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This talk is mainly based on the paper [5].

Let π : G → End(V ) be an infinitesimally faithful complex representation of a
connected Lie group G. Consider (A,B) 7→ tr(AB) on End(V ) and suppose that
it is non-degenerate on the linear subspace π′(g) ⊆ End(V ). Then the orthogonal
projection prπ : End(V ) → π′(g) is defined:
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�
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Ψπ(g) = Ψ(g)

: = det(dΦ(g))

The Cayley mapping Φ has the following simple properties:

(1) Φ(bxb−1) = Adb(Φ(x)).
(2) We have Φ(g) ∈ Cent(gg) ⊂ Zg(g

g).
(3) dΦ(e) : g → g is the identity mapping.
(4) H ⊂ G be a Cartan subgroup with Cartan algebra h ⊂ g. Then Φ(H) ⊂ h.
(5) For the character χπ(g) = tr(π(g)) of π we have

dχπ(g)(Te(µg)X) = tr(π′(Φπ(g))π′(X))

Further results are:
• Let π : G → Aut(V ) be a representation admitting a Cayley mapping. Let
H = (

⋂

a∈A Ga)o = (GA)o ⊆ G be a subgroup which is the connected centralizer of
a subset A ⊆ G and suppose that H is itself reductive. Then π|H : H → End(V )
admits a Cayley mapping and Φπ|H = Φπ|H : H → h.
• Let G be a semisimple real or complex Lie group, let π : G → Aut(V ) be an
infinitesimally effective representation. Let g = g1 ⊕ · · · ⊕ gk be the decomposition
into the simple ideals gi. Let G1, . . . , Gk be the corresponding connected subgroups
of G. Then Φπ|Gi = Φπ|Gi

for i = 1, . . . , k.

• G a simple Lie group, for direct sum and tensor product representations
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Results for algebraic groups. Now let G be a reductive complex algebraic
group and π a rational representation. We have A(g) = A(g)G ⊗ Harm(g) by
[Kostant, 1963], where Harm(g) is the space of all regular functions killed by all
invariant differential operators with constant coefficients. We define Harmπ(G) :=
Φ∗

π(Harm(g)). It is a G-module.
• For the localization at Ψ we have A(G)Ψ = A(G)G

Ψ ⊗ Harmπ(G). Moreover, we
have A(G) = A(G)G ⊗ Harmπ(G) if and only if Φ : G → g maps regular orbits in
G to regular orbits in g.
• If Φ(e) = 0 ∈ g then for the G-equivariant extension of the rational function fields
Φ∗ : Q(g) → Q(G) the degrees satisfy [Q(G) : Q(g)] = [Q(G)G : Q(g)G].
• Let a ∈ G be regular. Assume that dΦ(a) is invertible. Then Φ restricts to an

isomorphism Φ : ConjG(a) → AdG(Φ(a)) of affine varieties.
• Let a ∈ G. Then for the semisimple parts we have Φ(as) = Φ(a)s and Φ(a) =
Φ(as) + Φ(a)n ∈ ga is the Jordan decomposition.
• Let G be a connected reductive complex algebraic group and let Φ : G → g be the
Cayley mapping of a rational representation with Φ(e) = 0. Then Φ : Gpos → greal

is bijective and a fiber respecting isomorphism of real algebraic varieties, where
Gpos is the set of all a ∈ G whose semisimple part has positive eigenvalues, and
greal is the set of all X ∈ g whose semisimple part has only real eigenvalues.

Relation to the classical Cayley mapping. Let T : Spin(n, C) → SO(n, C) be
the double cover. We consider the spin representation Spin : Spin(n, C) → Aut(Sn).

• There is a choice of the sign of the square root so that χ(g) :=
√

det(1 + T (g))
satisfies

ΦSpin(g) = −
2

2n/2
χ(g) Γ(T (g)) ∈ so(n, C).

for all g ∈ Spin(n, C). Moreover, χ ∈ A(Spin(n, C)) and we have for the rational
function fields

Q(Spin(n))Spin(n) = Q(so(n, C))Spin(n)[χ],

Q(Spin(n)) = Q(so(n, C))[χ].

Thus the generalized Cayley mapping ΦSpin : Spin(n, C) → so(n, C) factors to the

classical Cayley transform Γ : SO(n, C)∗ → Lie Spin(n, C)(∗), up to multiplication
by a function, via the natural identifications.

Relation to Poisson structures. For a representation π of a Lie group G we
can try to pull back the Poisson structure on g∗ via the derivative of the character
dχπ : G → g∗. This pullback is a rational Poisson structure on G which in fact is
an integrable Dirac structure in the sense of [1], [2], [3]. Let us explain this a little:

Let M be a smooth manifold of dimension m. A Dirac structure on M is a vector
subbundle D ⊂ TM ×M T ∗M with the following two properties:

(1) Each fiber Dx is maximally isotropic with respect to the metric of signature
(m,m) on TM ×M T ∗M given by 〈(X,α), (X ′, α′)〉+ = α(X ′) + α′(X). So
D is of fiber dimension m.

(2) The space of sections of D is closed under the non-skew-symmetric version
of the Courant-bracket [(X,α), (X ′, α′)] = ([X,X ′],LXα′ − iX′dα).
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Natural examples of Dirac structures are the following: Symplectic structures ω on
M , where D = Dω = {(X,ω(X)) : X ∈ TM} is just the graph of ω : TM → T ∗M ;
these are precisely the Dirac structures D with TM ∩D = {0}. Poisson structures
P on M where D = DP = {(P (α), α) : α ∈ T ∗M} is the graph of P : T ∗M → TM ;
these are precisely the Dirac structures D which are transversal to T ∗M .

Given a Dirac structure D on M we consider its range R(D) = prTM (D) = {X ∈
TM : (X,α) ∈ D for some α ∈ T ∗M}. There is a skew symmetric 2-form ΘD on
R(D) which is given by ΘD(X,X ′) = α(X ′) where α ∈ T ∗M is such that (X,α) ∈
D. The range R(D) is an integrable distribution of non-constant rank in the sense of
Stefan and Sussmann, see [4], so M is foliated into maximal integral submanifolds
L of R(D) of varying dimension, which are all initial submanifolds. The form
ΘD induces a closed 2-form on each leaf L and (L,ΘD) is thus a presymplectic
manifold (ΘD might be degenerate on L). If the Dirac structure corresponds to a
Poisson structure then the (L,ΘD) are exactly the symplectic leaves of the Poisson
structure.

The main advantage of Dirac structures is that one can apply arbitrary push
forwards and pull backs to them. So if f : N → M is a smooth mapping and DM

is a Dirac structure on M then the pull back is defined by f ∗DM = {(X, f∗α) ∈
TN ×N T ∗N : (Tf.X, α) ∈ DM}. Likewise the push forward of a Dirac structure
DN on N is given by f∗DN = {(Tf.X, α) ∈ TM ×M T ∗M : (X, f∗α) ∈ DN}.
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