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Abstract

Given a reductive algebraic group G and a finite dimensional algebraic G-module V , we study how
close is the algebra of G-invariant polynomials on V ⊕n to the subalgebra generated by polarizations
of G-invariant polynomials on V . We address this problem in a more general setting of G-actions on
arbitrary affine varieties.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Let G be a reductive algebraic group over an algebraically closed field k of charac-
teristic 0, and let V be a finite dimensional algebraic G-module. Given a positive integer n,
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consider the G-module V ⊕n := V ⊕ · · · ⊕ V (n summands). Finding generators of the
invariant algebra k[V ⊕n]G of V ⊕n is the classical problem of invariant theory. The classi-
cal method of constructing elements of k[V ⊕n]G is taking the polarizations of invariants
f ∈ k[V ]G, i.e., the polynomial functions fi1,...,in on V ⊕n given by the formal expansions

f (x1v1 + · · · + xnvn) =
∑

i1,...,in∈Z+
x

i1
1 · · ·xin

n fi1,...,in (v1, . . . , vn), (1)

where (v1, . . . , vn) is generic element of V ⊕n and x1, . . . , xn are variables. Let poln k[V ]G
be the subalgebra of k[V ⊕n]G generated by the polarizations of all the f ’s.

There are G-modules enjoying the property

poln k[V ]G = k
[
V ⊕n

]G
. (2)

For instance, (2) holds, by Study’s theorem [15], for the standard action of G = Om on
V = km. By Weyl’s theorem [17], (2) holds for G = Sm acting on V = km by permuting
the coordinates. In [8], (2) is established for the natural action of the Weyl group G of type
Bm on V = km and for the standard action of the dihedral group G on V = k2.

However, in general, poln k[V ]G and k[V ⊕n]G do not coincide. For instance, for the
natural action of G = SLn on V = kn clearly poln k[V ]G = k (since k[V ]G = k) but
k[V ⊕n]G �= k. It is less easy to find examples where (2) fails for finite G, but such ex-
amples exist as well: in [16] it was observed that (2) does not hold for the natural action of
the Weyl group G of type Dm on V = km (m � 4) for n � 2.

In this paper we analyze the relationship between k[V ⊕n]G and poln k[V ]G. We prove
that if G is finite, then k[V ⊕n]G is the integral closure of poln k[V ]G in its field of fractions,
and the natural morphism of affine varieties determined by these algebras is bijective. Ac-
tually, instead of linear actions we consider the more general setting of actions on arbitrary
affine varieties for which we define a generalization of polarizations. In this setting, we
prove that if G is finite, then the invariant algebra is integral over the subalgebra generated
by generalized polarizations, and the natural dominant morphism between affine varieties
determined by these algebras is injective (in the graded case, bijective).

For connected G, one cannot expect such results, as the example of SLn acting on kn

shows. This naturally leads to distinguishing the n’s for which k[V ⊕n]G is integral over
poln k[V ]G and defining the polarization index of V ,

pol ind(V ),

as the supremum taken over all such n’s. We prove that k[V ⊕m]G is integral over
polm k[V ]G for every m � pol ind(V ), and show that calculating pol ind(V ) is closely re-
lated to the old problem of describing linear subspaces lying in the Hilbert nullcone of V

(see [3,5,6,9,10,12], and the references therein), namely, to analyzing a certain geometric
property of such subspaces.

Using this reduction, we calculate the polarization index of some G-modules V .
Namely, we prove that if G is a finite group or a linear algebraic torus, then pol ind(V ) = ∞.
For G = SL2, we describe all linear subspaces of V lying in the Hilbert nullcone of V and
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prove that pol ind(V ) = ∞ if V does not contain a simple 2-dimensional submodule, and
pol ind(V ) = 1 otherwise. Finally, we calculate the polarization index of every semisimple
Lie algebra g: we prove that pol ind(g) = 1 if g is not isomorphic to sl2 ⊕ · · · ⊕ sl2, and
pol ind(g) = ∞ otherwise. As an application to the above mentioned old topic of linear
subspaces lying in the Hilbert nullcone, we prove that a semisimple Lie algebra g con-
tains a 2-dimensional nilpotent nontriangularizable linear subspace if and only if g is not
isomorphic to sl2 ⊕ · · · ⊕ sl2.

1.2. Notation

k[X] is the algebra of regular functions of an algebraic variety X. If X is irreducible,
k(X) is the field of rational function of X.

If a group S acts on a set Z, we put ZS := {z ∈ Z | s · z = z for all s ∈ S}.
Below every action of an algebraic group is algebraic (morphic).
G0 is the identity component of an algebraic group G.
If X is an affine variety endowed with an action of a reductive algebraic group G, then

πX,G :X → X//G is the categorical quotient, i.e., X//G is an affine algebraic variety and
πX,G a dominant (actually, surjective) morphism such that π∗

X,G(k[X//G]) = k[X]G.
Given a linear algebraic torus T , its character group Hom(T ,Gm) is written additively.

The value of λ ∈ Hom(T ,Gm) at t ∈ T is denoted by tλ. For an algebraic T -module V

(not necessarily finite dimensional), Vλ is the λ-isotypic component of V ,

Vλ := {
v ∈ V

∣∣ t · v = tλv for every t ∈ T
}
.

By 〈v1, . . . , vn〉 we denote the linear span of vectors v1, . . . , vn of a vector space over k.
We set N := {1,2, . . .} and Z+ := {0,1,2, . . .}.

2. Generalized polarizations

2.1. Let a reductive algebraic group G act on the irreducible affine algebraic varieties
X and Y . Let Z be an irreducible affine algebraic variety endowed with an action of a
linear algebraic torus T . The set Λ := {λ ∈ Hom(T ,Gm) | k[Z]λ �= 0} is then a submonoid
of Hom(T ,Gm) and the isotypic components yield a Λ-grading of k[Z]:

k[Z] =
⊕
λ∈Λ

k[Z]λ, k[Z]μk[Z]ν ⊆ k[Z]μ+ν for all μ,ν ∈ Λ. (3)

The groups G and T act on Y × Z through the first and second factors, respectively.
From k[Y × Z] = k[Y ] ⊗ k[Z] and (3) we obtain

k[Y × Z] =
⊕
λ∈Λ

k[Y ] ⊗ k[Z]λ and k[Y × Z]G =
⊕
λ∈Λ

k[Y ]G ⊗ k[Z]λ. (4)

We identify k[Y ] and k[Z] respectively with the subalgebras k[Y ] ⊗ 1 and 1 ⊗ k[Z] of
k[Y × Z].
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Assume now that there is an open T -orbit O in Z. This condition is equivalent to either
of the following properties (o1), (o2), see [12, Theorem 3.3]:

(o1) k(Z)T = k;
(o2) dimk[Z]λ = 1 for every λ ∈ Λ. (5)

For every λ ∈ Λ, fix a nonzero element bλ ∈ k[Z]λ. Multiplying every bλ by an appropriate
scalar we may assume that

bμbν = bμ+ν for all μ,ν ∈ Λ. (6)

Indeed, fix a point x0 ∈ O. The definition of k[Z]λ implies that bλ(x0) �= 0, so replacing
bλ by bλ/bλ(x0) we may assume that bλ(x0) = 1. Then (6) follows from (5), (3).

From (4) and (5) it follows that every h ∈ k[Y × Z] admits a unique decomposition

h =
∑
λ∈Λ

pλbλ, pλ ∈ k[Y ] (7)

(in (7) all but finitely many pλ’s are equal to zero), and h lies in k[Y × Z]G if and only if
pλ ∈ k[Y ]G for all λ. From (6) we obtain

( ∑
μ∈Λ

p′
μbμ

)( ∑
ν∈Λ

p′′
ν bν

)
=

∑
λ∈Λ

( ∑
μ+ν=λ

p′
μp′′

ν

)
bλ, p′

μ,p′′
ν ∈ k[Y ]. (8)

Consider now a G-equivariant morphism

ϕ :Y × Z → X. (9)

Definition 2.2. Let f ∈ k[X]G. The invariants pλ ∈ k[Y ]G defined by (7) for h = ϕ∗(f )

are called the ϕ-polarizations of f . The subalgebra of k[Y ]G generated by all the ϕ-polar-
izations of the elements of k[X]G is denoted by polϕ k[X]G and called the ϕ-polarization
algebra of Y .

Remark 2.3. More generally, if Φ is a collection of G-equivariant morphisms (9) (where Z

and X depend on ϕ), then one can define the Φ-polarization algebra of Y as the subalgebra
of k[Y ]G generated by all the ϕ-polarization algebras of Y for ϕ ∈ Φ .

Since changing the bλ’s clearly replaces the ϕ-polarizations of f ∈ k[X]G by their scalar
multiples, the algebra polϕ k[X]G does not depend on the choice of the bλ’s.

Example 2.4. If Z is a single point, (9) is a morphism ϕ :Y → X, and polϕ k[X]G =
ϕ∗(k[X]G).
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Example 2.5 (Classical setting). Let V be a finite dimensional algebraic G-module and let
n ∈ N. Take X = V and Y = V ⊕n with the diagonal G-action. Let Z be An endowed with
the natural action of the diagonal torus T of GLn,

diag(t1, . . . , tn) · (α1, . . . , αn) = (t1α1, . . . , tnαn).

Identifying (i1, . . . , in) ∈ Zn with the character T → Gm, diag(t1, . . . , tn) 
→ t
i1
1 · · · t inn ,

we identify Zn with Hom(T ,Gm). Then Λ = Zn+. If z1, . . . , zn are the standard coordi-
nate functions on Z, then for every λ = (i1, . . . , in) ∈ Λ, the isotypic component k[Z]λ is
spanned by bλ := z

i1
1 · · · zin

n . So, condition (5) holds. Clearly, (6) holds as well.
Recall that the classical n-polarizations of a polynomial f ∈ k[V ] are the polynomials

fi1,...,in ∈ k[V ⊕n], where (i1, . . . , in) ∈ Λ, such that

f

(
n∑

j=1

αjvj

)
=

∑
i1,...,in∈Λ

α
i1
1 · · ·αin

n fi1,...,in (v1, . . . , vn) for all vj ∈ V, αj ∈ k. (10)

Since α
i1
1 · · ·αin

n is the value of z
i1
1 · · · zin

n at (α1, . . . , αn) ∈ Z, it readily follows from
(10) and Definition 2.2 that the classical n-polarizations of f are the ϕ-polarizations of f

for

ϕ := τn :Y × Z → X,
(
(v1, . . . , vn), (α1, . . . , αn)

) 
→ α1v1 + · · · + αnvn. (11)

In this setting, we denote the ϕ-polarization algebra of Y by poln k[V ]G.

Example 2.6. If G = Om and V = km with the natural G-action, then poln k[V ]G =
k[V ⊕n]G by Study’s theorem, [15].

If G = Spm, m even, and V = km with the natural G-action, then polτn×τn
k[V ⊕2]G =

k[V ⊕n]G (see (11)) by [17].
If G = SLm and V = km with the natural G-action, then polτn×···×τn

k[V ⊕m]G =
k[V ⊕n]G, see [17].

From (8) we deduce that the algebra polϕk[X]G is generated by all ϕ-polarizations
of the f ’s for f running through the generators of k[X]G. Since by Hilbert’s theorem,
the algebra k[X]G is finitely generated, this means that the algebra polϕ k[X]G is finitely
generated as well. Hence there is an affine algebraic variety that we denote by Y//ϕ,
and a dominant morphism πϕ :Y → Y//ϕ such that π∗

ϕ(k[Y//ϕ]) = polϕ k[X]G. Since
polϕ k[X]G ⊆ k[Y ]G, the definition of categorical quotient for the G-action on Y implies
that there is a dominant morphism ν :Y//G → Y//ϕ such that the following diagram is
commutative:

Y
πY,G

πϕ

Y//G

ν

Y//ϕ.

(12)



M. Losik et al. / Journal of Algebra 301 (2006) 406–424 411
The set of all morphisms from Z to X is endowed with the G-action defined by the
formula (g ·ψ)(z) := g · (ψ(z)) for ψ :Z → X, g ∈ G, z ∈ Z. Using (9), we can consider Y

as a G-stable algebraic family of such morphisms. Namely, with every y ∈ Y we associate
the morphism

ϕy :Z → X, z 
→ ϕ(y, z). (13)

Then for every z ∈ Z and g ∈ G we have ϕg·y(z) = ϕ(g · y, z) = ϕ(g · (y, z)) =
g(ϕ(y, z)) = (g · ϕy)(z), so ϕg·y = g · ϕy .

Lemma 2.7. For every y1, y2 ∈ Y , the following properties are equivalent:

(i) π−1
ϕ (πϕ(y1)) = π−1

ϕ (πϕ(y2));
(ii) πX,G ◦ ϕy1

= πX,G ◦ ϕy2
.

Remark 2.8. Property (i) means that points y1, y2 ∈ Y are not separated by the ϕ-polar-
ization algebra polϕ k[X]G.

Proof. By virtue of (13), property (ii) is equivalent to the property

πX,G

(
ϕ(y1, z)

) = πX,G

(
ϕ(y2, z)

)
for all z ∈ Z. (14)

Since the variety X is affine, for a fixed z ∈ Z, equality in (14) holds if and only if

s
(
πX,G

(
ϕ(y1, z)

)) = s
(
πX,G

(
ϕ(y2, z)

))
for every s ∈ k[X//G]. (15)

Since π∗
X,G(k[X//G]) = k[X]G, in turn, (15) is equivalent to the property

f
(
ϕ(y1, z)

) = f
(
ϕ(y2, z)

)
for every f ∈ k[X]G. (16)

Setting h = ϕ∗(f ) for f in (16), we thus obtain h(y1, z) = h(y2, z) for all z ∈ Z, i.e.,
using the notation of (7),

∑
λ∈Λ pλ(y1)bλ = ∑

λ∈Λ pλ(y2)bλ. Since {bλ} are linearly in-
dependent, this shows that the equality in (16) is equivalent to the collection of equalities
pλ(y1) = pλ(y2), λ ∈ Λ. Definition 2.2 and Remark 2.8 now imply the claim. �
Lemma 2.9. If G is a finite group, then for every two morphisms ψi : Z → X, i = 1,2, the
following properties are equivalent:

(i) πX,G ◦ ψ1 = πX,G ◦ ψ2;
(ii) there is g ∈ G such that ψ2 = g · ψ1.

Proof. (ii) ⇒ (i) is clear (and holds for every reductive G, not necessarily finite). Assume
now that (i) holds. Consider in Z × X the closed subset

Ψ := {
(z, x) ∈ Z × X

∣∣ π
(
ψ1(z)

) = π (x)
}
. (17)
X,G X,G



412 M. Losik et al. / Journal of Algebra 301 (2006) 406–424
Since G is finite, every fiber of πX,G is a G-orbit, see, e.g., [12, Theorem 4.10]. Hence
for (z, x) ∈ Z × X, the condition πX,G(ψ1(z)) = πX,G(x) in (17) is equivalent to the exis-
tence of g ∈ G such that x = g · (ψ1(z)) = (g · ψ1)(z). In turn, the last equality means that
the point (z, x) lies in the graph of g · ψ1,

Γg·ψ1 := {(
z, (g · ψ1)(z)

) ∈ Z × X
∣∣ z ∈ Z

}
. (18)

On the other hand, (17), (18) clearly imply that Γg·ψ1 ⊆ Ψ for every g. Thus,

Ψ =
⋃
g∈G

Γg·ψ1 . (19)

But every Γg·ψ1 is a closed subset of Z × X isomorphic to Z. So, by (19), Ψ is a union
of finitely many closed irreducible subsets of the same dimension. Hence these subsets are
precisely the irreducible components of Ψ .

On the other hand, it follows from (i) that

Ψ := {
(z, x) ∈ Z × X

∣∣ πX,G

(
ψ2(z)

) = πX,G(x)
}
. (20)

Using the above argument, we then deduce from (20) that the graph of ψ2,

Γψ2 := {(
z,ψ2(z)

) ∈ Z × X
∣∣ z ∈ Z

}
,

is an irreducible component of Ψ as well. Therefore there is g ∈ G such that Γψ2 = Γg·ψ1 .
Hence g · ψ1 = ψ2, i.e., (ii) holds. �
Theorem 2.10. Maintain the notation of this section. If G is a finite group, then

(i) the morphism ν : Y//G → Y//ϕ in (12) is injective;
(ii) k(Y )G is the field of fractions of the ϕ-polarization algebra polϕ k[X]G.

Proof. Since G is finite, fibers of πX,G are precisely G-orbits. On the other hand, by Lem-
mas 2.7 and 2.9, every fiber of πϕ is a G-orbit as well. This and the commutative diagram
(12) yield (i). Since ν is dominant and chark = 0, from (i) it follows that ν is a birational
isomorphism. Since Y//ϕ is affine, k(Y//ϕ) is the field of fractions of k[Y//ϕ]. This and
(12) now imply (ii). �

2.11. Under a supplementary assumption there is a geometric criterion of finiteness
of ν. It is based on a general statement essentially due to Hilbert. Namely, consider an ac-
tion of a reductive algebraic group G on an irreducible affine algebraic variety M . Assume
that the corresponding G-action on k[M] preserves a Z+-grading k[M] = ⊕

n∈Z+ k[M]n
such that k[M]0 = k and dimk[M]n < ∞ for every n. Let A be a homogeneous subalgebra
of k[M]G.
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Lemma 2.12. The following properties are equivalent:

(i) {x ∈ M | f (x) = 0 ∀f ∈ ⊕
n∈N

k[M]Gn } = {x ∈ M | h(x) = 0 ∀h ∈ ⊕
n∈N

An};
(ii) k[M]G is integral over A.

If these properties hold and G is connected, then k[M]G is the integral closure of A in
k[M].

Proof. For linear actions, (i) ⇒ (ii) is proved by Hilbert in [6, §4]. In the general case
the argument is the same. Implication (ii) ⇒ (i) is clear. The last statement follows from
the first since it is well known that k[M]G is integrally closed in k[M] for connected G

(connectedness of G implies that G acts trivially on the set of roots of the equation of
integral dependence). �

Lemma 2.12 implies the following geometric criterion of finiteness of ν. Assume that
the G-actions on X and Y can be extended to the (G × Gm)-actions such that

ϕ is (G × Gm)-equivariant, (21)

k[X]Gm = k[Y ]Gm = k. (22)

From (22) we then deduce that Hom(Gm,Gm) can be identified with Z so that the isotypic
component decompositions of k[X] and k[Y ] become the Z+-gradings of these algebras,

k[X] =
⊕
n∈Z+

k[X]n, k[Y ] =
⊕
n∈Z+

k[Y ]n. (23)

Since every isotypic component is a finitely generated module over invariants, see, e.g.,
[12, Theorem 3.24], from (22) we deduce that these gradings enjoy the properties

k[X]0 = k[Y ]0 = k and

dimk[X]n < ∞, dimk[Y ]n < ∞ for every n ∈ Z+. (24)

It follows from (21) that k[X]G and k[Y ]G are graded subalgebras of the graded algebras
k[X] and k[Y ] respectively, and from Definition 2.2 we deduce that polϕk[X]G is a graded
subalgebra of the graded algebra k[Y ]G.

The ideal
⊕

n∈N
k[X]n in k[X] (respectively

⊕
n∈N

k[Y ]n in k[Y ]) is maximal and
Gm-stable, so the point 0X ∈ X (respectively 0Y ∈ Y ) where it vanishes, is Gm-fixed. As
invariants separate closed orbits, see, e.g., [12, Theorem 4.7], (22) implies that XGm =
{0X}, Y Gm = {0Y }. Hence 0X ∈ XG, 0Y ∈ YG. From (21) we deduce that ϕ(0Y ×Z) = 0X .
We put

N := π−1 (
π (0Y )

)
, P := π−1

ϕ

(
πϕ(0Y )

)
, N := π−1 (

π (0X)
)
. (25)
Y,G Y,G Y,G Y,G X,G X,G X,G
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By virtue of (12), the following inclusion holds:

NY,G ⊆ PY,G. (26)

Since NY,G is precisely the set of points of Y whose G-orbit contains 0Y in the closure,

NS,G = S ∩NY,G (27)

for every G-stable closed subset S of Y containing 0Y .

Example 2.13. Maintain the notation of Example 2.5. Then the Gm-actions on X = V and
Y = V ⊕n by scalar multiplications yield the (G × Gm)-extensions of G-actions such that
(21), (22) hold. Thus, in the classical setting, the assumptions of Section 2.2 hold. In this
case, 0X = 0, 0Y = (0, . . . ,0). The varieties N

V ⊕n,G
and NV,G are respectively the Hilbert

nullcones of G-modules V ⊕n and V , and P
V ⊕n,G

is the locus of the maximal homogeneous
ideal of poln k[V ]G.

Lemma 2.14. Maintain the assumptions of Section 2.2. The following properties are equiv-
alent:

(i) ν is finite;
(ii) NY,G = PY,G.

Proof. This immediately follows from Lemma 2.12. �
Theorem 2.15. Maintain the assumptions of Section 2.2 and let G be finite. Then

(i) ν is finite and bijective;
(ii) if Y is normal, ν : Y//G → Y//ϕ is the normalization of Y//ϕ, and k[Y ]G is the inte-

gral closure of polϕ k[X]G in k(Y )G;
(iii) if Y is normal, polϕ k[X]G = k[Y ]G if and only if polϕ k[X]G is integrally closed.

Proof. Theorem 2.10(i) implies that NY,G = PY,G (= 0Y ). Hence ν is finite by
Lemma 2.14. Being finite, ν is closed, and since ν is also dominant, Theorem 2.10(i)
implies that ν is bijective. This proves (i). If Y is normal, then Y//G is normal as well, see,
e.g., [12, Theorem 3.16]. Since by Theorem 2.10(ii), ν is a birational isomorphism, this,
(i), and the definitions of Y//G, Y//ϕ, ν prove (ii). Claim (iii) follows from (ii). �
Remark 2.16. Bijectivity of ν is equivalent to saying that polϕk[X]G is the separating set
of k[Y ]G in the sense of [4, Section 2.3.2].

Corollary 2.17. In the classical setting (see Example 2.5), let G be finite. Then

(i) ν is finite and bijective;
(ii) k[V ⊕n]G is the integral closure of poln k[V ]G in k(V ⊕n)G;

(iii) k[V ⊕n]G = poln k[V ]G if and only if poln k[V ]G is integrally closed.
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Example 2.18. Maintain the notation of Example 2.5 and let V = km. If G is the symmetric
group in m letters acting on V by permuting the coordinates, then k[V ⊕n]G = poln k[V ]G
for every n, [17]. This equality also holds for the Weyl group of type Bm and the dihedral
groups, [8]. But for the Weyl group of type Dm, m � 4, and n = 2 it does not hold, [16].

Namely, Dm acts on the standard coordinate functions x1, . . . , xm on V by permutations
and changes of an even number of signs, and k[V ]Dm = k[σ1, . . . , σm] where

σs =
m∑

i=1

x2s
i for 1 � s � m − 1, σm = x1 · · ·xm,

see, e.g., [7]. Take another copy of V with the standard coordinate functions y1, . . . , ym,
and naturally identify x1, . . . , xm, y1, . . . , ym with the functions on V ⊕2. Then k[V ⊕2]Dm

is generated by pol2 k[V ]Dm and the polynomials

Pr1 · · ·Prd (σn), r1, . . . , rd odd,

d∑
i=1

ri � n − d, (28)

where Pr := ∑m
i=1 yr

i
∂

∂xi
, see [8,16]. The group Bm is generated by Dm and the reflection

w such that w · xi = xi for i < m and w · xm = −xm. The operators Pri from (28) commute
with the diagonal action of Bm on V ⊕2, therefore w(Pr1 · · ·Prd (σn)) = −Pr1 · · ·Prd (σn).
This yields

(
Pr1 · · ·Prd (σn)

)2 ∈ k
[
V ⊕2]Bm. (29)

Since k[V ⊕2]Bm = pol2 k[V ]Bm and, clearly, pol2 k[V ]Bm ⊆ pol2 k[V ]Dm , we deduce from
(29) that k[V ⊕2]Dm is integral over pol2 k[V ]Dm . This agrees with Theorem 2.15 (that gives
more delicate information).

3. Polarization index

3.1. In this section we take up the classical setting and maintain the notation of Exam-
ples 2.5, 2.13, and that of (25). If n,m ∈ N and n � m, we naturally identify V ⊕n with the
subspace {(v1, . . . , vn,0, . . . ,0) | vi ∈ V } of V ⊕m. It is then not difficult to see that

PV ⊕n,G = V ⊕n ∩PV ⊕m,G. (30)

Lemma 3.2. The following properties of a point v = (v1, . . . , vn) ∈ V ⊕n are equivalent:

(i) v ∈ P
V ⊕n,G

;
(ii) 〈v1, . . . , vn〉 ⊆ NV,G.
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Proof. Let f ∈ k[V ]G be a nonconstant homogeneous function. If v ∈ P
V ⊕n,G

, then the
definition of P

V ⊕n,G
(see (25) and Example 2.13) yields that, in the notation of (1), we

have fi1,...,in (v) = 0 for all i1, . . . , in ∈ Z+. From this and (1) we obtain

f (α1v1 + · · · + αnvn) = 0 for all αi ∈ k. (31)

So, 〈v1, . . . , vn〉 lies in the zero set of every f . The definition of NV,G (see (25) and Ex-
ample 2.13) now implies that 〈v1, . . . , vn〉 ⊆ NV,G.

Conversely, assume that the last inclusion holds. By the definition of NV,G, this im-
plies (31). By (1), this in turn yields that fi1,...,in (v) = 0 for all i1, . . . , in ∈ Z+. The
definition of P

V ⊕n,G
then implies that v ∈ P

V ⊕n,G
. �

Definition 3.3. The polarization index of a G-module V is

pol ind(V ) := supn

with the supremum taken over all n such that in (26) the equality holds, N
V ⊕n,G

= P
V ⊕n,G

.

From (25), Definition 3.3, and the equality pol1 k[V ]G = k[V ]G we obtain

pol ind(V ) � 1. (32)

It is also clear that

pol ind(V ⊕ U) = pol ind(V ) if U is a trivial G-module. (33)

Lemma 3.4. For every n ∈ N,

N
V ⊕n,G

{= P
V ⊕n,G

if n � pol ind(V ),

� P
V ⊕n,G

if n > pol ind(V ).

Proof. By virtue of Definition 3.3, for n > pol ind(V ), this follows from (26), and for
n � pol ind(V ), from (27) and (30). �
Corollary 3.5. The extension poln k[V ]G ⊆ k[V ⊕n]G is integral if and only if n �
pol ind(V ).

Proof. This follows from Lemmas 3.4 and 2.14. �
Call a character Gm → Gm, t 
→ td , positive if d > 0. Every homomorphism γ :

Gm → G endows V with the structure of Gm-module defined by t · v := γ (t) · v. We
denote by V (γ ) the submodule of this Gm-module equal to the sum of all the isotypic
components whose weight is positive. Clearly, if v ∈ V (γ ), then the closure of Gm-orbit
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(and, all the more, G-orbit) of v contains 0V . Hence V (γ ) ⊆ NV,G. The Hilbert–Mumford
theorem, [6,10] (see, e.g., [12, 5.3]), claims that

NV,G =
⋃
γ

V (γ ). (34)

Lemma 3.6. The following properties of an integer n ∈ N are equivalent:

(i) for every linear subspace L such that dimL � n and L ⊆ NV,G, there is a homomor-
phism γ : Gm → G such that L ⊆ V (γ );

(ii) n � pol ind(V ).

Proof. Let (i) hold. Take a point v = (v1, . . . , vn) ∈ P
V ⊕n,G

. By Lemma 3.2, 〈v1, . . . , vn〉
is contained in NV,G. By (i), 〈v1, . . . , vn〉 ⊆ V (γ ) for some γ . This implies that the clo-
sure of Gm-orbit (and, all the more, G-orbit) of v contains 0

V ⊕n , i.e., v ∈ N
V ⊕n,G

. So,
by (26), we have P

V ⊕n,G
= N

V ⊕n,G
, whence n � pol ind(V ) by Definition 3.3. This proves

(i) ⇒ (ii).
Conversely, let (ii) holds. Consider in NV,G a linear subspace L of dimension � n.

Then L = 〈v1, . . . , vn〉 for some vi ∈ V . By Lemma 3.2, the point v = (v1, . . . , vn) lies
in P

V ⊕n,G
. By (ii), and Lemma 3.4, we have v ∈ N

V ⊕n,G
. From (34) we now deduce that

v ∈ V ⊕n(γ ) for some γ . Since V ⊕n(γ ) = V (γ )⊕n, this yields vi ∈ V (γ ) for every i, or,
equivalently, L ⊆ V (γ ). Thus (ii) ⇒ (i) is proved. �
Corollary 3.7.

(i) Let U be a submodule of V . Then

pol ind(U) � pol ind(V ).

(ii) Let Vi be a finite dimensional algebraic module of a reductive algebraic group Gi ,
i = 1, . . . ,m, and let G = G1 × · · · × Gm, V = V1 ⊕ · · · ⊕ Vm. Then

pol ind(V ) = min
i

pol ind(Vi).

Proof. Statement (i) readily follows from Lemma 3.6. Let the assumptions of (ii) hold,
and let πi :V → Vi , pi :G → Gi be the natural projections. Since the Hilbert nullcone is
the set of points whose orbits contain zero in the closure, we have

NV,G = NV1,G1
× · · · ×NVm,Gm

.

A linear subspace L lying in NV,G is contained in V (γ ) for some γ if and only if πi(L) ⊆
Vi(pi ◦ γ ) for every i. Using these properties and Lemma 3.6, we deduce (ii). �
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3.8. We now calculate the polarization index of some G-modules.

Theorem 3.9. If G is a finite group, then for any G-module V ,

pol ind(V ) = ∞.

Proof. This follows from Theorem 2.15, Lemma 2.14, and Definition 3.3. �
Theorem 3.10. If G is a linear algebraic torus, then for any G-module V ,

pol ind(V ) = ∞.

Proof. It is well known (and immediately follows from (34)) that in this case there are
homomorphisms γi : Gm → G, i = 1, . . . , s, such that

NV,G = V (γ1) ∪ · · · ∪ V (γs). (35)

Since every linear subspace L of V is an irreducible algebraic variety, (35) implies that if
L ⊆ NV,G, then L ⊆ V (γi) for some i, whence the claim by Lemma 3.6. �
Lemma 3.11. Let k[V ]G = k.

(i) pol ind(V ) = supn where the supremum is taken over all n such that k[V ⊕n]G = k.
(ii) If G0 is semisimple, then pol ind(V ) is equal to the generic transitivity degree of the

G-action on V , see [11], i.e., to the maximum n such that there is an open G-orbit in
V ⊕n. In this case,

pol ind(V ) � dimG/dimV.

Proof. The condition k[V ]G = k and Definition 2.2 imply that

P
V ⊕n,G

= V ⊕n for every n.

On the other hand, k[V ⊕n]G = k is equivalent to

N
V ⊕n,G

= V ⊕n.

This gives (i). Being semisimple, G0 has no nontrivial characters, hence k[V ⊕n]G = k

is equivalent to the existence of an open G-orbit in V ⊕n, see [12, Theorem 3.3 and the
corollary of Theorem 2.3]. This proves (ii). �
Example 3.12. If G = SLm and V = km with the natural G-action, then Lemma 3.11
implies pol ind(V ) = m − 1.

If G = Spm and V = km (m even) with the natural G-action, then Lemma 3.11 implies
pol ind(V ) = 1.
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If G = Om and V = km with the natural G-action, then Example 2.6 and Definition 3.3
yield pol ind(V ) = ∞.

If G = SOm and V = km with the natural G-action, then the classical description of
k[V ⊕n]G, see [17], implies that k[V ⊕n]G is integral over k[V ⊕n]Om . Hence in this case
again pol ind(V ) = ∞, however, in contrast to the case of Om, the algebras k[V ⊕n]G and
poln k[V ]G do not coincide if m divides n.

We now calculate the polarization index of any SL2-module. Denote by Rd the SL2-
module of binary forms in x and y of degree d , see, e.g., [12, 0.12]. Up to isomorphism,
Rd is the unique simple SL2-module of dimension d +1. According to the classical Hilbert
theorem, [6, §5] (see, e.g., [12, Example 1 in 5.4]),

NRd,SL2
=

⋃
l∈R1

l[d/2]+1Rd−[d/2]−1, (36)

and for every nonzero l ∈ R1, there is a homomorphism γ : Gm → SL2 such that

l[d/2]+1Rd−[d/2]−1 = Rd(γ ) (37)

and vice versa.

Lemma 3.13. For d � 2, the following properties of a linear subspace L of Rd lying in
N

Rd,SL2
are equivalent:

(i) L is maximal (with respect to inclusion) among the linear subspaces lying in N
Rd,SL2

;

(ii) there is l ∈ R1, l �= 0 such that L = l[d/2]+1Rd−[d/2]−1.

Proof. Using that k[x, y] is a unique factorization domain and every l ∈ R1, l �= 0 is a
simple element in it, we obtain that for every nonzero l1, l2 ∈ R1,

l
[d/2]+1
1 Rd−[d/2]−1 ∩ l

[d/2]+1
2 Rd−[d/2]−1 = {0} if l1/l2 /∈ k. (38)

Therefore it suffices to show that for every 2-dimensional linear subspace P lying in
N

Rd,SL2
there is l ∈ R1 such that P ⊆ l[d/2]+1Rd−[d/2]−1. Let f1, f2 be a basis of P .

Then (36) implies that

fi = l
[d/2]+1
i hi for some li ∈ R1, hi ∈ Rd−[d/2]−1. (39)

We have to show that if αf1 + βf2 ∈ N
Rd,SL2

for every α,β ∈ k, then l1/l2 ∈ k.
For contradiction, assume that l1 and l2 are linearly independent. Applying SL2, we

then may assume that l1 = x, l2 = y. Since P ⊆ N
Rd,SL2

, from (36) we deduce that for
every α,β ∈ k there are μ,ν ∈ k, h ∈ Rd−[d/2]−1 (depending on α,β) such that

αx[d/2]+1h1 + βy[d/2]+1h2 = (μx + νy)[d/2]+1h.
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Using that k[x, y] is unique factorization domain, we deduce from this equality and (39)
that μν �= 0 if αβ �= 0. Hence we may assume that for every nonzero α,β ∈ k there are
μ ∈ k, h ∈ Rd−[d/2]−1 (depending on α,β) such that

αx[d/2]+1h1 + βy[d/2]+1h2 = (μx + y)[d/2]+1h. (40)

Note that

when α and β in (40) vary, μ ranges over an infinite set. (41)

Indeed, otherwise (40) implies that there is a basis of P whose elements are divisible by
some (μx + y)[d/2]+1. Hence x[d/2]+1h1 is divisible by (μx + y)[d/2]+1 as well. Since
degh1 < [d/2] + 1, this is impossible.

We now consider separately the cases of even and odd d . First, let d be even, d = 2m.
Then

h1 =
m−1∑
i=0

ηix
m−i−1yi, ηi ∈ k. (42)

Plugging (42) in equality (40), and then differentiating it m times with respect to x, substi-
tuting y = −μx, and dividing both sides by αxm, we obtain the following equality:

m−1∑
i=0

(−1)i
(2m − i)!
(m − i)! ηiμ

i = 0. (43)

Since h1 �= 0, (43) contradicts (41).
Let now d be odd, d = 2m − 1. Then h1 is still given by (42) and

h2 =
m−1∑
j=0

θjx
j ym−j−1, θj ∈ k. (44)

Plugging (42), (44) in equality (40), and then differentiating it m − 1 times respectively
with respect to x and y, substituting y = −μx, and dividing both sides by xm, we obtain
respectively the equalities

θm−1μ
m = α

β

m−1∑
i=0

(−1)m+i−1 (2m − i − 1)!
(m − 1)!(m − i)!ηiμ

i, (45)

αηm−1 + β

m−1∑
(−1)m−j (2m − j − 1)!

(m − 1)!(m − j)!θjμ
m−j = 0. (46)
j=0
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Multiplying (46) by θm−1μ
m−1, replacing θm−1μ

m by the right-hand side of (45), and
dividing both sides by α, we obtain

ηm−1θm−1μ
m−1 +

m−1∑
i,j=0

(−1)i−j−1 (2m − j − 1)!(2m − i − 1)!
((m − 1)!)2(m − i)!(m − j)!ηiθjμ

m−j+i−1 = 0. (47)

From (41) we deduce that all the coefficients of the left-hand side of (47), considered as a
polynomial in μ, vanish. In particular,

η0θm−1 = ηm−1θ0 = 0. (48)

If θm−1 = 0, then (45), (41) imply η0 = · · · = ηm−1 = 0 contrary to h1 �= 0. Simi-
larly, if ηm−1 = 0, then (46), (41) imply θ0 = · · · = θm−1 = 0 contrary to h2 �= 0. Thus,
ηm−1θm−1 �= 0, whence, by (48), η0 = θ0 = 0. From (42), (44), (40) we then deduce that
for m � 2, the left-hand side of (40) is divisible by xy. Hence h in (40) is divisible by xy

as well; in particular, m � 3. Thus, for m � 3, dividing both sides of (40) by xy, we obtain

αxm−1h′
1 + βym−1h′

2 = (μx + y)m−1h′,

with h′
1, h

′
2, h ∈ Rm−2. This means that in considering (40) we may step down from case m

to case m − 1. Continuing this way we reduce the consideration of (40) to the case m = 2.
In this case, the above argument shows that h is a nonzero element of R1 divisible by xy.
This contradiction completes the proof. �
Corollary 3.14. The action of SL2 on the set of maximal linear subspaces of Rd lying in
N

Rd,SL2
is transitive. The dimension of every such subspace is equal to d − [d/2] and 2

respectively for d �= 1 and d = 1.

Theorem 3.15. For G = SL2 and V = Rd1 ⊕ · · · ⊕ Rdm ,

pol ind(V ) =
{

1, if di = 1 for some i,

∞, otherwise.

Proof. Since the G-module R0 is trivial, by (33) we may assume that di � 1 for every i.
Since k[R1]SL2 = k and k[R⊕2

1 ]SL2 �= k, Lemma 3.11 implies that pol ind(R1) = 1. From
this, Corollary 3.7, and (32) we deduce the claim for the cases where di = 1 for some i.

Assume now that di � 2 for every i, and let L be a linear subspace of V lying in
NV,G. Let πi :V = Rd1 ⊕ · · · ⊕ Rdm → Rdi

be the natural projection to the ith summand,
and let Li := πi(L). Since πi(NV,G) = NRi,G

, we have Li ⊂ NRi,G
for every i. Hence

by Lemma 3.13 and (37), for every i, there is homomorphism γi : Gm → G such that
Li ⊆ Rdi

(γi). Take now a point v ∈ L such that πi(v) �= 0 for every i. Since L lies in NV,G,
it follows from (34) that v ∈ V (γ ) for some γ . Hence πi(v) ∈ Rdi

(γ ). But πi(v) ∈ Rdi
(γi)

as well. By (37), (38), this yields Rdi
(γi) = Rdi

(γ ). Hence L ⊆ V (γ ). From Lemma 3.6
we now deduce that pol ind(V ) = ∞ completing the proof. �
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Theorem 3.16. Let G be a connected semisimple algebraic group and let g be its Lie
algebra endowed with the adjoint G-action. Then

pol ind(g) =
{

1, if g is not isomorphic to sl2 ⊕ · · · ⊕ sl2,

∞, otherwise.

Proof. In this case, N
g,G is the cone of all nilpotent elements in g, see, e.g., [12, 5.1].

Every subspace g(γ ) is the unipotent radical of a parabolic subalgebra of g, see [2, VIII,
4.4], [14, 8.4.5], and hence lies in a maximal (with respect to inclusion) unipotent sub-
algebra of g. Maximal unipotent subalgebras of g are precisely the unipotent radicals of
Borel subalgebras of g, and G acts transitively on the set of such subalgebras, see, e.g.,
[14, Chapter 6]. This implies that for a linear subspace L of g lying in N

g,G the following
properties are equivalent:

(i) the subalgebra of g generated by L is unipotent (i.e., lies in N
g,G);

(ii) there is a homomorphism γ : Gm → G such that L ⊆ g(γ ).

From this, (32), and Lemma 3.6 we deduce that equality pol indg = 1 is equivalent to the
following property: there is a 2-dimensional linear subspace L of g such that L lies in
N

g,G but the subalgebra of g generated by L does not lie in N
g,G. If this property holds,

we say, for brevity, that g is a 2-algebra.
We shall show now that if g is not isomorphic to sl2 ⊕ · · · ⊕ sl2, then g is a 2-algebra.

To this end we remark that if a semisimple subalgebra s of g is a 2-algebra, then g is
a 2-algebra as well: since the cone of nilpotent elements of s lies in N

g,G, this readily
follows from the definition of a 2-algebra. Given this remark, we see that the following
two statements immediately imply our claim:

(a) if g � sl2 ⊕ · · · ⊕ sl2, then g contains a subalgebra isomorphic to either sl3 or so5;
(b) sl3 and so5 are 2-algebras

(note that in so5 there are no subalgebras isomorphic to sl3, and vice versa).
To prove (a), denote by Φ the root system of g with respect to a fixed maximal torus. Let

α1, . . . , αl be a system of simple roots in Φ (enumerated as in [1]). Fix a Chevalley basis
{Xα,X−α,Hα}α∈Φ of g, [2]. We may assume that g is simple, g � sl2, so5. For such g,
it is easily seen that there are two roots λ,μ ∈ Φ such that the subalgebra of g generated
by Xλ and Xμ is isomorphic to sl3: for g of types Al (l � 2), Bl (l � 3), Cl (l � 3),
Dl (l � 4), F4, one can take λ = α1, μ = α2; for types E6, E7, E8, take λ = α1, μ = α3; for
type G2, take λ = α2, μ = 3α1 + α2. This proves (a).

We turn now to the proof of (b). In sl3 we explicitly present a subspace L enjoying the
desired properties (we are grateful to H. Radjavi for this example, [13]). Namely, take

L := 〈Xα1 + Xα2,X−α1 − X−α2〉 =
{[ 0 a 0

b 0 a

] ∣∣∣∣ a, b ∈ k

}
. (49)
0 −b 0
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Then (49) implies that the subalgebra generated by L contains the element Hα1 − Hα2 .
Since it is semisimple, this subalgebra does not lie in N

g,G. On the other hand, the matrix
in the right-hand side of (49) is nilpotent (this is equivalent to the property that the sums of
all its principal minors of orders 2 and 3 are equal to 0, and this is immediately verified).
So, L ⊆ N

g,G. This proves (b) for sl3.
Let now g = so5. In this case, an explicit construction of the desired subspace L is

unknown to us, so we shall use an indirect argument. The underlying space of g is the
space of all skew-symmetric (5 × 5)-matrices. Let xij ∈ k[g], 1 � i, j � 5, be the standard
coordinate functions on g given by xij ((apq)) = aij . Then xij = −xji . Consider the matrix
A := (xij ). Then k[g]G = k[f2, f4] where f2, f4 are the coefficients of the characteristic
polynomial of A, i.e., det(tI5 −A) = t5 +f2t

3 +f4t , see, e.g., [12]. The Newton formulas
expressing the sums of squares of eigenvalues of A via the elementary symmetric functions
of them imply that tr(A2) = −2f2, tr(A4) = 2f 2

2 − 4f4. Hence

k[g]G = k
[
tr
(
A2), tr

(
A4)]. (50)

Let now yij , zij ∈ k[g⊕2], 1 � i, j � 5, be the standard coordinate functions on g⊕2

given by yij ((apq), (brs)) = aij , zij ((apq), (brs)) = bij . Then yij = −yji and zij = −zji .
Consider the matrices B := (yij ), C := (zij ). Taking into account that tr(PQ) = tr(QP )

for any square matrices P , Q, it is not difficult to deduce that for every α1, α2 ∈ k, the
following equalities hold:

tr
(
(α1B + α2C)2) = α2

1 tr
(
B2) + 2α1α2 tr(BC) + α2 tr

(
C2), (51)

tr
(
(α1B + α2C)4) = α4

1 tr
(
B4) + 4α3

1α2 tr
(
B3C

) + 2α2
1α2

2

(
2 tr

(
B2C2) + tr

(
(BC)2))

+ 4α1α
3
2 tr

(
BC3) + α4

2 tr
(
C4). (52)

From (50), the definition of pol2 k[g]G (see Example 2.5 and the first paragraph right
after it), and (51), (52) we deduce that pol2 k[g]G is the algebra

k
[
tr
(
B2), tr(BC), tr

(
C2), tr

(
B4), tr

(
B3C

)
,2 tr

(
B2C2) + tr

(
(BC)2), tr

(
BC3), tr

(
C4)].

This shows that the transcendence degree of pol2 k[g]G over k is not bigger than 8. On the
other hand, since dimg⊕2 = dimG = 20, the transcendence degree of k[g⊕2]G over k is
not smaller than dimg⊕2 − dimG = 10, see, e.g., [12, Theorem 3.3 and the corollary of
Lemma 2.4] (actually it is equal to 10 since, as one easily proves, the generic G-stabilizer
of the G-module g⊕2 is finite). Therefore k[g⊕2]G is not integral over pol2 k[g]G. By (32)
and Corollary 3.5 we now deduce that pol ind(g) = 1, i.e., g is a 2-algebra.

To complete the proof we have to calculate pol ind(g) for g = g1 ⊕ · · · ⊕ gm where
gi = sl2 for every i. We may assume that G = G1 ×· · ·×Gm where Gi = SL2 for every i.
Corollary 3.7 then reduces the proof to the case m = 1. Since the SL2-modules sl2 and R2
are isomorphic, the claim now follows from Theorem 3.15. �

Call a linear subspace L of a reductive Lie algebra g triangularizable if there is a Borel
subalgebra b of g such that L lies in the unipotent radical of b (for g = Matn×n, this means



424 M. Losik et al. / Journal of Algebra 301 (2006) 406–424
that L is conjugate to a subspace of the space of upper triangular matrices, see [3,5,9]).
Call L nilpotent if every element of L is nilpotent.

Corollary 3.17. A semisimple Lie algebra g contains a 2-dimensional nilpotent nontrian-
gularizable linear subspace if and only if g is not isomorphic to sl2 ⊕ · · · ⊕ sl2.
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