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MANIFOLDS OF SMOOTH MAPS IV: THEOREM OF DE RHAM
by P. MICHOR

Spaces of smooth mappings between finite dimensional manifolds
are themselves manifolds modelled on nuclear (LF )-spaces in a canonical
way. In this paper we develop the calculus of differential forms and use it
to prove the theorem of de Rham for such infinite dimensional manifolds:
the de Rham cohomology coincides with singular cohomology with real coef-
ficients and in turn with sheaf cohomology with coefficients in the constant
sheaf R. The essential point is the fact that (NLF)-manifolds (as we chose
to call them - (NLF) for nuclear (LF)) are paracompact and admit smooth
partitions of unity. Note, however, that (NLF )manifolds are not compactly
generated in general, so spaces of smooth mappings between them tum out
to be not complete and the cotangent bundle does not exist. This drawback
could be overcome by making all spaces compactly generated and using the
calculus of U. Seip [20] devised for this setting. One would loose para-
compactness however. In the last section we investigate the group of all
diffeomorphisms of a locally compact manifold, connect its de Rham coho-
mology with the cohomology of the Lie algebra of all vector fields with
compact support which has been investigated by Gel'fand, Fuks [5] and
we make some observations on its exponential mapping and adjoint repre-
sentation. It turns out that the exponential mapping is not analytic in the

obvious sense.

1. Calculus on (NLF)-spaces and -manifolds
2. Vector fields and differential forms
3. Cohomology and the theorem of de Rham

4. Remarks about cohomology of diffeomorphism groups
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P. MICHOR 2

1. CALCULUS ON (NLF)-SPACES AND -MANIFOLDS.

1.1. DEFINITION. By an (NLF)-space we mean a nuclear (LF)-space, i.e.
a locally convex vector space E which is the strict inductive limit of an

increasing sequence of Frechet spaces
w.CE, CE,y Ca. CE,

and which is nuclear. So each E, is nuclear and therefore separable (see

Pietsch [18]).

Attention: E is not the inductive limit of the spaces E  in the
sense of topology ; it is so only in the category of topological vector spa=-
ces. For if it were so, it would be compactly generated ; but the space 9

of test functions on R" is not compactly generated (see Valdivia [23]).

We recall that a mapping f: E - F between locally convex spaces

(or open subsets of these) is called CIC if
tlirgtl(f(xﬂy)-f(x)) =Df(x)y

exists for all x, y in E, and Df: EXE » F is jointly continuous; f is
called CZ if Df is C!, and so on. See Keller [9] for a detailed account
of this.

1.2. THEOREM. Any (NLF )-space admits C*, -partitions of unity. In par-
ticular it is paracompact.

This result is proved in Michor [14] (8.6) for the space I" (E) of
smooth sections with compact support of a smooth finite-dimensional vector
bundle E » X . But in the proof there only the following facts are needed:

Fc( E ) is an (LF)-space and is nuclear. So the result above holds too.

1.3. DEFINITION. By an (NLF)-manifold we mean a Hausdorff topological
space M that is a manifold in the C? -sense modelled on open subsets of
(NLF)-spaces.

In Michor [13,14], it is shown that the space C*(X,Y) of all
smooth mappings f: X » Y between finite-dimensional manifolds is an

(NLF)-manifold.
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MANIFOLD S OF SMOOTH MAPS IV 3

Note that (NLF)-manifolds admit C‘:-partitions of unity by 1.2.

The tangent bundle TM is again an (NLF)-manifold, but the natural
transition functions for the cotangent bundle are not of class C°c° ,not even
continuous.

See Michor [14] (Section 9) for a short account of C? -manifolds. We

will use notation from [1 4], which is largely self-explanatory.

1.4. The algebra of C%, Afunctions. By C°:(M) we denote the space of all
C? -functions from an (NLF)-manifold into R. We put the «topology of unif-
omm convergence on compact subsets in each derivative» on C°:(M). Soa
net (/i) converges to [ iff /i > [ uniformly on each compact in M, df, » df
uniformly on each compact in TM{ dd/i -+ dd{ uniformly on each compact
in T M, etc. Here

df = pryo Tf{:TM> TR > R.

C':(M), equipped with this topology, is a locally convex vector space,
even a locally-multiplicatively-convex algebra in the sense of Michael [12].
I suspect that C?(M) is not complete in general, since M is not compact-

ly generated.

1.5. Tangent vectors as continuous derivations. Let {"x € TxM be a tan-
gent vector, then fx defines a continuous derivation: C:"(M)—» R over
ev, by f b &, (f)=df(£,). The converse is true on (NLF)-manifolds:
THEOREM. Let M be an (NLF)-manifold, and let A: C:(M)'-» R be a
continuous derivation over ev,, i.e.
A(f.g) = A(f). g(x) +[(x).A(g).

Then there is a unigue tangent vector ‘fx eT M such that A(f) = d/(fx)
forall f.

PROOF. Let (U, u, E) be a chart of M with x¢ U and u(x) =0 in E .
Since there are C*-partitions of unity, A(f) only depends on the germ of
{ at x . Now choose a C% -function ¢ which is 1 on a neighborhood of x

and has support contained in U . Consider the mapping

a b A(p.(aou)), aeE' (the dual of E ).
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This defines a linear functional on E’. We show that it is continuous. Sup-
pose a. - 0 in E' in the topology of bounded convergence which coincides
with the topology of compact convergence since E is nuclear. Then for
each compact K in M, KNsupp ¢ =: K; is compact in U, so u(K1) is
compact in E, so a;| u(K1)~>0 uniformly, so ¢.(a;o z) -0 uniformly
on K. Now let K be compact in TM, then supp(dgb)nk = kl is com-
pact in ”M-l (U), so Tu(K;) is compact in EXE, so
dai = a0 pry: EXE » R
converges to 0 uniformly on Tu(kl) , SO
d(¢p.(a,0u)) =dp.(aouomy)+ (o 7y )+ (da; ou) +0

uniformly on K . This argument can be repeated and shows that

(ﬁ.(aio u)->0 in C:°(M).

Thus A(¢.(ai ou))->0. So the linear functional a |—-» A(¢>.(a'.o u)) is
continuous on E’ and it is therefore represented by an element 8 ¢ E since

E is reflexive. We have
A(p.(aou)) = <B,a> forall acE’.

Claim: The tangent vector fx = (Tu)'l (0,B)e T, M represents A. Let
e CT(M). Then £_(f)=d(fo 2 1)(0)B . We have

d(foul)(0)eL(E,R) = E',
and clearly
A(p.(d(fou1)(0)ou))=<B,d(foul)(0)>=E (f)
So we have to prove that A(f) = A(g) whenever df = dg . Note that by

the derivation property A( constant) =0, so it remains to show the follow-
ing: if f(x) =0 and dfx= 0,then A(f)=0.Forsuchan { let

g=foul:u(U)R;
this is a C°c°-function. By Taylor's Theorem (on R!) we have:
g(y) = 1 (1-1)D?g(1y)(y,y)d1.

Now E is nuclear, so it has the approximation property, so L(E,E) =

L)
E @ E’, and there is a net of finite-dimensional continuous linear operators
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(L;) in L(E,E) converging to Idy uniformly on compact subsets. Put
gly) = fol (1-1)D%g(ty)(L;y.y) dt.
Then clearly g;e C7. Claim: g;» g in C(u(U)). Let K be compact in
u(U). The mapping u(U) » E' given by
y b [ 110D 2e(1y)( o y)d1

is continuous, so the image of K under this mapping is compact in E'=
L(E,R), so it is weakly bounded and thus equicontinuous, since E is

barrelled (see Schaeffer [19], III, 4.2). This means that
|f (1-1)D%g(ty)(z, yldt| < e

for all ye K and z ¢ V, a suitable neighbothood of 0 in E. Now let i,
be such that L;y -y ¢V forall ye K and i > io . Then

lg;,(y)-g(y)|<e forall yeK.

So g;» g uniformly on compacts of u(U). Since derivatives with respect
to y commute with the integral, the argument above can be repeated for all

derivatives and the second claim is established. Now let

]=Z‘1el]8el eE®E'’,

then we have

g(y)=[1c1- t)D2g(ty)( Ee [<y.e>,y)de

N,
g ¥, lf].>f0 (1-t)D2g(ty)(ei]-,y)dt-
On the manifold M we have then
2. (gou)» p2(gou)=¢2

in C7'(M) by the second claim above. Since A is continuous, we get

A(@2 (gou)) » A(p2 [)=A(]),
since ¢ 2. and [ have the same germat x. On the other hand:

A(¢2 (giou)) =
-A(z 8- (ejoun)l g f (1-1)D2g(tu(.))(e;; u(.))dt])
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= ]ﬁ’;l [A(g.(ef;o u)).¢(x).f01(1 -t)D2g(0')(eii,0)dt +
+ ¢(x)<0,ei'].>.A(¢.f01(1-t)D2g(tu)(eij, u)dt)] = 0.
So A(f)=0. qed

2. VECTOR FIELDS AND DIFFERENTIAL FORMS.

2.1. Let us denote the space of all vector fields on the (NLF)-manifold M
by %(M) as usual.

LEMMA. X(M) is a Lie-algebra, the bracket [£,9] of two vector fields
being given by

(€ .n1(f) = En(f) - né(f) for feCT(M).
PROOF. Of course , L

[ b &) =Eq(f)-né(f)
is a continuous derivation of the algebra C°(M), so [ |» [£,n]1(f)(x)

is a continuous derivation over evy, so it is given by a tangent vector
gxe T M by1.5. It remains to show that x |» {  isa C:mapping from
M to T M. It suffices to check this on a local chart (U, u, E ), and for the

local representatives in U we have
{(x) = D7(x).E(x)-DE(x).7(x),
which is visibly C% . qed

We equip the space X (M) with the topology of compact convergence

in each derivative. Then it becomes a topological C?(M)-module

2.2. Differential forms. By a differential form w of degree p on M we

mean a C?, -mapping TM X o >A<ITM -» R whichis altemating and p -linear

on each fibre (T, M)P . Let us denote the space of all p-forms by QP (M).
For ¢ QP (M) and ¢ eQI(M), define wn¢ e QPY9(M)as usual
by the formula

(m/\¢) (tfl seeey §p+q)=
S
_p!q! ge

sign . mx(foa),..-. 60' (p))'¢x(fa (p‘H)""' fa(p+q))
ptq
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forx eM, £, ¢ T M, where SP*"I

of p+q symbols. Clearly w A ¢ is Cg . Let

is the full symmetric group of permutations

QM) = @& QP(M),
p20

a real graded algebra. The natural topology on (M) is the direct sum of

the topology of compact convergence in all derivatives.

Waming : It is not true that C°:(M) =Q0(M) and {df | fe C°:(M)} gen-
erate Q(M). They generate a dense subalgebra, however, if each model
space E of M has the property that L(E, E) admits a bounded (= equi-
continuous ) finite dimensional approximatey identity. This is not true for

all nuclear spaces.

2.3, If @ e QP (M) is a p-form, define the exterior derivative of ‘ by Pa-

lais's global formula
do(Eg o £,) = io (=1 (@€ sorns € e €,0) +
i= :

os}<:fsp('”i+i“’([§‘ £ 1, Egreer € i)
where fi eX(M).

LEMMA. dw isa (p+1)-form.

P ROOF. A purely combinatorial computation shows that dw is C':(M)-
linear in each variable, and altemating, so on each fibre (T M YPH s
given by a jointly continuous altemating(p + 1)-linear functional: It remains
to check that do is C°: . For a local chart (U, u,E) on M the local re-
presentative of w is a C:° -mapping @ : u( U) X EP » R which is altemating
and p-linear in the last p variables. For x ¢ 2(U) and y € E, considered
as constant vector fields on u( U) so that [yi, yi] =0, we get the follow-

ing local representative of dw :

B (x)(Ygs eer¥ ) =i5;:0(-1) DB(2)(;)(Ygsves T wves V)
which is clearly C°c° .
2.4. Forw e QP(M) and € ¢ X (M) define the Lie-derivative gé-co e QP(M)

by the following formula :

63



P. MICHOR 8

(5?{:&))(7,1 . oe ,.np) = .
= £ (s rn) - ifow(q, oo LEymy Taciim)

LEMMA. gfco is again a p-formon M.

PROOF. As usual the only problem is the differentiabili'ty. Using a local

chart (U, u,E ) and constant vector fields y; on u(U) (so
[€,y,1(x) =-DE(x)y;)

one easily checks that g{:w has the following local representative on U :

gga:u(U)xEP—»R,

(220),(y; 0oy, =

¢ P

= DB CIEC Ny )+ & BNy DE() 07y

P
This is clearly C: . qed

2.5. LEMMA. For e X(M) the mapping g{; Q(M)->Q(M) is a deriv-

ation, i. e.

g{:(wmﬁ) = £{:w Adtow Agqu
PROOF. A combinatorial computation. :
26. If £€X(M) and w e QP (M), let

¢ lo = igw eQP"I(M)
be defined by

(ifw)(nz,...,,np)= w(€,ny 0, qp)
for r,iei(M). '
LEMMA. ig(0 a¢) = (igo) ad +(-1)%80 a lig ¢) .

PROOF. A combinatorial computation.

2.7. if f: M> N is a C*-mapping between (NLF)-manifolds, then for any
w e QP(M) define [*w e QP(M) by

([*o )x(7’1 g oees qp): wf(x)(Tx /.1’1 yeees T, /.np)
for xe M and 5;¢ T M. The following diagram shows that f*w is a C}-
mapping:
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TMX...XTM TMX...XTM
R T XTT AR

{*o 2
R

LEMMA. [*: Q(N)->Q(M) is an algebra-homomorphism.

2.8. THEOREM. We have the following formulas :

1. £§-=i§od+doif. .

2. dlwag)=do A¢+(-1)d°5“’wAd¢.
3. d°=dod=0.

4. do£§=££od.

5. f*od=dof* for f: M> N a C?—mapping.

PROOF. 1. A combinatorial computation.

2. Usel and induction on degw + deg ¢ .

3. Follows from the local formula in 2.3, since any second derivative
of a C:’-mapping is symmetric (see Keller [9]).

4. Is immediate from1.

5. Let (U,u,E), (V,v, F) be local charts on M, N respectively,
such that f(U) = V. Denote local representatives by bars. Then for w in

QP(N) we have
(T¥B) () (e 9y) =B(T(x))DJ(x)yy e DI (2D )
d(T*D)(x)(ygreer¥p) = -
:if_o(-uimao/')(x)(y,.)(o/’(x)yo,---.D/'(x)y.-'---"’/_("”p)
=;=§o(-I)iDZ)(f(x))(Df(x)y,-)(D/-(")yo""'D/—?")yi""'Df(x)yp)

=([*da)(x)(yger ¥ )
qed

2.9. Let A e X(M) be a vector field which has a local flow, i.e. there is
a C':-mapping a: U~ M, defined on an open neighborhood U of MX{0} in
M XR such that

dia(x. t) = £(a(x,t)) forall (x,t)eU
t
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and moreover
a(x,0)=x and a(a(x,t),s)=a(x,t+s)

whenever one side is defined. (In general, nothing is known about existence

and uniqueness of nonlinear ordinary differential equations in non-normable

locally convex spaces.)

LEMMA. Let w € QP(M). With the assumptions a bove we may compute the

Lie-derivative as follows :

=4 *
g‘fw - dzltzoa‘w

Here a ’t"a) can either be viewed as a C:°-path in the sheaf of local p-forms
on M, or the derivative above can be evaluated pointwise, since evaluation

ata point is linear and continuous.
PROOF. For /¢ C7(M) =QO(M) there isa global proof:
(41, _ aihix =5 flax))=df (% ltzoa(x.t»#
=df(&(x)) = E(f)(x) = (B [)(x).
Now let w e QP(M). Take any local chart (U, u, E) of M, let
G u(U)XEPoR, E:u(U)=E, a(x,t)=u(a(u (x),t)
be the local representations on U. Then we may compute as follows:

(@I sy ) =

tt P
-d - = - - .
=1, @@ (. 0))(DT (%)Y s DE (%)) =

- D= d -
_Dw(x)('a—tltzoa(xnt))(yl -----}'p)+

- d -
+w(x)(-d—t lt ODa (£)Y]2Ygrems¥p) +

+O(x)(Yseery DE,(x)yp) =

ped dtl =0
=D (x)(E(x))(Yp s ¥p) + (£ NDE(X) Y)Y g0ee s Yp) + oo
c D%y s ppp DE(x) Y, ),

since different partial derivatives commute, see Keller [9]. This is the

local formula for %w of 2.4. qed
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2.10. LEMMA. If £ e X(M) admits the local flow a as in 2.9, and if
r,cf’X(M), then we have
4 *p = - &
T t=0af n=[r )= L7
Here

afn= Ta_tonoatefx'(M).

PROOF. Let (U, u, E) be a local chart on M, then for the local repre-

sentatives we have

-

d TRT ) =9 = =(z =
dt|t=oatn(x) dtltzo(D(a't)(x)'"(a(x't)))
=d | pa_x) T +E (F@Ex 1)),
dt t=0 -t aft t=0

by the chain rule and the existence of partial derivatives, see [14], 8.3.

This in tum equals
d - - - d -
D(=— . +D (= ,t)) =
(dtltzoa“)(x) n(x) n(x) (dtltzoa(x ))

= —DE(x).5(x) + DTj(x).E(x) = [€,7](x).
qed

2.11. LEMMA. Let £ ¢ X(M) admit the local flow a. Then for any  in
d

QP (M) we have ——a’} o = a’;.ﬁgm on the open set where a, is defined.
. dt

PROOF. Let x ¢ M, te R be such that a(x,1t) is defined. Then we have

d _d =
d—ta’:w(x)(nl »enesTp ) iy s=0(a;"a;“w)(x)(1;1, wonp) =
_d
=0 s___.o(a:(")a(x,t)(Txat‘rfl’ ""Txat"’p)

= (gfw )a(x,t)(Txat'nl Yoo ,Txat.'r]p)
=(a;"5‘3§w ), g seeemp).
qed

2.12. LEMMA OF POINCARE. A closed differential form on M is locally

exact.

PROOF. We have to show that for any w ¢ QP (M) with dw =10 and any
x ¢ M there is an open neighborhood U of x in M and a form de QPIm)
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such that d¢=w| U. Using a local chart (U, u, E) with u(x) =0, we
may assume that M is an absolutely convex open neighborhood of 0 in the

(NLF)-space E. Consider the C > -mapping
a:Mx[-1,11-M, a(x,t)=1t.x.

a is no local flow, so for t # 0,

d
—a(x,t) = x,t),t
dta( ) = £(al )
for a time dependent vector field-£, which is given by &(x,t)=21x, Put
t

B(x,t)=e'. x, then B is a local flow, defined for - < t< 0,and the

generating vector field is just Idy . Now for >0 we have:

d _d d dlogt
a:‘w—;—t(ﬁl;‘g,w)=—| (B:m)-mg-

dt ds s =logt
=.tl../3,;g,£,dm =da}ijgodo +doijo)
=lafdoiye) =dd(atoijw).

1 ; -

-t-(a;"ozldw) (yz,...,yp)— tla)zx(tx.tyz,...,typ)
=mtx(x,ly1....,typ) if p>1.

So la;"ildw is a (p -1 )<form forall -1<t< 1, and is C‘: in t. Further
t
more al*m=o.>, a(’)"w= 0. So

w=al*w—a$w=f14a wdt

1 . 1 .
=f0 d(;].a;"lld w)dt = dfo YJa’:zldm dt.
Choose

¢=f01tla;"i1dwdt59p’l (M). qed

REMARK. See Papaghiuc [17] for a more elementary proof of this fact in

general locally convex spaces.

3. COHOMOLOGY AND THE THEOREM OF DE RHAM.

3.1. Let M be a (NLF)-manifold. The de Rham cohomology of M is giv-
en by:
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HygP(M) = ker(d:QP(M) Pt (my)
im(d: QP (M)>QP(M))

HdRP(M) is a real véctor space and Hyp(M) = kzéoHde(M) is an al-
gebra, the product being induced by the exterior product A on Q(M) (the
exact forms are an ideal in the closed forms, by_2.8.2).

For any C°c° mapping f: M> N between (NLF)-manifolds we get a
cochain complex homomorphism [*: Q(N)->Q (M) (by 2.8.5) and an ind-

uced homomorphism in cohomology

which respects degrees and is an algebra homomorphism. f |» f* is clear-

ly functorial.

3.2. THEOREM. The de Rbham cobomology of (NLF)-manifolds has the fol-
lowing properties :

1. HdR(pOInt) = 0.

2.1f [.,g: M~ N are C%-homotopic mappings (i. e. there is a C % -map-
ping H: MXR > N with H(.,0)=f and H(.,1) = g), then

1= g* Hyp(N) > Hyp(M).
3. If M=Y M, is a disjoint union of open submanifolds M, , then
HygP(M) = EHJRP(Ma) forall p >0.
4. (Mayer-Vietoris) If M =UUV, U,V open, then there is a long
exacl sequence _
. HygP(U)®H RP (V) » HdRP(UnV)‘—S-»HdRP”(M) %
which is natural in the obvious sense.

PROOF. 1 and 3 are obvious.

2. For teR let j :M->MXR be the embedding j,(x) =(x,t). For
b e QP(MXR) consider 7;“ ¢ e QP(M). As a function of ¢, 7;"¢> isa C™
curve in the locally convex space QP(M) with the topology of compact
convergence in all derivatives. Since this space is probably not sequen-
tially complete, the integral with respect to ¢ need not exist. Therefore
for ¢ e QP (MXR) and ‘fi eT M define
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(Hy$)e(Ey vne€p) = [T (13), (& € )dt =
-
- fo ¢(x,z)((€1'ot)w--'(fp.ot))a’t.
Claim: 15 ¢ QP (M).
¢:(TMXTR) X ... X (TMXTR)- R
MXR MXR

is of class C7°. So for ¢ > 0 there are open neighborhoods U, , of fi in
™, V.., of 0, in TR such that ‘

| ¢>((7]1. 71)....,(7]p. fp))--qb((f 'Oz)""'(fP'Ot))l <e€
for all

('I ,...,rp)e TR?{ ...i{TRnVI'tX...XVP’t ,

(’71"""'p)‘TMﬁ'"ﬁTMnuz,zx"'XUp,z' i

Let by : TR =R25 R be the projection, then (prl(iEIVi’ t))tc[o,l 1’

is an open cover of [0, 1], so there is a finite subcover

(P'z(?"i,zi“j=1 el N *

Put U, = n U, , . Then for all
AT B
) ooy X vee Xooo X
(n,; rlp)eTM”M >;lTMnU1 Up
we have

‘qﬁ((ﬂl -Ot),--. ’(np'ot))"d’((f] '0,)'"-'(5,;'0:))] <e
uniformly for te [0, 1] . Thus

I
Lé:TMX...xTM- R
0® M m

is continuous. Now the derivative, say

D¢p: T((TMXTR) X ... X (TMXTR)) > R
MxXR MXR

is continuous and the same method as above shows that fOIi‘:Dan’t is
continuous. A simple argument shows this expression is D[oli’:gidt. This

procedure may be repeated; it shows that ’(I)¢ ™ ﬁ ;(lTM >R is C7.

So finally we may write Ié¢> =/ Ijt*qS dt , where the integral exists
in QP(M), and clearly the map If,.-QP(MxR)-» QP(M) is linear and
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continuous. From now on we may just repeat the finite-dimensional proof :

let T =%—te A(MXR), then T has the global flow
a: (MXR)XR > MXR, a((x,t),s)=(x,t+s) ,

and j; ., =a,ojs.So we may compute

d_'* :d_ ;) * =-4- | g * =
ds]S ¢ dtlt=o(at°]s) ¢ dt|t=0{s at ¢
— . xd _ .
R TI L A T

by 2.9. Here we use that ];‘ QP (MXR)> QP(M) is linearand continuous.
Claim: doll) = 110°d:

]’1" —13 =1100£T=dollooiT+IlooiTod.

dotlhg =dflji*¢ dt= fol doj¥¢ dt=
=f01 j*dgpdi= 1 odg.
iFre-ige = [ Citedt= [ !i@rpdt =
=1L o8¢ =1 o(doi ptigod)s.
Finally we may prove 2. Define the homotopy operator b : = 110 of poH*

where H is the homotopy connecting f and g. Then we have
g*—[* = (Hojj)*=(Hojg)* = (j}=j%)oH*=
?doII()oiToH*+I£)oiToH*od =dobh+bhod.
So f# =g *
4. Can be proved without difficulty.
Consider the embeddings

. M .
/ X
U\ v

iy Unv/y

and the sequence of cochain complexes

0->Q(M)2-QU)eQ(v)B-aunv) o0,
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where
aw = (ifo,ifw), B($.¢)= ige=ipy.
This sequence is exact: on Q(UNV) use a partition of unity on M sub-

ordinated to the cover { U, V}. As usual this gives the long exact cohomo-

logy sequence. qed

3.3. THEOREM. Let M be a (NLF)-manifold. Then the de Rbam cohomo-
logy of M coincides with the sheaf-cobomology of M with coefficients in

the constant sheaf R on M.
PROOF. Recall that M is paracompact.
R->0%-07502, .

is a resolution of the constant sheaf R on M, where QP denotes the sheaf
of local p-forms in M. This is a resolution by the lemma of Poincaré. Since
M admits C:"—partitions of unity, each QP is a fine sheaf, so the resolu~
tion above is acyclic, and by the general theory of sheaf cohomology the

theorem follows. qed

3.4. THEOREM. Let M be a (NLF)-manifold. The de- Rbam cobomology of
M coincides with the singular cobhomology with coefficients in R, an iso-
morphism being induced by integration of p-forms over C:-singular sim-

plexes.

PROOF. Denote by { % the sheaf which is generated by the presheaf of
locally supported singular C:-cochains with coefficients in R. In more
detail : let S:(U, R)= (l;IR where o: Ak—» U is any mapping which ext-
ends to a Ct-mapping from a neighborhood of the standard k-simplex Ak
in R¥*l jnto U, U open in M. This defines a presheaf. The associated

sheaf is denoted by 4‘!: . Then we have a sequence of sheaves

R-¢Y -»Clw s¢2 5.
This sequence is a resolution for, if U is a small opeh set, say C:’-dif—
feomorphic to an absolutely convex neighborhood of O in an (NLF)-space
E, then U is C:"-contractible to a point. Since C"c"-mappings clearly ind-

uce mappings in the S*-cohomology,

7
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HE(SX(U,R),d) =0 for k>0.

This implies that each associated sequence of stalks is exact, so the se-
quence above is a resolution. A standard argument of sheaf theory (using
the axiom of choice) shows that each é'ol'; is a fine sheaf, so we have an
acyclic resolution, and Hk(é’:; (M,R),d) coincides with the sheaf coho-
mology with coefficients in the constant sheaf R . ‘

Furthermore integration of p-forms over C‘:-singular p-simplexes in

M defines a mapping of resolutions
Q% al 502, ...
_
SR
Nl gt
which induces an isomorphism
Hyp(M)Zs H¥(LX (M, R),d) = H¥( S (M,R),d).

Now consider the resolution

R—»Co—»cl NS
of the constant sheaf, where {k is the usual sheaf induced by the locally
supported singular cochains. Since M is paracompact and locally contrac-
tible, this is an acyclic resolution, and the embedding of C‘:-singular

chains into all singular chains gives a mapping of resolutions

R e S
~
L

N

R
(8-l a g2
which induces an isomorphism

H*(S*(M,R),d) = H*({*(M ,R),d)=> H*({* (M,R),d) =

=H*(S*(M,R),d).
(S%( ), d) qed

3.5. REMARK. Note that the Alexander-Spanier cohomology and the Cech

cohomology of a (NLF)-manifold coincide with the singular cohomology.
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4. REMARKS ABOUT COHOMOLOGY OF DIFFEOMORPHISM GROUPS,

4.1. As shown in Michor [13, 14], the group Diff(X ) of all smooth diffeo-
morphisms of a finite dimensional manifold X is an (NLF)-manifold with
C°c° -operations. The subgroup Diff, (X ) of all diffeomorphisms with com=
pact support is open in Diff( X). The connected component Diffo(X) of
the identity consists of all diffeomorphisms compactly diffeotopic to the

identity.

4.2. The tangent space TIdDi//(‘X) is the space I', (TX) of all vector
fields with compact support on X, with its natural (NLF)-space topology.
This is clearly a topological Lie-algebra. But one may define the Lie bra-
" cket on I-'c(TX) in another way: let £, n e l"c(TX); extend them to left
invariant fields Le, Lr) on Diff(X ), and consider

(Lg Ly e X(piff(x))
and its value at Id. This gives the same Lie-algebra structure, up to sign

on Fc (TX), as we will show below.

4.3. For £ eI’ (TX) denote the left invariant vector field on Diff(X) ge-
nerated by £ by L{: , and call the right invariant one Rf . For fe Diff(X),

we have
Lg(/) = T;4( left translation by f).£
=Tya(fx).& = Tfo&, by [14], 10.14.
Ré-(f) = T;4(right translation by f).£

Tld(f*)-‘f =€of.
4.4. LEMMA. For £, nel (TX) we bhave
[Lg,Lpl=-Lig o1 [Re.Ry1=Rpg o 1 [Lg Ry1 = 0.
PROOF. Since the chart structure on
TDiff(X) = Dprx (X, TX)

is rather complicated (see [14], 10.13) we prefer to use 2.10.
Since £ is a vector field with compact support, it has a global flow

a: X xR X. Since a, has compact support for each ¢, the mapping

7%
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tb a,, R- Diff(X),

is of class C:" . This may be seen as follows: first note that this curve is

continuous, -‘:Tat =§ oa, exists in D(x,TX) forall ¢t and is again cont-
t

inuous in ¢, since a, takes its values on the set of proper mappings in

C*®(X,X). By recursion t |» @, is C% - compact support is essential

here, see [14], 11.9. Now define

ak : Diff(X)xR » Diff(X) by aL(f.t)=foa,.
d

This is a C°c°-mapping. To compute I aL(f, t) we may evaluate at x € X
t

(see [14] 10.15). Then we have
d L =4 = T4
2 (f>t)(x) dt/(a(x,t)) T/(dta(x.t))

=Tfoé(a(x,1)) = (Lg(al(f,0)))(x),
since
Le(ab(f,0)) = T(al(f.0))0€ = T(foa,) o =
=TfoTa,0 = Tfofoa,.

So ol is the global flow for the left invariant vector field Lf . We can

use Lemma 2.10 now to compute [L{:, L’I] But first note that

ak, = (a,)*: Diff(X)~ Dif{ (X).
Thus
T(al,) = D(a,. TX), Tp(ak,).s = soq

forsewf(X,TX).Nowwe compute
= (4 Ly« =
(Lg Lylf) = (% L _o@ *Ly ()

_d L L _d L
=% OT(a_t)oLT'oa t([)—zh:OT(a_t)(Lﬂ(/oat))

dtt=
_d L _d
—:I—t|t=0T(a ) (TfoTa,on) —d—t|t=0T/°Ta‘°7]°a")
_d - d_
._.‘.1_t|1=0(T/)*(Tator]oa_t) = (T/)*(dt|t=OTato1;oa_t)

=(T)) &) = -Tfol€.n) = -Lig, 11-
We have used that

(T1)y:To(TX)» Dp(X,TX)

75



P. MICHOR 20

is linear and continuous.

For the proof of the second assertion first note that
Inv: Diff (X ) - Diff (X)
is C% (by [14], 11.11), that Inv*LE = R(_¢) and that

- * * * — *
[Rf’RU] Inv* [ Inv Ré-,lnu R’T] Inv [Lf’Lq]

=-Inv*L[€_-'7'] = R[f'ﬂ]'

The last assertion is immediate since the flows of L{_- , L’l commute (the

flow of R,,' is BR(/, t)=B,0f, whe;e Bt is the flow of ). qed
4.5. Let us denote for the momenx”fhe right tanslation by fe Diff(X)
P Diff( X ) » Diff( X) ,let similarly Af denote left translation.

A differential form o ¢ QP(Diff(X)) is called right invariant if
p}"w = o forall fe Diff(X).

The following results are easily seen to be true.

1. The subspace of all right invariant forms in QP(Diff(M)) is lin-

early and topologically isomorphic to the space AP(I" ' (T X)) of all al-

temating p-linear jointly continuous mappings
C(TX)x..xT' (TX)-» R

Similar for left invariant forms.
Note that we have to assume joint continuity, separate continuity
is not enough if I' (T X ) is not metrizable.
2. The subspace of right invariant forms in Q(Diff(M)) is stable
under the exterior derivative d, since do p"}‘, = p}‘o d. The exterior de-

rivative induces the following operator on the space

AT, (TX)) = & AMT,(TX)):
k>0 .

dw(fo, v p) =

ZOSiEjSP( 1)i+im([€i7§j ]760 ’---,gi peoey fj ,.;.,é‘p)

for weAP(Fc'(TX)) and fich(TX).

76



MANIFOLDS OF SMOOTH MAPSIV 21

3.For £ eI ,(TX) the space of right invariant forms in Q(Diff (X))
is invariant under the opemators £

Rg " 'Rg
mappings on A(I","(TX)) :

, and these induce the following

ié-co(n2 e np) =wl 9, ..., np).

L0, .6 = 2 ( Dio([€ 616 iy b)),
4, The results of Theorem 2.8 hold for these operétors too.

4.6. The exponential mapping of Diff( X) is the mapping
Exp: l"c(TX) = TIdDiﬂ(x) - Diff (X),

which assigns to each vector field £ ¢ I"c (TX) with compact support the

diffeomorphism with compact support

Exp(§) = FI(§) =FI(E)(., 1),
where FI(£): XXR > X is the global flow of £.
THEOREM. Exp: o (TX) » Diff (X) is C*=.
PROOF. The global flow FI(£): X XR - X of £ is given by the ordinary
differential equation )

g_tpz(g)t = £oFI(&), = Comp (£, FIE) ),

where

CX(X, TX)XDiff(X) » D(X, TX)

is the composition mapping, which is C‘: by [14], 11.4. The (NLF)-space
FC(TX) is a splitting submanifold of C®(X,TX) by [14], 10.10, and
forany £ ,ne€ Fc( T X ) the tangent vector

d (t+sn)| eD(X,T2X) = TC®(X.TX),
ds s=0
is given by
Vol(&,9): X » T2X, where V:TXXTX » T 2X
is the vertical lift ([14], 1.15.3), since by ([14], 10.5) we may compute

d .
T_(E+ after evaluating at xe¢ X :
ds Etsn) |.s =0 &

d_ =4 = , T2X.
(dsls=O§+sn)(x) ds‘s:Of(x)+sn(x) V(g(=).m(x)e
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Recall that the canonical flip mapping ky - T2X > T?X satisfies

d d d d
5 5 t = = g ’ ’
dea (1) Zex gl (st

where f: R?5 X is any smooth mapping. Now we compute the tangent map-

ping of the ordinary differential equation a bove :

FI(E+sq), =4 | iFl(§+s1,‘)t

kyd 4|
Xdtd ds's=0dt

s s=0

-4 _d_
= dslszo(£+sn)ol~"l(£+sn), : ds|s=0Comp(§+sr,,Fl(f+s,))t)

B T(f'Fl(f)t)Comp. (zls :O(f+sﬂ)' d_;ls =0Fl(f+s7])z)
= T(E,Fl(f)t) CofflP. (VO(f’n)’g—slszoFl(f-*-sn)t)

=T(f, Fl(f)t)COmP-(Vo(f.n),O)+
d
+T(€,Fl(§)t) C°’”P'(0~d—s|s=OF1(f+sq)t)
= d
=Te(FIE)®). Vollom)+ Tpyg) (£,0-5-1 _ Fll€+sn),
by [14], 10.14,
- VO(E,n)OFI(g)I-i_TgoZ_‘s OFI(£+S77)t.
s =

So the mapping Tf(Fl(. )t)' n: X > TX is given by the ordinary differen-

tial equation
d -
d-t(T‘f(Fl(')‘)' n)(x) =

= kg (Vol£in)oFI(E) (%) +TEo(Tg(FI(.),).n)(%))

with the initial condition

(Tg(FI(.)g). q)(x) = -j—sls _oFliEFsn)y(x) =0

This differential equation has a global solution for each x and is C3 in
x , because we just differentiated a smooth family of global flows at s = 0.
The solution is furthermore the global flow of a vector field. This is seen

as follows : call
T{:(Fl(.)t). n=ra,: X ->TX.
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Then a, satisfies
:—ta‘(x) = KX(VO(f.n) omyoa (x)+ T&oa,(x)),
ab (x) =0 . This is the flow equation of the vector field

B(¢,n) = kyo(Volé ,p)onyoa,§): TX> T2X.

-

In a local chart on X this field is given by

(%, y) b (x.y: E(x), (%) +dE(x)y).

Since 7y oa, = FI({), we have

a,e fDFl(é-)t(X,TX) and a,(x) =0, for x € X\( supp £ Usupp 7).

By the argument used in the beginning of the proof of 4.4 we may conclude
that a: R> C®(X,TX) is of class C:’.
After this detailed construction of the tangent to the mapping FI,

we return to the proof of the theorem. First note that
Exp:T',(TX) » Diff (X)

is continuous. If { is near £, then FI({), is near FI({, ), by thearg-
ument used below to prove 4.8. This holds for all derivatives with respect
to X.Now T Exp: T (TX)XT (TX)~ D(X,TX) is given by

T Exp(é.m) = Fl(@(f,q))l °©0y.

® is not continuous, but we need only its flow lines starting from Oy ,
and FI(O(&, 7,))1 00y is indeed continuous. By recursion we get that
Exp is C .  qed

4.7. It is known that Exp:T" (T X) - Diff (X) does not contain any open
neighbothood of Id in its image. There is a simple counterexample due to
Omori [15] on Dif/(Sl). In contrast, the image of Exp still generates
the connected component Dif/o(X) of the identity in Diff (X). A way to
show this is indicated in Epstein [4]. We may suppose that X is connect-
ed (otherwise Di/fo(X) is a direct sum of groups). Then by Epstein [4] the
commutator group [Dif/o(X), Diff,( X)] is simple and coincides with
Diffy(X) by Thurston [22]. The set Exp(T_ (TX)) is closed under conr
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jugation in Diff (X ), so it generates a non trivial normal subgroup which
coincides with Dz'//o(X). The same result holds for Dif/g(X) (diffeo-
morphisms of class Ck) if k #dimX + 1. This has been shown by Mather,
in [10].

A detailed proof of Thurston's result has not been published. In
the following we prove a weaker result that suffices for our purpose by a

simple argument.

4.8. LEMMA. For any smooth finite dimensional (paracompact) manifold

X, the image of the exponential mapping generates a dense subgroup of

Diff o( X).

PROOF. It suffices to prove this theorem for X = R", for any f¢ Diffy(X)
can be written in the form f = f; o... o f; , where € Diffy(X) has sup-
port contained in some chart. A proof of this fact that can be extended to
the non compact case is in Palais-Smale [16 ], Lemma 3.1.

So let fe Diffy(R™). Take a smooth curve q from Id to [ in
Diffy(X), so a is a diffeotopy with compact support. Consider the time-

dependent vector field ¢£: R"x[0, 1]+ R" given by-
(a(x,t).t) = La(x,e).
&Qa(x,t),t) dta( )
¢ has compact support in R®x[0,1]. Now for ne N, let
fk,n(x) =§(x.]5), 0<kgn-1.
n
These are vector fields with compact support. Let

'/n,k = Fl(fk/n)l /n€ Di/fO (R"),
and put

fn $= In,n-l 0/,,‘"_20...0 .0 =
EXP(%.fn_I /n)o...oExp(é,fo),

We claim that f, - { in Diffy(X ). We will use the comparison theorem for
(approximate) solutions of differential equations in the form of Dieudonné
[2], 10.5.6. For that define Ay k€ Diffy(X) by @ k= %k k+l /n where

W k.t is given by the differential equation
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%an,k,,(x) = &Qap 4 (%)t @y g pya(%) = %

Let ¢ > 0. Suppose that n is so large that
|€(x,t)-&(x, %) <e forall xeR™ and kg1 BELs
k=0,1,...,n-1. Put

M =max{|D(EC., t)(x)| | xeR"; 0gtg1d.

Then the comparison theorem mentioned above produces the following es-

timate :

M/n _
lay 1 (%) = 1 (9)] < x-y].eM/m e I,

Using this estimate we may compute as follows:

| f(x) =], (x)] =

- |an,n-l ©Qy pe2 O=e° an,O(x) _[n,n-l °/n,n-2 Oeee 0 n,O(x)|

M/n_
< Ian,n-2°'-'°an,0(")'/n,n—2°"-°fn,0(")l'eM/" +e.-e—-M—1—
M/n _ n-1
<€k . 173 (eM/")k =§-(eM -1).
k=0 M

So |f(x) -f,(x)| > 0 uniformly for x ¢ R".

The same argument may be repeated for each derivative with respect
to x, as in the proof of 4.6. Since f, = f = Id off some compact set,
‘fn—»/ in Diff (X). qed

4.9. DEFINITION. Let H¥(I',(TX)) denote the cohomology of the Lie-
algebra of vector fields with compact support with real coefficients, i.e.,
the homology of the cochain complex A(Fc'(TX)) described in 4.5. Ext
ension of elements in A(Fc'(TX)) to right invariant differential forms
on Dz'//o(X) gives an embedding A(Fc'(TX)) - Q(Di//o(X)) and this

in turn induces a natural mapping in cohomology
H¥(T,(TX)) » Hyp(Diffg(X)).

For a compact connected Lie-group this mapping tums out to be an isomor-
phism in cohomology - the proof uses invariant integration.

Note the following easy results :
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1. H(T (TX)) = R =Hyp(Diff,(X)),
since Diff,(X) is connected.
2. HYT,(TX)) = 0.

Let
welN (I"c'(TX)) = l"c’(TX) = L(l"c(TX),R)

with dw = 0. Then

dw(fo,fl )= ""([‘50’51]) =0 forall fo, 61 € Fc(TX) .
This implies @ = 0 by the following
SUBLEMMA. Any £ ¢, (T X ) can be represented as a finite sum

igo[ﬁl,,-,fgﬂ-] for fk’iel_‘c(TX),

PROOF. By partition of unity let £ = & +...+ fp, where each £; has
support in a chart neighborhood U; of X . So suppose ¢ has support in a
chart (U ,u) of X. Let

§=§/"g-z—,. with supp(fi) C U.

Choose g , b smooth functions with compact support such that gi = uf,
b =1 on supp(£ ). Then

id i d__ i id _1_ 40
sy —] +1h <, s | = 2 . d
[flau’ gau'] L dut I'e au'] /‘(?u‘ 18

4.10. Substantial information about H*(I' (T X)) has been obtained by .
Gelfand -Fuks [5 ],who investigated this cohomology and got the following
results:

If X is compact then Hp(l"c (T X)) is a finite dimensional real vec-
tor space for each p. ,

H*T, (TS!)) is the tensor product of the polynomial algebra over a
generator in degree 2 and the exterior algebra over a generator in degree 3.

H*T,(TS?)) has ten genemtors and H*([',(T(S'x5"))) has 20

generators (with non trivial relations).

Since Di//0(5‘2) contains SO(3) as a strong deformation retract
(see Smale [21]) the mapping H*(Fc(TSZ)) > H:‘R(Dif//c(Sz)) cannot
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be injective.
411. The adjoint representation of Diff(X) can be constructed as in the
finite dimensional case, but then a curious thing happens :
AdExp:T,(TX)» L(I (TX), r.(TX))
is not analytic. The construction follows: .
1. Define conjugation

Conj: Diff (X) » Aut(Diff (X)) C CZ(Diff(X), Diff (X))

by Conj(f)(g) = {1 ogof. This is a group anti-homomorphism (taken

so to avoid a minus sign in the definition of ad, compare with 4.4).
Conj: Diff (X) X Diff (X )~ Diff (X)

isa C7 -mapping.

2. Define
Ad: Diff(X) » L(T,(TX),T (TX)) by Ad(f)=T,(Conj([)).

We have Conj(f) = A jo Pf where A denotes left translation and p de-

notes right translation (as in 4.5). Thus we have
Ad([)=T(X 4 )oT(pp) = T((f1) e T(/*)=(T(T) of*
Ad(f)¢ = Tf! o £of . The mapping
Ad: Diff (X)X T, (TX) » T (TX)
is C% .
3. Define ad: FC(TX) > L(I"c(TX) T (TX)) as the tangent vec-
tor part of T;;Ad. We will see later that ad(€ )y = [€,n]as usual.

4. LEMMA. %;Ad(sxp(zf))n = Ad(Exp(t£))E.q].
PROOF.

%;Ad(Exp(tf))n = j—;(TFl(f)_,onoFl(ﬁh) =

= g-tcomp(TFl(g)_,o 0, FI(£),) =
_ d
=TT FuE)., on, FL(£ ), )ComP(Z; TFLE), °’l»§;Fl(«f)t)

Now choosea smooth curve c: R X with ¢’(0) = p(x). Then
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d _dd _
ETxFl(f ).,om(x) = ;t'c?;lszom(f)-t(c(s)) -

=xyd| 4 aid .
KX‘dS S=0thl(£)-‘ C(S) KXdSIS'—'O( fOFl(E)_t C(S))

=-KX0T§oTFl(§)_t c'(0) =-Kky TfoTFl(f)_tn(x) s
where ky: T?X > T2X is the canonica] flip map. So we may continue:

d
2 A =
4 d(Exp(t€))n

= T(TFl(f).,on-Fl(«f),C°”’p("‘X TEoTFI(E) on.EoFI(E),) =
=TT FIE )., o, FILE ),)COmP(-kyTE o TFI(E) 0n,0) +
T FuE ), on, FiE),)ComR(0: E o FI(E),)
=-Ty F”‘f)-ton(Fl(f)t*)(KxoTfo TFI(§) ,on) +
+ Tpygg ), ((TFHE) jon)) )€ FICE),)
=-kyo TE o TFI(§) ono FI(E), + TAFI(£),) o Tno&FI(E),
(:)"‘X° T2(FI(£))oTEono FI(E), + THAFI(E) )0 Tno&FI(E),
= T2(FI(§) )o(-kyoTE on+ Tnoé)o FI({), .
= T2(FI(£).,) o Vy o (n, [£, 91)o FI(E),
where Vy:TXXTX T2X is the vertical lift and
ky oTéon=Tno& =Vy(n.[9,£1),
= Vyxo(TFIE) X TFI(E), )o(n. 16, nD) o FI(E),
=Vyo(TFI(§) ono FI(E),, TFI(E) ,0l&, nlo FI(E),)
= Vy o(Ad(Exp(t£))n, Ad(Exp(t£))[€, n]).
Forget the base point Ad( Exp(t{))n and the formula follows.  qed
S. COROLLARY. ad(€)n = [£€, ).

PROOF. Let t = 0 in the formula of Lemma 4. qed

6. LEMMA. Ad(Exp(tf))oad(&) = ad(§) o Ad(Exp(t£)).

PROOF. We get
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g—tAd(Exp(t-«f))n =

=-kyTAFI(£)_)o T€on o FI(E), + TX(FI(E).,) o Tnoéo FI(E),
by the line (*) in the proof of Lemma 4
=—ky T2FI(£) 0 TETFI(£),0 TFI(E) jomo FI(E), +
+ T2FI(§) 0o Tno TFI(£),0 TFI(E) o€ o FI(E),
=—ky o T(Ad(Exp(t£))€) o (Ad(Exp(t£))n) + |
+ T(Ad(Exp(t€)) n) o(Ad(Exp(t€))E)
= Vyo(Ad(Exp(t£))n, (£, Ad(Exp(t£))€, Ad(Exp(t£))nl)
= Vyo (Ad(Exp(t€))n, (€, Ad(Exp(t£))n]).
Now combine with Lemma 4 and get the result. qed
7. The result of Lemma 4 can be interpreted as a differential equation
for t |» Ad(Exp(t€)) e L(T (TX),T (TX)):
%Ad(Exp(tf)) = Ad(Exp(t£))oad(£), Ad(Exp(0))=1d.
The solution of this differential equation ought to be the series

0 k
S(t, &) =2 Lo(ad(£))k,
(t,€) k=0k!(a (€))

which is the infinite Taylor expansion of Ad( Exp(t£)) too; this follows
from repeated application of Lemma 4. But the series S§(¢, £) does not
converge in any sense, for the » th term t—r-:-ad({-' )"n(x) contains an » th
derivative of  at x and 5 can be chosen to have a (local) Taylor expan-
sion at x whose coefficients go to infinity arbitrarily fast. Check this

for x =Rl .
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