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THE GENERALIZED CAYLEY MAP FROM
A LIE GROUP TO ITS LIE ALGEBRA

PETER W. MICHOR

This talk is mainly based on the paper [5].

Let 7 : G — End(V) be an infinitesimally faithful complex representation of a
connected Lie group G. Consider (A, B) — tr(AB) on End(V) and suppose that
it is non-degenerate on the linear subspace 7/(g) € End(V'). Then the orthogonal
projection pr,. : End(V) — 7/(g) is defined:

representation 7

G End(V)
| V. (g) =Yg
71: Cayley map prwl orthoproj. ( ) _ de(t()dq)(g))
“ infinites. repr. 7’ |
g P 7T/<g)

The Cayley mapping ® has the following simple properties:

) D(bzb™t) = Ady(®(2)).
2) We have ®(g) € Cent(g?) C Z,4(g7).
3) d®(e) : g — g is the identity mapping.
4) H C G be a Cartan subgroup with Cartan algebra h C g. Then ®(H) C b.
5) For the character x.(g) = tr(m(g)) of m we have

dxr(9)(Te(pg) X) = tr(m'(2x(g))7" (X))

Further results are:
o Let m : G — Aut(V) be a representation admitting a Cayley mapping. Let
H = (Nyea G%)o = (G*), C G be a subgroup which is the connected centralizer of
a subset A C G and suppose that H is itself reductive. Then 7|H : H — End(V)
admits a Cayley mapping and ®,|H = @,z : H — b.
e Let G be a semisimple real or complex Lie group, let 7 : G — Aut(V) be an
infinitesimally effective representation. Let g = g1 @ - - - @ g be the decomposition
into the simple ideals g;. Let G1, ..., Gk be the corresponding connected subgroups
of G. Then ®,|G; = ®r g, fori=1,... k.
e (G a simple Lie group, for direct sum and tensor product representations
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Results for algebraic groups. Now let G be a reductive complex algebraic
group and 7 a rational representation. We have A(g) = A(g)Y ® Harm(g) by
[Kostant, 1963], where Harm(g) is the space of all regular functions killed by all
invariant differential operators with constant coefficients. We define Harm,(G) :=
¢* (Harm(g)). It is a G-module.

e For the localization at ¥ we have A(G)y = A(G)§ ® Harm,(G). Moreover, we
have A(G) = A(G)Y ® Harm, (G) if and only if ® : G — g maps regular orbits in
G to regular orbits in g.

o If d(e) = 0 € g then for the G-equivariant extension of the rational function fields
" : Q(g) — Q(G) the degrees satisty [Q(G) : Q(g)] = [Q(G) : Q(s)°].

e Let a € G be regular. Assume that d®(a) is invertible. Then & restricts to an

isomorphism ® : Conjs(a) — Adg(P(a)) of affine varieties.

e Let a € G. Then for the semisimple parts we have ®(as) = ®(a)s and P(a) =
®(as) + ®(a), € g* is the Jordan decomposition.

e Let GG be a connected reductive complex algebraic group and let ® : G — g be the
Cayley mapping of a rational representation with ®(e) = 0. Then ® : Gpos — @real
is bijective and a fiber respecting isomorphism of real algebraic varieties, where
Gpos s the set of all a € G whose semisimple part has positive eigenvalues, and
Oreal 1S the set of all X € g whose semisimple part has only real eigenvalues.

Relation to the classical Cayley mapping. Let T : Spin(n,C) — SO(n,C) be
the double cover. We consider the spin representation Spin : Spin(n, C) — Aut(S,,).

e There is a choice of the sign of the square root so that x(g) := y/det(1 +T(g))
satisfies 5

Pspin(9) = ~gnyz x(9)T'(T'(g)) € so(n,C).

for all g € Spin(n,C). Moreover, x € A(Spin(n,C)) and we have for the rational
function fields

Q(Spin(n))SP") = Q(s0(n, C))SP™) [x],
Q(Spin(n)) = Q(so(n,C))[x]-

Thus the generalized Cayley mapping ®gpin : Spin(n, C) — so(n, C) factors to the
classical Cayley transform I' : SO(n,C)* — Lie Spin(n, C)®*), up to multiplication
by a function, via the natural identifications.

Relation to Poisson structures. For a representation m of a Lie group G we
can try to pull back the Poisson structure on g* via the derivative of the character
dxr : G — g*. This pullback is a rational Poisson structure on G which in fact is
an integrable Dirac structure in the sense of [1], [2], [3]. Let us explain this a little:

Let M be a smooth manifold of dimension m. A Dirac structure on M is a vector
subbundle D C T'M x p; T* M with the following two properties:

(1) Each fiber D, is maximally isotropic with respect to the metric of signature
(m,m) on TM Xy T*M given by (X, a), (X', a))s = a(X") + o/(X). So
D is of fiber dimension m.

(2) The space of sections of D is closed under the non-skew-symmetric version
of the Courant-bracket [(X, ), (X', o)) = (X, X'], Lxa’ —ix/da).
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Natural examples of Dirac structures are the following: Symplectic structures w on
M, where D = D¥ = {(X,w(X)) : X € TM} is just the graph of w : TM — T*M;
these are precisely the Dirac structures D with TM N D = {0}. Poisson structures
P on M where D = DP = {(P(a),a) : « € T*M} is the graph of P : T*M — TM;
these are precisely the Dirac structures D which are transversal to T* M.

Given a Dirac structure D on M we consider its range R(D) = pry, (D) = {X €
TM : (X,a) € D for some « € T*M}. There is a skew symmetric 2-form ©p on
R(D) which is given by ©p(X, X’) = a(X’) where o € T*M is such that (X, «) €
D. The range R(D) is an integrable distribution of non-constant rank in the sense of
Stefan and Sussmann, see [4], so M is foliated into maximal integral submanifolds
L of R(D) of varying dimension, which are all initial submanifolds. The form
O©p induces a closed 2-form on each leaf L and (L,©p) is thus a presymplectic
manifold (©p might be degenerate on L). If the Dirac structure corresponds to a
Poisson structure then the (L, ©p) are exactly the symplectic leaves of the Poisson
structure.

The main advantage of Dirac structures is that one can apply arbitrary push
forwards and pull backs to them. So if f : N — M is a smooth mapping and D,
is a Dirac structure on M then the pull back is defined by f*Dy = {(X, f*«a) €
TN xnyT*N : (Tf.X,a) € Dy} Likewise the push forward of a Dirac structure
Dy on N is given by f.Dy = {(T'f.X,a) € TM xp T*M : (X, f*a) € Dy}.
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