
the corresponding element of C*{ X, ¥ XZ ) given by

(fog)(x)=([(x), g(x)).
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MANIFOLDS OF SMOOTH MAP S 11

Let 7: I'Y » Y be a local addition on ¥V, p: TZ > Z be one on 7 , then

7 Xp is a local addition on ¥ XZ . We have
DCf, g)*T(YXZ))=D[*TY@g*TZ)=D(f*TY)*xD(g*TZ)
and U(f,g) =Upx Us’ for the canonical charts, and the following diagram

commutes

Utf,e) Pire) +fD((f,?’)*T(Y><Z))
| |
Upey = grvg, = DTV XD T7).

QED
6.5. PROPOSITION. For each n> 0, the mapping
O (X, Y) > CF(X, 15(X,Y))
is of class C .
PROOF. Let
reTY>Y and p: TI5(X,Y)>T%(X,Y)
be local additions for ¥ and J5( X, V) respectively. Let [¢ C®(X,Y),
then j¥fe C®(X, J¥(X,Y)); consider the canonical chart (U dr)
centered at [ of C*( X, ¥Y) and the canonical chart (Ujkf,gbjkf) center-
ed at j*f of C®(X, J¥(X,Y)). We have to check wether the mapping

¢_kfoj’fo¢lf.-®([*TY) S DeEFFTIFCX, Y ))
]

is of class C . For s¢ DOf*TY) we have

¢ o ffou s x) = Lk s x/)) =
(G o it ow (s )] =Cpy I 40 0)(x))

= -1, -k — -1k o
TosS = X, r S .
(0 by (T (o8 )) = (o JIHX ) (s (%)),

Il
where

IEOX, e ) IROX, TY) > TR(X, Y)
is the (functorially) induced mapping. Now jks e CO(X, 150X, Y)) by
definition but in fact it is an element of the closed subspace DJ*(f*T¥)

of smooth sections with compact support of the vector bundle ]k(f*T Y)

71



P. MICHOR

over X, which consists of k-jets of sections of the bundle [*T Y (cf.
[10)). We will write ¥ s if we consider it to be a section of ]k(f* TY).
The mapping

PEDrETY) S DOTEOFETY))
is linear and continuous (being a complex of partial differential opera-
tors on a space of test functions - in a canonical chart) so it is trivially

of class C;O . Therefore we have
(6 4 0ot )(s)(x) = (o) I E T Y DT s ) (),

and it is easily seen that
(p‘kfrl(f’vx,r)! TECPETY ) IR TY ) > (fE)*TIF(X, Y )
]
is a fibre preserving smooth mapping, so pushing forward sections by

it is of class (' by the {J-Lemma 3.8. The assertion follows by the

chain rule. QED

6.6, REMARK. The mapping T: C*(X,Y)> C*(TX,TY) is not even
continuous in the D-topology, neither in the D™ -topology: let f, bea
sequence converging to [ in C™(X, V). Then f, equals [ off some
fixed compact set in X for all but finitely many n (2.3 or [9]). But if
[, differs from [ for infinitely many n at some xe€ X, then Tf differs
from T [ on the whole fiber T, X, so Tf, cannot converge to T f in ge-

neral. Thus there is no chance for T to be differentiable. But it can be
shown that the mapping
(s, f)b Tfsy DITX)XC(X,Y)» C(X,TY)

is continuous and even differentiable (compare [7], 2, Proposition 6),
since we may write

- — . _ 1

(Tfos)x)=(Tyf)s(x))=(j" f(x).s(x)= comp(j"[,s)(x),
where comp: T XXy JE(X,Y)>TY is just composition of matrices
and vectors locally, which is smooth. We will use this technique in a

much more complicated situation later on.

6.7. THEOREM. Let X be a locally compact smooth manifold. Then the
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MANIFOLDS OF SMOOTH MAPS 11

space Diff( X) of all diffeomomphisms of X is a Lie group in the 9%-
topolo gy.

Diff(X) is open in C™(X,Y) in the D- and the D topology,
composition is continuous by 2.5 and inversion is continuous by 5.3, so
Diff( X) is a topological group in the D-topology and in the £ -topology.
[n the latter it is an open submanifold of C*( X, Y), and we will show
that it is a Lie group in this indu‘ced manifold structure. The proof of

this will occupy Sections 7 and 8.

7. THE COMPOSITION IS DIFFERENTIABLE.

7.1. Before we can begin with the proof, we need some preparation,If
p: E» X is a vector bundle then let us denote by V{(E)=rherT(p) the
vertical subbundle of the bundle TFE » E, If Ex = p'I(x) is the fibre
over x¢ X and i, E, C,. E is the embedding, then we may identify
T,(E.) with E, itself for ve £, via the affine structure of £, and

define

Viv,w)e V(E) for vy we £, by V(v,w)=T,(i )w.
It is clear tha-t V=Vgp:E®E-V(E) is an isomorphism of vector bun-
dles over X. V(v,w) will be called the veriical lift of w over v. The
mapping:

Ep =proo Vi i V(E) » EG@FE » E

is called the verlical projection.
LEMMA. T V(E), Vi, fE commute with pullbacks of vector bundles.

2 Let a: E-> E' be a smooth fibre mapping between vector bun-

dles as given by the diagram

E a - E
p p'
X B LY

then the fibre derivative of a, the mapping dfa: E@E~ E' over B is
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given by dfa =&épio(TalV(E))o V.

PROOF. If f: X'» X is a mapping, then the pullback bundle f*F is
pping

given as the following categorical pullback:

pE=Ex _xt —Lt2 ~ X'
(p.f,X)
i
szl /

) P - X

In view of this, we have: f¥E@ E) = f*E@® f*E,

VIf*E)=V(E x X')=V(E) X Oyrs
/ (psf,X) (TP, Tfl Oxrr 0y) X

where Oy is the zero section of X, both as a manifold and a mapping,

and V = Vg X 0y.. Assertion 2 of the lemma is clear. QED
[*E

REMARK. If f: X> Y is a smooth mapping and 7: TY > Y is a local ad-
dition, then we will denote by 7,¢ [¥TY > YXX the diffeomorphism into

given by

X
[(ATY =TY, x Yy __’dX..,YXX_
fﬂy,f,Y)

Clearly we have (rf)-z(y,x)‘—‘rf(x)'l(y), if we identify (f*’TY)x
with Tf(ib)Y'

7.2, THEOREM. Let X, Y, Z be locally compact smooth manifolds.

Then the composition mapping

Comp: C*(Y,7Z) X C;omp(X, Y)» C*(X,Z),

given by Comp(g,f) = go f, is of class C .

Here C;Qrop(X, Y) denotes the open subset of proper mappings

of C(X,Y) (cf. 1.9, 2.5).
PROOF.Let gc C*(Y,Z), fe C:fmp()(, Y). We will show that Comp
is differentiable in the canonical charts centered at g, f and go f res-

pectively, as described in 6.3. Let

7:TY->Y and p:TZ-7
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MANIFOLDS OF SMOOTH MAPS II

be local additions, inducing the canonical charts.
We will suppose that Uf and Ug are small enough such that
X
Comp (Ug Uf) C Ugof

- to be precise we should restrict to open subsets of Uf and Ug respecs
tively, using continuity of the composition (2.5), but we will not spe-

cify this to save notation. So by some abuse of language we consider
the mapping (1):
¢= ¢y 0 Compolyy Xib ): DIg*TZ)XD([*TY) > Difgo [FTZ).
We have to show that ¢ is of class C;,Q and we will do this by showing
that it is of class CT , using 6.2.
The mapping ¢ is given for t ¢ D(g*TZ ), se D(f*TY), by
(2)  elt,s)(x) = 0 Compoliy <y )t,s)(x)=
_ _ - -l -
= b gy (t)oth (s))(x) = p L lptrs(x))
:(P,WZ)J(ptTS(x),gf(x))::pgf(ptTS(x),x).
There is some abuse of notation in this formula too: we did not distin-
guish vector fields along [ with compact support from sections of the
vector bundle f*T'Y | i.e., we have identified .,er(X, T7Y) with the iso-
morphic space D([*T Y ), to save notation. Let us first look at the dif-
ferentiability of the mapping
(3) thel(t,s), teD(g*TZ ), for fixed s¢ DY),
Since 7s ~f and [ is proper, s is proper too, so the mapping
(4) (rs)*:D(g*TZ)>D((grs)*TZ), (rs)¥t=trs,
is continuous and linear,
Then we consider the fibre respecting (but not everywhere defined) dif-

feomorphism over [dy :

=p X[d
(5) (grs)*17 =77 x x LersZP7IX 5oy
(n.ZygTSyZ) 1
lpgf
rz, x X=(gf)*TZ.
(nZ 7gf:Z) g[
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It is clear that
(6) [(pgf'l opg”)*o(rs)*t](x) =pgf'1.(ptrs(x),x} =
= pygre) pETS(%) = el t,s)(x).

By the chain rule and the (-lemma the mapping (3) is therefore of class

C, and its derivative is given by .
_ -1 —
(7) Dyelt,s)t')=D((pgy opgrs)*(rs)*)(t)(t') =
= D0(p, T olp Xy )Je)((rs)*)(D(rs)*(1)( 1)) =
- df(pgf] olpXldy ))(trs,t'rs)=
= é—(gf)*TZ ) T(pgf'lo(pX[dX))o V{g?’s)*TZ(tTS’ t'rs) =
=&y prrzol(pgil)o T(pXldy Jof Vyg(trs, t'rs)x 0y )
=&rgrrrz o Tlpgi ) o(TCo)oVyy(trs, t'rs), 0y ).
Here we again considered t7s, t'rs both as sections of the bundle
(grs)*TZ and as mappings X » I'Z . We used heavily Lemma 7.1. The
last line of formula (7) shows that DZ clt, s)t! is jointly continuous
in s, t, t' (use 6.4, the conrinuity of the composition and the fact that
the mapping

shrs, DFTY) > €3 (X, V)

is continuous ).

Now we investigate the differentiability of the mapping
(8)Ysbelt,s), sc¢ DOfFTY), for fixed te m(g*TZ).
For fixed ¢t we define the mapping

(9) a(t): f*TY > (gf)*TZ by:
mr_f=r><[dx ¥ X X (pt)xldy

f*TY=TY( >§(WX L L YXX A 7XX
77)/,,
-1
Pef
TZ X X=(gf)*T7Z.
("ngf’z) gf

Then we have

(10) a(t)us =p,;lolptXidy) olrxldy)os =
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:pgfl(ptrs, Idy)=c(t,s),

where a(t) is a fibre mapping over [dy . So by the J<Lemma and by
the chain rule the mapping (8) is of class C and the derivative is giv-
en by:

(11) Dyc(t,s)s"=Dlaft)s)s)(s') = a’fa(t)o(s,s').

But the mapping ¢ b a(t) is not continuous ( there is a non proper open
embedding on the right of ¢ ) neither is ¢ |+ dfa(t). So we have to re-
arrange the expression (11) in such a way as to see the joint continuity

int, s, s', We compute as follows, again using Lemma 7.1:
(12) Dye(t,s)s'= dfa(t)o(s,s') =
=&gpyrrze Tlalt))o Vinpy(s,s') =
=&, pxrz0 T pgi Vo TlpexIdy Jo T(r}ldy JoV prqy(s,s') =
=&rgpprze Tpg; Jo(Tlptr)XTldy)o(Vyyx 0y) (s,s') =
= &rarprrgo Tpg o (Tlptr)oVpy(s,s'), 0x).
So it remains to show that the mapping
(13) (t,s,8") b T(ptr)Vpy(s,s')
is continuous. For that we use the manifold

M= TTYTxy/I(TY,Y)Yxﬂ(Y,TZ)T;J’(TZ,Z),
N,
SN N N
TY Y rZ

which is a submanifold of the product, and the following composition

evaluation mapping u: M- TZ given by:
(14) pu(v,0;,05,03)=0300500;(v).

Since p is locally just multiplication of matrices, it is C” . Then we

have:
(15) T(ptr)Vpyl(s,s')=
=pol Vpy(s,s'), jl(r)es, f(t)oros, i (plotoros).

This expression is jointly continuous in ¢, s, s’ by 5.4, 6.4, 6.5 and by
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the fact that s p rs is continuous @(f*TY)» Cme(X, Y).

In view of 6.2 we have shown that ¢ is of class C. and that
(16) De(t,s )t s") = Dye(t, s )t" + Doc(t,s)s’' = (7)+(12).

(17) The higher derivatives: If we want to show that ¢ is of class
C'g we have to check that D¢ is of class Cé . In order to apply 6.2 a-
gain we have to compute all partial derivatives of D¢ and have to show
that they are jointly continuous in all appearing variables, Now (7) and
(15) are composita of expressions that look like (2) again and by 6.5
j](t) is of class (7 in t. So we may apply what we have already prov-

2 _ .
ed and get C7 . By induction we get CZ = C . QED

7.3. COROLLARY. Let X, Y belocally compact smooth manifolds. Then
the evaluation mapping Ev: XXCZ(X,Y)-Y is of class C;’; (and

consequently 3°-continuous ).
PROOF. First we show that

X = C% (5, X) = Gyl X)

diffeomorphically, where * denotes the one-point manifold.
Let7:TX > X be some local addition. Then the canonical chart (Uf’ de)
centered at f:*-> X corresponds to the chart ([mrf{*), e )-1) center=

edat [(*) of X.

Now the following diagram commutes and so the assertion follows from

the differenttability of the composition:

XXC2(X,Y) Ly .Y
i.* |
€% (4 KIXC(X, ¥ ) —LOmD o (4, Y ), QED

7.4. COROLLARY. Let X, Y, Z be locally compact smooth manifolds.

Then the canonical mapping
C¥(X, Co(Y,z))c(z¥)X =71X
takes its values in C¥(YXX,Z ).

REMARKS. 1° Since X is finite dimensional we need not specify the
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notion of differentiability in C*(X,C>(Y,Z)), since all reasonable
notions coincide (see [4]); C™(Y,Z) is equipped with its canonical

OC

C

. -manifold structure.

2° This canonical mapping is not surjective on C*(YXX,Z) by
topological reasons, as we already mentioned in the introduction. It is
surjective, however, if ¥ is compact. That has been shown by Gutknecht
[ 3] for the stronger notion of differentiability CF ; in order to be com-

plete we will prove this fact in our setting too (7.5).

PROOF OF 7.4. Let fe C™(X, C*(Y,7)). Then the canonical map-

ping associates to [ the mapping f: VXX > Z given by
fly,x)=f(x)(y)=Ev(y, [(x))=Evolldy <f)(y,x).

SonEvo([dYXf) is of class C™. GED

7.5. THEOREM. Let X, Y, 7 be smooth manifolds, X, Z locally com-

pact and Y compact. Then
C™(X, C™(Y, 7)) = CT(YXX, Z)
via the canonical identification.
PROOF. In view of 7.4 it remains to show that the canonical identifi-
cation mapping is onto C®(Y XX, Z ), and by abstract non-sense it
suffices to show that the mapping
pi X = C(Y, YXX), alx)(y)=(y,x),
is of class C;o . Forif fe C¥(YXX, Z), then
/*" CM(Y7 YXX) - CDO(Y: Z)
is of class €7 by the Q-Lemma or by 7.2, so fxon: X> C™(Y,2) is
of class C;’: too; this latter mapping is easily seen to be the canonical

associate to / (7 is the so-called unit of the adjunction, in categorical

terms ).
Now fix %p ¢ X and let 7: TX-+ X and p: TY > Y be local additions.

Then
pXT:TYXTX'—‘T(YXX) - YxX

is a local addition; let
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qsfl(xo)" Un(x,,)* D(nfx)*T(YXX))

be the canonical chart of C®(Y, YXX)}, centered at n(x,/}, which

comes from p X7 . Since n(x ) is given by y b (¥, % ) we see that
(e *T(YXX)=TY>xXT X=TY&®(Y*xT_X)
as bundle over ¥, so
Dinlx *T(Y<X))=D(TY)xD(YXT, X),
In view of this identification we have for x ¢ X near % and ye Y :
((by e, )01 (5))(y) = (pX )y ) ] (2 )(y) =
=(pxrpy i ) = (o (v )r, M (x)) = (0,07 ().

So nﬁr] (x,)°1 is given by the sequence
-1
;

Xov —Z 1, x LBl 9iry)x9vxT, X)
which is clearly differentiable in any sense, where V is a suitable neigh-
borhood of %, in X and where B is the continuous linear mapping which
maps each point of Tx X into the constant function Y - Tan. B is

0

well defined and continuous iff ¥ is compact, QED

7.6. PROPOSITION. The tangent mapping of the composition
T Comp: D(Y, 177)x9D (X, TY)> D(X,TZ)

is given by

prop

Y
T(g,f)Comp(t,s) =(j glos ttof,
te @g(Y, T7), se fo(X, TY).
PROOF. Since we know already that Comp is differentiable we may com-
pute the tangent mapping by considering one parameter variations through

g and f with «tangent vectors» ¢ and s and differentiating their com-

position pointwise, i.e., for fixed x ¢ X, using Lemma 4.4.

8., THE INVERSION IS DIFFERENTIABLE.

8.1. THEOREM. Let X be a locally compact smooth manifold and let
Diff( X ) be the open subset of diffeomomphisms of C*(X,X). Then in-
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version Inv: Diff(X)~ Diff(X) is of class C7.
PROOF. (1) It suffices to show that Inv: Diff( X)- Diff( X) is of class
C” in a neighborhood U of the identity [dy of X . For let fe Diff( X),
then
— -1 -] _ -1
Vp=((f")x)(U) =1 [Toglge Ul
is a neighborhood of f by 2.5. For any ge Vf we have /'Iogf U and

gl = og) o =01 ) Inw | Us (7 )al ),
thus
Inv| V= (I oine|Uo( [ )s.
Since (f'l)* and (/.-])* are of class G’ (by 7.1 or by the A- and Q-
Lemma respectively) the chain rule implies that [nv| Vf is of class

o

C, too.
(2) Now let 7: TX>X be a local addition and let U =U,, be a

canonical chart centered at /de Diff( X}, and let

b=y U DTX), $(f)(=)=r"([(x))
and
b= DOTX)> U, (s)x)=1,5(x),
be the chart maps. We have to show that the mapping

(3) i:(bolnvol,b.'fD(TX)»@(TX)

is of class (G There is again some abuse of notation invelved: to be

precise we have to restrict the domain of the mapping /nv o) to an open
subset of £f T'X) so that its image is contained in the domain U of ¢.
This is possible by 5.3, and we will silently assume this in the follow=

ing to save notation. Consider the mapping
c=¢oCompoly xy): DTX)XD(TX)» D(TX)

of 7.2 (1) (here too we have some silent restrictions involved), Then

for any se D(TX) we have:
(4) cfs,ils))=cdoComp((s),v(polnvotp(s)))=
=@ (G(s)od(s) ) =¢(ld)=0.

Experience with finite dimensional Lie groups or the formula of Ver
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Fecke about the derivative of implicitly given functions suggests to try

the following ansatz:
(5) Di(s)==Dyc(s,i(s)) oDyels,i(s)).

That this is indeed the derivative of i will be shown in Lemma 8.2 be-
low. For the moment we will take it for granted and we will investigate

this formula. Recall from 7.2 (11) that
(6) Doc(s,i(s))=Dlali(s)))(s)= (dfa(i(S)))*(’S),
where df denotes the fibre derivative and where
alifs))=(r,my) " o((roifs))xldy)olr,my): TX > TX
is a fibre preserving smooth diffeomorphism, given by 7.2 (9). Now
roils) =y (i(s))=todolmwoi(s)=y(s),
so alifs)) is invertible and (6) is invertible too, and we have
alits )= rymy) o (s ) xldy ) olr,my) =
= (rymy) ol (s )XIdy Jol(r,my) =a(s): TX~>TX.
So by the implicit function theorem in finite dimensions we have

(dgalits )y (s(x))7 = dotatits )™ )lalils))ys(x)) =

:dfa(S)x(C(i(S),S)(x)) by 7.2 (10)
= dals)y(0,) by (4)
:[)20(8,0x)x by 7.2 (11),

Putting this back into (5) we get

(7)  Difs)s'=-Dyels,0x)o Dye(s,ils))s'.
From this formula and from 7.2 (7) and (15) it is clear that Di(s)s' is
jointly continuous in s and s', so i is of class Cé.This implies in turn
that Di is of class Cé again, applying the chain rule and 7.2 (17) to
the right-hand side of (7), so i is of class Ci . Now a straightforward

induction shows that ¢ is of class Cog =G . QED

8.2. LEMMA. With the notation of 8.1 we have
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(4) supp(i(st)‘S/\')'i(s))CK forall 0 <|A| <

and that
(5) ]'k(i(s +)}\\S')' i(s))(x) is «uniformly bounded» for (x,A) in
Kx[-1,1I\{0}) forany £.

(4) is easily checked:
fifstAs’)-ifs)]| SI<Ag 1}

is a continuous compact path in D( T X), so it can move only inside
some compact K C X (compare the fact mentioned in the introduction);
this K satisfies (4).

To prove (5) we note that it suffices to show that for each & and % in
K there is a neighborhood U’Co of % in X such that the expression (5)
stays «uniformly bounded» for (x,A )¢ an x({-1, 1I\f0}).

We choose U = U"o to be so small that TX|U = UXR", For xe U we

may write
s(x)=(x,5(x)), ali(s))Nx,y)=(x,al(x,y)), ete...
Then {( 3) looks like

(G)l)fmoj(f doa(x,5(%)+pAs"(x)).

TSI (TR )i ) (x) ). (TR0 V)i M ) g,
= -(DI C(S,i(S)). S')(x)s

uniformly for xe U and for each derivative with respect to x. Let us

write (6) for short in the form
(7) fim, f01 Alx, A, p). B(x, M) dp = C(x),
so that B(x,A) is the local representative over U of (1), Then let
G:L(R")> R be the continuous mapping
G(l)=infi|l(v)]] 0] =11, le L(R").
Since A(x,A,pu): R"> R" is invertible (cf. 8.1) and continuous in x,
A, p, we conclude that G(A(x,A,u))> e for all relevant x, Ay b

Therefore
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|A(x, Ay ). B(x,A)| 2 e.| B(x,M],
and by (7) | B(x,A)| has to be bounded for A~ 0.
Let d, denote the derivative with respect to x . Then we have
d(A(x,A,u). B(x,A))=
dxA(x,/\,p). B(x,A)+ A(x, A, p).d, B(x,7).
The first summand is already bounded and for the second we may repeat
the above argument. A simple induction then shows that dicB{'x, A is

bounded for A » 0 for any k, so (5) is proved.

Now we proceed to prove the Lemma. Since

M=t ilstrs)-ils)) g n| <1}
3 <

is bounded and $( T X) is a Montel space, M is precompact, so there
are cluster points of M for A> 0 _ Let t be such a cluster point, then

there is a net

i(s+)\as')-i(s)

(La):( ) with /\a—>0

a
such that £, > ¢ in @(TX}. By the joint continuity of Dyc in all va-

riables we conclude that
Lim féch(s+y)\as', i(s)tuli(s+r,s')-i(s))). 1, dp =
= Doc(s,i(s)).t,
since ¢, =t and A, > 0. By (3) again we conclude that
Dyc(s,i(s)).t =-D; e(s,i(s)).s',
Since Dycfs,i(s)) is invertible we get
t=-Dycls,i(s))Dyel(s,i(s)).s".
This holds for any cluster point of ¥ for A » 0, so the lemma is proved.
QED
8.3. PROPOSITION. The tangent mapping of the inversion

i s given by
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Tlno(s)=~(T{" . s)of =-jl(f) (sofT)=xfas.

PROOF. As in 7.6 one may compute the tangent mapping by differentiat-

ing the inverse of a one parameter variation through f with «tangent vec-

tor» s . The computation is a little more difficult than in 7.6.
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