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POLARIZATIONS IN CLASSICAL INVARIANT THEORY

Mark Losik, Peter W. Michor, Vladimir L. Popov

Abstract. We give a weak version of the first main theorem of invariant theory,
namely, we describe a class of representations of a reductive algebraic group on a
vector space V such that C[V q ]G is the integral closure of C[V q ]G

pol
, the subring gen-

erated by all generalized polarizations, in C[V q ]. For finite groups we have stronger
results.

1. Introduction

Let G be a reductive complex algebraic group, V a finite dimensional complex
vector space, and ρ : G → GL(V ) a regular representation (later called a representa-
tion of a reductive group for shortness’ sake). Consider the corresponding diagonal
action of G on the product V q and the algebra C[V q ]G of G-invariant polynomials
on V q. The problem of finding a finite system of generators for the algebra C[V q ]G

is called the first main theorem of invariant theory. This theorem was proved for
the standard representations of all classical groups and for the standard represen-
tation of the symmetric group Sn in Cn by Weyl (see [7]), for the Weyl groups of
the types Bn = Cn (see [2] and [4]) and the dihedral groups (see [4]). For the above
finite groups the algebra C[V q]G is generated by the polarizations of a system of
basic invariants of C[V ]G. However Wallach (see [6]) proved that this is not true
for the Weyl group Dn (n ≥ 4) and q = 2. Then Wallach and Hunziker (see [6] and
[4]) introduced generalized polarizations and proved the first main theorem for Dn

using the usual and the generalized polarizations of the basic invariants of C[V ]Dn .
But for other Weyl groups the above problem is open till now.

The aim of this paper is to indicate the representations for which there is a
close relationship between the algebra C[V q ]G and its subalgebra generated by
polarizations of basic invariants of C[V ]G. We consider this problem in the following
more general setting.

Let G be a reductive group and X an affine G-variety, i.e., an affine variety X
with an action of G by regular automorphisms of X . Let Y be an affine variety
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and let Z be a G-stable affine variety of regular morphisms from Y to X with
the natural action of G. We define generalized polarizations (distinct from the
generalized polarizations of Wallach and Hunziker) of a regular G-invariant function
on X which are regular G-invariant functions on Z. In particular, for the linear
case, i.e. when X = V is a vector space, G is a subgroup of GL(V ), and Z is
the affine variety (isomorphic to Vq) of linear morphisms from Y = Cq to V , the
generalized polarizations are the usual polarizations of homogeneous G-invariant
polynomials on V .

Let Z//G be a categorical quotient, i.e. the affine variety with coordinate ring
C[Z]G. Under some assumptions on Z the coordinate ring C[Z]G contains C[X ]G.
Let (Z//G)pol be an affine variety whose coordinate ring is the subring C[Z]Gpol

of C[Z]G generated by C[X ]G and the generalized polarizations of generators of
C[X ]G.

The aim of this paper is to find the cases when the morphism pq,Z : Z//G →
(Z//G)pol induced by the inclusion C[Z]Gpol ⊂ C[Z]G is finite, i.e. the ring C[Z]G

is integral over C[Z]Gpol.
In particular, we indicate when this is true in the linear case Z = V q , where

ρ : G → GL(V ) is a representation. Moreover, in this case the ring C[Z]G = C[V q ]G

is the integral closure of C[Z]Gpol in C[V q ] whenever the group G is connected, see
corollary 3.5.

For the linear case and a finite group G we prove that the morphism pq,Z is
a bijective normalization of (V q//G)pol, in particular, for each f ∈ C[V q ]G there
are F ∈ C[V q ]Gpol and an integer k > 0 such that f = F k, see 4.2. Moreover, a
generalization of the above constructions shows that for q > 2 the same is true for
a subset of polarizations of a system of homogeneous generators of C[V ]G, see 4.5
and 4.6.

Throughout the paper an affine variety means a complex affine variety endowed
with the Zarisky topology. We shall deal only algebraic groups and varieties over C.
But note that by Lefschetz’ principle all results remain true over any algebraically
closed field of characteristic 0.

2. Generalized polarizations

2.1. Generalized polarizations. Let G be a reductive group and X an affine
G-variety. Consider the set F(Cq, X) of regular morphisms from Cq to X and the
pointwise action of G on F(Cq , X): (gf)(z) = g(f(z)) for g ∈ G and f ∈ F(Cq , X)).

Let Z be a G-stable subset of F(Cq, X) equipped with the structure of an affine
variety such that the restriction of the action of each g ∈ G to Z is an automorphism
of Z and the evaluation map evZ : Z × Cq → X (i.e. for f ∈ Z and y ∈ Cq

evZ(f, y) = f(y)) is a regular morphism). The group G acts on Z × C
q in the

following way: g(f, y) = (gf, y). By definition the map evZ is G-equivariant. By
the Hilbert-Nagata theorem (see, for example, [5]) the algebras C[X ]G, C[Z]G, and
C[Z × Cq ]G are finitely generated. Then the categorical quotients X//G, Z//G,
and (Z × Cq)//G = (Z//G)× Cq are affine varieties.

Denote by πX the projection X → X//G. For later needs we recall the fol-
lowing interpretation of the categorical quotient X//G and the projection πX . Let
σ1, . . . , σm be a system of generators of the algebra C[X ]G and let σ = (σ1, . . . , σm) :
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X → Cm the corresponding morphism. Then it is known (see, for example [5]) that
σ(X) is an irreducible closed subset of Cm and one can identify σ(X) as an affine
variety with X//G and the morphism X → σ(X) induced by σ (and denoted again
by σ) with the projection πX .

The morphism evZ induces a morphism evZ : (Z//G) × Cq → X//G and the
corresponding homomorphism of algebras ev∗Z : C[X//G] → C[Z//G]⊗ C[Cq ].

Let τ ∈ C[X ]G. Since C[Cq ] equals the polynomial ring C[t1, . . . , tq ] in the vari-

ables t1, . . . , tq , and since the powers ti11 . . . t
iq

q for i1, . . . , ip = 0, 1, . . . form a basis
of C[Cp] as a complex vector space, we have the following unique decomposition

(1) ev∗Z(τ) =
∑

i1,...,iq

τi1...iq
⊗ (ti11 . . . tiq

q ),

where τi1 ...iq
∈ C[Z]G and only finitely many of the τi1...iq

are nonzero. The nonzero
G-invariant regular functions τi1...iq

on Z are called the generalized polarizations of
τ with respect to Z.

2.2. Affine varieties with graded coordinate rings. In the sequel we shall
consider generalized polarizations in the following special case when the structure
of affine variety on Z can be defined in a canonical way.

Let X be an irreducible affine variety such that the coordinate ring C[X ] is
graded:

C[X ] = ⊕i≥0C
i[X ]

and C
0(X) = C. Let G be a reductive group acting on X by automorphisms of

X preserving the above grading of C[X ]. Then the algebra C[X ]G has a natural
grading: C[X ]G =

⊕
i≥0(Ci[X ] ∩ C[X ]G).

2.3. Example. Consider the linear case, i.e. X = V is a finite dimensional vector
space and G ⊂ GL(V ). We have the natural grading of C[V ] of a polynomial ring.
It is clear that the G-variety V satisfies the above conditions.

2.4. Example. Let V be a finite dimensional vector space, let G be a reductive
subgroup of GL(V ), and let H be an algebraic normal subgroup of G. Then the
quotient group G/H is reductive. Since the group H is reductive, the categorical
quotient X = V//H is an affine variety and the group G/H acts on X by automor-
phisms. It is clear that the algebra C[X ] = C[V ]H is a graded subalgebra of the
graded algebra C[V ] and the induced action of the group G/H on C[X ] preserves
the structure of graded algebra of C[X ].

In particular, one can take for the normal subgroup H the component G0 of the
identity of G. Then the quotient group G/G0 is finite.

2.5. The affine G-variety F(Cq , X). Let first X = Cn with a fixed grading
on its coordinate ring C[Cn] = C[u1, . . . , un] so that deg(ui) = di ∈ N. For ex-
ample, the ui might correspond to homogeneous generators of an algebra C[V ]G

of invariant polynomials on a G-module V . For each h ∈ C[Cn] we have a map

ĥ : F(Cq, Cn) → C[Cq, C] = C[Cq ] = C[t1, . . . , tq], given by ĥ(f) = h ◦ f . For each

polynomial P ∈ C[t1, . . . , tq ] we write P =
∑

i1,...,iq
Pi1...iq

ti11 . . . t
iq

q . Then for each
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h =
∑

j1,...,jn
hj1...jn

uj1
1 . . . ujn

n ∈ C[Cn] we have a set of complex valued functions

ĥi1...iq
on F(Cq , X) such that for f = (f1, . . . , fn) ∈ C[Cq , Cn] with

fk =
∑

lk,1,...,lk,q

fk
lk,1...lk,q

t
lk,1

1 . . . t
lk,q
q

we have

h ◦ f = ĥ(f) =
∑

i1,...,iq≥0

ĥi1...iq
(f)ti11 . . . tiq

q =

=
∑

j1,...,jn≥0

hj1...jn

q∏

k=1

( ∑

lk,1,...,lk,q≥0

fk
lk,1...lk,q

t
l1,1

1 . . . t
lk,q
q

)jk

Note that each ĥi1...iq
(f) is a polynomial in the coefficients fk

lk,1...lk,q
of f of degree

deg h in terms of the grading fixed above.

Let now X be an irreducible affine variety such that the coordinate ring C[X ]
is graded: We consider X as closed subset of Cn with a fixed grading on C[Cn]
as above, such that C[X ] = C[Cn]/IX where IX is a graded ideal. Then F(Cq, X)

is the set of all f in F(Cq , Cn) such that ĥ(f) = 0 for all h ∈ IX . Thus for each

h ∈ C[X ] we have a map ĥ : F(Cq, X) → C[Cq ] given by ĥ(f) = h ◦ f and a set of

complex valued functions ĥi1...iq
on F(Cq, X) such that ĥi1...iq

(f) = ĥ(f)i1...iq
. Let

µ be a minimal number such that the ideal IX is generated by functions g1, . . . , gm

of degree≤ µ in C[Cn] in the grading from above. We have seen that F(Cq , X) is the
common zero set of the finitely many polarized functions functions (ĝi)i1,...,iq

which

are homeogeneous. Thus the ideal ÎX of C[F(Cq , Cn)] generated by the functions
(ĝi)i1,...,iq

is a graded ideal in the induced grading. By Hilbert’s Nullstellensatz the

ideal of all functions vanishing on F(Cq , X) is the radical of the ideal ÎX and is thus
also a graded ideal; only finitely many of the coordinates f k

lk,1...lk,q
of C[F(Cq, Cn)]

are involved at the same time in the application of Hilbert’s Nullstellensatz.

For any d > µ, denote by Fd(C
q , X) the set of all morphisms f ∈ F(Cq , X) such

that for all h ∈ C[X ] of degree ≤ µ the degree of ĥ(f) does not exceed d. It follows
from the argument above that Fd(C

q , X) is an affine subvariety of Fd(C
q , Cn) with

graded coordinate ring.

Proposition. In this situation we have:

(1) Fd(C
q , Cn) is an affine variety with grading on C[Fd(C

q , Cn)] induced from
the grading of C[Cn].

(2) The polynomials ĥi1...iq
for h ∈ IX ⊂ C[Cn] form a graded ideal ÎX in

C[Fd(C
q , Cn)]. Its radical is the ideal IFd(Cq ,X) which describes Fd(C

q , X)
as affine variety with graded coordinate ring.

(3) If G is a reductive group of automorphisms of X preserving the graded struc-
ture of C[X ] then Fd(C

q , X) is a G-stable subset of F(Cq, X). The group G
induces an action of G on Fd(C

q , X) by automorphisms of Fd(C
q , X) and

the corresponding evaluation map Fd(C
q , X)× Cq → X is regular.
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Proof. (1) and (2) are clear from the discussion above.
(3) We can find an equivariant embedding X → Cn of X into an affine G-space

C
n with induced G-invariant grading: Take for example the complex dual of the

G-invariant subspace
⊕µ

i=1 Ci[X ], where µ is as above. Then all assertions are an
easy consequence of the definitions. �

2.6. The zero fiber. In the situation of 2.2, let Z be an irreducible G-stable closed
subset of C[Fd(C

q , X)] defined by an ideal of C[Fd(C
q , X)] which is homogeneous

with respect to the grading described above. The structures on Fd(C
q , X) induce

on Z a structure of an affine variety, a grading of C[Z], and an action of the group
G by automorphisms of Z preserving the grading.

Let 0X be the point of X corresponding to the maximal ideal m0 = ⊕i>0Ci[X ].
and πX : X → X/G the projection. The zero fiber of π is X0 = π−1

X ◦ πX (0X).
Similarly, let Oq,X : Cq → X be the morphism given by Oq,X(t) = 0X for each

t ∈ Cq . Clearly Oq,X ∈ Fd(C
q , X) for each d and the maximal ideal corresponding

to Oq,X consists of all elements of C[Fd(C
q , X)] of positive degrees. By definition

the point Oq,X belongs to each irreducible G-stable closed subset Z of C[Fd(C
q , X)]

defined by a homogeneous ideal C[Fd(C
q , X)]. Denote by πZ the projection Z →

Z//G. Then the zero fiber of πZ is Z0 = π−1
Z ◦ πZ(OX ).

Examples. In the following examples we consider an n-dimensional vector space
V with the natural action of a reductive subgroup G of GL(V ) and the standard
graded algebra structure on the coordinate ring C[V ]. By definition the algebra
C[V ] is generated by homogeneous elements of degree 1, i.e. µ = 1. Then we can
take for the basis hi the coordinates xi in V with respect to some basis e1, . . . , en

of V . Since the algebra C[V ] is free, for each d the affine variety Fd(C
q , V ) is an

affine space CN with standard grading on C(Fd(C
q , V )) = C[CN ] and with a linear

action of the group G.

2.7. Example. Consider the set F1(C
q−1, V ). For each f ∈ F1(C

q−1, V ) and
t = (t1, . . . , tq−1) we have f(t) = v1 +

∑q
i=2 tivi, where v1, . . . , vq are uniquely given

vectors in V . This mapping f → (v1, . . . , vq) is an isomorphism F1(C
q−1, V ) → V q

of affine varieties which is G-equivariant for the natural action of G on F1(C
q−1, V )

and the diagonal action of G on V q. We can identify F1(C
q−1, V ) with V q via

this map. It is easily checked that, for Z = F1(C
q−1, V ) and a homogeneous

polynomial τ ∈ C[V ]G, the generalized polarizations of τ coincide with the standard
polarizations of τ on V q .

2.8. Example. Let Z = L(Cq, V ) be the set of linear morphisms from C
q to V q .

It is clear that Z is a closed G-stable subset of F1(C
q , V ) = V q+1. It is identified

with the subspace V q of V q+1 defined by the equation v1 = 0. It is easily seen that,
for Z = L(V q , V ) and for each homogeneous polynomial τ ∈ C[V ]G, the generalized
polarizations of σ coincide with the standard polarizations of σ on V q. It is easily
checked that, if deg σ = p, the number of distinct polarizations of τ equals

(
p+q−1

p

)
.

Remark that, for Z = F1(C
q , V ) and Z = L(Cq, V ), the generalized polarizations

are multi-homogeneous functions on V q+1 and V q respectively.

2.9. Example. Consider the set Fq−1(C, V ). For each f ∈ Fq−1(C, V ) and t ∈ C

we have f(t) =
∑q

i=1 ti−1vi, where v1, . . . , vq are uniquely given vectors in V . It is
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easily checked that the map f → (v1, . . . , vq) is an isomorphism Fq−1(C, V ) → V q

of affine varieties, which again is G-equivariant for the natural action of G on
Fq−1(C, V ) and the diagonal action of G on V q . Then we can identify Fq−1(C, V )
with V q via this map.

Consider the morphism jq−1 : C → Cq−1 defined as follows:

jq−1(t) = (t, t2, . . . , tq−1) (t ∈ C)

and the corresponding homomorphism j∗q−1 : C[Cq−1] → C[C]. Then f → f ◦ jq−1

is an isomorphism F(jq−1, V ) : F1(C
q−1, V ) → Fq−1(C, V ) of affine varieties. We

consider the evaluation mappings ev1 : F1(C
q−1, V ) × Cq−1 → V and by evq−1 :

Fq−1(C, V )× C → V . Then we have the following commutative diagram

C[V ]G C[V ]G

ev∗
1

y ev∗q−1

y

C[F1(C
q−1, V )]⊗ C[Cq−1]

F(jq−1,V )∗⊗j∗q−1

−−−−−−−−−−−→ C[Fq−1(C, V )]⊗ C[C].

Let τ ∈ C[V ]G be a homogeneous polynomial, τ ′i1,...,iq−1
the generalized polar-

ization of τ for Z = F1(C
q−1, V ), and τ ′′i the generalized polarization of τ for

Z = Fq−1(C, V ). Since j∗q−1(t
i1
1 . . . t

iq−1

q−1 ) = ti1+2i2+···+(q−1)iq−1 , applying the above
commutative diagram we have

τ ′′i =
∑

i1+2i2+···+(q−1)iq−1=i

τ ′i1...iq−1
.

If deg τ = p, the number of distinct generalized polarizations of τ ′′i equals p(q−1)+1.

Remark that the difference
(
p+q−1

p

)
−p(q−1)−1 between numbers of the standard

polarizations of τ (deg σ = p > 1) and the above generalized polarizations of τ
vanishes for q = 1, 2 and is strictly positive for q > 2.

Consider, for example, the action of the group G = Z2 on V = C generated by
the morphism z → −z for z ∈ C. Then C[V ]G = C[z2].

Let q = 3 and τ = z2. Then for Z = F1(C
2, V ) we have the polarizations

τ ′00 = z2
0 , τ ′10 = 2z0z1, τ ′01 = 2z0z2, τ ′20 = z2

1 , τ ′02 = z2
2 , and τ ′11 = 2z1z2. For

Z = F2(C, V ) we have τ ′′0 = τ ′00, τ ′′1 = τ ′10, τ ′′2 = τ ′01 + τ ′20, τ3 = τ ′11, and τ ′′4 = τ02.

2.10. The algebra C[Z]Gpol. We assume that we have the following data: an
irreducible affine G-variety X , where G is a reductive group, such that algebra
C[X ] is graded and the action of the group G preserves this grading, and a G-
stable irreducible closed subset Z of Fd(C

q , X).
Consider the map mZ : Z → X given by mZ(f) = f(0) for each f ∈ Z. It

is easily seen that the map mZ is a G-equivariant morphism of affine varieties.
Then the ring homomorphism m∗

Z : C[X ] → C[Z] induces the homomorphism
C[X ]G → C[Z]G.

Consider the subalgebra C[Z]Gpol of the algebra C[Z]G generated by the subalge-

bra m∗
Z(C[X ]G) and all generalized polarizations of a system of generators for the
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algebra C[X ]G. Since the algebra C[X ]G is finitely generated, the algebra C[Z]Gpol is

also finitely generated. Let (Z//G)pol be the affine variety with the coordinate ring
C[Z]Gpol. Denote by pq,Z the dominant morphism from Z//G to (Z//G)pol induced

by the inclusion C[Z]Gpol ⊂ C[Z]G.
Our aim is to find the cases when the morphism pq,Z establishes a close relation-

ship between Z//G and (Z//G)pol, or, equivalently, a close relationship between
the algebra C[Z]G and its subalgebra C[Z]Gpol.

Lemma. Let the morphism mZ : Z → X be dominant. Then the algebra C[X ]G

is a subalgebra of C[Z]G and the algebra C[Z]Gpol is generated by the generalized po-

larizations of the basic invariants of C[X ]G. Moreover, each homogeneous element
τ ∈ C[X ]G defines uniquely the indexed set of the generalized polarizations τi1...iq

of τ .

Proof. If the morphism mZ : Z → X is dominant it defines the inclusion C[X ]G ⊂
C[Z]G which identify each homogeneous element τ ∈ C[X ]G of degree p with the
generalized polarization m∗

Z(τ) = τq0...0. This proves the first statement of the
lemma. The last statement follows from the definition of generalized polarizations
since by the above assumptions the algebra C[X ]G is given as a subalgebra of the
algebra C[Z]. �

2.11. Note that, for Z = Fd(C
q , X), the morphism mZ is surjective and thus

dominant. Recall Examples 2.7 and 2.9 where we have Z = F1(C
q−1, V ) = Vq

and Z = Fq−1(C, V ) = V q. In both cases the morphism mZ coincides with the
projection of Vq onto its first factor V . Therefore, the algebra C[V ]G is identified
with the subalgebra of C[V q ]G consisting of polynomials f(v1, . . . , vq) ∈ C[V q ]G

(where v1, . . . , vq ∈ V ) which do not depend on v2, . . . , vq. Considering a basic
invariant σi ∈ C[X ]G as an element of the algebra C[V q ] we can construct the
indexed set σi,i1 ,...,iq

of its generalized polarizations. Thus the algebra C[Z]Gpol is

generated by the generalized polarizations of basic invariants of C[X ]G and these
polarizations are naturally indexed.

Now we prove the following simple generalization of a theorem due to Hilbert
(see [1], Kap. 1, §4).

2.12. Theorem. Let G be a reductive group and let X be an irreducible affine G-
variety such that the coordinate ring C[X ] is graded and the action of G preserves
the grading. Assume that f1, . . . , fs are homogeneous G-invariant regular functions
on X such that the ideal I(f1, . . . , fs) generated by f1, . . . , fs defines the zero fiber
X0. Then we have:

(1) The algebra C[X ]G is integral over its subalgebra C[f1, . . . , fs] generated by
f1, . . . , fs;

(2) If the group G is connected, the algebra C[X ]G is the integral closure of
C[f1, . . . , fs] in the algebra C[X ].

Proof. (1) It suffices to prove that R = C[X ]G is a finitely generated module over
C[f1, . . . , fs].

Since the group G preserves the grading of C[X ], the algebra C[X ]G is graded
as well. Let R := ⊕i≥0Ri be the corresponding grading of R = C[X ]G and m :=
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⊕i>0Ri. By Hilbert’s Nullstellen Satz for affine varieties we have

√
⊕s

j=1Rfj = m.

Then there is a positive integer N such that mN ⊂ ⊕s
j=1Rfj . Therefore, for n ≥ N

we have
Rn ⊂ ⊕s

j=1fjRn−dj
,

where dj = deg fj . Thus, for the finite dimensional vector space B := ⊕N−1
i=0 Ri and

for any n ≥ N , by induction we get

Rn ⊂ C[f1, . . . , fs]B.

(2) Let the group G be connected and let f be a root of a polynomial xk +
ak−1x

k−1 + · · · + a0 whose coefficients ak−1, . . . , a0 belong to C[f1, . . . , fs]. Then
the set of roots of this polynomial is G-invariant and, since the group G is connected,
it acts trivially on this set. Thus f ∈ C[X ]G. �

3. Polarizations in invariant theory for reductive groups

3.1. The class of representations Rq,pol(G). Let G be a reductive group and
ρ : G → GL(V ) a representation of G in a finite dimensional complex vector space
V . Applying the constructions of Section 2 to X = V , the group ρ(G) ⊂ GL(V ),
and Z = F1(C

q−1, V ) = V q we get the algebras C[V ]G, C[V q ]G, and C[V q ]Gpol, the

affine varieties V q//G, (V q//G)pol, and the morphisms πV q : V q → V q//G and
pq−1,V q : V q//G → (V q//G)pol. It is clear that the zero fiber (V q)0 from 2.6 equals
the usual zero fiber of the G-module V q with the diagonal action of G. Remark
that in this case the morphism mV q : V q → V , the projection onto the first factor,
is surjective.

The aim of this section is to define a class of representations of reductive groups
such that the polarizations of the basic invariants define the zero fiber (V q)0 and
one can apply Theorem 2.12.

Let σ1, . . . , σm be a system of generators of the algebra C[V ]. Recall that the
morphism σ = (σ1, . . . , σm) : V → σ(V ) can be considered as the projection πX :
X → X//G.

Consider the map Pq,V : F1(C
q−1, V ) → F1(C

q−1, V//G) defined by Pq,V (f) =
πX ◦ f . For f = v1 +

∑q

i=2 tivi the value Pq,V (f) is uniquely defined by the values
of the polarizations of the basic invariants σi at (v1, . . . , vq). Thus Pq,V (F1(C

q, V ))
may be identified with (V q//G)pol naturally. Denote also by Pq,V the defined by
Pq,V map from L(Cq, V ) onto Pq,V (L(Cq , V )). Then by definition Pq,V is equal
to the composition of the projection πq,V q : V q → V q//G and the morphism
pq,V q : V q//G → (V q//G)pol.

Let G be a reductive group. Let us denote by

Rq,pol(G)

the set of isomorphism classes of representations ρ : G → GL(V ) such that the
ideal Ipol generated by the polarizations of the basic invariants defines the zero
fiber (V q)0.
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3.2. Theorem.

(1) The trivial representation of G in a vector space V belongs to Rq,pol(G) for
any q.

(2) The standard representations of the classical groups G = GLn, On, and SOn

in V = Cn and the group G = Spn in V = C2n belong to the corresponding
classes Rq,pol(G) for any q.

(3) The standard representation of SLn in Cn belongs to Rq,pol(SLn) for q < n
and does not belong to Rq,pol(SLn) for q ≥ n.

Proof. (1) is evident. (2) follows from the classical results of Weyl (see [7]).
(3) It is clear that, for the standard representation ρ of SLn in Cn,

C[(Cn)q ]SLn = C

for q = 1, . . . , n − 1 since we have a dense orbit. The diagonal action of SLn in
(Cn)n coincides with the action of SLn on the space Mn of n × n matrices by the
left multiplication. Thus we have a nontrivial invariant of this action, namely, the
determinant of the matrix. Thus the zero fiber ((Cn)n)0 equals the set of matrices
with zero determinant, whereas the set of polarizations of basic invariants is empty
and the ideal Ipol defines the whole of Mn. �

3.3. Lemma. Let G be a reductive group and let G0 be the component of the
identity of G. Let ρ : G → GL(V ) be a representation of G and ρ0 : G0 → GL(V )
the restriction of ρ to G0. Then the zero fiber of ρ coincides with the zero fiber of
ρ0.

Proof. Let πV : V → V//G and ρV,0 : V → V//G0 be the projections. Consider the
natural action of the finite group G/G0 on V//G0 and the corresponding projection
πV : V//G0 → (V//G0)/(G/G0) = V//G. It is evident that πV = πV ◦ πV,0.
Since the affine variety V//G is normal and the projection πV is a finite morphism
(see, for example, [5]), the ring C[V//G0] is integral over its subring π∗V C[V//G].
Thus the zero fiber of the action of G/G0 on V//G0 coincides with πV,0(0) and

V 0 = π−1
V,0 ◦ πV,0(0). �

3.4. Theorem. A representation G → GL(V ) belongs to Rq,pol(G) iff the follow-
ing condition is satisfied: Whenever the linear span L(v1, . . . , vq) of v1, . . . , vq ∈ V
is contained in the zero fiber V 0, then the vector (v1, . . . , vq) ∈ V q belongs to the
zero fiber (V q)0 for the diagonal action of G on V q.

Proof. By definition (V q)0 = P−1
q,V ◦ Pq,V (0).

Let P−1
q,V ◦ Pq,V (0) = (V q)0 and L(v1, . . . , vq) ⊂ V 0. Then πV ◦ f(t) = 0, i.e.,

f ∈ P−1
q,V ◦ Pq,V (0), for each t = (t1, . . . , tq) and f(t) =

∑q

i=0 tivi.

Let the condition of the theorem be satisfied and (v1, . . . , vq) ∈ (V q)0. By Lemma
3.3 it suffices to assume that the group G is connected. By the Hilbert-Mumford
criterion for the zero fiber (see, for example, [5]) there is a one-parameter subgroup
λ : (C∗, ·) → G such that limt→0 λ(t)(v1, . . . , vq) = 0. Then, for each i = 1, . . . , q,
limt→0 λ(t)vi = 0. Thus for each (t1, . . . , tq) ∈ Cq we have limt→0 λ(t)

∑q

i=0 tivi = 0
and consequently

∑q

i=0 tivi ∈ V 0. �

Theorems 2.12 and 3.4 imply immediately the following three corollaries.
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3.5. Corollary. For each representation ρ : G → GL(V ) in Rq,pol(G) the mor-
phism pq : V q//G → (V q//G)pol is finite. Moreover, if the group G is connected,
the ring C[V q//G] = C[V q ]G is the integral closure of C[V q ]Gpol in C[V q ].

3.6. Corollary. If ρ ∈ Rq,pol(G) then ρ ∈ Rq−1,pol(G).

3.7. Corollary. If all orbits of a representation ρ : G → GL(V ) are closed then
ρ ∈ ρ ∈ Rq,pol(G) for each q. In particular, this is true for a finite group G.

3.8.. Now we indicate several representations belonging to Rq,pol(G). The space
Rn of homogeneous polynomials in two variables x and y of degree n is called the
space of binary forms of degree n.

Theorem. The canonical representation of the group SL2 on the space Rn of binary
forms of degree n belongs to Rq,pol(SL2) for n 6= 1 and any q. The representation
of SL2 on R1 belongs to Rq,pol(SL2) for q < n and does not belong to Rq,pol(SL2)
for q ≥ n.

Proof. Recall that the representation of SL2 on Rn and the contragradient repre-
sentation of SL2 on R∗

n are isomorphic (see, for example, [5]). The representation
of SL2 on R0 = C is trivial and the representation of SL2 on R1 is isomorphic to the
standard representation of SL2 on C2, so by Theorem 3.2 they belong Rq,pol(SL2).
Thus it suffices to consider the case n > 1.

It is known (see, for example, [5]) that a form f ∈ Rn belongs to the zero fiber
R0

n iff the decomposition of f into the product of linear forms contains a factor of
multiplicity > n

2 or if f = 0. Consider the subspace R0
n,l of Rn consisting of all

forms of type lrh, where r =
[

n
2

]
+1, l ∈ R1 is a nonzero linear form, and h ∈ Rn−r.

By a linear transformation of variables x and y one can assume that l = x. Then,
for the one-parameter subgroup

λ(t) =

(
t 0
0 t−1

)

of SL2, we have limt→0 λ(t)R0
n,l = 0. By the Hilbert-Mumford criterion for the

zero fiber this implies R0
n,l ⊂ R0

n, and by 3.4 we have (f1, . . . , fq) ∈ (Rq
n)0 for any

f1, . . . , fq ∈ R0
n,q. Moreover, R0

n is the union of the subspaces R0
n,l for distinct

linearly independent l. Then by Theorem 3.4 the proof of the theorem follows from
the following lemma.

3.9. Lemma. If the linear span of f1, . . . , fq is contained in R0
n then there is a

linear form l such that f1, . . . , fq ∈ R0
n,l.

Proof. It suffices to consider the case q = 2.
Assume that f1 = lr1h1 and f2 = lr2h2, where r =

[
n
2

]
+ 1, l1, l2 are linear forms,

h1, h2 ∈ Rn−r, and t1f1 + t2f2 ∈ R0
n for any t1, t2 ∈ C. One need to prove that the

forms l1 and l2 are linearly dependent.
For contradiction suppose that l1 and l2 are linearly independent. By a coor-

dinate change one can assume that l1 = x and l2 = y. By assumption, for any
t1, t2 ∈ C there is a linear form l = αx + βy (α, β ∈ C) and h ∈ Rn−r such that

(1) t1x
rh1 + t2y

rh2 = (αx + βy)rh
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where α, β and h depend on t1 and t2. We may assume also that h1, h2 6= 0 and,
for any t1, t2 6= 0, α, β, and h are nonzero.
(2) Remark: α

β
cannot be constant in t1, t2. Namely, if α

β
is constant in t1, t2 ∈ C\0,

by continuity of both sides of (1) it is constant in t1, t2 ∈ C. Thus, for t1 = 0 and
t2 6= 0, yr divides h which contradicts the degree assumptions. In particular, this
is true if α

β
is a root of a polynomial whose coefficients do not depend on t1, t2.

First consider the case when n = 2m. Then the equality (1) has the following
form

(3) t1x
m+1h1 + t2y

m+1h2 = (αx + βy)m+1h,

where h, h1, h2 ∈ Rm−1.

Let h1 =
∑m−1

i=0 aix
m−i−1yi for ai ∈ C. Differentiating the equality (3) m times

with respect to x, putting y = −α
β
x for β 6= 0, and dividing by t1x

m we get

m−1∑

i=0

(−1)i (2m− i)!

(m− i)!
ai

(
α

β

)i

= 0.

Since the coefficients ai do not vanish simultaneously we have a contradiction by
remark (2).

Consider now the case when n = 2m − 1. Then the equality has the following
form

(4) t1x
mh1 + t2y

mh2 = (αx + βy)mh,

where h, h1, h2 ∈ Rm−1. We assume till the end of the proof that t1, t2 6= 0 and
then α.β 6= 0.

Let h1 =
∑m−1

i=0 aix
m−i−1yi and h2 =

∑m−1
j=0 bjx

iym−j−1 for (ai, bj ∈ C). We

differentiate equality (4) m − 1 times with respect to x, and put y = −α
β
x, and

divide by xm to get:

(5) bm−1

(
α

β

)m

=
(−1)m−1t1
(m− 1)! t2

m−1∑

i=0

(−1)i (2m− i + 1)!

(m− i)!
ai

(
α

β

)i

.

Next we differentiate equality (4) m− 1 times with respect to y, put y = −α
β
x, and

divide by xm to get:

(6) (m− 1)! t1am−1 + t2

m−1∑

j=0

(−1)m−j (2m− j + 1)!

(m− j)!
bj

(
α

β

)m−j

= 0.

Multiply (6) by bm−1

(
α
β

)m−1

, replace bm−1

(
α
β

)m

by its value from (5), and divide

the result by t1 we get

(7) (m− 1)! am−1bm−1

(
α

β

)m−1

+

+
1

(m− 1)!

m−1∑

j,i=0

(−1)i−j−1 (2m− j + 1)!

(m− j)!

(2m− i + 1)!

(m− i)!
aibj

(
α

β

)m−j+i−1

= 0.
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Consider the left side of (7) as a polynomial in α
β
. By remark (2) all coefficients

of this polynomial and, in particular, the constant term and the coefficient of(
α
β

)2(m−1)

, vanish. Thus we have

a0bm−1 = am−1b0 = 0.

If bm−1 = 0, by remark (2) equation (5) implies that ai = 0 for i = 0, . . . , m− 1, a
contradiction. Similarly, if am−1 = 0 then bi = 0 for i = 0, . . . , m−1, a contradiction
again. Thus am−1, bm−1 6= 0, a0 = b0 = 0, and (4) has the following form

(8)

(
t1x

m−1
m−1∑

i=1

aix
m−i−1yi−1 + t2y

m−1
m−1∑

i=1

bix
i−1ym−i−1

)
xy = (αx + βy)mh.

Since α, β 6= 0, xy divides h, and dividing (8) by xy we get

(9) t1x
m−1

m−2∑

i=0

ai+1x
m−i−2yi + t2y

m−1
m−2∑

i=0

bi+1x
iym−i−2 = (αx + βy)m−1h′,

where h′ = (αx+βy)h
xy

∈ Rm−2. Equality (9) is similar to (4) but for n = 2m − 3.

Proceeding this way we reduce our condition to the case m = 2. In this case either
x or y divide αx + βy, a contradiction.

This concludes the proof. �

3.10. Corollary. Each representation of the group SL2 in a vector space V whose
decomposition into irreducible representations does not contain a term isomorphic
to R1 belongs to Rq,pol(SL2) for any q.

Proof. Recall that each irreducible representation of SL2 is isomorphic to one of
the canonical representations of SL2 in Rn (n = 0, 1, . . . ).

Let ρ : SL2 → GL(V ) be a representation satisfying the condition of the corollary
and let V = ⊕k

i=1Vi be a decomposition of V into the sum of SL2-invariant subspaces
such that the induced representation of SL2 on each Vi is irreducible and thus
isomorphic to one of the canonical representations in Rni

(ni 6= 1). Suppose that
the linear span of v1, . . . , vq ∈ V is contained in V 0. Then by the Hilbert-Mumford
criterion for zero fiber there is a one-parameter subgroup λ : C

∗ → SL2 such that

lim
t→0

λ(t)(t1v1 + · · ·+ tqvq) = 0 for all t1, . . . , tq ∈ C.

Denote by vj,i the component of the vector vj in Vi. Then we have

lim
t→0

λ(t)(t1v1,i + · · ·+ tqvq,i) = 0 (i = 1, . . . , k).

By Lemma 3.9 there is a linear form li on C2 such that the linear span of v1,i, . . . , vq,i

is contained in R0
ni,li

.
Claim: All li are linearly dependent. Suppose for contradiction that some l1 and

l2, say, are linearly independent. One can take x = l1 and y = l2 for the coordinates



POLARIZATIONS IN CLASSICAL INVARIANT THEORY 13

in C2 so that v1,1 = xr1h1 and v1,2 = yr2h2 where di := deg hi < ri. We have
limt→0 λ(t)(xr1h1) = 0 = limt→0 λ(t)(yr2h2). The one-parameter subgroup is given
by

λ(t) = A−1

(
tλ 0
0 t−λ

)
A, where λ ∈ N, A =

(
a b
c d

)
for ad− bc = 1.

Since A
(
x
y

)
=
(

ax+by
cx+dy

)
we have

Ah1 =

d1∑

j=0

h1,jx
jyd1−j

0 = lim
t→0

(
tλ 0
0 t−λ

)
A(xr1h1) = lim

t→0

(
tλ 0
0 t−λ

)
((ax + by)r1(Ah1))

= lim
t→0

ri∑

i=0

(
r1

i

)
aibr1−ixiyr1−i

d1∑

j=0

h1,jx
jyd1−jtλ(2i−r1+2j−d1)

Let h1,k 6= 0 for minimal k and consider the term with minimal degree in x

br1h1,kxkyr1+d1−ktλ(−r1+2k−d1).

Since this converges to 0 for t → 0 but 2k − r1 − d1 < 0, we get b = 0.
Similarly limt→0 λ(t)(yr2h2) = 0 implies d = 0. But ad− bc = 1, a contradiction,

and the claim follows.
Therefore, all li are linearly dependent. Choosing again one of li for the coordi-

nate x in C2 we have for the diagonal action of SL2 in V q and

λ(t) =

(
t 0
0 t−1

)
,

that limt→0(v1, . . . , vq) = 0. Thus by the Hilbert-Mumford criterion for the zero
fiber and Theorem 3.4 the representation ρ is in Rq,pol(SL2). �

3.11. Theorem. Each representation ρ of the (complex) torus T n in a vector
space V belongs to Rq,pol(T

n).

Proof. It is known that each representation of T n is a sum of one-dimensional
representations. Denote by εi the standard i-th character of the standard represen-
tation of T n in Cn. Then each character of T n has a form χ =

∑n

i=1 νiεi, where
νi are integers. Let χj (j = 1, . . . , m) be the weights of the representation ρ and
let V = ⊕m

j=1Vχj
be the weight decomposition of V . Let λ : C∗ → T n be a one

parameter subgroup and let v =
∑

j vj ∈ V for vj ∈ Vχj
. Then

λ(t)v =
∑

j

t〈χj .λ〉vj ,

where 〈χj .λ〉 is an integer.
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Suppose that the linear span L(v1, . . . , vq) of v1, . . . , vq ∈ V is contained in the
zero fiber V 0. Let vk =

∑m
j=1 vk,j be the weight decomposition, with vk,j ∈ Vχ,j .

For each k = 1, . . . , q let Jk := {j ∈ {1, . . . , m} : vk,j 6= 0}. Put J = ∪kJk.
Evidently, the set of t = (t1, . . . , tq) ∈ Cq such that the component vj ∈ Vχj

) of the

vector V =
∑q

i=1 tivi vanishes for some j ∈ J , has a codimension ≥ 1. Thus there
exists w =

∑m

j=1 wj ∈ L(v1, . . . , vq) with (wj ∈ Vχj
) such that wj 6= 0 for each

j ∈ ∪kJk. By the Hilbert-Mumford criterion there is a one-parameter subgroup
λ : C∗ → T n such that limt→0 λ(t)w = 0. This implies that 〈χj .λ〉 > 0 for each
j ∈ ∪kJk. But then limt→0 λ(t)(v1, . . . , vq) = 0, so that (v1, . . . , vq) ∈ (V q)0. Thus
by Theorem 3.4 we may conclude that ρ ∈ Rq,pol(T

n). �

4. Polarizations in invariant theory for finite groups

In this section we show that for finite groups the above results can be generalized
and strengthened.

4.1. Let G be a finite group and let X be an irreducible affine G-variety. Then
the categorical quotient X//G is the geometric one, i.e., X//G = X/G is the orbit
space. Consider the projection πX : X → X/G. Let Y be another irreducible
affine variety, let F(Y, X) be the set of regular morphisms from Y to X , and let
F(Y, X/G) be the set of regular morphisms from Y to X/G. Recall from 3.1 the
map PY,X : F(Y, X) → F(Y, X/G) given by PY,X(f) = πX ◦ f for f ∈ F(Y, X), and
the pointwise action (gf)(y) = g(f(y)) of the group G on F(Y, X).

Theorem. The map PY,X induces an injective map of the set F(Y, X)/G of orbits
of G on F(Y, X) to the set F(Y, X/G).

Proof. It suffices to prove that, if f, f ′ ∈ F(Y, X) and P (f) = P (f ′), there exists
g ∈ G with f ′ = gf . For each morphism h : Y → X the graph γ(h) = {(y, h(y))| y ∈
Y } of h is an irreducible closed subset of Y ×X which is isomorphic to Y .

Put Γ = {(y, x) ∈ Y ×X |π ◦f(y) = π(x)}. It is evident that Γ is a closed subset
of Y ×X and that Γ decomposes into irreducible components:

(1) Γ =
⋃

g∈G

γ(gf).

Since the graph γ(f ′) of the morphism f ′ is an irreducible component of Γ, there
exists g ∈ G such that γ(f ′) = γ(gf), i.e. f ′ = gf . �

4.2. Let σ1, . . . , σm be a minimal system of generators of the algebra C[X ]G and
let

σ = (σ1, . . . , σm) : X → C
m.

Recall from 2.1 that the map σ as a morphism of X to σ(X) can be considered as
the projection πX : X → X/G. By definition, for f ∈ F(Y, X) its image PY,X(f)
is uniquely defined by the functions σi ◦ f (i = 1, . . . , m). Then by Theorem 4.1
the functions σ̂i : F(Y, X) → C[Y ] for i = 1, . . . , m have as level set of the values
σ̂i(f) = σi ◦ f exactly the orbit Gf of f .

4.3. Consider the case when the algebra C[X ] is graded, the action of the group G
preserves this grading, the generators σ1, . . . , σm are homogeneous functions, and
Z is a G-stable irreducible closed subset of Fd(C

q , X).
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Theorem. Let Z be a G-stable irreducible closed subset of Fd(C
q , X) and let the

morphism mZ be dominant. Then the morphism pq,Z : Z//G → (Z//G)pol is
finite and birational. If the variety Z is normal, the morphism pq,Z is a bijective
normalization of (Z//G)pol and then, in particular, the algebra C[Z]G is the integral
closure of the subalgebra C[Z]Gpol in its field of fractions.

Proof. Let Z = Fd(C
q , X). Then the values of the generalized polarizations of

σ1, . . . , σm at f ∈ Fd(C
q , X) are exactly the coefficients of the polynomials σi ◦ f

with respect to t1, . . . , tq . Thus by Theorem 4.1 the orbit Gf is uniquely described
by the values of the indexed generalized polarizations (σi)i1...iq

at f . The same
statement is true for each G-stable irreducible closed subset of Fd(C

q , X).

Since the morphism mZ is dominant, by Lemma 2.10 the algebra C[Z]pol is gen-
erated by any minimal system of homogeneous generators σi and their generalized
polarizations which are naturally indexed. By the above arguments, for each point
x ∈ (Z//G)pol, there is a unique orbit z ∈ Z/G such that pq,Z(z) = x. Then

the morphism pq,Z is bijective and, therefore, birational. Since p−1
q,Z(0) = {0}, by

Theorem 2.12 the morphism pq,Z is finite.

If the variety Z is normal, the orbit space Z/G is normal as well (see, for example,
[5]). Then the morphism pq,Z is a bijective normalization of (Z//G)pol. The last
statement follows from the definition of normalization. �

4.4. Corollary. Let Z be a G-stable irreducible closed subset of Fd(C
q , X) such

that the morphism mZ : Z → X is dominant. Then for each f ∈ C[Z]G there is
some F ∈ C[Z]Gpol and an integer k > 0 such that f = F k.

Proof. Let f ∈ C[Z]G. It suffices to consider the case when the ideal (f) generated
by f is prime. Since the morphism pq,Z is finite, it is closed. Since by Theorem
4.3 the morphism pq,Z is bijective, it is a homeomorphism of underlying topological
spaces.

Consider the irreducible closed subset V (f) of Z/G defined by the ideal (f).
Then its image pq,Z(V (f)) is an irreducible closed subset of (Z/G)pol. Since
codim pq,Z(V (f)) = codim(V (f)) = 1 there is F ∈ k[Z]Gpol such that pq,Z(V (f)) =

V (F ), where (F ) the principal ideal generated by F . By definition V (p∗q,ZF ) =

V (f), i.e. the radical
√

I(F ) of I(F ) equals (f). Therefore, there is an integer

k > 0 such that f = F k. �

4.5. Let V be a finite dimensional vector space and G a finite subgroup of GL(V ).
Consider the space V q with the diagonal action of G. By Example 2.7 the G-
modules V q and Z = F1(C

q−1, V ) are naturally isomorphic. For Z = F1(C
q−1, V )

the generalized polarizations of homogeneous G-invariant polynomials on V are
their standard polarizations. Then the algebra C[V q ]Gpol, the variety (V q)G

pol and
the morphism pq,V q are constructed with use of the standard polarizations. Note
that in this case the morphism mZ : Z → V is surjective and dominant.

Corollary. Let V be a finite dimensional vector space, G a finite subgroup of
GL(V ). Consider the space V q with the diagonal action of G. Then the morphism
pq,V q : V q/G → (V q/G)pol is a bijective normalization of (V q/G)pol. In particular,
the ring C[V q/G] is the integral closure of the subring C[V q ]Gpol in its field of frac-
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tions. Moreover, for each f ∈ C[V q ]G there is some F ∈ C[V q ]Gpol and an integer

k > 0 such that F k = f .

Proof. Since for Z = F1(C
q−1) = V q , the morphism mZ : Z → V is dominant and

Z is a smooth (and thus normal) variety, the statements of the corollary follows
from Lemma 1.1, Theorem 3.2, and Corollary 4.4. �

4.6. Remark. Consider again the G-module V and put Z = Fq−1(C, V ). By
Example 2.9 the G-modules V q and Z = Fq−1(C, V ) are naturally isomorphic
and for Z = Fq−1(C, V ) the generalized polarizations of homogeneous G-invariant
polynomials on V are sums of their standard polarizations.

Then Corollary 4.5 remains true if we replace the the standard polarizations
by the above generalized polarizations in the construction of the algebra C[V q]Gpol,

the variety (V q)G
pol and the morphism pq,V q . By the calculations of Examples 2.8

and 2.9 for q > 2 the dimension of the space generated by the polarizations of the
basic invariants of the G-module V is strictly less than the dimension of the space
generated by the above generalized polarizations of these invariants.

Examples. In the following examples we consider representations of finite groups
in real vector spaces. But the results hold also for the complexifications of these
representations.

4.7. Example. Let V = Rn. The group Bn acts on x = (x1, . . . , xn) ∈ V by
permutations of x1, . . . , xn and the sign changes xi → −xi. The group Dn (n ≥ 4)
acts on x by the above permutations and changes of an even number of signs. It
is known (see, for example, [3]) that one can take for the basic invariants of C[V ]Dn
the polynomials

σk =
n∑

i=1

x2k
i (k = 1, . . . , n− 1), σn = x1 . . . xn.

For odd r ≥ 1 define the operator

Pr :=
n∑

i=1

yr
i

∂

∂xi

.

Consider xi, yi as the standard coordinates in V 2 = R2n. The operator Pr commutes
with the diagonal action of Dn and Bn on R[V 2] and then preserves R[V 2]Dn and
k[V 2]Bn . It is known (see [6] and [4]) that the algebra R[V 2]Dn is generated by the
polarizations of the basic invariants σi and the polynomials

Pr1
. . . Prk

(σn) (ri ≥ 1 odd,

k∑

i=1

ri ≤ n− k).

Moreover, it is known that P3(σn) cannot be expressed in terms of the polarizations
of σi’s (see [6]). It is clear that the group Bn is generated by the group Dn and the
reflection w : (x1, . . . , xn−1, xn) → (x1, . . . , xn−1,−xn). Then

w(σn) = −σn and w(Pr1
. . . Prk

(σn)) = −Pr1
. . . Prk

(σn).

This implies that (Pr1
. . . Prk

(σn))2 ∈ R[V 2]Bn . Since the polarizations of the
basic invariants of Bn generate R[V 2]Bn (see [2] and [4]), (Pr1

. . . Prk
(σn))2 is a

polynomial in the polarizations of the basic invariants of Bn and, then, in the
polarizations of the basic invariants of Dn.
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4.8. Example. Let V = R2 and let the group G be the cyclic group Z3 whose
action on V is generated by rotation over the origin by the angle 2π

3 . One can take

for the basic generators of the algebra R[V ]G the polynomials

σ1 =
1

2
(x2

1 + y2
1), σ2 =

1

3
(x3

1 − 3x1y
2
1), and σ3 =

1

3
(3x2

1y1 − y3
1),

where x1, y1 are the standard coordinates in R2.
Let x1, y1, x2, y2 be the standard coordinates in V 2 = R

4. We have the poly-
nomial σ = x1y2 − y1x2 ∈ R[V 2]G which cannot be expressed in terms of the
polarizations of the basic invariants σi. Consider the following polarizations of
basic invariants

σ2,1 = x2
1x2 − y2

1x2 − 2x1y1y2, σ3,1 = −(y2
1y2 − x2

1y2 − 2x1y1x2)

σ2,2 = x1x
2
2 − x1y

2
2 − 2y1x2y2, σ3,2 = −(y1y

2
2 − y1x

2
2 − 2x1x2y2)

σ2,3 =
1

3
(x3

2 − 3x2y
2
2), σ3,3 =

1

3
(3x2

2y2 − y3
2).

It is easily checked that we have

σ3 =
3

4
(3σ3σ2,3 − 3σ2σ3,3 + σ2,1σ3,2 − σ3,1σ2,2).
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