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Abstract. We define two (n + 1) graded Lie brackets on spaces of
multilinear mappings. The first one is able to recognize n-graded as-

sociative algebras and their modules and gives immediately the correct

differential for Hochschild cohomology. The second one recognizes n-
graded Lie algebra structures and their modules and gives rise to the

notion of Chevalley cohomology.

1. Introduction

In this paper we will generalize the construction of Nijenhuis and
Richardson which associates to a given vector space V a graded Lie
algebra Alt(V ) of multilinear alternating mappings V × . . .× V → V to
study Lie algebra structures on V and their deformations, see [9]. Their
construction suggests a ”principle” which we present here as the starting
point for our investigations. The principle is as follows:

Suppose that S is a type of structures on V , defining for example
associative algebras, Lie algebras, modules (over a given Algebra A)
or Lie bialgebras on V . Then there exists a Z - graded Lie algebra
(E =

⊕
k∈Z Ek, [ , ]) such that P ∈ S if and only if P ∈ E1 such that

[P, P ] = 0.
In the case where S is the set of Lie algebra structures on V the space

E can be identified with Alt(V ). Moreover if V is equipped with such
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a P , the Chevalley-Eilenberg coboundary operator ∂P of the adjoint
representation of (V, P ) is just the adjoint action of P on Alt(V ) up
to a sign. Another application may be found in [6]. There one uses
the graded cohomology of the subalgebras of Alt(V ) to classify and to
construct formal deformations of (V, P ).

The purpose of this paper is to establish the principle in each of
the cited cases. We will do this in more generality which makes the
construction even more powerful. Namely, we assume that V is itself
graded over Zn, (n = 0, 1, 2, ...) and we will define for each S a graded
Lie algebra E which is now graded over Zn+1 and satisfies the principle.
If we don’t stress the special choice of n we will speak of multigraded
algebras. Having defined the multigraded Lie algebra E , deformation
theory and cohomology of S may be treated at the same time using only
the space E and its properties.

Given a multigraded vector space V we will construct first M(V ),
a multigraded Lie algebra which is adapted to study the associative
structures on V . Using then the multigraded alternator α we defineA(V )
to be the image of M(V ) by α equipped with the unique bracket making
α a homomorphism of multigraded Lie algebras. Moreover A(V ) satisfies
a universal property and describes multigraded Lie algebra structures
on V . We call A(V ) the multigraded Nijenhuis-Richardson algebra of
V since it coincides with Alt(V ) for n = 0. Once having established
this multigraded version, the result for module structures follows quite
easily.

In this way we rediscover Hochschild and Chevalley-Eilenberg Coho-
mology for n ≤ 1, where the differential is given by the adjoint action
of P on E . Their generalizations for n > 1 are now obvious and yield a
canonical description for multigraded cohomology in both cases.

Moreover one can study now the theory of formal deformations of
multigraded algebras L and their modules. Roughly speaking we de-
scribe a mapping from the cohomology of the adjoint representation of
A(L) into the set of formal deformations of all possible structures on L
which may be used to construct and classify these deformations. Such
a point of view has also been emphasized by [11], [5], and [4].

2.Multigraded associative algebra structures

2.1. Conventions and definitions.. By a multidegree we mean an
element x = (x1, . . . , xn) ∈ Zn for some n. We call it also n-degree
if we want to stress the special choice of n. We shall need also the
inner product of multidegrees 〈 , 〉 : Zn × Zn → Z, given by 〈x, y〉 =∑n
i=1 x

iyi.
An n-graded vector space is just a direct sum V =

⊕
x∈Zn V

x, where
the elements of V x are said to be homogeneous of multidegree x. To
avoid technical problems we assume that vector spaces are defined over
a field K of characteristic 0. In the following X, Y , etc will always denote
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homogeneous elements of some multigraded vector space of multidegrees
x, y, etc.

By an n-graded algebra A =
⊕

x∈Zn Ax we mean an n-graded vector
space which is also a K algebra such that Ax · Ay ⊆ Ax+y.

(1) The multigraded algebra (A, ·) is said to be multigraded commu-
tative if for homogeneous elements X, Y ∈ A of multidegree x,
y, respectively,we have X · Y = (−1)〈x,y〉Y ·X.

(2) If X · Y = −(−1)〈x,y〉Y · X holds it is called multigraded anti-
commutative.

(3) An n-graded Lie algebra is a multigraded anticommutative alge-
bra (E , [ , ]), such that the multigraded Jacobi identity holds:

[X, [Y,Z]] = [[X,Y ], Z] + (−1)〈x,y〉[Y, [X,Z]]

Obviously the space End(V ) =
⊕

δ∈Zn Endδ(V ) of all endomorphisms
of a multigraded vector space V is a multigraded algebra under compo-
sition, where Endδ(V ) is the space of linear endomorphisms D of V of
multidegree δ, i.e. D(V x) ⊆ V x+δ. Clearly End(V ) is a multigraded Lie
algebra under the multigraded commutator

(4) [D1, D2] := D1 ◦D2 + (−1)〈δ1,δ2〉D2 ◦D1.

If A is an n-graded algebra, an endomorphism D : A → A of multi-
degree δ is called a multigraded derivation, if for X, Y ∈ A we have

(5) D(X · Y ) = D(X) · Y + (−1)〈δ,x〉X ·D(Y ).

Let us write Derδ(A) for the space of all multigraded derivations of
degree δ of the algebra A, and we put

(5) Der(A) =
⊕
δ∈Zn

Derδ(A).

The following lemma is standard:

Lemma. If A is an n-graded algebra, then the space Der(A) of multi-
graded derivations is an n-graded Lie subalgebra under the n-graded com-
mutator.

It is clear from the definitions that non-graded algebras and Z-graded
algebras are multigraded of multidegree 0 and 1, respectively.

2.2 Associative algebra structures. Let us recall first the construc-
tion in the case of non-graded vector spaces which was given in [3], [1].
There a 1-graded Lie algebra (M(V ), [ , ]∆) is described for each vec-
tor space V with the property that (V, µ) is an associative algebra if and
only if µ ∈M1(V ) and [µ, µ]∆ = 0. This algebra is as follows.
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Denote by Mk(V ) the space of all k+1-linear mappings K : V × . . .×
V → V and set

M(V ) :=
⊕
k∈Z

Mk(V ).

For Ki ∈Mki(V ) and Xj ∈ V we define j(K1)K2 ∈Mk1+k2(M) by

(j(K1)K2)(X0, . . . , Xk1+k2) :=

=
k2∑
i=0

(−1)k1iK2(X0, . . . ,K1(Xi, . . . , Xi+k1), . . . , Xk1+k2).

The graded Lie bracket of M(V ) is then given by

[K1,K2]∆ = j(K1)K2 − (−1)k1k2j(K2)K1.

Proposition. ([3], [1])
(1) (M(V ), [ , ]∆) is a 1-graded Lie algebra.
(2) If µ ∈ M1(V ), so µ : V × V → V is bilinear, then (V, µ) is an

associative algebra if and only if [µ, µ]∆ = 0. �

Note that M0(V ) = End(V ) is a Lie subalgebra of M(V ), and its
bracket is the negative of the usual commutator.

The explicit formulas above follow directly from investigating the 1-
graded Lie algebra of (1-graded) derivations of certain graded algebras,
see [11]. We explain that in the simple case of a finite dimensional
V . Then M(V ) is canonically isomorphic to the 1-graded Lie algebra
Der(

⊗
V ∗) of derivations of the tensor algebra of V ∗, a derivation D of

degree k being completely determined by its restriction V ∗ →
⊗k+1

V ∗

and hence by a unique K ∈Mk(V ).

2.3 Multigraded associative algebras. We will give now the multi-
graded generalization. Of course on can proceed as before by identifying
M(V ) as the algebra of derivations of some suitable multigraded alge-
bra. But we will generalize 2.2 directly. So let V =

⊕
x∈Zn V

x be an
n-graded vector space. We define

M(V ) :=
⊕

(k,κ)∈Z×Zn
M (k,κ)(V ),

where M (k,κ)(V ) is the space of all k+ 1-linear mappings K : V × . . .×
V → V such that K(V x0 × . . . × V xk) ⊆ V x0+···+xk+κ. We call k the
form degree and κ the weight degree of K. In 2.2 the mapping K had
degree k and Xi had degree −1 in M(V ), hence the sign (−1)ki. We
define for Ki ∈M (ki,κi)(V ) and Xj ∈ V xj

(j(K1)K2)(X0, . . . , Xk1+k2) :=

=
k2∑
i=0

(−1)k1i+〈κ1,κ2+x0+···+xi−1〉·

·K2(X0, . . . ,K1(Xi, . . . , Xi+k1), . . . , Xk1+k2)

[K1,K2]∆ = j(K1)K2 − (−1)k1k2+〈κ1,κ2〉j(K2)K1.
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Theorem. Let V be an n-graded vector space. Then we have:
(1) (M(V ), [ , ]∆) is an (n+ 1)-graded Lie algebra.
(2) If µ ∈ M (1,0,...,0)(V ), so µ : V × V → V is bilinear of weight

0 ∈ Zn, then µ is an associative n-graded multiplication if and
only if [µ, µ]∆ = 0.

Proof. The bracket is (n + 1)-graded anticommutative. The (n + 1)-
graded Jacobi identity follows from the formula

j([K1,K2]∆) = [j(K1), j(K2)],

the multigraded commutator in End(M(V )). This is a long but ele-
mentary calculation. The second assertion follows by writing out the
definitions. �

3. Multigraded Lie Algebra Structures

3.1. Multigraded signs of permutations. Let x = (x1, . . . , xk) ∈
(Zn)k be a multi index of n-degrees xi = (x1

i , . . . , x
n
i ) ∈ Zn and let

σ ∈ Sk be a permutation of k symbols. Then we define the multigraded
sign sign(σ,x) as follows: For a transposition σ = (i, i + 1) we put
sign(σ,x) = −(−1)〈xi,xi+1〉; it can be checked by combinatorics that this
gives a well defined mapping sign( ,x) : Sk → {−1,+1}. In fact one
may define directly

sign(σ,x) = sign(σ) sign(σ|x1
1|,...,|x1

k|) · · · sign(σ|xn1 |,... ,|xnk |),

where σ|xj1|,... ,|xjk| is that permutation of |xj1|+ · · ·+ |x
j
k| symbols which

moves the i-th block of length |xij | to the position σi, and where sign(σ)
denotes the ordinary sign of a permutation in Sk. Let us write σx =
(xσ1, . . . , xσk), then we have the following

Lemma. sign(σ ◦ τ,x) = sign(σ,x). sign(τ, σx). �

3.2 Multigraded Nijenhuis-Richardson algebra. We define the
multigraded alternator α : M(V )→M(V ) by

(1) (αK)(X0, . . . , Xk) =
1

(k + 1)!

∑
σ∈Sk+1

sign(σ,x)K(Xσ0, . . . , Xσk)

for K ∈ M (k,∗)(V ) and Xi ∈ V xi . If the ground field is not of charac-
teristic 0 one could omit the combinatorial factor, but one should redo
the whole developpment starting from the point of view of derivations
again, see the remark at the end of 2.2. However, the combinatorial
factors used here are quite essential, judging from our experience in dif-
ferential geometry. By lemma 3.1 we have α2 = α so α is a projection
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defined on M(V ), homogeneous of multidegree 0, and we set

A(V ) =
⊕

(k,κ)∈Z×Zn
A(k,κ)(V )

: =
⊕

(k,κ)∈Z×Zn
α(M (k,κ)(V )).

A long but straightforward computation shows that forKi ∈M (ki,κi)(V )

α(j(αK1)αK2) = α(j(K1)K2),

so the following operator and bracket is well defined:

i(K1)K2 : =
(k1 + k2 + 1)!

(k1 + 1)!(k2 + 1)!
α(j(K1)K2)

[K1,K2]∧ =
(k1 + k2 + 1)!

(k1 + 1)!(k2 + 1)!
α([K1,K2]∆)

= i(K1)K2 − (−1)〈(k1κ1),(k2,κ2)〉i(K2)K1

The combinatorial factor will become clear in 3.4 .

3.3. Theorem. 1. If Ki are as above then

(i(K1)K2)(X0, . . . , Xk1+k2) =

=
1

(k1 + 1)!k2!

∑
σ∈Sk1+k2+1

sign(σ,x)(−1)〈κ1,κ2〉·

·K2((K1(Xσ0, . . . , Xσk1), . . . , Xσ(k1+k2)).

2. (A(V ), [ , ]∧) is an (n+ 1)-graded Lie algebra.
3. If µ ∈ A(1,0,...,0)(V ), so µ : V × V → V is bilinear n-graded

anticommutative mapping of weight 0 ∈ Zn then [µ, µ]∧ = 0 if and only
if (V, µ) is a n-graded Lie algebra.

Proof. 1. This follows by a straight forward computation.
2. [ , ]∧ is clearly multigraded anticommutative and the multi-

graded Jacobi identity follows directly from the one of [ , ]∆.
3. Let µ ∈ A(1,0,...,0)(V ), then

0 = [µ, µ]∧(X0, X1, X2)

=
3!

2!3!
1
3!

∑
σ∈S3

sign(σ,x) · [µ, µ]∆(Xσ0, Xσ1, Xσ2)

=
∑
σ∈S3

sign(σ,x) · µ(µ(Xσ0, µ(Xσ1, Xσ2))

which is equivalent to the multigraded Jacobi identity of (V, µ). �

We call (A(V ), [ , ]∧) the multigraded Nijenhuis-Richardson alge-
bra, since A(V ) coincides for n = 0 with Alt(V ) of [9].
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3.4. Universality of the algebra (A(V ), [ , ]∧). Let V be a
multigraded vector space and denote by E(V ) the category of multi-
graded Lie algebras (E, [ , ]) such that

E(k,∗) = 0 k < −1

E(−1,∗) = V.

If E,F ∈ E(V ), then a morphism ϕ : E → F is a homomorphism
of multigraded Lie algebras satisfying ϕ|E(−1,∗) = idV . For example
M(V ) and A(V ) are elements of E(V ).

Theorem. A(V ) is a final object in E(V ), so for each E ∈ E(V ) there
exists a unique morphism ε : E → A(V ). It follows that A(V ) is unique
up to isomorphism.

Proof. Suppose that Z ∈ E(k,z) then we define

ε(Z)(X0, . . . , Xk) = (−1)〈z,x0+···+xk〉[X0, [X1, . . . , [Xk, Z] . . . ],

an element of E(−1,∗) = V for Xi ∈ V xi . Because of the multigraded
Jacobi identity ε(Z) is well defined as an element of A(k,z). So we are
left to show that

(*) ε([Z1, Z2]) = [ε(Z1), ε(Z2)]∧

We will do this by induction on k = k1 + k2. For k < −1 this is trivially
true. Now let k = −1, so we may assume that Z1 ∈ V z1 . Then

ε([Z1, Z2] = [Z1, Z2] = (−1)〈z1,z2〉ε(Z2)(Z1)

= i(Z1)ε(Z2) = [Z1, ε(Z2)]∧ = [ε(Z1), ε(Z2)]∧

by Theorem 3.2 and since ε|V = idV . Suppose that (*) is true for
k1 + k2 < k. Then for k1 + k2 = k we have

i(X)ε([Z1, Z2]) = [X, ε([Z1, Z2])]∧ = ε([X, [Z1, Z2]])

= ε
(
[[X,Z1], Z2] + (−1)〈(−1,x),(k1,z1)〉[Z1, [X,Z2]]

)
= [ε([X,Z1]), ε(Z2)]∧ + (−1)〈(−1,x),(k1,z1)〉[ε(Z1), ε([X,Z2])]∧

= [i(X)ε(Z1), ε(Z2)]∧ + (−1)〈(−1,x),(k1,z1)〉[ε(Z1), i(X)ε(Z2)]∧

= i(X)[ε(Z1), Z2]∧

by induction hypothesis and the fact that i(X) = [X, ]∧ is a derivation
of degree (−1, x) of A(V ). This proves the induction. Remark that for
E = M(V ) the morphism ε is given by

ε|Mk,∗(V ) = (k + 1)! α. �
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4. Multigraded Modules and Cohomology

4.1. Multigraded bimodules. Let V and W be multigraded vector
spaces and µ : V × V → V a multigraded algebra structure. A multi-
graded bimodule M = (W,λ, ρ) over A = (V, µ) is given by λ, ρ : V →
End(W ) of weight 0 such that

[µ, µ]∆ = 0 so A is associative(1)

λ(µ(X1, X2)) = λ(X1) ◦ λ(X2)(2)

ρ(µ(X1, X2)) = (−1)〈x1,x2〉ρ(X2) ◦ ρ(X1)(3)

λ(X1) ◦ ρ(X2) = (−1)〈x1,x2〉ρ(X2) ◦ λ(X1)(4)

where Xi ∈ V xi and ◦ denotes the composition in End(W ).

4.2. Theorem. Let E be the multigraded vector space defined by

E(k,∗) =


V if k = 0
W if k = 1
0 otherwise.

Then P ∈ M (1,0,...,0)(E) defines a bimodule structure on W if and only
if [P, P ]∆ = 0.

Proof. We define

µ(X1, X2) := P (X1, X2)

λ(X)Y := P (X,Y )

ρ(X)Y := (−1)〈x,y〉P (Y,X)

where we suppose the Xi’s ∈ V and Y ∈W to be embedded in E. Then
if Zi ∈ E be arbitrary we get

[P, P ]∆(Z0, Z1, Z2) = 2(j(P )P )(Z0, Z1, Z2)

= 2P ((Z0, Z1), Z2)− 2P (Z0, (Z1, Z2)).

Now specify Zi ∈ V resp. W to get eight independent equations. Four
of them vanish identically because of their degree of homogeneity, the
others recover the defining equations for the multigraded bimodules. �

4.3 Corollary. In the above situation we have the following decompo-
sition of M(E) :

M (k,q,∗)(E) =


0 for q > 1

L(k+1,∗)(V,W ) for q = 1

M (k,∗)(V )⊕
k+1⊕

(L(k,∗)(V,End(W )) for q = 0

where L(k,∗)(V,W ) denotes the space of k-linear mappings V ×. . .×V →
W . If P is as above, then P = µ + λ + ρ corresponds exactly to this
decomposition. �
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4.4. Hochschild cohomology and multiplicative structures. Let
V ,W and P be as in Theorem 4.2 and let ν : W × W → W be a
multigraded algebra structure, so ν ∈ M (1,−1,0,...,0)(E). Then for Ci ∈
L(ki,ci)(V,W ) we define

C1 • C2 := [C1, [C2, ν]∆]∆.

Since [C1, D2]∆ = 0 it follows that (L(V,W ), •) is multigraded commu-
tative. It is the usual extension of the product ν from W to the level of
cochains, where the necessary combinatorics is hidden in the brackets.

Theorem. 1. The mapping [P, ]∆ : M(E) → M(E) is a differ-
ential. We denote its restriction to L(V,W ) by δP . This generalizes
the Hochschild coboundary operator to the multigraded case: If C ∈
L(k,c)(V,W ) then we have for Xi ∈ V xi

(δPC)(X0, . . . , Xk) = λ(X0)C(X1, . . . , Xk)

−
k−1∑
i=0

(−1)iC(X0, . . . , µ(Xi, Xi+1), . . . , Xk)

+ (−1)k+1+〈x0+···+xk−1+c,xk〉ρ(Xk)C(X0, . . . , Xk−1)

The corresponding cohomology will be denoted by H(A,M), where A is
the multigraded associative algebra (V, µ), and where M is the multi-
graded A-bimodule (W,λ, ρ)

2. If [P, ν]∆ = 0 then δP is a derivation of L(V,W ) of multidegree
(1, 0, ...0). In this case the product • carries over to a multigraded (cup)
product on H(A,M).

Proof. The fact that δP is a differential follows directly from the multi-
graded Jacobi identity since the degree of δP is (1, 0, . . . , 0). The formula
is easily checked by writing out the definitions. Applying the multi-
graded Jacobi identity once again one gets immediately that δP is a
derivation if and only if [P, ν]∆ = 0.

By writing out the definitions one shows that [P, ν]∆ = 0 is equivalent
to the following equations:

λ(X)ν(Y1, Y2) = ν(λ(X)Y1, Y2))

ρ(X)ν(Y1, Y2) = (−1)〈x,y1〉ν(Y1, ρ(X)Y2)

ν(ρ(X)Y1, Y2) = (−1)〈x,y1〉ν(Y1, λ(X)Y2)

in particular we have (λ− ρ) : V → Der(W, ν). �

4.5 Multigraded Lie modules and Chevalley cohomology. We
obtain a corresponding result for Lie modules by applying the multi-
graded alternator α to M(E), just as we did in section 3 to obtain the
Nijenhuis-Richardson bracket.
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Theorem. Let P ∈ A(1,0,...,0)(E) then [P, P ]∧ = 0 if and only if

(a) [µ, µ]∧ = 0

so (V, µ) = g is a multigraded Lie algebra, and

(b) π(µ(X1, X2))Y = [π(X1), π(X2)]Y

where µ(X1, X2) = P (X1, X2) ∈ V and π(X)Y = P (X,Y ) ∈ W for
X, Xi ∈ V and Y ∈ W , and where [ , ] denotes the multigraded
commutator in End(W ). So [P, P ]∧ = 0 is by definition equivalent to
the fact that M := (W,π) is a multigraded Lie-g module.

If P is as above the mapping ∂P := [P, ]∧ : A(E) → A(E) is a
differential and its restriction to⊕

k∈Z
Λ(k,∗)(g,M) :=

⊕
k∈Z

A(k,1,∗)(E)

generalizes the Chevalley-Eilenberg coboundary operator to the multi-
graded case:

(∂PC)(X0, . . . , Xk) =
k∑
i=0

(−1)αi(x)+〈xi,c〉π(Xi)C(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)αij(x)C(µ(Xi, Xj), . . . , X̂i, . . . , X̂j , . . . )

where {
αi(x) = 〈xi, x1 + · · ·+ xi−1〉+ i

αij(x) = αi(x) + αi(x) + 〈xi, xj〉

We denote the corresponding cohomology space by H(g,M).
If ν : W ×W → W is multigraded symmetric (so ν ∈ A(1,−1,∗)(E))

and [P, ν]∧ = 0 then ∂P acts as derivation of multidegree (1, 0, . . . , 0) on
the multigraded commutative algebra (Λ(g,M), •), where

C1 • C2 := [C1, [C2, ν]∧]∧ Ci ∈ Λ(ki,ci)(g,M).

In this situation the product • carries over to a multigraded symmetric
(cup) product on H(g,M).

Proof. Apply the multigraded alternator α to the results of 4.1, 4.2, 4.3,
and 4.4. �

The formulas we obtained here are not that surprising since they are
standard in the non-graded case. The new feature of our approach lies
in the fact that we can formulate deformation equations and cohomol-
ogy at once inside a multigraded Lie algebra (which we denoted M(E),
A(V ) respectively). Then all the ”different” results we obtained are con-
sequences of only ”one” fact, namely the multigraded Jacobi identity. In
the line of [11] it seems to us that this procedure should be somehow
extended to other structures defined on a (multigraded) vector space,
for example coalgebras, comodules and then of course to bialgebras such
as Hopf algebras and Lie bialgebras. The latter one was discussed in [7].
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5. Structures and their formal deformations

5.1. Structures. We fix once for all a Zn graded Lie algebra (E , [, ])
and a multidegree θ ∈ Zn such that 〈θ, θ〉 + 1 ≡ 0 (mod 2) (i.e. θ has
one odd number of odd components).

By definition, a structure (of degree θ) of E is an element P ∈ Eθ
such that [P, P ] = 0. We denote by Sθ(E) the set of structures of degree
θ of E .

If P ∈ Sθ(E), then the adjoint action ∂P := adP of P on E is a
differential homogeneous of degree θ, since 〈θ, θ〉 + 1 ≡ 0 (mod 2). We
denote by

H(E , ∂P ) =
⊕
x∈Zn

Hx(E , ∂P )

its cohomology, where

Hx(E , ∂P ) = Ex ∩ ker ∂P /∂PEx−θ.

As ∂P is a derivation of E , H(E , ∂P ) has a unique Zn-graded Lie alge-
bra structure making the natural map ker ∂P → H(E , ∂P ) a surjective
homomorphism of graded Lie algebras.

Observe that [ , ] is a structure of degree e1 = (1, 0, . . . , 0) of A(E)
:

[ , ] ∈ Se1(A(E)).

To avoid confusion as well as to make the notations lighter, we denote in
the sequel by H(E) the space H(A(E), ∂[ , ]) and by D the differential
∂[ , ].

As mentioned above, many useful algebraic structures on a vector
space are particular instances of the abstract notion of structure in-
troduced here (associative algebras, Lie algebras, graded or not, Lie
bialgebras for instance). This leads to a unified way to study these var-
ious algebraic structures, what we shall now illustrate for their formal
deformations.

5.2. Formal deformations, Equivalences. We denote by Exλ the
space of formal power series in the parameter λ with coefficients in
Ex (x ∈ Zn). The space Eλ = ⊕x∈ZnExλ has a canonical multigraded
Lie algebra structure extending that of E :[∑

k

λkXk,
∑
l

λlYl

]
=
∑
k

λk
∑
i+j=k

[Xi, Yj ].

By definition, a formal deformation of a structure P ∈ Sθ(E) is an
element Pλ ∈ Sθ(Eλ) such that P0 = P . Two such deformations Pλ and
P ′λ are said to be equivalent if P ′λ = ϕλ(Pλ) for some automorphism
ϕλ =

∑
k λ

kϕk (ϕk ∈ A0(E), k ∈ N) of Eλ such that ϕ0 = idE , the
identity on E . In the sequel, such a ϕλ will be called an equivalence.
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Lemma. (i) A mapping ϕλ : Eλ → Eλ is an equivalence if and only if
it is solution of a formal differential equation

d

dλ
ϕλ = ϕλ ◦ Tλ, ϕ0 = idE ,

where Tλ ∈ A0(E)λ is a D-cocycle.
(ii) Let ϕλ be an equivalence and let Cλ ∈ A(E)λ be a D-cocycle. If
H0(E) = 0, then ϕ∗λCλ is a D-cocycle cohomologous to Cλ.

Here, ϕ∗λ denotes the natural action of ϕλ on A(E)λ :

(ϕ∗λCλ)(X0, . . . , Xk) = ϕλ(Cλ(ϕ−1
λ (X0, . . . , ϕ

−1
λ (Xk)).

Proof. (i) Applying ϕ−1
λ

d
dλ to the members of the equation

ϕλ([X,Y ]) = [ϕλ(X), ϕλ(Y )] (X,Y ∈ E)

shows that Tλ = ϕ−1
λ

dϕλ
dλ is a D-cocycle. Conversely, the unique solution

of
d

dλ
ϕλ = ϕλ ◦ Tλ, ϕ0 = idE ,

which is given stepwise by

(k + 1)ϕk+1 =
∑
i+j=k

ϕi ◦ Tj , ϕ0 = idE ,

is an equivalence if DTλ = 0. Indeed, as ϕ0 = idE , it is a bijective
mapping. Moreover,

d

dλ
(ϕλ([ϕ−1

λ (X), ϕ−1
λ (Y )])) = ϕλ((DTλ)(ϕ−1

λ (X), ϕ−1
λ (Y ))) = 0

for all X,Y ∈ E . Thus
ϕλ([ϕ−1

λ (X), ϕ−1
λ (Y )]) = ϕλ([ϕ−1

λ (X), ϕ−1
λ (Y )])|λ=0 = [X,Y ].

(ii) Assume that DC = 0, where C ∈ A(E). As easily seen, one has
d

dλ
(ϕ∗λC) = ϕ∗λ[C,ϕ−1

λ

d

dλ
ϕλ]∧.

Since H0(E) = 0, ϕ−1
λ

d
dλ ϕλ is a coboundary. It thus reads ad Tλ for

some Tλ ∈ E0
λ = A(−1,0)(E). Noticing that ad Tλ = i(Tλ)[ , ], it

follows immediately from the Jacobi identity in A(E) that
[ad Tλ, C]∧ = i(Tλ)DC + D(i(Tλ)C).

Thus
d

dλ
(ϕ∗λC) = ϕ∗λ(Di(Tλ)C) = D(ϕ∗λ(i(Tλ)C))

because DC = 0 and, obviously, ϕ∗λ ◦ D = D ◦ ϕ∗λ. Therefore,

ϕ∗λC = C + D
∫ λ

0

ϕ∗µ(i(Tµ)C)dµ.

Now, if each component Ck of Cλ is a D-cocycle, then

ϕ∗λCλ = Cλ + D(
∑
k

λk
∫ λ

0

ϕ∗µ(i(Tµ)Ck)dµ)

is cohomologous to Cλ. �
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5.3. Proposition. Let E be a Lie subalgebra of A(V ) for some (n−1)-
graded vector space V . Assume that E(−1,∗) = V ∗. Then

(i) If C ∈ A0(E) is a D-cocycle, then C = DT for some T ∈ A0(V )
such that [T, E ] ⊂ E.

(ii) The equivalences ϕλ of E are the mappings of the form S∗λ where
Sλ ∈ A0(V )λ and S0 = idV .

Proof. (i) Set T = C|V . Then T ∈ A0(V ) and C = DT . Indeed, let
Y ∈ A(k,y)(V ). For k = −1, C(Y ) = (DT )(Y ) by definition of T . Now,
by induction on k, if X ∈ A(−1,x)(V ) = V x, then

(−1)〈x,y〉i(X)C(Y ) = (DC)(X,Y ) + C([X,Y ]) + (−1)k+〈x,y〉[Y,C(X)]

= [[X,Y ], T ] + (−1)k+〈x,y〉[Y, [X,T ]]

= [X, (DT )(Y )] = (−1)〈x,y〉i(X)((DT )(Y )).

Thus C(Y ) = (DT )(Y ) for all Y .
(ii) It is clear that S∗λ is an equivalence. Conversely, if ϕλ is an

equivalence, we know that ϕ−1
λ

d
dλ ϕλ is a D-cocycle. It is thus of the

form DTλ for some Tλ ∈ A0(V )λ. The equation

d

dλ
Sλ = Sλ ◦ Tλ, S0 = idV ,

has, obviously, a unique solution. But then, for an arbitrary X ∈ E , one
has

d

dλ
ϕλ(X) = ϕλ(DTλ)(X),

d

dλ
S∗λX = S∗λ(DTλ)(X)

and thus ϕλ and S∗λ coincide on E since ϕ0 = S∗0 . �

5.4. We now turn to generalize to arbitrary structures P ∈ Sθ(E) the
results obtained for the Lie algebras in [1], [6]. We only indicate the
non obvious adaptations of the proofs, referring otherwise the reader to
the appropriate papers. As before, (E , [ , ]) denotes a Zn-graded Lie
algebra and θ ∈ Zn is assumed to be such that 〈θ, θ〉 + 1 ≡ 0 (mod 2).
We also denote by Pol(E) the space of polynomials on E . Let η be the
map A(E)→ Pol(E) given by

η(C) : X → 1
(k + 1)!

C(X, . . . ,X)

for C ∈ A(k,c)(E) and set

ηP (C) = η(C)(P )

for P ∈ Sθ(E).
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5.5. Lemma. Let C ∈ A(k,c)(E), P ∈ Sθ(E) and X ∈ Ex be given such
that k > 0 and 〈x, x〉+ 1 ≡ 0 (mod 2). Then we have

η(DC)(X) = (−1)〈x,c〉[X, η(C)(X)]− 1
2
η(i[X,X])C)(X)

∂P ηP (i(X)C) + ηP (i(∂PX)C) = (−1)〈θ,x+c〉[X, ηP (C)] if DC = 0.

Proof. This we get by straightforward computations applying theorem
4.4 to expand DC(X, . . . ,X) and DC(X,P, . . . , P ) respectively. �

Now comes our main result about formal deformation of structures
of E .

5.6. Theorem. (i) Let Cλ ∈ (
⊕

kθ+c=0A
(k,c)(E))λ be such that DCλ =

0. For each P ∈ Sθ(E), the unique solution of the equation

d

dλ
Pλ + η(Cλ)(Pλ) = 0, P0 = P,

is a formal deformation of P , which will be said to be associated to the
cocycle Cλ.

(ii) Formal deformations which are associated to cohomologous cocy-
cles are equivalent.

(iii) If H0(E) = 0 and Pλ is associated to Cλ, then each deformation
equivalent to Pλ is associated to a cocycle cohomologous to Cλ.

(iv) For a given P ∈ S0(E), the image of

ηP# : H(E)→ E

lies in the center of H(E, ∂P ). If Hθ(E , ∂P ) ⊂ im ηP#, then each
deformation of P is associated to some cocycle.

Proof. (i) The proof goes as in ([1], Proposition 15.2), without major
change : simply, substitute the first equation of lemma 5.5 to Proposition
15.1 in [1].

(ii) Assume that C ′λ = Cλ + DAλ and denote by Pλ and P ′λ the de-
formations of the same P ∈ Sθ(E) associated to Cλ and C ′λ respectively.
Set

Bλ =
∑
k

λk
∫ λ

0

(ϕ∗µ(i(Tµ)Ck)dµ

(see the end of the proof of the Lemma in 5.2). Then, the equations

d

dλ
ϕλ = ϕλ ◦ ad Tλ, ϕ0 = idE ,

and
Tλ = ϕ−1

λ (η(Aλ −Bλ)(P ′λ))
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have a unique solution ϕλ, Tλ, where ϕλ is an equivalence and Tλ ∈
A(−1,0)(E)λ. Indeed, it follows from the first that ϕk is uniquely ex-
pressed in terms of T0, . . . , Tk−1. The same holds true for the k-th
component of ϕ−1

λ , a polynomial in ϕ0, . . . , ϕk. Thus, the k-th com-
ponent of the right member of the second equation only depends on
T0, . . . , Tk−1. It follows that the two equations may be uniquely solved
by induction. Taking account of the fact that

ϕ∗λCλ = C ′λ + D(Bλ −Aλ),

one easily sees that P ′λ and ϕλ(Pλ) both are associated to C ′λ. As P ′0 =
ϕ0(P0) = P , one has thus P ′λ = ϕλ(Pλ).

(iii) Let ϕλ be an equivalence. As H0(E) = 0, one has dϕλ
dλ = ϕλ◦ad Tλ

for some Tλ ∈ E0
λ, and by lemma in 5.2, ϕ∗λCλ = Cλ + DBλ. Computing

d
dλ ϕλ(Pλ) easily shows that ϕλ(Pλ) is associated to Cλ+D(Bλ+ϕλ(Tλ)).

(iv) The fact that im ηP# lies in the center of H(E , ∂P ) follows imme-
diately from the second equation in lemma 5.5. The proof of the second
part of (iv) goes as in ([6], Prop.4.4). �
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