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ABSTRACT. There is a canonical mapping from the space of sections of the bundle
AT*M ® STM to Q(T*M;T(T*M)). It is shown that this is a homomorphism on
Q(M; TM) for the Frolicher-Nijenhuis brackets, and also on I'(ST'M) for the Schouten
bracket of symmetric multivector fields. But the whole image is not a subalgebra for
the Frolicher-Nijenhuis bracket on Q(T*M;T(T*M)).
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1. INTRODUCTION

It is well known that there are several extensions of the bracket of vector fields
on a smooth manifold M. In particular, the Frolicher-Nijenhuis bracket extends
the bracket of vector fields to all vector valued differential forms on M, i.e. to
Q(M;TM). Another classical extension is the Schouten bracket, this is an extension
of the bracket of vector fields to all symmetric multivector fields, i.e. to T'(STM).
The Schouten bracket has a natural interpretation in terms of Poisson bracket.
Indeed, there is an obvious isomorphism 7* of the algebra I'(ST'M) on the algebra
of smooth functions on T*M which are polynomial on the fiber. On the other
hand there is a natural symplectic structure on T*M and the Schouten bracket
corresponds just to the Poisson bracket under the above isomorphism.
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It is very natural, and it is the aim of this paper, to try to find a common
generalization of the two above brackets.

Let us give an example of problem where such an extension could be welcome.
Suppose that M is equipped with a Riemannian metric ¢ and let g denote the
corresponding contravariant symmetric two-tensor field. Then, 7*(g) is the Hamil-
tonian of the geodesic flow on T*M and the symmetric tensor fields S satisfying
[g,S] = 0 correspond to functions on T*M which are invariant by the geodesic flow;
such symmetric tensor fields are called Killing tensors. These Killing tensors form
a Poisson subalgebra of I'(STM). Now if S is a Killing tensor of order k; then it is
not hard to show that only its covariant derivatives of order not greater than k are
independent, i.e. its covariant derivatives of order greater than k are linear com-
bination of those of order not greater than k with coefficients which are covariant
expressions in the curvature tensor. This implies in particular that the equations
[9,5] = 0 have a lot of integrability conditions and, since these integrability con-
ditions are always consequence of d?> = 0, it is natural to introduce the algebra
Q(M; STM) of symmetric multivector valued forms to analyse them. This algebra
is a graded-commutative algebra for the graduation given by the form-degree and
on this algebra there is a nice algebra of graded derivations associated with the
metric. It is generated by three antiderivations, V,dg, 6;, where V is the exterior
covariant differential corresponding to the Levi-Civita connection, ¢4 is the unique
C°°(M)-linear antiderivation such that §,X € Q'(M) for X € I'(T'M) is the one-
form Y — 6,X(Y) = g(X,Y) and §,Q'(M) = 0, & is the unique C°°(M )-linear
antiderivation such that §;T(TM) = 0 and §;w € T'(T'M) for w € Q'(M) is the

vector field obtained by the contraction of g with w. One has: (53 =0, 6’5 =0,
840y + 0,04 equals the total degree in form and tensor, Vé, + 3,V = 0 (because V
is torsion free) and the derivation D = V4, + 6,V is an extension to Q(M; ST M)
of the Schouten bracket with g. So it is natural to try to construct a bracket on
Q(M; STM) extending the Schouten bracket for which D is the bracket with g. It
is not difficult to construct such a bracket namely a

[a® F,80 )y = Lygr(8)G — (-1)"Ligg(a)F +a A B® [F,G]
for a € Q¥(M), B € Q(M), F, G € T(STM) with
LYor(w) = tagrVw + (—1)*Viggpw

for w € Q(M) and where the generalised insertion ¢ is defined by

k
fa®X, v vx, (W) = Zoz/\ixr(w) @X1V...X, VX,
r=1

(the hat meaning omission of this element).

More generally if V is any torsion free linear connection on M, the above for-
mula defines a bracket [ , ]v which is an extension to Q(M; STM) of both the
Schouten bracket and the Frolicher-Nijenhuis bracket. Furthermore, this bracket is
a graded derivation in each variable, it is also graded antisymmetric but unfortu-
nately it does not satisfy the graded Jacobi identity.
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In this paper we shall follow another way: we first send Q(M; STM) in Q(T*M)
by using the isomorphism 7*, then we use a construction introduced by one of
s [5] to send it in Q(T*M;T(T*M)) in which there is the Frolicher-Nijenhuis
bracket and we show that this gives injective homomorphisms of graded Lie algebras
for the Frolicher-Nijenhuis bracket on Q(M;TM) and the Schouten bracket on
I'(STM). But the common generalization of these two brackets does not exist on
the space Q(M; STM), only on Q(T*M;T(T*M)). This is similar to the common
generalization found by Vinogradov [14,1] of the Frolicher-Nijenhuis bracket and
the skew symmetric Schouten bracket on I'(AT M), which exist only on a quotient
of a certain space of ‘superdifferential operators’ on Q(M).

2. THE POISSON BRACKET FOR DIFFERENTIAL FORMS

2.1. Frolicher-Nijenhuis bracket. For the convenience of the reader we review
here the theory of graded derivations of the graded commutative algebra of differ-
ential form on a smooth manifold M. See [2] and [3] for the original source, and [6]
or [4], sections 8-11, as a convenient reference, whose notation we follow here.

The space Der(Q2(M)) of all graded derivations of the graded commutative alge-
bra of differential forms on M is a graded Lie algebra with the graded commutator as
bracket. In the following formulas we will always assume that K € QF(M;TM) =
T(A*T*M @ TM), L € QY(M;TM), w € Q4(M). The formula

(ixw) (X1, Xiyg1) = gy D Sign(@)w(K (Xo1, -+, Xor), Xo(ht1)s- - )

for X; € X(M) (or T, M) defines an graded derivation ix € Dery_1 Q(M) and
any derivation D with D|Q°(M) = 0 is of this form. On Q*1(M,TM) (with the
grading *) a graded Lie bracket is given by [K, L] = ixL — (—=1)k=D0-1j K
where ix (¢ ® X) := i () ® X, which satifies i([K, L") := [ix,ir]. It is called
the Nijenhuis-Richardson bracket, see [11].

The exterior derivative d is an element of Der; Q(M). We define the Lie deriva-
tion L = L(K) € Derp Q(M) by Lk := [ix,d]. For any graded derivation
D € Dery Q(M) there are unique K € QF(M;TM) and L € QFFY(M;TM) such
that D = L + 4. We have L = 0 if and only if [D,d] = 0, and D|Q°(M) = 0 if
and only if K = 0. Clearly [[Lk,LL],d] = 0, so we have [L(K), L(L)] = L([K, L])
for a uniquely defined [K, L] € Q**{(M;TM). This vector valued form [K, L] is
called the Frélicher-Nijenhuis bracket of K and L. It is well behaved with respect
to the obvious relation of f-relatedness of tangent bundle valued differential forms,
where f: M — N. For k =1 =0 it coincides with the Lie bracket of vector fields.
Let the degree of w be ¢, of ¢ be k, and of ¥ be £. Let the other degrees be as
indicated. Then the following formulas hold

(1) | = i([K, L]) = (-1)*L(iL K)

(2) i(wAL)=wAi(L).

(3) LwNK)=wALg —(=1)7Li(dw A K).

(4) WA Ky, K] =wA [Kp, Ko] — (=1) @0k 2w A Ky
+ (=) Frdw A i (K) K.

Lk, ir



4 M. DUBOIS-VIOLETTE, P. MICHOR

(5) [P X YVRY] =AY R[X,) Y]+ ANLxY QY —LyoAp®@ X
+ (=D (dp Nix @Y +iyp Ady @ X).

2.2. Poisson manifolds. Let (M, p) be a Poisson manifold, that is a smooth
manifold M together with a 2-field p € I'(A*T M) satisfying [p, p] = 0, where [ , ]
is the Schouten-Nijenhuis bracket on T'(A*~1T'M), see [7] and [12]. Then p induces a
skew symmetric differential concomitant on C*°(M,R) given by {f, g}, = p(df, dg).
The Jacobi identity for this bracket is equivalent to [p, p] = 0, see [7], 1.4 for a nice
proof. Here we view p as a skew symmetric bilinear form on T*M, but also as a
vector bundle homomorphism p: T*M — TM.

It is well known that for a symplectic manifold (M,w) with associated Poisson
structure p = w™! : T*M — TM we have the following exact sequence of Lie
algebras:

(1) 0— HO(M) — C®(M,R) 2L x,(M) 2 HY (M) — 0

Here H*(M) is the real De Rham cohomology of M, the space C*(M,R) is
equipped with the Poisson bracket { , },, X, (M) consists of all vector fields
¢ with Lew = 0 (the locally Hamiltonian vector fields), which is a Lie algebra for
the Lie bracket. Also Hy is the Hamiltonian vector field for f € C*°(M,R) given
by H¢ = p(df), and (&) is the cohomology class of i¢w. The spaces H(M) and
HY(M) are equipped with the zero bracket.

2.3. The graded Poisson bracket for differential forms. In [5] the exact
sequence 2.2.(1) has been generalized in the following way. It was stated there
for symplectic manifolds, but the proofs there work without any change also for
Poisson manifolds.

We consider first the space Q(M;TM) = T'(A*T*M ® TM) of tangent bun-
dle valued differential forms on M, equipped with the Frolicher-Nijenhuis bracket
[ , ] Wefirst extend p: T*"M — TM to a module valued graded derivation of
degree —1 by

(1) p: QM) — QM;TM),
p|Q°(M) =0, and for ¢; € Q' (M) by

k
pler A Ar) =Y (1) or A G Ao @ pl(pi)-
=1

Then we have the Hamiltonian mapping

(2) H: QM) — Q(M;TM),
H() : = p(dv),
k
H(fodfy A-ew Adfi) =D (=1)idfo A .. df; - Adfy ® Hy,.

=0
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Theorem. [5]. Let (M, p) be a Poisson manifold. Then on the space Q(M)/B(M)
of differential forms modulo exact forms there ezists a unique graded Lie bracket
{ , },, which is given by the quotient modulo B(M) of

{0}, = i(Hy)dip, or
) {fodfs A~ ANdfr,godgr A+~ Ndgi}) =
= Z(_l)iJrj{fi)gj}pdfO/\~--3J?i"'/\dfk/\d90/\--~d/g\j"'/\d9k7
]

such that H : Q(M)/B(M) — Q(M;TM) is a homomorphism of graded Lie alge-
bras.

If p = w™! for a symplectic structure w on M then we have a short exact sequence
of vector spaces

(4) 0 — H*(M) — Q(M)/B(M) “Qp—o(M; TM) —

— Y (M)®eT(E,) — 0
where T'(E,,) is a space of sections of a certain vector bundle and where the space
Qrw=0(M;TM) is the graded Lie subalgebra of all K € Q(M;TM) such that for
the Lie derivative along K we have Lxkw = 0. We also have the exact sequence of
graded Lie algebras
(5) 0 — H*(M) — Q(M)/B(M) 5 Qu(M; TM) — H**Y(M) — 0
where now Qu,(M;TM) is the graded Lie subalgebra of all K € Q¥(M;TM) such

that for the Lie derivative along K we have Lxw =0 and K + (_kl}rklﬂp(i;(w) =0,

and where on the De Rham cohomology spaces we put the brackets 0.

See [5] for the proof of this theorem and for more information. The step from
the sequence (4) to (5) was noticed in [8]. Parts of this theorem were reproved by a
different method in [1]. We just note here that on Q(M) itself the bracket { , }}
is graded anticommutative, but does not satisfy the graded Jacobi identity, whereas
a second form, {(p,w}f) = Liy)Y, satisfies the graded Jacobi identity but is not
graded anticommutative, and they differ by something exact.

3. THE FROLICHER-NIJENHUIS BRACKET ON Q(T*M;T(T*M))

3.1. Let M be a smooth manifold. We consider the cotangent bundle 7 : T*M —
M, the Liouville form ©,; € QY (T*M), given by O (€) = (mrm&, T(mar)-E)rars
and the canonical symplectic form wy; = —dOy,.

The space I'(STM) of symmetric contravariant tensor fields carries a natural
differential concomitant which was found by Schouten [13] and which for X;,Y; €
X(M) and for f,g € C°(M,R) is given by (see [7])

(1) [f.9]=0
X1V VXYV VY] =
=Y XYV VX VX VY VLY VY
i

[FYiV VY] =Y df(Y)Yi V.Y VY

J
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Obviously T'(S*T1TM) is a Lie algebra (with grading *, but not a graded Lie
algebra). Any symmetric multivector field U € T'(S*TM) may be viewed as a
function on T*M which is homogeneous of degree k on each fiber. So we have a
linear injective mapping

7 :T(S*TM) — C°°(T* M, R)
(m*U)(p) = (¢", U)rm.

It is well known that 7* is a homomorphism of Lie algebras, where on C*°(T* M, R)

we consider the canonical Poisson bracket { , } induced by p = wIT/[l. See also
3.5.(2).

3.2. We consider the pullback 7* : Q(M) — Q(T*M), and we extend it to the

linear mapping

7 D(APT*M @ S'TM) — QF(T* M),
(1) (W*A)¢(§1, e agk) = <90 VeV @, A(Tﬂ-'gla cee 7T7T'£k)>TM-

The space D(AT*M @ STM) = @, T(A*T*M © S'TM) is a graded commutative
algebra with respect to the degree k, and 7* : T(AT*M ® STM) — Q(T*M) is
obviously a homomorphism with respect to the ‘wedge’ products. In the following
we will always write 7* in front of any tensor field on M which contains vector

field components, but we will suppress it if we consider pullbacks of functions or
differential forms to T*M.

Lemma.
(2) For each k >0 and for 1 > 0 the mapping

. QF(T*M) w
. ko l m k (o kimr*xar. *
h:T(A"T"M @ S'TM) — Q" (T"M) — 7Bk(T*M) — Q¥ (T*"M;T(T*M))
18 injective.
(3) Forl =0 the mapping
Q(T*M)

QM) = Q(T* M) — B

induces an injective linear mapping

QM) QT*M)
B(M)  B(T*M)

(4) Let I € X(T*M) be the vertical homothetic vector field on T*M, given by
I(p) = %‘125(,0. Then for each | > 0 the image of the linear mapping

™ D(AT*M @ S'TM) — QF(T* M)

is the subspace consisting of all horizontal differential forms ® € Q(T*M)
which satisfy L1P =1.®
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Proof. Since m : T*M — M is a homotopy equivalence with homotopy inverse
the zero section, the pullback operator induces an injective linear mapping 7*
Q(M)/B(M) — Q(T*M)/B(T*M). This proves (3).

Now let 0 # A € T'(A*T*M ® S'TM). We consider the vertical vector field
I € X(T*M), I(p) = vi(p,p) = %htgo. The flow of I is given by the vertical
homotheties F1! (¢) = e’¢, we have (F1/)*7*A = el'n* A, and thus

irdn*A+0=Lim* A= %|0(Flf)*7r*A = %|oelt7r*A = Ir*A

which is not 0 for [ > 0. Since p : Q>0(T*M) — Q(T*M; T(T*M)) is injective, (2)
follows.

We also conclude the inclusion C in (4). Since the assertion is local on M, for
the converse inclusion O we may use local coordinates on T*(Q) C T*M as in the
beginning of the proof of lemma 3.3. Then I|Q = > pia%i and any horizontal
form is a sum of expressions like ® = f(q,p)dq™* A --- Adg'» € QP(T*Q). Then
L® =1.9 means L;f = [.f from which we conclude that in multi-index notation
we have f(q,p) = Z|a\:l fa(g)p®, which implies the result, since we use a partition
of unity on M. O

3.3. Lemma. Collection of formulas. In the following X, Y € X(M) are
vector fields, ¢ € QP(M), v € QI(M), K € Q¥(M;TM), L € Q' (M;TM), and
f € Q%M). Then the following formulas hold on T*M. We drop ©* in front of
pullbacks of differential forms.

(1) [hX,RY]=h[X,Y].

(2) [pp, p¥] =0, thus also [he, py] = [pdip, pp] = 0, etc.
(3) [hX, pp] = pLxp, so also [hX, hg| = [hX, pdy] = hLx .
(4) ippot =0 and i,,p1p = 0, so also Ly, =0, etc.
(5) Lopm* X = —ixp, so also Lp,m*X = —ixdep.
(6) Lrxf=Lkf, soalso Lrxp = Lxp. Similarly inxe = ixe.
(7) (WL, hf) = hLLf.

(8) Lyxgm L =7*[K, L] + (—1)*Dldr* (i, K).
(9) dLyxm L = (=1)* Ly, gdn* L = dn*[K, L].
10) ipaert) =0, so also Lpzx1 =0.

11) Lypegm*L = —(=1)F Dl K.

12) ihKT('*L = 7T*ZKL

13) ipgdn*L = m*[K, L] — (—=1)*dr* (ig L 4+ (—1)F=D0-14 K).

14) ’L'hxpiﬁ = —p’ix’l/J.

15) Lppm*L = —(—1)Plipdep.

16) [on* K, hf] = plixedth) — (—1)¥ingchad.

Proof. Let us fix local coordinates ¢', . .., g™ on an open subset Q of M and induced

coordinates ¢*, p; on T*Q C T*M, so that the Liouville form O|T*Q = " p;d¢’
and the symplectic form is given by w = —d© = 3" dq’ A dp;. We have

(
(
(
(
(
(
(

w( ) = dp; p(dpl) = o

q*
W) =i pldg’) = 2

|
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so that for f € C*°(M,R), ¢ € QP(M), and X € X(M) we get the following local
formulas on T*Q C T*M:

o
hf=pldf) ==Y 555
he =p(>_ =3 %1 —edg' Adgt A Adg')
=Y igpi(@da’ A A @ 52

_ ox' o
hX=-) 5w Zap + ZXZ s

From this (1) and (2) follow by straightforward computation, whereas (3) follows
from contemplating 2.1.(1).
(3) then can be proved as follows:

[hX, p(fodfi A -+ ANdfp)] = Lirx (Z(—l)ilfodfl N Npdfs Ao A dfp)

i

=Lnxfo-> (1) dfy Ao ARfi A Adf,

+ ) (0 fodfy A A Lpxdfy Ao NRF A AdS,

1<j<i

Y (=D fodfy Ao A Lpxhfi A Adfy

+ ) (0 T fodfy A NRf N A Lyxdfy A Adf,

1<i<yj

=p(Lx(fodft N+ A dfp))»

where we also use the following special cases of (3), which are immediate from the
local formulas:

Laxf= (=3 §mals + Y X' ) f=£xf
Lpxdf =dLpx f = dﬁxf = Lxdf
i 2]
Lpxhf = |:_ aqm pk apm + ZX aq 0 Bz{i 321:|

=hLx f = pLxdf.
(5) is seen as follows:
L(p(fodfy A+~ Ndfp))m* X = i(p(fodfy A+ Adfp))dn™ X +0
=i (Z( DV fodfy AL dfy - Adf, ®hfl> dr* X
= —Zz(—l)i‘lfodfl A Nixdfy A Ndfy = —ix (fodfy A -+ A dfy)
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where we use the special case

i(hf)dr™X =1 (‘ 353 %) ( ‘Z\%pkdq’" + ZXkdpk)
— Lxf = —ixdf.

For the proof of the remaining formulas we assume that K = ¢ ® X for ¢ €
QF (M) with dp = 0, and L = ¢ ®@ Y for ¢ € QY(M) with dyp = 0, where X,Y €
X(M). We may do this since locally Q(M;TM) is linearly generated by such
elements. We will use the formulas of 2.1 without explicitly mentioning them.
Under this assumptions we have

he®X)=pdr*(p®@X) = —dn* X A pp+ o ANhX
LpX)=pALx.

(6) follows from (4) via

Luxf =inxdf =i(—dr*X A pp + ¢ AhX)df
= —dm* X Nipudf + ¢ Nipxdf
:0+90/\ixdf:inf:£Kf

Then we get in turn

ihK(fodfl Ao A dfp) = Z(,l)iflfodfl A.cipidfio N dfp ® hf;
=i (fodfv A+ Ndfy),
Lhgedf = (=1)*dLxcf = (—1)"dLrcf = Licdl,
Lik (fodft A+ ANdfyp) = Lk fo-dfs A=+ Adfp)

+ Y (1) fodfy A Lukcdfi - N dfy, @ hf;

= EK(defl VANKIERIVAN dfp)
(7) can be seen as follows, using (3), (2), and (5):

[hL, hf] = [h($ @ Y),hf] = [ ARY — dn*Y A p, hf]
=YA[RY,hf] = Lppp NRY =0
—dr*Y A py, hf] + Lppdn™Y A pp +0
=y ANRLy f—diydf Npp =h(p ALy f)=hLpf
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(8) We start with the following computation, using (4), (5), and ipx¥ = ix .
Lyngm*L = ipgdn*L — (—=1)*Ldipgn* L
=i (—dr* X A pp + o ARX) (=) Adr*Y)
+ (=D i (=dm* X A pp + @ ANhX) (b ATY)
—(—=DMr* X Nippth Adr*Y — (1) FEDr* X A op A dppdn*Y
+ (=Dlo Ninxth Adr*Y + @ Ap Adpxdr*Y
+ (=) (—dn* X Nippt) AT*Y + @ Nipxt) AT*Y)
=04 (=D)*Dr* X A ANy o+ (=) o Aixp A dn*Y
+OAYATIX, Y] +0+ o Adixth AT*Y — (=)o Nixy Adr*Y
=AY AT X, Y]+ o Adixp AT*Y — (=1)* iy o A Adr* X,
where we also used
LinxmY = ipxdn™Y
i (_ qup’ 0pm + ZXi 8?1i) ( 3‘1" pkdq T Zkapk)

k *
3 (Xl%’; —yiox; )pk — (X, Y].

Then we get
T K, L =7"¢® X, Y ®@Y], usenow 2.1.(2)
= ANUAT XY+ o ALxYATY — Ly AP AT"X +0+0,
Lhgn* L —m*[K, L] = diyp Np An* X — (=1)* iy p A Adr* X
=d(-1)*F DY Niyp AT X) = (=D FDir (i K).
(9) follows from (8).
(10) i(pr* K)y = i(m* X.pp)p = 7 X.ippt = 0.
(11) We compute in turn
LopngmY = i(m" X N pp)dn™Y =" X N LY = =" X Niyp = —n"iy K
Epﬂ—*Kﬂ' L= £pﬂ*K( *Y/\’lb) = pﬂ—*Kﬂ' Y/\¢+7T*Y/\£p7r*}<’lb
—m* iy K) A +0
_ 7( )(k 1)1 *ZLK

(12) We have in turn

inxm L =i (=Y Gmigl + > X' 2
=ixyY ANTY =n%ixL,
inkm™ L =i (—dn* X App+ @ ANhX) (Y AT*Y)
= —dr* X Nipo ) ATY + o Nipxp ATY
=0+ ANixyp ANT*Y = n¥igL.

) (Y ATY)
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(13) From (8) we get

ingdr*L = Lpgn* L+ (1) Ydipgn* L
= 7*[K, L] — (=D kdn* (ig L + (=1)*=D0=05, K.

(14) We just compute

inxp(fodfi A ... Ndfy) =inx (Z(—l)jflfodfl N Nhfj A A dfq)
= Z(—l)k”fodfl Ao Nipxdfs A Nf A Adfy
k<j

Y (DRI fodfy A NS A Ninxdfi A A df
k>j

= —pix(fodfi A -+~ Ndfy).
(15) This is an easy consequence of (4) and (5), namely

Ly L= Ly AT*Y) =0+ (=1)P'h A L1,pi*Y
= (=P Niyp = —(—1)Plipde.

(16) This can be seen by summing the following evaluations:

[pm* K, h)] = [pr™(p ® X), )] = [pp.7" X, h]
=X A [pp, hip] — (1) * DL X A po + (—1)F Tt X A ppha)
= pp Nixdy,
plidy) = plp Nixdp) = pe Nixdp + (1) ¢ A pixdi,
ingh = i(—=dn" X A pp + ¢ A hX)(pdi))
= —dn* X Nipppd) + o Nipxpdip =0— @ Nipxpdyp. O

3.4 The extended insertion. For A € QF(M; S'T M) we define now the insertion
operator

ia: QP(M;S™TM) — QP"‘k—l(M;Sm-i-l—lTM)
z‘(<p®X1\/...\/Xk)(1p®V):(pAZZ'XjQ/,@Xl\/._.)’(;...\/XkVV_

J

This is a graded derivation of degree k — 1 of the graded commutative algebra
D,50 2" (M, STM) which vanishes on the subalgebra I'(ST'M).

Lemma. More formulas. For A € QF(M;S'TM), where | > 0, and 1 € QI(M)
we have on T* M

(1) Ehw’/T*A = 7(71)qk7r*iAd1ZJ.

(2) [pr* A, W] = pr*iady — (=1)*ipahyp.
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Proof. (1) We prove this by induction on I. For [ = 1 this is 3.3.(15). For the
induction we compute as follows:
LrypT (X NA) = Lpypm* X AT A+ 7" X A Lpym*A
= —ixdp ANTA — (=1)*7* X A 7iadi)
= —(—D*r*(ANixdp + X Niady) = —(=1)*7%ix yadi).

(2) We use again induction on [. For [ = 1 this is 3.3.(16). The left-hand side
equals:

[ (X A A), ] = [* X A pr* A, ho)
=X A [pr* A, hp] — (—1)FDIL,  m* X A pr* A 4 (=1)Rdr* X A Lpmr ARV
= 1" X A prtiady — (—1)1* X A wripahtp
+ (=) * DYy dip A pr* A+ (—1)Fdm* X N iy ahi).
For the right-hand side we get:
prixaady — (—1)¥ipxanyhtp = pr* (X Niady + A Nixdi)
— (=D*i(hX Am*A —dn* X A pn* A+ 7 X A hA)hy
=X A pr¥igdi + prt A Nixdp — (—1)Fr* AN pixdy
— (=D A Nipxhp + (=15 X N pre ahth — (= 1)1 X Adpahap.
Using 3.3.(14) we see that it equals the left-hand side. O
3.5. Theorem.
(1) The linear injective mapping
h:T(AT*M @ TM) = Q(M; TM) = Q(T* M) 2L Q(T* M; T(T* M))

18 a homomorphism for the Frélicher-Nijenhuis brackets.
(2) The linear mapping

h:T(STM) = Q(T*M) 2L QT M; T(T* M)

is a homomorphism from the symmetric Schouten bracket to the Frolicher-
Nijenhuis bracket. The kernel of h is H°(M).
(3) For differential forms p,¢ € Q(M) we have

[hep, ] = 0.
(4) For A € Q(M;STM) and ¢ € Q(M) we have
[hA, h)] = hiadyp,  where

(p@X1 V- VXY= oA [ Y ix, v @ X1 V. XV X
J

(5) For dim M > 2, in general [hQ¥F1 (M; SWT M), hQ2*2 (M; S'>TM)] does not
lie in the image of h, if k1,11 > 1 and ly > 2 (or under the symmetric
condition,).
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Proof. (1) We have to show that [hK,hL] = h[K, L] for K € QF¥(M;TM) and L €
QY(M; TM) and we do this by induction on k+I. The case of vector fields k+1 = 0 is
well known, see 3.3.(1). Since the question is local on M and since Q*+1(M;TM) is
locally linearly generated by df A K for f € Q°(M) and K € Q*(M;TM) it suffices
to check that [hK, hL] = h[K, L] implies [h(df A K),hL] = hldf A K, L]. We have

hdf NK) = pd(df N\@*K) = —dn*K ANhf +df AhK.
Using twice 2.1.(4) we get then

[h(df A K),hL) = df A [hEK, hL] — (=1)3+OlL, df ARK + 0
—dr* K A[hf,hL] + (=1)3FRUL,  dn* K A hf — 0
=df Nh[K, L] — (=)L df A RK
+dr* K ANhLpf + (=1)Fdn*[L, K] A hf,

where we used in turn induction, 3.3.(6), 3.3.(7), and 3.3.(8). On the other hand
we have again by 2.1.(4)

hldf A K, L] = pdr* (df AK, L] — (—1)HRIL af A K+ o)
= —hf Ndr*[K, L] + df N h[K, L]
+ (=DMpLrdf Adr*K + (=1)M L df ARK,
which equals the expression for [h(df A K), hL] from above.
(2) This is well known, and easy to check starting from 3.3.(1).
(3) is 3.3.(2).
(4) First we prove a partial result.
Claim. For K € Q¥(M;TM) and ¢ € Q4(M) we have [hK, hi)] = hLk) = higdi.
To check the claim we use induction on ¢ = degv. For ¢ = 0 this is 3.3.(7).
Since the assertion is local on M it suffices to consider df A for the induction step.
In the following computation we use 2.1.(4), induction, 3.3.(6), and 3.3.(7):
(WK, h(df A )] = (R, df A e — dip A hf]
= (—=D)*df A [RK, hip) + L df A hap — 0
— (=)@ Dk A (WK, hf] — Lrgdy Ahf +0
= (—=1)*df ALY + hLydf Ahap — (=1) STV Ap A WLy f — Licdip A Bf.

On the other hand we have by 2.1.(3)

hLy (df Ap) = h (—1)*dLk f N+ (—1)Fdf A Lkct))
= p(dLx f A dp — (=1)*df N dLKY)
= —hLrfAdp+ (=1)*dLx f ANhp — (=) hf NdLg + (—1)df A hLg1p,

which equals the above expression. So the claim follows.
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Now we can extend this result to A € QF(M;S'TM) by induction on . For
I =1 this is the claim above. For the induction we compute first the left hand side,
using 2.1.(4), the claim, 3.4, induction, and 3.3.(14):

[M(X.A), h)] = [hX AT*A — dn* X A pr* A+ 7 X A hA, h]
=7 AN WX, b)) — (=) Lpym* ANRX + (=) dr* A Nipxhy
—dr* X A [pr* A, W] + (—1)* Ly ydm* X A pr* A — 0
+ 7 X A [RA, hp] — (—1)FLyym* X A DA + (—1)Fdn* X Aipahtp
=1 AN hixdy + 75 iad) AN RX — (—=1)kEdn* A A pixdip
—dr* X A pigdip — (—1)F Vi dip A pr* A
+ 7 X A hiadp + (—=1) % x dip A hA.

The right-hand side is

hi(X A A)dy = h(A Nixdy + X Niady)
= pldr* A Nixdip + (=1)*n* A Ndixdip + dr* X A ¥iqdep + 7% X A dr*iqdap)
=hA Nixdp + (=1)Fdr* AN pixdip + (—1)*pr* AN dixdyp + 7% A A hixdi
+hX Ar*iadyp —dr* X A pr¥iad + 75 X A ha*iady),

which equals the left hand side.

(5) By 3.2.(3) the image of 7* : Q(M; S'T M) is the space of all horizontal forms
® € Q(T*M) satistying £;P = [.®. In local coordinates on M we consider then,
using the bracket { , }! described in 2.3,

. 9. .. 9 9
{r*(d¢' ® a—ql)ﬂr (a—qla—cﬂ)}1 = {p1dg", pip2}" = {p1.p1ip2}dq" — {¢". p1p2}dp1

= padp1,
d{prdq", p1p2}' = —dp1 A dps.

Thus {p1dq*, p1p2}* plus something exact can never be horizontal. [
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