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Abstract. Regular Lie groups are infinite dimensional Lie groups with the property
that smooth curves in the Lie algebra integrate to smooth curves in the group in a

smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups

are regular. We show in this paper that regular Lie groups allow to push surprisingly
far the geometry of principal bundles: parallel transport exists and flat connections

integrate to horizontal foliations as in finite dimensions. As consequences we obtain

that Lie algebra homomorphisms intergrate to Lie group homomorphisms, if the
source group is simply connected and the image group is regular.
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1. Introduction

On the one hand the theory of infinite dimensional Lie groups and Lie algebras is
very rich: Kac-Moody algebras and the Virasoro algebra have a rich and important
theory of representations and many applications, and subgroups of diffeomorphism
groups play an extremely important role in differential topology, differential geom-
etry, and general relativity. On the other hand classical Lie theory carries over to
them only in rare pieces: There are (even Banach) Lie algebras without Lie groups,
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see [3] and [7], and the exponential mapping in general is not surjective onto any
neighborhood of the identity. The most surprising result in this direction is [5],
where it is shown that in the diffeomorphism group of any manifold of dimension
at least 2 one can find a smooth curve of diffeomorphisms starting at the identity
such that the points of this curve form a set of generators for a free subgroup of
the diffeomorphism group which meets the image of the exponential mapping only
in the identity.

In view of these difficulties the theory of infinite dimensional Lie groups and Lie
can be pushed surprisingly far: Exponential mappings are unique if they exist, and
then one can give a formula for their derivatives, see [6] and 5.9 below.

In [14] and [15] the notion of ‘regular Fréchet Lie group’ was introduced in an
attempt to find conditions which ensure the existence of exponential mappings:
certain product integrals were required to converge. Their main result was that
the invertible Fourier integral operators form a regular Fréchet Lie group with the
space of pseudo differential operators as Lie algebra, see [17], and also [1] for a more
general group of Fourier integral operators, but without regularity. In [13] Milnor
weakened this to the assumption that smooth curves in the Lie algebra integrate to
smooth curves in the group in a smooth way (an ‘evolution operator’ exists), and it
is this notion which we take up in this paper, but for general Lie groups modelled
on locally convex spaces, where we use the convenient calculus from [4]. Up to now
nobody found a non-regular Lie group.

We show in this paper that the use of regular Lie groups allows to push surpris-
ingly far the geometry of principal bundles: parallel transport exists and flat connec-
tions integrate to horizontal foliations as in finite dimensions. As consequences we
obtain that Lie algebra homomorphisms intergrate to Lie group homomorphisms,
if the source group is simply connected and the image group is regular.

The actual development is quite involved. We start with general infinite dimen-
sional Lie groups in section 3, but for a detailed study of the evolution operator of
regular Lie groups (5.3) we need in 5.9 the Maurer-Cartan equation for right (or
left) logarithmic derivatives (5.1) of mappings with values in the Lie group, and this
we can get only by looking at principal connections. Thus section 4 treats principal
bundles, connections, and curvature as far as we shall need them. We can then
prove the strong existence results mentioned above and treat regular Lie groups in
section 5, and principal bundles with regular structure groups in section 6. The
last section 7 develops rudiments of Lie theory for regular Lie groups as sketched
above.

These results were obtained in a systematic study of properties of regular Lie
groups for the book in preparation [11], where also many of the known Lie groups
are treated and are shown to be regular.

2. Calculus of smooth mappings

The traditional differential calculus works well for finite dimensional vector
spaces and for Banach spaces. For more general locally convex spaces a whole
flock of different theories were developed, most of them rather complicated and not
really convincing. The main difficulty is that the composition of linear mappings
stops to be jointly continuous at the level of Banach spaces, for any compatible
topology.
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We shall use in this paper the calculus in infinite dimensions as developed in [4].

2.1. Convenient vector spaces. Let E be a locally convex vector space. A curve
c : R → E is called smooth or C∞ if all derivatives exist and are continuous - this
is a concept without problems. Let C∞(R, E) be the space of smooth functions. It
can be shown that C∞(R, E) does not depend on the locally convex topology of E,
but only on its associated bornology (system of bounded sets).
E is said to be a convenient vector space if one of the following equivalent con-

ditions is satisfied (called c∞-completeness):

(1) For any c ∈ C∞(R, E) the (Riemann-) integral
∫ 1

0
c(t)dt exists in E.

(2) A curve c : R → E is smooth if and only if λ ◦ c is smooth for all λ ∈ E′,
where E′ is the dual consisting of all continuous linear functionals on E.

(3) Any Mackey-Cauchy-sequence (i.e. tnm(xn − xm) → 0 for some tnm → ∞
in R) converges in E. This is visibly a weak completeness requirement.

The final topology with respect to all smooth curves is called the c∞-topology
on E, which then is denoted by c∞E. For Fréchet spaces it coincides with the given
locally convex topology, but on the space D of test functions with compact support
on R it is strictly finer.

2.2. Smooth mappings. Let E and F be locally convex vector spaces, and let
U ⊂ E be c∞-open. A mapping f : U → F is called smooth or C∞, if f ◦ c ∈
C∞(R, F ) for all c ∈ C∞(R, U).

2.3. Results. The main properties of smooth calculus are the following.
(1) For mappings on Fréchet spaces this notion of smoothness coincides with

all other reasonable definitions. Even on R2 this is non-trivial, see [2].
(2) Multilinear mappings are smooth if and only if they are bounded.
(3) If f : E ⊇ U → F is smooth then the derivative df : U ×E → F is smooth,

and also df : U → L(E,F ) is smooth where L(E,F ) denotes the space of
all bounded linear mappings with the topology of uniform convergence on
bounded subsets.

(4) The chain rule holds.
(5) The space C∞(U,F ) is again a convenient vector space where the structure

is given by the obvious injection

C∞(U,F )→
∏

c∈C∞(R,U)

C∞(R, F )→
∏

c∈C∞(R,U)
λ∈F ′

C∞(R,R).

(6) The exponential law holds:

C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

is a linear diffeomeorphism of convenient vector spaces. Note that this is
the main assumption of variational calculus.

(7) A linear mapping f : E → C∞(V,G) is smooth (bounded) if and only if

E
f−→ C∞(V,G) evv−−→ G is smooth for each v ∈ V . This is called the smooth

uniform boundedness theorem and it is quite applicable.
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2.4 Counterexamples in infinite dimensions against common beliefs on
ordinary differential equations. Let E := s be the Fréchet space of rapidely de-
creasing sequence (Note that by the theory of Fourier series we have s = C∞(S1,R))
and consider the continuous linear operator T : E → E given by T (x0, x1, x2, . . . ) :=
(0, 12x1, 22x2, 32x3, . . . ). The ordinary linear differential equation x′(t) = T (x(t))
with constant coefficients has no solution in s for certain initial values. By recursion
one sees that the general solution should be given by

xn(t) =
n∑
i=0

(
n!
i!

)2
xi(0)

tn−i

(n− i)!

If the initial value is a finite sequence, say xn(0) = 0 for n > N and xN (0) 6= 0,
then

xn(t) =
N∑
i=0

(
n!
i!

)2
xi(0)

tn−i

(n− i)!

=
(n!)2

(n−N)!
tn−N

N∑
i=0

(
1
i!

)2
xi(0) (n−N)!

(n−i)! t
N−i

|xn(t)| ≥ (n!)2

(n−N)!
|t|n−N

(
|xN (0)|

(
1
N !

)2 − N−1∑
i=0

(
1
i!

)2 |xi(0)| (n−N)!
(n−i)! |t|

N−i

)

≥ (n!)2

(n−N)!
|t|n−N

(
|xN (0)|

(
1
N !

)2 − N−1∑
i=0

(
1
i!

)2 |xi(0)||t|N−i
)

where the first factor does not lie in the space s of rapidly decreasing sequences
and where the second factor is larger than ε > 0 for t small enough. So at least for
a dense set of initial values this differential equation has no local solution.

This shows also, that the theorem of Frobenius is wrong, in the following sense:
The vector field x 7→ T (x) generates a 1-dimensional subbundle E of the tangent
bundle on the open subset s\0. It is involutive since it is 1-dimensional. But through
points representing finite sequences there exist no local integral submanifolds (M
with TM = E|M). Namely, if c were a smooth nonconstant curve with c′(t) =
f(t).T (c(t)) for some smooth function f , then x(t) := c(h(t)) would satisfy x′(t) =
T (x(t)), where h is a solution of h′(t) = 1/f(h(t)).

As next example consider E := RN and the continuous linear operator T : E → E
given by T (x0, x1, . . . ) := (x1, x2, . . . ). The corresponding differential equation
has solutions for every initial value x(0), since the coordinates must satisfy the
recusive relations xk+1(t) = x′k(t) and hence any smooth functions x0 : R → R
gives rise to a solution x(t) := (x(k)

0 (t))k with initial value x(0) = (x(k)
0 (0))k. So

by Borel’s theorem there exist solutions to this equation for any initial value and
the difference of any two functions with same initial value is an arbitray infinite
flat function. Thus the solutions are far from being unique. Note that RN is a
topological direct summand in C∞(R,R) via the projection f 7→ (f(n))n, and
hence the same situation occurs in C∞(R,R).
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Let now E := C∞(R,R) and consider the continuous linear operator T : E →
E given by T (x) := x′. Let x : R → C∞(R,R) be a solution of the equation
x′(t) = T (x(t)). In terms of x̂ : R2 → R this says ∂

∂t x̂(t, s) = ∂
∂s x̂(t, s). Hence

r 7→ x̂(t − r, s + r) has vanishing derivative everywhere and so this function is
constant, and in particular x(t)(s) = x̂(t, s) = x̂(0, s + t) = x(0)(s + t). Thus we
have a smooth solution x uniquely determined by the initial value x(0) ∈ C∞(R,R)
which even describes a flow for the vector field T in the sense of 2.7 below. In general
this solution is however not real-analytic, since for any x(0) ∈ C∞(R,R), which is
not real-analytic in a neighborhood of a point s the composite evs ◦x = x(s+ ) is
not real-analytic around 0.

2.5. Manifolds. In the sequel we shall use smooth manifolds M modelled on
c∞-open subsets of convenient vector spaces. See [10] for an account of this. Since
we shall need it we also include some results on vector fields and their flows.

2.6. Lemma. Consider vector fields Xi ∈ C∞(TM) and Yi ∈ C∞(TN) for i =
1, 2, and a smooth mapping f : M → N . If Xi and Yi are f -related for i = 1, 2,
i.e. Tf ◦Xi = Yi ◦ f , then also [X1, X2] and [Y1, Y2] are f -related.

Proof. We choose h ∈ C∞(N,R) and we view each vector field as a derivation.
This is possible if we either have smooth partitions of unity or if we pass to sheaves
of smooth functions. The converse is wrong in general, see [10] and [11]. Then by
assumption we have Tf ◦Xi = Yi ◦ f , thus:

(Xi(h ◦ f))(x) = Xi(x)(h ◦ f) = (Txf.Xi(x))(h) =

= (Tf ◦Xi)(x)(h) = (Yi ◦ f)(x)(h) = Yi(f(x))(h) = (Yi(h))(f(x)),

so Xi(h ◦ f) = (Yi(h)) ◦ f , and we may continue:

[X1, X2](h ◦ f) = X1(X2(h ◦ f))−X2(X1(h ◦ f)) =

= X1(Y2(h) ◦ f)−X2(Y1(h) ◦ f) =

= Y1(Y2(h)) ◦ f − Y2(Y1(h)) ◦ f = [Y1, Y2](h) ◦ f.

But this means Tf ◦ [X1, X2] = [Y1, Y2] ◦ f . �

In particular if f : M → N is a local diffeomorphism (so (Txf)−1 makes sense
for each x ∈ M), then for Y ∈ C∞(TN) a vector field f∗Y ∈ C∞(TM) is defined
by (f∗Y )(x) = (Txf)−1.Y (f(x)). The linear mapping f∗ : C∞(TN) → C∞(TM)
is then a Lie algebra homomorphism.

2.7. The flow of a vector field. Let X ∈ C∞(TM) be a vector field. A local
flow FlX for X is a smooth mapping FlX : M ×R ⊃ U →M defined on a c∞-open
neighborhood U of M × 0 such that

(1) d
dt FlXt (x) = X(FlXt (x)).

(2) FlX0 (x) = x for all x ∈M .
(3) U ∩ ({x} × R) is a connected open interval.
(4) FlXt+s = FlXt ◦FlXs holds in the following sense. If the right hand side exists

then also the left hand side exists and we have equality. Moreover: If FlXs
exists, then the existence of both sides is equivalent and they are equal.
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2.8. Lemma. Let X ∈ C∞(TM) be a vector field which admits a local flow FlXt .
Then each for integral curve c of X we have c(t) = FlXt (c(0)), thus there exists a
unique maximal flow. Furthermore X is FlXt -related to itself, i.e. T (FlXt ) ◦ X =
X ◦ FlXt .

Proof. We compute

d
dt FlX(−t, c(t)) = − d

ds |s=−t FlX(s, c(t)) + d
ds |s=t FlX(−t, c(s))

= − d
ds |s=0 FlX−t FlX(s, c(t)) + T (FlX−t).c

′(t)

= −T (FlX−t).X(c(t)) + T (FlX−t).X(c(t)) = 0,

Thus FlX−t(c(t)) = c(0) is constant, so c(t) = FlXt (c(0)). For the second assertion
we have X ◦ FlXt = d

dt FlXt = d
ds |0 FlXt+s = d

ds |0(FlXt ◦FlXs ) = T (FlXt ) ◦ d
ds |0 FlXs =

T (FlXt ) ◦X. �

2.9. Lemma. Let X ∈ C∞(TM) and Y ∈ C∞(TN) be f -related vector fields for
a smooth mapping f : M → N which have local flows FlX and FlY . Then we have
f ◦ FlXt = FlYt ◦f , whenever both sides are defined.

Moreover, if f is a diffeomorphism we have Flf
∗Y
t = f−1◦FlYt ◦f in the following

sense: If one side exists then also the other and they are equal.

For f = IdM this again implies that if there exists a flow then there exists a
unique maximal flow FlXt .

Proof. We have Y ◦ f = Tf ◦X and thus (using 2.7.3 and 2.8) for small t we get

d
dt (FlYt ◦f ◦ FlX−t) = Y ◦ FlYt ◦f ◦ FlX−t−T (FlYt ) ◦ Tf ◦X ◦ FlX−t

= T (FlYt ) ◦ Y ◦ f ◦ FlX−t−T (FlYt ) ◦ Tf ◦X ◦ FlX−t = 0.

So (FlYt ◦f ◦ FlX−t)(x) = f(x) or f(FlXt (x)) = FlYt (f(x)) for small t. By the
flow properties (2.7.4) we get the result by a connectedness argument as follows:
In the common interval of definition we consider the closed subset Jx := {t :
f(FlXt (x)) = FlYt (f(x))}. This set is also open since for t ∈ Jx and small |s|
we have f(FlXt+s(x)) = f(FlXs (FlXt (x))) = FlYs (f(FlXt (x))) = FlYs (FlYt (f(x))) =
FlYt+s(f(x)). �

2.10. The Lie derivative. We will meet situations (in 4.2) where we do not
know that the flow of X exists but where we will be able to produce the following
assumption: Suppose that ϕ : R × M ⊃ U → M is a smooth mapping such
that (t, x) 7→ (t, ϕ(t, x) = ϕt(x)) is a diffeomorphism U → V , where U and V
are open neighborhoods of {0} × M in R × M , and such that ϕ0 = IdM and
∂
∂t

∣∣
0
ϕt = X ∈ C∞(TM). Then again d

dt |0(ϕt)∗f = d
dt |0f ◦ ϕt = df ◦X = X(f).

Lemma. In this situation we have for Y ∈ C∞(TM), and for a k-form ω ∈
Ωk(M):

d
dt |0(ϕt)∗Y = [X,Y ],
∂
∂t |0(ϕt)∗ω = LXω
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Proof. Let f ∈ C∞(M,R) be a function and consider the mapping α(t, s) :=
Y (ϕ(t, x))(f ◦ ϕs), which is locally defined near 0. It satisfies

α(t, 0) = Y (ϕ(t, x))(f),

α(0, s) = Y (x)(f ◦ ϕs),
∂
∂tα(0, 0) = ∂

∂t

∣∣
0
Y (ϕ(t, x))(f) = ∂

∂t

∣∣
0

(Y f)(ϕ(t, x)) = X(x)(Y f),
∂
∂sα(0, 0) = ∂

∂s |0Y (x)(f ◦ ϕs) = Y (x) ∂∂s |0(f ◦ ϕs) = Y (x)(Xf).

So ∂
∂u |0α(u,−u) = [X,Y ]x(f). But on the other hand we have

∂
∂u |0α(u,−u) = ∂

∂u |0Y (ϕ(u, x))(f ◦ ϕ−u) =

= ∂
∂u |0 (T (ϕ−u) ◦ Y ◦ ϕu)x (f)

= ( ddt |0(ϕt)∗Y )x(f).

We may identify k-forms on M with C∞(M,R)-multilinear mappings on vector
fields (if smooth partitions of unity exist or if we pass to sheaves of vector fields).
The converse is wrong in general, see [11]. For (local) vector fields Yi ∈ C∞(TM)
we have

( ∂∂t |0(ϕt)∗ω)(Y1, . . . , Yk) = ∂
∂t |0(ω((ϕ−t)∗Y1, . . . , (ϕ−t)∗Yk) ◦ ϕt)

=
k∑
j=1

ω(Y1, . . . ,
∂
∂t |0(ϕ−t)∗Yj , . . . , Yk) + ∂

∂t |0(ϕt)∗(ω(Y1, . . . , Yp)

= X(ω(Y1, . . . , Yk))−
k∑
i=1

ω(Y1, . . . , [X,Yi], . . . , Yk)

= LXω(Y1, . . . , Yk).

This is the usual formula for the Lie derivative. �

3. Lie groups

3.1. Definition. A Lie group G is a smooth manifold modelled on c∞-open subsets
of a convenient vector space, and a group such that the multiplication µ : G×G→ G
and the inversion ν : G→ G are smooth. We shall use the following notation:
µ : G×G→ G, multiplication, µ(x, y) = x.y.
µa : G→ G, left translation, µa(x) = a.x.
µa : G→ G, right translation, µa(x) = x.a.
ν : G→ G, inversion, ν(x) = x−1.
e ∈ G, the unit element.

3.2. Lemma. The tangent mapping T(a,b)µ : TaG× TbG→ TabG is given by

T(a,b)µ.(Xa, Yb) = Ta(µb).Xa + Tb(µa).Yb.

and Taν : TaG→ Ta−1G is given by

Taν = −Te(µa
−1

).Ta(µa−1) = −Te(µa−1).Ta(µa
−1

).
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Proof. Let insa : G → G × G, insa(x) = (a, x) be the right insertion and let
insb : G→ G×G, insb(x) = (x, b) be the left insertion. Then we have

T(a,b)µ.(Xa, Yb) = T(a,b)µ.(Ta(insb).Xa + Tb(insa).Yb) =

= Ta(µ ◦ insb).Xa + Tb(µ ◦ insa).Yb = Ta(µb).Xa + Tb(µa).Yb.

Now we differentiate the equation µ(a, ν(a)) = e; this gives in turn

0e = T(a,a−1)µ.(Xa, Taν.Xa) = Ta(µa
−1

).Xa + Ta−1(µa).Taν.Xa,

Taν.Xa = −Te(µa)−1.Ta(µa
−1

).Xa = −Te(µa−1).Ta(µa
−1

).Xa. �

3.3. Invariant vector fields and Lie algebras. Let G be a (real) Lie group.
A vector field ξ on G is called left invariant, if µ∗aξ = ξ for all a ∈ G, where
µ∗aξ = T (µa−1) ◦ ξ ◦ µa. Since we have µ∗a[ξ, η] = [µ∗aξ, µ

∗
aη], the space XL(G) of

all left invariant vector fields on G is closed under the Lie bracket, so it is a sub
Lie algebra of X(G). Any left invariant vector field ξ is uniquely determined by
ξ(e) ∈ TeG, since ξ(a) = Te(µa).ξ(e). Thus the Lie algebra XL(G) of left invariant
vector fields is linearly isomorphic to TeG, and on TeG the Lie bracket on XL(G)
induces a Lie algebra structure, whose bracket is again denoted by [ , ]. This
Lie algebra will be denoted as usual by g, sometimes by Lie(G).

We will also give a name to the isomorphism with the space of left invariant
vector fields: L : g → XL(G), X 7→ LX , where LX(a) = Teµa.X. Thus [X,Y ] =
[LX , LY ](e).

Similarly a vector field η on G is called right invariant, if (µa)∗η = η for all
a ∈ G. If ξ is left invariant, then ν∗ξ is right invariant. The right invariant vector
fields form a sub Lie algebra XR(G) of X(G), which is again linearly isomorphic
to TeG and induces the negative of the Lie algebra structure on TeG. We will
denote by R : g = TeG → XR(G) the isomorphism discussed, which is given by
RX(a) = Te(µa).X.

3.4. Lemma. If LX is a left invariant vector field and RY is a right invariant
one, then [LX , RY ] = 0. So if the flows of LX and RY exist, they commute.

Proof. We consider the vector field 0× LX ∈ X(G×G), given by (0× LX)(a, b) =
(0a, LX(b)). Then T(a,b)µ.(0a, LX(b)) = Taµ

b.0a+Tbµa.LX(b) = LX(ab), so 0×LX
is µ-related to LX . Likewise RY ×0 is µ-related to RY . But then 0 = [0×LX , RY ×0]
is µ-related to [LX , RY ] by 2.6. Since µ is surjective, [LX , RY ] = 0 follows. �

3.5. Lemma. Let ϕ : G → H be a smooth homomorphism of Lie groups. Then
ϕ′ := Teϕ : g = TeG→ h = TeH is a Lie algebra homomorphism.

Proof. For X ∈ g and x ∈ G we have

Txϕ.LX(x) = Txϕ.Teµx.X = Te(ϕ ◦ µx).X

= Te(µϕ(x) ◦ ϕ).X = Te(µϕ(x)).Teϕ.X = Lϕ′(X)(ϕ(x)).

So LX is ϕ-related to Lϕ′(X). By 2.6 the field [LX , LY ] = L[X,Y ] is ϕ-related to
[Lϕ′(X), Lϕ′(Y )] = L[ϕ′(X),ϕ′(Y )]. So we have Tϕ ◦ L[X,Y ] = L[ϕ′(X),ϕ′(Y )] ◦ ϕ. If we
evaluate this at e the result follows. �



REGULAR INFINITE DIMENSIONAL LIE GROUPS 9

3.6. One parameter subgroups. Let G be a Lie group with Lie algebra g. A
one parameter subgroup of G is a Lie group homomorphism α : (R,+)→ G, i.e. a
smooth curve α in G with α(s+ t) = α(s).α(t), and hence α(0) = e.

Note that a smooth mapping β : (−ε, ε) → G satisfying β(t)β(s) = β(t+ s) for
|t|, |s|, |t + s| < ε is the restriction of a one parameter subgroup. Namely, choose
0 < t0 < ε/2. Any t ∈ R can be uniquely written as t = N.t0 + t′ for 0 ≤ t′ < t0
and N ∈ Z. Put α(t) = β(t0)Nβ(t′). The required properties are easy to check.

Lemma. Let α : R → G be a smooth curve with α(0) = e. Let X ∈ g. Then the
following assertions are equivalent.

(1) α is a one parameter subgroup with X = ∂
∂t

∣∣
0
α(t).

(2) α(t) is an integral curve of the left invariant vector field LX , and also an
integral curve of the right invariant vector field RX .

(3) FlLX (t, x) := x.α(t) (or FlLXt = µα(t)) is the (unique by 2.9) global flow of
LX in the sense of 2.7.

(4) FlRX (t, x) := α(t).x (or FlRXt = µα(t)) is the (unique) global flow of RX .
Moreover each of these properties determines α uniquely.

Proof. (1) =⇒ (3). We have d
dtx.α(t) = d

ds |0x.α(t + s) = d
ds |0x.α(t).α(s) =

d
ds |0µx.α(t)α(s) = Te(µx.α(t)). dds |0α(s) = LX(x.α(t)). Since it is obviously a flow,
we have (3).

(3) ⇐⇒ (4). We have Flν
∗ξ
t = ν−1 ◦ Flξt ◦ν by 2.9. Therefore we have by 3.3

(FlRXt (x−1))−1 = (ν ◦ FlRXt ◦ν)(x) = Flν
∗RX
t (x)

= Fl−LXt (x) = FlLX−t (x) = x.α(−t).

So FlRXt (x−1) = α(t).x−1, and FlRXt (y) = α(t).y.
(3) and (4) together clearly imply (2).
(2) =⇒ (1). This is a consequence of the following result.

Claim Consider two smooth curves α, β : R → G with α(0) = e = β(0) which
satify the two differential equations

d
dtα(t) = LX(α(t))
d
dtβ(t) = RX(β(t)).

Then α = β and it is a 1-parameter subgroup.
We have α = β since

d
dt (α(t)β(−t)) = Tµβ(−t).LX(α(t))− Tµα(t).RX(β(−t))

= Tµβ(−t).Tµα(t).X − Tµα(t).Tµ
β(−t).X = 0.

Next we calculate for fixed s

d
dt (β(t− s)β(s)) = Tµβ(s).RX(β(t− s)) = RX(β(t− s)β(s)).

Hence by the first part of the proof β(t− s)β(s) = α(t) = β(t).
The statement about uniqueness follows from 2.9, or from the claim. �
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3.7. Definition. Let G be a Lie group with Lie algebra g. We say that G admits
an exponential mapping if there exists a smooth mapping exp : g → G such that
t 7→ exp(tX) is the (unique by 3.6) 1-parameter subgroup with tangent vector X
at 0. Then we have by 3.6

(1) FlLX (t, x) = x. exp(tX).
(2) FlRX (t, x) = exp(tX).x.
(3) exp(0) = e and T0 exp = Id : T0g = g → TeG = g since T0 exp .X =

d
dt |0 exp(0 + t.X) = d

dt |0 FlLX (t, e) = X.
(4) Let ϕ : G → H be a smooth homomorphism of between Lie groups admit-

ting exponential mappings. Then the diagram

g w
ϕ′

u

expG

h

u

expH

G w
ϕ

H

commutes, since t 7→ ϕ(expG(tX)) is a one parameter subgroup of H and
d
dt |0ϕ(expG tX) = ϕ′(X), so ϕ(expG tX) = expH(tϕ′(X)).

3.8. Remarks. [14], [15] gave conditions under which a smooth Lie group mod-
elled on Fréchet spaces admits exponential mappings. We shall elaborate on this
notion in 5.3 below. They called this ‘regular Fréchet Lie groups’. We do not know
of any smooth Fréchet Lie group which does not admit an exponential mapping.

If G admits an exponential mapping, it follows from 3.7.(3) that exp is a diffeo-
morphism from a neighborhood of 0 in g onto a neighborhood of e in G, if a suitable
inverse function theorem is applicable. This is true for example for smooth Banach
Lie groups, also for gauge groups, but it is wrong for diffeomorphism groups, see
[5].

If E is a Banach space, then in the Banach Lie group GL(E) of all bounded
linear automorphisms of E the exponential mapping is given by the von Neumann
series exp(X) =

∑∞
i=0

1
i!X

i.
If G is connected with exponential mapping and U ⊂ g is open with 0 ∈ U , then

one may ask whether the group generated by exp(U) equals G. Note that this is a
normal subgroup. So if G is simple, the answer is yes. This is true for connected
components of diffeomorphism groups and many of their important subgroups.

Results on weakened versions of the Baker-Campbell-Hausdorff formula can be
found in [19].

3.9. The adjoint representation. Let G be a Lie group with Lie algebra g. For
a ∈ G we define conja : G → G by conja(x) = axa−1. It is called the conjugation
or the inner automorphism by a ∈ G. This defines a smooth action of G on itself
by automorphisms.

The adjoint representation Ad : G → GL(g) ⊂ L(g, g) is given by Ad(a) =
(conja)′ = Te(conja) : g → g for a ∈ G. By 3.5 Ad(a) is a Lie algebra homomor-
phism. By 3.2 we have Ad(a) = Te(conja) = Ta(µa

−1
).Te(µa) = Ta−1(µa).Te(µa

−1
).

Finally we define the (lower case) adjoint representation of the Lie algebra g,
ad : g→ gl(g) := L(g, g), by ad := Ad′ = TeAd.
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We shall also use the right Maurer-Cartan form κr ∈ Ω1(G, g), given by κrg =
Tg(µg

−1
) : TgG → g; similarly the left Maurer-Cartan form κl ∈ Ω1(G, g) is given

by κlg = Tg(µg−1) : TgG→ g.

Lemma.

(1) LX(a) = RAd(a)X(a) for X ∈ g and a ∈ G.
(2) ad(X)Y = [X,Y ] for X,Y ∈ g.
(3) dAd = (ad ◦ κr).Ad = Ad.(ad ◦ κl) : TG→ L(g, g).

Proof. (1). LX(a) = Te(µa).X = Te(µa).Te(µa
−1 ◦ µa).X = RAd(a)X(a).

(2). We need some preparations. Let V be a convenient vector space. For
f ∈ C∞(G,V ) we define the left trivialized derivative Dlf ∈ C∞(G,L(g, V )) by

(4) Dlf(x).X := df(x).Tµx.X = (LXf)(x).

For f ∈ C∞(G,R) and g ∈ C∞(G,V ) we have

Dl(f.g)(x).X = d(f.g)(Teµx.X)(5)

= df(Teµx.X).g(x) + f(x).dg(Teµx.X)

= (f.Dlg +Dlf ⊗ g)(x).X.

From the fomula

DlDlf(x)(X)(Y ) = Dl(Dlf( ).Y )(x).X

= Dl(LY f)(x).X = LXLY f(x).

follows

(6) DlDlf(x)(X)(Y )−DlDlf(x)(Y )(X) = L[X,Y ]f(x) = Dlf(x).[X,Y ].

We consider now the linear isomorphism L : C∞(G, g) → X(G) given by Lf (x) =
Teµx.f(x) for f ∈ C∞(G, g). If h ∈ C∞(G,V ) we get (Lfh)(x) = Dlh(x).f(x). For
f, g ∈ C∞(G, g) and h ∈ C∞(G,R) we get in turn, using (5), generalized to the
bilinear pairing L(g,R)× g→ R,

(LfLgh)(x) = Dl(Dlh( ).g( ))(x).f(x)

= DlDlh(x)(f(x))(g(x)) +Dlh(x).Dlg(x).f(x)

([Lf , Lg]h)(x) = D2
l h(x).(f(x), g(x)) +Dlh(x).Dlg(x).f(x)−
−D2

l h(x).(g(x), f(x))−Dlh(x).Dlf(x).g(x)

= Dlh(x).
(

[f(x), g(x)]g +Dlg(x).f(x)−Dlf(x).g(x)
)

[Lf , Lg] = L
(

[f, g]g +Dlg.f −Dlf.g
)

(7)

Now we are able to prove the second assertion of the lemma. For X,Y ∈ g we will
apply (7) to f(x) = X and g(x) = Ad(x−1).Y . We have Lg = RY by (1), and
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[Lf , Lg] = [LX , RY ] = 0 by 3.4. So

0 = [LX , RY ](x) = [Lf , Lg](x)

= L([X, (Ad ◦ ν)Y ]g +Dl((Ad ◦ ν)( ).X).Y − 0)(x)

[X,Y ] = [X,Ad(e)Y ] = −Dl((Ad ◦ ν)( ).X)(e).Y

= d(Ad( ).X)(e).Y = ad(X)Y.

(3). Let X,Y ∈ g and g ∈ G and let c : R→ G be a smooth curve with c(0) = e
and c′(0) = X. Then we have

(dAd(RX(g))).Y = ∂
∂t |0Ad(c(t).g).Y = ∂

∂t |0Ad(c(t)).Ad(g).Y

= ad(X)Ad(g)Y = (ad ◦ κr)(RX(g)).Ad(g).Y,

and similarly for the second formula. �

3.10. Let r : M × G → M be a right action, so ř : G → Diff(M) is a group anti
homomorphism. We will use the following notation: ra : M →M and rx : G→M ,
given by rx(a) = ra(x) = r(x, a) = x.a.

For any X ∈ g we define the fundamental vector field ζX = ζMX ∈ X(M) by
ζX(x) = Te(rx).X = T(x,e)r.(0x, X).

Lemma. In this situation the following assertions hold:
(1) ζ : g→ X(M) is a Lie algebra homomorphism.
(2) Tx(ra).ζX(x) = ζAd(a−1)X(x.a).
(3) 0M × LX ∈ X(M ×G) is r-related to ζX ∈ X(M). �

4. Bundles and connections

4.1. Definition. A principal (fiber) bundle (P, p,M,G) is a smooth mapping
p : P →M such that there exist an open cover (Uα) ofM and fiber respecting diffeo-
morphisms ϕα : P |Uα := p−1(Uα)→ Uα ×G with (ϕα ◦ ϕ−1

β )(x, g) = (x, ϕαβ(x).g)
for a smooth cocycle of transition functions (ϕαβ : Uαβ := Uα ∩ Uβ → G). This is
called a principal bundle atlas.

Each principal bundle admits a unique right action r : P × G → P , called
the principal right action, given by ϕα(r(ϕ−1

α (x, a), g)) = (x, ag). Since left and
right translation on G commute, this is well defined. We write r(u, g) = u.g
when the meaning is clear. The principal right action is visibly free and for any
ux ∈ Px the partial mapping rux = r(ux, ) : G → Px is a diffeomorphism
onto the fiber through ux, whose inverse is denoted by τux : Px → G. These
inverses together give a smooth mapping τ : P ×M P → G, whose local expres-
sion is τ(ϕ−1

α (x, a), ϕ−1
α (x, b)) = a−1.b. This mapping is uniquely determined by

the implicit equation r(ux, τ(ux, vx)) = vx, thus we also have τ(ux.g, u′x.g
′) =

g−1.τ(ux, u′x).g′ and τ(ux, ux) = e.

4.2. Principal connections. Let (P, p,M,G) be a principal fiber bundle. Let
V P := (Tp)−1(0M ) → P be the vertical bundle. A (general) connection on P
is a smooth fiber projection Φ : TP → V P , viewed as a 1-form in Ω1(P ;V P ) ⊂
Ω1(P ;TP ), which is called a principal connection if it is G-equivariant for the
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principal right action r : P × G → P , so that T (rg).Φ = Φ.T (rg) and Φ is rg-
related to itself, or (rg)∗Φ = Φ, for all g ∈ G. Then the kernel of Φ is called the
horizontal subbundle, a splitting vector subbundle of TP → P complementary to
V P .

The vertical bundle of P is trivialized as a vector bundle over P by the principal
action. So ω(Xu) := Te(ru)−1.Φ(Xu) ∈ g is well defined, and in this way we get a
g-valued 1-form ω ∈ Ω1(P ; g), which is called the (Lie algebra valued) connection
form of the connection Φ. Recall from 3.10. the fundamental vector field mapping
ζ : g → X(P ) for the principal right action, which trivializes the vertical bundle
P×g ∼= V P . The defining equation for ω can be written also as Φ(Xu) = ζω(Xu)(u).

Lemma. If Φ ∈ Ω1(P ;V P ) is a principal connection on the principal fiber bundle
(P, p,M,G) then the connection form has the following two properties:

(1) ω reproduces the generators of fundamental vector fields, so that we have
ω(ζX(u)) = X for all X ∈ g.

(2) ω is G-equivariant, i.e. ((rg)∗ω)(Xu) := ω(Tu(rg).Xu) = Ad(g−1).ω(Xu)
for all g ∈ G and Xu ∈ TuP .

(3) For the Lie derivative we have LζXω = −ad(X).ω.
Conversely a 1-form ω ∈ Ω1(P, g) satisfying (1) defines a connection Φ on P by
Φ(Xu) = Te(ru).ω(Xu), which is a principal connection if and only if (2) is satis-
fied.

Proof. (1). Te(ru).ω(ζX(u)) = Φ(ζX(u)) = ζX(u) = Te(ru).X. Since Te(ru) : g →
VuP is an isomorphism, the result follows.

(2). Both directions follow from

Te(rug).ω(Tu(rg).Xu) = ζω(Tu(rg).Xu)(ug) = Φ(Tu(rg).Xu)

Te(rug).Ad(g−1).ω(Xu) = ζAd(g−1).ω(Xu)(ug) = Tu(rg).ζω(Xu)(u)

= Tu(rg).Φ(Xu).

(3). Let g(t) be a smooth curve in G with g(0) = e and ∂
∂t |0g(t) = X. Then

ϕt := rg(t) is a smooth curve of diffeomorphisms on P with ∂
∂t |0ϕt = ζX , and by

lemma 2.10 we have

LζXω = ∂
∂t |0(rg(t))∗ω = ∂

∂t |0Ad(g(t)−1)ω = −ad(X)ω. �

4.3. Curvature. Let Φ be a principal connection on the principal fiber bundle
(P, p,M,G) with connection form ω ∈ Ω1(P ; g).

Let us now define the curvature as the obstruction against integrability of the hor-
izontal subbundle, i.e. R(X,Y ) := Φ[X −ΦX,Y −ΦY ] for vector fields X,Y on P .
One can check easily that R is a skew-symmetric bilinear C∞(P,R)-module homo-
morphism, and that (rg

−1
)∗.R(X,Y ) = R((rg)∗X, (rg)∗Y ) holds, i.e. (rg)∗R = R

for all g ∈ G. Since R has vertical values we may again define a g-valued 2-form
by Ω(X,Y )(u) := −Te(ru)−1.R(X,Y )(u), which is called the (Lie algebra-valued)
curvature form of the connection. We also have R(X,Y )(u) = −ζΩ(X,Y )(u)(u). We
take the negative sign here to get in finite dimensions the usual curvature form as
in [8].
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We equip the space Ω(P ; g) of all g-valued forms on P in a canonical way with
the structure of a graded Lie algebra by

[Ψ,Θ]∧(X1, . . . , Xp+q) =

=
1
p! q!

∑
σ

signσ [Ψ(Xσ1, . . . , Xσp),Θ(Xσ(p+1), . . . , Xσ(p+q))]g

or equivalently by [ψ⊗X, θ⊗Y ]∧ := ψ∧θ⊗[X,Y ]g. From the latter description it is
clear that d[Ψ,Θ]∧ = [dΨ,Θ]∧ + (−1)deg Ψ[Ψ, dΘ]∧. In particular for ω ∈ Ω1(P ; g)
we have [ω, ω]∧(X,Y ) = 2[ω(X), ω(Y )]g.

Theorem. The curvature form Ω of a principal connection with connection form
ω has the following properties:

(1) Ω is horizontal, i.e. it kills vertical vector fields.
(2) The Maurer-Cartan formula holds: Ω = dω + 1

2 [ω, ω]∧ ∈ Ω2(P ; g).
(3) Ω is G-equivariant in the following sense: (rg)∗Ω = Ad(g−1).Ω. Conse-

quently LζXΩ = −ad(X).Ω.

Proof. (1) is true for R by definition. For (2) we show that the formula holds if
at least one vector field is vertical, or if both are horizontal. For X ∈ g we have
iζXR = 0 by (1), and using 4.2.((1) and (3)) we get

iζX (dω +
1
2

[ω, ω]∧) = iζXdω +
1
2

[iζXω, ω]∧ −
1
2

[ω, iζXω]∧ =

= LζXω + [X,ω]∧ = −ad(X)ω + ad(X)ω = 0.

So the formula holds for vertical vectors, and for horizontal vector fields X,Y we
have

R(X,Y ) = Φ[X − ΦX,Y − ΦY ] = Φ[X,Y ] = ζω([X,Y ])

(dω +
1
2

[ω, ω])(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]) + 0 = −ω([X,Y ]).

That Ω is really a ‘tensorial’ 2-form follows either from (2) or from 4.4.(4) below. �

4.4. Local descriptions of principal connections. We consider a principal
fiber bundle (P, p,M,G) with some principal fiber bundle atlas (Uα, ϕα : P |Uα →
Uα × G) and corresponding cocycle (ϕαβ : Uαβ → G) of transition functions. Let
Φ = ζ◦ω ∈ Ω1(P ;V P ) be a principal connection with connection form ω ∈ Ω1(P ; g).

We consider the sections sα ∈ C∞(P |Uα) which are given by ϕα(sα(x)) = (x, e)
and satisfy sα.ϕαβ = sβ . Then we may associate to the connection the collection
of the ωα := sα

∗ω ∈ Ω1(Uα; g), the physicists version of the connection.

Lemma. These local data have the following properties and are related by the fol-
lowing formulas.

(1) The forms ωα ∈ Ω1(Uα; g) satisfy the transition formulas

ωα = Ad(ϕ−1
βα)ωβ + (ϕβα)κl,
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where κl ∈ Ω1(G; g) is the left Maurer-Cartan form from 3.9.
(2) The local expression of ω is given by

(ϕ−1
α )∗ω(ξx, Tµg.X) = (ϕ−1

α )∗ω(ξx, 0g) +X = Ad(g−1)ωα(ξx) +X.

(3) The local expression of Φ is given by

((ϕα)−1)∗Φ(ξx, ηg) = Te(µg).ωα(ξx) + ηg = Rωα(ξx)(g) + ηg

for ξx ∈ TxUα and ηg ∈ TgG.
(4) The local expression of the curvature R is given by

((ϕα)−1)∗R = −R
dωα+

1
2 [ωα,ωα]∧g

so that R and Ω are indeed ‘tensorial’ 2-forms.

Proof. For (1) to (3) plug into the definitions. For (4) note that the right trivializa-
tion or framing (κr, πG) : TG → g × G induces the isomorphism R : C∞(G, g) →
X(G), given by RX(x) = Te(µx).X(x). For the Lie bracket we then have

[RX , RY ] = R−[X,Y ]g+dY.RX−dX.RY ,

R−1[RX , RY ] = −[X,Y ]g +RX(Y )−RY (X).

We write a vector field on Uα × G as (ξ,RX) where ξ : G → X(Uα) and X ∈
C∞(Uα ×G, g). Then the local expression of the curvature is given by

(ϕα−1)∗R((ξ,RX), (η,RY )) = (ϕ−1
α )∗(R((ϕα)∗(ξ,RX), (ϕα)∗(η,RY )))

= (ϕ−1
α )∗(Φ[(ϕα)∗(ξ,RX)− Φ(ϕα)∗(ξ,RX), . . . ])

= (ϕ−1
α )∗(Φ[(ϕα)∗(ξ,RX)− (ϕα)∗(Rωα(ξ) +RX), . . . ])

= (ϕ−1
α )∗(Φ(ϕα)∗[(ξ,−Rωα(ξ)), (η,−Rωα(η))])

= ((ϕ−1
α )∗Φ)([ξ, η]X(Uα) −Rωα(ξ)(η) +Rωα(η)(ξ),

− ξ(Rωα(η)) + η(Rωα(ξ)) +R−[ωα(ξ),ωα(η)]+Rωα(ξ)(ωα(η))−Rωα(ξ)(ωα(η)))

= Rωα([ξ,η]X(Uα)−Rωα(ξ)(η)+Rωα(η)(ξ)) −Rξ(ωα(η)) +Rη(ωα(ξ))

+R−[ωα(ξ),ωα(η)]+Rωα(ξ)(ωα(η))−Rωα(ξ)(ωα(η))

= −R
(dωα+

1
2 [ωα,ωα]∧g )(ξ,η)

. �

5. Regular Lie groups

5.1. The right and left logarithmic derivatives. Let M be a manifold and
let f : M → G be a smooth mapping into a Lie group G with Lie algebra g. We
define the mapping δrf : TM → g by the formula

δrf(ξx) := Tf(x)(µf(x)−1
).Txf.ξx for ξx ∈ TxM.

Then δrf is a g-valued 1-form on M , δrf ∈ Ω1(M ; g). We call δrf the right
logarithmic derivative of f , since for f : R → (R+, ·) we have δrf(x).1 = f ′(x)

f(x) =
(log ◦f)′(x).

Similarly the left logarithmic derivative δlf ∈ Ω1(M, g) of a smooth mapping
f : M → G is given by

δlf.ξx = Tf(x)(µf(x)−1).Txf.ξx.
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Lemma. Let f, g : M → G be smooth. Then the Leibniz rule holds:

δr(f.g)(x) = δrf(x) + Ad(f(x)).δrg(x).

Moreover the differential form δrf ∈ Ω1(M ; g) satifies the ‘left Maurer-Cartan
equation’ (left because it stems from the left action of G on itself)

dδrf(ξ, η)− [δrf(ξ), δrf(η)]g = 0,

or dδrf − 1
2

[δrf, δrf ]g∧ = 0,

where ξ, η ∈ TxM , and where for ϕ ∈ Ωp(M ; g), ψ ∈ Ωq(M ; g) one puts

[ϕ,ψ]g∧(ξ1, . . . , ξp+q) :=
1
p!q!

∑
σ

sign(σ)[ϕ(ξσ1, . . . ), ψσ(p+1), . . . )]g.

For the left logarithmic derivative the corresponding Leibniz rule is uglier, and it
satisfies the ‘right Maurer Cartan equation’:

δl(fg)(x) = δlg(x) +Ad(g(x)−1)δlf(x),

dδlf +
1
2

[δlf, δlf ]g∧ = 0.

For ‘regular Lie groups’ we will prove a converse to this statement later in 7.2.

Proof. We treat only the right logarithmic derivative, the proof for the left one is
similar.

δr(f.g)(x) = T (µg(x)−1.f(x)−1
).Tx(f.g)

= T (µf(x)−1
).T (µg(x)−1

).T(f(x),g(x))µ.(Txf, Txg)

= T (µf(x)−1
).T (µg(x)−1

).
(
T (µg(x)).Txf + T (µf(x)).Txg

)
= δrf(x) + Ad(f(x)).δrg(x).

We shall use now principal bundle geometry from section 3. We consider the
trivial principal bundle pr1 : M × G → M with right principal action. Then
the submanifolds {(x, f(x).g) : x ∈ M} for g ∈ G form a foliation of M × G
whose tangent distribution is complementary to the vertical bundle M × TG ⊆
T (M×G) and is invariant under the principal right G-action. So it is the horizontal
distribution of a principal connection onM×G→ G. For a tangent vector (ξx, Yg) ∈
TxM × TgG the horizontal part is the right translate to the foot point (x, g) of
(ξx, Txf.ξx), so the decomposition in horizontal and vertical parts according to this
distribution is

(ξx, Yg) = (ξx, T (µg).T (µf(x)−1
).Txf.ξx) + (0x, Yg − T (µg).T (µf(x)−1

).Txf.ξx).
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Since the fundamental vector fields for the right action on G are the left invariant
vector fields, the corresponding connection form is given by

ωr(ξx, Yg) = T (µg−1).(Yg − T (µg).T (µf(x)−1
).Txf.ξx),

ωr(x,g) = T (µg−1)−Ad(g−1).δrfx,

ωr = κl − (Ad ◦ ν).δrf,(1)

where κl : TG → g is the left Maurer-Cartan form on G (the left trivialization),
given by κlg = T (µg−1). Note that κl is the principal connection form for the
(unique) principal connection p : G → point with right principal action, which is
flat so that the right (from right action) Maurer-Cartan equation equation holds in
the form

(2) dκl + 1
2 [κl, κl]∧ = 0.

The principal connection ωr is flat since we got it via the horizontal leaves, so
the principal connection form vanishes:

0 = dωr + 1
2 [ωr, ωr]∧(3)

= dκl + 1
2 [κl, κl]∧ − d(Ad ◦ ν) ∧ δrf − (Ad ◦ ν).dδrf

− [κl, (Ad ◦ ν).δrf ]∧ + 1
2 [(Ad ◦ ν).δrf, (Ad ◦ ν).δrf ]∧

= −(Ad ◦ ν).(dδrf − 1
2 [δrf, δrf ]∧),

where we used (2) and since for ξ ∈ g and a smooth curve c : R→ G with c(0) = e
and c′(0) = ξ we have:

d(Ad ◦ ν)(T (µg)ξ) = ∂
∂t

∣∣
0

Ad(c(t)−1.g−1) = −ad(ξ)Ad(g−1)

= −ad
(
κl(T (µg)ξ)

)
(Ad ◦ ν)(g),

d(Ad ◦ ν) = −(ad ◦ κl).(Ad ◦ ν).(4)

So we have dδrf − 1
2 [δrf, δrf ]∧ as asserted.

For the left logarithmic derivative δlf the proof is similar, and we discuss only the
essential deviations. First note that on the trivial principal bundle pr1 : M×G→M
with left principal action of G the fundamental vector fields are the right invariant
vector fields on G, and that for a principal connection form ωl the curvature form
is given by dωl − 1

2 [ωl, ωl]∧. Look at the proof of theorem 4.3 to see this. The
connection form is then given by

(1’) ωl = κr −Ad.δlf,

where the right Maurer-Cartan form (κr)g = T (µg
−1

) : TgG → g now satifies the
left Maurer-Cartan equation

(2’) dκr − 1
2

[κr, κr]∧ = 0.
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Flatness of ωl now leads to the computation

0 = dωl − 1
2 [ωl, ωl]∧(3’)

= dκr − 1
2 [κr, κr]∧ − dAd ∧ δlf −Ad.dδlf

+ [κr,Ad.δlf ]∧ − 1
2 [Ad.δlf,Ad.δlf ]∧

= −Ad.(dδlf + 1
2 [δlf, δlf ]∧),

where we used dAd = (ad ◦ κr)Ad from 3.9.(3) directly. �

5.2. Let G be a Lie group with Lie algebra g. For a closed interval I ⊂ R and for
X ∈ C∞(I, g) we consider the ordinary differential equation

(1)
{
g(t0) = e
∂
∂tg(t) = Te(µg(t))X(t) = RX(t)(g(t)), or κr( ∂∂tg(t)) = X(t),

for local smooth curves g in G, where t0 ∈ I.

Lemma.

(2) Local solution curves g of the differential equation (1) are uniquely deter-
mined.

(3) If for fixed X the differential equation (1) has a local solution near each
t0 ∈ I, then it has also a global solution g ∈ C∞(I,G).

(4) If for all X ∈ C∞(I, g) the differential equation (1) has a local solution near
one fixed t0 ∈ I, then it has also a global solution g ∈ C∞(I,G) for each
X. Moreover, if the local solutions near t0 depend smoothly on the vector
fields X (see the proof for the exact formulation), then so does the global
solution.

(5) The curve t 7→ g(t)−1 is the unique local smooth curve h in G which satifies

{
h(t0) = e
∂
∂th(t) = Te(µh(t))(−X(t)) = L−X(t)(h(t)), or κl( ∂∂th(t)) = −X(t).

Proof. (2). Suppose that g(t) and g1(t) both satisfy (1). Then on the intersection
of their intervals of definition we have

∂
∂t (g(t)−1 g1(t)) = −T (µg1(t)).T (µg(t)−1).T (µg(t)

−1
).T (µg(t)).X(t)

+ T (µg(t)−1).T (µg1(t)).X(t) = 0,

so that g = g1.
(3). It suffices to prove the claim for every compact subintervall of I, so let I

be compact. If g is a local solution of (1) then t 7→ g(t).x is a local solution of the
same differential equation with initial value x. By assumption for each s ∈ I there
is a unique solution gs of the differential equation with gs(s) = e; so there exists
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δs > 0 such that gs(s + t) is defined for |t| < δs. Since I is compact there exist
s0 < s1 < · · · < sk such that I = [s0, sk] and si+1 − si < δsi . Then we put

g(t) :=



gs0(t) for s0 ≤ t ≤ s1

gs1(t).gs0(s1) for s1 ≤ t ≤ s2

. . .

gsi(t).gsi−1(si) . . . gs0(s1) for si ≤ t ≤ si+1

. . .

which is smooth by the first case and solves the problem.
(4). Given X : I → g we first extend X to a smooth curve R → g, using the

formula of [18]. For t1 ∈ I, by assumption there exists a local solution g near t0 of
the translated vector field t 7→ X(t1 − t0 + t), thus t 7→ g(t0 − t1 + t) is a solution
near t1 of X. So by assertion (3) the differential equation has a global solution for
X on I.

Now we assume that the local solutions near t0 depend smoothly in the vector
field: So for any smooth curve X : R→ C∞(I, g) we have:

For each compact intervall K ⊂ R there is a neighborhood UX,K of t0
in I and a smooth mapping g : K × UX,K → G with{

g(k, t0) = e
∂
∂tg(k, t) = Te(µg(k,t)).X(k)(t) for all k ∈ K, t ∈ UX,K .

Given a smooth curve X : R → C∞(I, g) we extend (or lift) it smoothly to X :
R → C∞(R, g) by using the formula of [18]. Then the smooth parameter k from
the compact intervall K passes smoothly through the proofs given above to give a
smooth global solution g : K × I → G. So the ‘solving operation’ respects smooth
curves and thus is ‘smooth’.

(5). One can show in a similar way that h is the unique solution of (5) by
differentiating h1(t).h(t)−1. Moreover the curve t 7→ g(t)−1 = h(t) satisfies (5),
since

∂
∂t (g(t)−1) = −T (µg(t)−1).T (µg(t)

−1
).T (µg(t)).X(t) = T (µg(t)−1).(−X(t)). �

5.3. Definition. Regular Lie groups. If for each X ∈ C∞(R, g) there exists
g ∈ C∞(R, G) satisfying

(1)


g(0) = e
∂
∂tg(t) = Te(µg(t))X(t) = RX(t)(g(t)),

or κr( ∂∂tg(t)) = δrg(∂t) = X(t).

then we write

evolrG(X) = evolG(X) := g(1),

EvolrG(X)(t) := evolG(s 7→ tX(ts)) = g(t),
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and call it the right evolution of the curve X in G. By lemma 5.2 the solution of
the differential equation (1) is unique, and for global existence it is sufficient that
it has a local solution. Then

EvolrG : C∞(R, g)→ {g ∈ C∞(R, G) : g(0) = e}

is bijective with inverse the right logarithmic derivative δr.
The Lie group G is called a regular Lie group if evolr : C∞(R, g)→ G exists and

is smooth.
We also write

evollG(X) = evolG(X) := h(1),

EvollG(X)(t) := evollG(s 7→ tX(ts)) = h(t),

if h is the (unique) solution of

(2)


h(0) = e
∂
∂th(t) = Te(µh(t))(X(t)) = LX(t)(h(t)),

or κl( ∂∂th(t)) = δlh(∂t) = X(t).

Clearly evoll : C∞(R, g)→ G exists and is also smooth if evolr does, since we have
evoll(X) = evolr(−X)−1 by lemma 5.2.

Let us collect some easily seen properties of the evolution mappings. If f ∈
C∞(R,R), then we have

Evolr(X)(f(t)) = Evolr(f ′.(X ◦ f))(t).Evolr(X)(f(0)),

Evoll(X)(f(t)) = Evoll(X)(f(0)).Evoll(f ′.(X ◦ f))(t).

If ϕ : G → H is a smooth homomorphism between regular Lie groups then the
diagram

C∞(R, g) w
ϕ′∗

u

evolG

C∞(R, h)

u

evolH

G w
ϕ

H

commutes, since ∂
∂tϕ(g(t)) = Tϕ.T (µg(t)).X(t) = T (µϕ(g(t))).ϕ′.X(t).

Note that each regular Lie group admits an exponential mapping, namely the
restriction of evolr to the constant curves R→ g. A Lie group is regular if and only
if its universal covering group is regular.

This notion of regularity is a weakening of the same notion of [14], [15], who
considered a sort of product integration property on a smooth Lie group modelled
on Fréchet spaces. Our notion here is due to [13]. Up to now the following statement
holds:

All known Lie groups are regular.



REGULAR INFINITE DIMENSIONAL LIE GROUPS 21

Any Banach Lie group is regular since we may consider the time dependent right
invariant vector field RX(t) on G and its integral curve g(t) starting at e, which
exists and depends smoothly on (a further parameter in) X. In particular finite
dimensional Lie groups are regular.

For diffeomorphism groups the evolution operator is just integration of time
dependent vector fields with compact support.

5.4. Some abelian regular Lie groups. For (E,+), where E is a convenient
vector space, we have evol(X) =

∫ 1

0
X(t)dt, so convenient vector spaces are regular

abelian Lie groups. We shall need ‘discrete’ subgroups, which is not an obvious
notion since (E,+) is not a topological group: the addition is continuous only
c∞(E × E)→ c∞E, and not for the cartesian product of the c∞-topologies.

Next let Z be a ‘discrete’ subgroup of a convenient vector space E in the sense
that there exists a c∞-open neighborhood U of zero in E such that U ∩ (z+U) = ∅
for all 0 6= z ∈ Z (equivalently (U−U)∩(Z \0) = ∅). For that it suffices e.g. that Z
is discrete in the bornological topology on E. Then E/Z is an abelian but possibly
non Hausdorff Lie group. It does not suffice to take Z discrete in the c∞-topology:
Take as Z the subgroup generated by A in RN×c0 in the proof of [4], 6.2.8.(iv).

Let us assume that Z fulfills the stronger condition: there exists a symmetric c∞-
open neighborhood W of 0 such that (W +W )∩ (z+W +W ) = ∅ for all 0 6= z ∈ Z
(equivalently (W +W +W +W )∩(Z \0) = ∅). Then E/Z is Hausdorff and thus an
abelian regular Lie group, since its universal cover E is regular. Namely, for x /∈ Z,
we have to find neighborhoods U and V of 0 such that (Z +U)∩ (x+Z + V ) = ∅.
There are two cases. If x ∈ Z + W + W then there is a unique z ∈ Z with
x ∈ z + W + W and we may choose U, V ⊂ W such that (z + U) ∩ (x + V ) = ∅;
then (Z + U) ∩ (x + Z + V ) = ∅. In the other case, if x /∈ Z + W + W , then we
have (Z +W ) ∩ (x+ Z +W ) = ∅.

Notice that the two conditions above and their consequences also hold for gen-
eral (non-abelian) (regular) Lie groups instead of E, and their ‘discrete’ normal
subgroups (which turn out to be central if G is connected).

It would be nice if any regular abelian Lie group would be of the form E/Z
described above. A first result in this direction is that for an abelian Lie group G
with Lie algebra g which admits a smooth exponential mapping exp : g → G one
can check easily by using 5.10 that ∂

∂t (exp(−tX). exp(tX + Y )) = 0 so that exp is
a smooth homomorphism of Lie groups.

Let us consider some examples. For the first one we consider a discrete subgroup
Z ⊂ RN. There exists a neighborhood of 0, without loss of the form U × RN\n for
U ⊂ Rn, with U ∩ (Z \0) = ∅. Then we consider the following diagram of Lie group
homomorphisms

0 w

u

RN\n
w

u

RN\n

u

Z w

u

∼=

RN
w

u

π

RN/Z

u

(S1)k × RN\(n−k)

u

π(Z) w Rn w Rn/π(Z) (S1)k × Rn−k
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which has exact lines and columns. For the right hand column we use a diagram
chase to see this. Choose a global linear section of π inverting π|Z. This factors to
a global homomorphism of the right hand side column.

As next example we consider Z(N) ⊂ R(N). Then obviously R(N)/Z(N) = (S1)N,
which is a smooth (even real analytic, see [10]) manifold modeled on R(N). The
reader may convince himself that the general Lie group covered by R(N) is isomor-
phic to (S1)(A) × R(N\A) for A ⊆ N.

As another example one may check easily that `∞/(ZN ∩ `∞) = (S1)N, equipped
with the ‘uniform box topology’.

5.5. Extensions of Lie groups. Let H and K be Lie groups. A Lie group G is
called an smooth extension of H with kernel K if we have a short exact sequence
of groups

(1) {e} → K
i−→ G

p−→ H → {e},

such that i and p are smooth and one of the following two equivalent conditions is
satified:

(2) p admits a local smooth section s near e (equivalently near any point), and
i is initial (i.e. any f into K is smooth if and only if i ◦ f is smooth).

(3) i admits a local smooth retraction r near e (equivalently near any point),
and p is final (i.e. f from H is smooth if and only if f ◦ p is smooth).

Of course by s(p(x))i(r(x)) = x the two conditions are equivalent, and then G is
locally diffeomorphic to K ×H via (r, p) with local inverse (i ◦ pr1).(s ◦ pr2).

Not every smooth exact sequence of Lie groups admits local sections as required
in (2). Let for example K be a closed linear subspace in a convenient vector space
G which is not a direct summand, and let H be G/K. Then the tangent mapping
at 0 of a local smooth splitting would make K a direct summand.

Theorem. Let {e} → K
i−→ G

p−→ H → {e} be a smooth extension of Lie groups.
Then G is regular if and only if both K and H are regular.

Proof. Clearly the induced sequence of Lie algebras is also exact,

0→ k
i′−→ g

p′−→ h→ 0,

with a bounded linear section Tes of p′, so g is isomorphic to k × h as convenient
vector space.

Let us suppose that K and H are regular. Given X ∈ C∞(R, g), we consider
Y (t) := p′(X(t)) ∈ h with evolution curve h satisfying ∂

∂th(t) = T (µh(t)).Y (t)
and h(0) = e. By lemma 5.2 it suffices to find smooth local solutions g near 0
of ∂

∂tg(t) = T (µg(t)).X(t) with g(0) = e, depending smoothly on X. We look for
solutions of the form g(t) = s(h(t)).i(k(t)), where k is a local evolution curve in K
of a suitable curve t 7→ Z(t) in k, i.e. ∂

∂tk(t) = T (µk(t)).Z(t) and k(0) = e. For this
ansatz we have

∂
∂tg(t) = ∂

∂t

(
s(h(t)).i(k(t))

)
= T (µs(h(t))).T i. ∂∂tk(t) + T (µi(k(t))).T s. ∂∂th(t)

= T (µs(h(t))).T i.T (µk(t)).Z(t) + T (µi(k(t))).T s.T (µh(t)).Y (t),
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and we want this to be

T (µg(t)).X(t) = T (µs(h(t)).i(k(t))).X(t) = T (µi(k(t))).T (µs(h(t))).X(t).

Using i ◦ µk = µi(k) ◦ i one quickly sees that

i′.Z(t) := Ad
(
s(h(t))−1

)
.
(
X(t)− T (µs(h(t))−1

).T s.T (µh(t)).Y (t)
)
∈ ker p′

solves the problem, so G is regular.
Let now G be regular. If Y ∈ C∞(R, h), then p ◦ EvolrG(s′ ◦ Y ) = EvolH(Y ),

since for g := EvolrG(s′ ◦ Y ) we have

∂
∂tp(g(t)) = Tp. ∂∂tg(t) = Tp.T (µg(t)).Tes.Y (t) = T (µp(g(t))).Y (t).

If U ∈ C∞(R, k), then p ◦ EvolG(i′ ◦ U) = EvolH(0) = e so that EvolG(i′ ◦ U)(t) ∈
i(K) for all t and thus equals i(EvolK(U)(t)). �

5.6. Subgroups of regular Lie groups. Let G and K be Lie groups, let G be
regular and let i : K → G be a smooth homomorphism which is initial (see 5.5)
with Tei = i′ : k→ g injective. We suspect that K is then regular, but we are only
able to prove this under the following assumption.

There is an open neighborhood U ⊂ G of e and a smooth mapping
p : U → E into a convenient vector space E such that p−1(0) = K ∩ U
and p constant on left cosets Kg ∩ U .

Proof. For Z ∈ C∞(R, k) we consider g(t) = EvolG(i′ ◦ Z)(t) ∈ G. Then we have
∂
∂t (p(g(t))) = Tp.T (µg(t)).i′(Z(t)) = 0 by the assumption, so p(g(t)) is constant
p(e) = 0, thus g(t) = i(h(t)) for a smooth curve h in H, since i is initial. Then
h = EvolH(Y ) since i is an immersion, and h depends smoothly on Z since i is
initial. �

5.7. Abelian and central extensions. From theorem 5.5 it is clear that any
smooth extension G of a regular Lie group H with an abelian regular Lie group
(K,+) is again regular. We shall describe EvolG in terms of EvolG, EvolK , and in
terms of the action of H on K and the cocycle c : H ×H → K if the latter exists.

Let us first recall these notions. If we have a smooth extension with abelian
normal subgroup K,

{e} → K
i−→ G

p−→ H → {e},

then a unique smooth action α : H × K → K by automorphisms is given by
i(αh(k)) = s(h)i(k)s(h)−1, where s is any smooth local section of p defined near h.
If moreover p admits a global smooth section s : H → G, which we assume without
loss to satisfy s(e) = e, then we consider the smooth mapping c : H×H → K given
by ic(h1, h2) := s(h1).s(h2).s(h1.h2)−1. Via the diffeomorphism K ×H → G given
by (k, h) 7→ i(k).s(h) the identity corresponds to (0, e), the multiplication and the
inverse in G look as follows:

(1)
{

(k1, h1).(k2, h2) = (k1 + αh1k2 + c(h1, h2), h1h2),
(k, h)−1 = (−αh−1(k)− c(h−1, h), h−1).
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Associativity and (0, e)2 = (0, e) correspond to the fact that c satisfies the following
cocycle condition and normalization

(2)
{
αh1(c(h2, h3))− c(h1h2, h3) + c(h1, h2h3)− c(h1, h2) = 0
c(e, e) = 0.

These imply that c(e, h) = 0 = c(h, e) and αh(c(h−1, h)) = c(h, h−1). For a central
extension the action is trivial, αh = IdK for all h ∈ H.

If conversely H acts smoothly by automorphisms on an abelian Lie group K and
if c : H ×H → K satisfies (2), then (1) describes a smooth Lie group structure on
K ×H, which is a smooth extension of H over K with a global smooth section.

For later purposes let us compute

(0, h1).(0, h2)−1 = (−αh1(c(h−1
2 , h2)) + c(h1, h

−1
2 ), h1h

−1
2 ),

T(0,h1)(µ(0,h2)−1
).(0, Yh1) = (−T (αc(h

−1
2 ,h2)).Yh1 + T (c( , h−1

2 )).Yh1 , T (µh
−1
2 ).Yh1).

Let us now assume that K and H are moreover regular Lie groups. We consider
a curve t 7→ X(t) = (U(t), Y (t)) in the Lie algebra g which as convenient vector
space equals k× h. From the proof of 5.5 we get that

g(t) : = EvolG(U, Y )(t) = (0, h(t)).(k(t), e) = (αh(t)(k(t)), h(t)), where

h(t) : = EvolH(Y )(t) ∈ H,

(Z(t), 0) : = AdG(0, h(t))−1
(

(U(t), Y (t))− Tµ(0,h(t))−1
.(0, ∂∂th(t))

)
Z(t) = T0(αh(t)−1).

(
U(t) +

(
T (αc(h(t)−1,h(t)))− T (c( , h(t)−1))

)
. ∂∂th(t)

)
,

k(t) : = EvolK(Z)(t) ∈ K.

5.8. Semidirect products. From theorem 5.5 we see immediately that the
semidirect product of regular Lie groups is again regular. Since we shall need
explicit formulas later we specialize the proof of 5.5 to this case.

Let H and K be regular Lie groups with Lie algebras h and k, respectively. Let
α : H ×K → K be smooth such that α̌ : H → Aut(K) is a group homomorphism.
Then the semidirect product K o H is the Lie group K × H with multiplication
(k, h).(k′, h′) = (k.αh(k′), h.h′) and inverse (k, h)−1 = (αh−1(k)−1, h−1). We have
then T(e,e)(µ(k′,h′)).(U, Y ) = (T (µk

′
).U + T (αk

′
).Y, T (µh

′
).Y ).

Now we consider a curve t 7→ X(t) = (U(t), Y (t)) in the Lie algebra k o h. Since
s : h 7→ (e, h) is a smooth homomorphism of Lie groups, from the proof of 5.5 we
get that

g(t) : = EvolKoH(U, Y )(t) = (e, h(t)).(k(t), e) = (αh(t)(k(t)), h(t)), where

h(t) : = EvolH(Y )(t) ∈ H,
(Z(t), 0) : = AdKoH(e, h(t)−1)(U(t), 0) = (Te(αh(t)−1).U(t), 0),

k(t) : = EvolK(Z)(t) ∈ K.
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5.9. Corollary. Let G be a Lie group. Then via right trivialization (κr, πG) :
TG→ g×G the tangent group TG is isomorphic to the semidirect product g oG,
where G acts by Ad : G→ Aut(g).

So if G is a regular Lie group, then TG ∼= g o G is also regular, and T evolrG
corresponds to evolrTG. In particular for (Y,X) ∈ C∞(R, g × g) = TC∞(R, g),
where X is the footpoint, and we have

evolrgoG(Y,X) =
(

Ad(evolrG(X))
∫ 1

0

Ad(EvolrG(X)(s)−1).Y (s) ds, evolrG(X)
)

TXevolrG.Y = T (µevolrG(X)).
∫ 1

0

Ad(EvolrG(X)(s)−1).Y (s) ds,

TX(EvolrG( )(t)).Y = T (µEvolrG(X)(t)).
∫ t

0

Ad(EvolrG(X)(s)−1).Y (s) ds,

Note that in the semidirect product representation TG ∼= g o G the footpoint
appears in the right factor G, contrary to the usual convention. We followed this
also in Tg = g o g.

Proof. Via right trivialization the tangent group TG is the semidirect product goG,
where G acts on the Lie algebra g by Ad : G→ Aut(g), because by 3.2 we have for
g, h ∈ G and X,Y ∈ g, where µ = µG is the multiplication on G:

T(g,h)µ.(RX(g), RY (h)) = T (µh).RX(g) + T (µg).RY (h)

= T (µh).T (µg).X + T (µg).T (µh).Y

= RX(gh) +RAd(g)Y (h),

Tgν.RX(g) = −T (µg
−1

).T (µg−1).T (µg).X

= −RAd(g−1)X(g−1),

so that we have

µgoG((X, g), (Y, h)) = (X + Ad(g)Y, gh)(1)

νgoG(X, g) = (−Ad(g−1)X, g−1).

Now we shall prove that the following diagram commutes and that the equations
of the corollary follow. The lower triangle commutes by definition.

TC∞(R, g)

u

T evolG

w
∼= C∞(R, g o g)
N
N
N
N
NQ

evolTG
u

evolgoG

TG w∼= g oG

For that we choose X,Y ∈ C∞(R, g). Let us first consider the evolution operator
of the tangent group TG in the picture g oG. On (g,+) the evolution mapping is
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the definite integral, so going through the prescription 5.8 for evolgoG we have in
turn the following data:

evolgoG(Y,X) = (h(1), g(1)), where(2)

g(t) : = EvolG(X)(t) ∈ G,
Z(t) : = Ad(g(t)−1).Y (t) ∈ g,

h0(t) : = Evol(g,+)(Z)(t) =
∫ t

0

Ad(g(u)−1).Y (u) du ∈ g,

h(t) : = Ad(g(t))h0(t) = Ad(g(t))
∫ t

0

Ad(g(u)−1).Y (u) du ∈ g.

This shows the first equation in the corollary. The differential equation for the
curve (h(t), g(t)), which by lemma 5.2 has a unique solution starting at (0, e), looks
as follows, using (1):(

(h′(t), h(t)), g′(t)
)

= T(0,e)(µ
(h(t),g(t))
goG ).

(
(Y (t), 0), X(t)

)
=
(
Y (t) +

(
dAd(X(t)).h(t), 0 + Ad(e).h(t)

)
, T (µg(t)G ).X(t)

)
h′(t) = Y (t) + ad(X(t))h(t)(3)

g′(t) = T (µg(t)G )X(t).

For the computation of T evolG we let

g(t, s) := evolG
(
u 7→ t(X(tu) + sY (tu))

)
= EvolG(X + sY )(t),

satisfying δrg(∂t(t, s)) = X(t) + sY (t).

Then T evolG(Y,X) = ∂s|0g(1, s), and the derivative ∂s|0g(t, s) in TG corresponds
to the element

(T (µg(t,0)−1
).∂s|0g(t, s), g(t, 0)) = (δrg(∂s(t, 0)), g(t, 0)) ∈ g oG

via right trivialization. For the right hand side we have g(t, 0) = g(t), so it remains
to show that δrg(∂s(t, 0)) = h(t). We will show that δrg(∂s(t, 0)) is the unique
solution of the differential equation (3) for h(t). Using the Maurer Cartan equation
dδrg − 1

2 [δrg, δrg] = 0 from lemma 5.1 we get

∂tδ
rg(∂s) = ∂sδ

rg(∂t) + d(δrg)(∂t, ∂s) + δrg([∂t, ∂s])

= ∂sδ
rg(∂t) + [δrg(∂t), δrg(∂s)]g + 0

= ∂s(X(t) + sY (t)) + [X(t) + sY (t), δrg(∂s)]g

so that for s = 0 we get

∂tδ
rg(∂s(t, 0)) = Y (t) + [X(t), δrg(∂s(t, 0))]g

= Y (t) + ad(X(t))δrg(∂s(t, 0)).
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Thus δrg(∂s(t, 0)) is a solution of the inhomogeneous linear ordinary differential
equation (3) as required.

It remains to check the last formula. Note that X 7→ tX(t ) is a bounded linear
operator. So we have

Evolr(X)(t) = evol(s 7→ tX(ts)),

TX(EvolrG( )(t)).Y = TtX(t )evolrG.(tY (t ))

= T (µevolrG(tX(t ))).
∫ 1

0

AdG
(

EvolrG(tX(t ))(s)−1
)
.tY (ts) ds

= T (µEvolrG(X)(t)).
∫ 1

0

AdG
(

evolrG(stX(st ))−1
)
.tY (ts) ds

= T (µEvolrG(X)(t)).
∫ t

0

AdG
(

EvolrG(X)(s)−1
)
.Y (s) ds. �

5.10. Corollary. For a regular Lie group G the tangent mapping of the exponen-
tial mapping exp : g→ G is given by:

TX exp .Y = TeµexpX .

∫ 1

0

Ad(exp(−tX))Y dt

= Teµ
expX .

∫ 1

0

Ad(exp(tX))Y dt

Remark. This formula was first proved by [6] for Lie groups with smooth exponen-
tial mapping. If G is a Banach Lie group then we have from 3.7.(4) and 3.8 the
series Ad(exp(tX)) =

∑∞
i=0

ti

i! ad(X)i, so that we get the usual formula

TX exp = Teµ
expX .

∞∑
i=0

1
(i+1)!ad(X)i.

Proof. Just apply 5.9 to constant curves X,Y ∈ g. �

6. Bundles with regular structure groups

6.1. Theorem. Let (P, p,M,G) be a smooth (locally trivial) principal fiber bun-
dle with a regular Lie group as structure group. Let ω ∈ Ω1(P, g) be a principal
connection form.

Then the parallel transport for the principal connection exists, is globally defined,
and is G-equivariant. In detail: For each smooth curve c : R→M there is a unique
smooth mapping Ptc : R× Pc(0) → P such that the following holds:

(1) Pt(c, t, u) ∈ Pc(t), Pt(c, 0) = IdPc(0) , and ω( ddt Pt(c, t, u)) = 0.
It has the following further properties:

(2) Pt(c, t) : Pc(0) → Pc(t) is G-equivariant, i.e. Pt(c, t, u.g) = Pt(c, t, u).g holds
for all g ∈ G and u ∈ P . Moreover we have Pt(c, t)∗(ζX |Pc(t)) = ζX |Pc(0)

for all X ∈ g.
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(3) For any smooth function f : R→ R we have
Pt(c, f(t), u) = Pt(c ◦ f, t,Pt(c, f(0), u)).

(4) The parallel transport is smooth as a mapping

Pt : C∞(R,M)×(ev0,M,p◦pr2) (R× P )→ P,

where C∞(R,M) is considered as a smooth space, see [4], 1.4.1.

Proof. For a principal bundle chart (Uα, ϕα) we have the data from 4.4

sα(x) : = ϕ−1
α (x, e),

ωα : = s∗αω,

ω ◦ T (ϕ−1
α ) = (ϕ−1

α )∗ω ∈ Ω1(Uα ×G; g)

(ϕ−1
α )∗ω(ξx, Tµg.X) = (ϕ−1

α )∗ω(ξx, 0g) +X = Ad(g−1)ωα(ξx) +X.

For a smooth curve c : R → M the horizontal lift Pt(c, , u) through u ∈ Pc(0) is
given by the ordinary differential equation ω( ddt Pt(c, t, u)) = 0 with initial condition
Pt(c, 0, u) = u, among all smooth lifts of c. Locally we have

ϕα(Pt(c, t, u)) = (c(t), γ(t)),

so that

0 = Ad(γ(t))ω( ddt Pt(c, t, u)) = Ad(γ(t))(ω ◦ T (ϕ−1
α ))(c′(t), γ′(t))

= Ad(γ(t))((ϕ−1
α )∗ω)(c′(t), γ′(t)) = ωα(c′(t)) + T (µγ(t)−1

)γ′(t),

i.e. γ′(t) = −T (µγ(t)).ωα(c′(t)), thus γ(t) is given by

γ(t) = EvolG(−ωα(c′))(t).γ(0) = evolG(s 7→ −tωα(c′(ts))).γ(0).

By lemma 5.2 we may glue the local solutions over different bundle charts Uα, so
Pt exists globally.

Properties (1) and (3) are now clear, and (2) can be checked as follows: The
condition ω( ddt Pt(c, t, u).g) = Ad(g−1)ω( ddt Pt(c, t, u)) = 0 implies Pt(c, t, u).g =
Pt(c, t, u.g). For the second assertion we compute for u ∈ Pc(0):

Pt(c, t)∗(ζX |Pc(t))(u) = T Pt(c, t)−1ζX(Pt(c, t, u))

= T Pt(c, t)−1 d
ds |0 Pt(c, t, u). exp(sX)

= T Pt(c, t)−1 d
ds |0 Pt(c, t, u. exp(sX))

= d
ds |0 Pt(c, t)−1 Pt(c, t, u. exp(sX))

= d
ds |0u. exp(sX) = ζX(u).

(4). It suffices to check that Pt respects smooth curves. So let (f, g) : R →
C∞(R,M)×M P ⊂ C∞(R,M)× P be a smooth curve. By cartesian closedness of
smooth spaces (see [4], 1.4.3) the smooth curve f : R→ C∞(R,M) corresponds to
a smooth mapping f̂ ∈ C∞(R2,M). For a principal bundle chart (Uα, ϕα) as above
we have ϕα(Pt(f(s), t, g(s))) = (f(s)(t), γ(s, t)), where γ is the evolution curve

γ(s, t) = EvolG
(
−ωα( ∂∂t f̂(s, ))

)
(t).ϕα(g(s)),

which is clearly smooth in (s, t). �
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6.2. Theorem. Let (P, p,M,G) be a smooth principal bundle with a regular Lie
group as structure group. Let ω ∈ Ω1(P, g) be a principal connection form. If
the connection is flat, then the horizontal subbundle Hω(P ) := ker(ω) ⊂ TP is
integrable and defines a foliation.

If M is connected then each leaf of this horizontal foliation is a covering of M .
All leafs are isomorphic.

By standard arguments it follows that the principal bundle P is associated to
the universal covering of M viewed as a principal fiber bundle with structure group
the (discrete) fundamental group π1(M).

Proof. Let (Uα, uα : Uα → uα(Uα) ⊂ Eα) be a smooth chart of the manifold
M and let xα ∈ Uα be such that uα(xα) = 0 and the c∞-open subset uα(Uα)
is disked in Eα. Let us also suppose that we have a principal fiber bundle chart
(Uα, ϕα : P |Uα → Uα ×G). We may cover M by such Uα.

We shall now construct for each wα ∈ Pxα a smooth section ψα : Uα → P whose
image is an integral submanifold for the horizontal subbundle ker(ω). Namely, for
x ∈ Uα let cx(t) := u−1

α (tuα(x)) for t ∈ [0, 1]. Then we put

ψα(x) := Pt(cx, 1, wα).

We have to show that the image of Tψα is contained in the horizontal bundle
ker(ω). Then we get Txψα = Tp|Hω(p)−1

ψα(x). This is a consequence of the following
notationally more suitable claim.

Let h : R2 → Uα be smooth with h(0, s) = xα for all s.
Claim: ∂

∂s |Pt(h(., s), 1, wα) is horizontal.
Let ϕα(wα) = (xα, gα) ∈ Uα ×G. Then from the proof of theorem 6.1 we know

that

ϕα Pt(h( , s), 1, wα) = (h(1, s), γ(1, s)), where

γ(t, s) = γ̃(t, s).gα

γ̃(t, s) = evolG
(
u 7→ −tωα( ∂∂th(tu, s))

)
= EvolG

(
−(h∗ωα)(∂t( , s))

)
(t),

ωα = s∗αω, sα(x) = ϕ−1
α (x, e).

Since the curvature Ω = dω + 1
2 [ω, ω]∧ = 0 we have

∂s(h∗ωα)(∂t) = ∂t(h∗ωα)(∂s)− d(h∗ωα)(∂t, ∂s)− (h∗ωα)([∂t, ∂s])

= ∂t(h∗ωα)(∂s) + [(h∗ωα)(∂t), (h∗ωα)(∂s)]g − 0.

Using this and the expression for T evolG from 5.9 we have then:
∂
∂s γ̃(1, s) = T−(h∗ωα)(∂t)( ,s)evolG.

(
−∂s(h∗ωα)(∂t)( , s)

)
= −T (µγ̃(1,s)).

∫ 1

0

Ad(γ̃(t, s)−1)∂s(h∗ωα)(∂t) dt

= −T (µγ̃(1,s)).
(∫ 1

0

Ad(γ̃(t, s)−1)∂t(h∗ωα)(∂s) dt+

+
∫ 1

0

Ad(γ̃(t, s)−1).ad((h∗ωα)(∂t)).(h∗ωα)(∂s) dt
)
.
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Next we integrate by parts, use 3.9.(3), and κl(∂tγ̃(t, s)−1) = (h∗ωα)(∂t)(t, s) which
follows from 5.2.∫ 1

0

Ad(γ̃(t, s)−1)∂t(h∗ωα)(∂s) dt =

= −
∫ 1

0

(
∂tAd(γ̃(t, s)−1)

)
(h∗ωα)(∂s) dt+ Ad(γ̃(t, s)−1)(h∗ωα)(∂s)

∣∣∣∣t=1

t=0

= −
∫ 1

0

Ad(γ̃(t, s)−1).ad
(
κl∂t(γ̃(t, s)−1)

)
.(h∗ωα)(∂s) dt

+ Ad(γ̃(1, s)−1)(h∗ωα)(∂s)(1, s)− 0

= −
∫ 1

0

Ad(γ̃(t, s)−1).ad
(

(h∗ωα)(∂t)
)
.(h∗ωα)(∂s) dt

+ Ad(γ̃(1, s)−1)(h∗ωα)(∂s)(1, s),

so that finally

∂
∂s γ̃(1, s) = −T (µγ̃(1,s)).Ad(γ̃(1, s)−1)(h∗ωα)(∂s)(1, s)

= −T (µγ̃(1,s)).(h∗ωα)(∂s)(1, s),
∂
∂sγ(1, s) = T (µgα). ∂∂s γ̃(1, s)

= −T (µγ(1,s)).Ad(γ(1, s)−1)(h∗ωα)(∂s)(1, s)

ω( ∂∂s Pt(h( , s), 1, wα)) = ((ϕ−1
α )∗ω)

(
∂
∂sh(1, s), ∂∂sγ(1, s)

)
= Ad(γ(1, s)−1)ωα( ∂∂sh(1, s))−Ad(γ(1, s)−1)(h∗ωα)(∂s)(1, s) = 0,

where in the end we used 4.4.(6). So the claim follows.
By the claim and by the uniqueness of parallel transport 6.1.(1) for any smooth

curve c in Uα the horizontal curve ψα(c(t)) coincides with Pt(c, t, ψα(c(0))). More-
over Uα ×G is G-equivariantly diffeomorphic to p−1(Uα) via (x, g) 7→ ψα(x).g.

To finish the proof we may now glue overlapping right translations of ψα(Uα) to
maximal integral manifolds of the horizontal subbundle. As subset such an integral
manifold consists of all endpoints of parallel transports of a fixed point. These are
diffeomorphic covering spaces of M via right translations. �

It is not clear, however, that the integral submanifolds of the theorem are initial
submanifolds of P , or that they intersect each fiber in a totally disconnected subset,
since M might have uncountable fundamental group.

6.3. Holonomy groups. Let (P, p,M,G) be a principal fiber bundle with regular
structure group G so that all parallel transports exist by theorem 6.1. Let Φ = ζ ◦ω
be a principal connection. We assume that M is connected and we fix x0 ∈M .

Now let us fix u0 ∈ Px0 . Consider the subgroup Hol(ω, u0) of the structure group
G which consists of all elements τ(u0,Pt(c, t, u0)) ∈ G for c any piecewise smooth
closed loop through x0. Reparametrizing c by a function which is flat at each corner
of c we may assume that any c is smooth. We call Hol(ω, u0) the holonomy group
of the connection. If we consider only those curves c which are nullhomotopic, we
obtain the restricted holonomy group Hol0(ω, x0), a normal subgroup in Hol(ω, u0).
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Theorem. 1. We have Hol(ω, u0.g) = conj(g−1) Hol(ω, u0) and
Hol0(ω, u0.g) = conj(g−1) Hol0(ω, u0).

2. For each curve c in M with c(0) = x0 we have Hol(ω,Pt(c, t, u0)) = Hol(ω, u0)
and Hol0(ω,Pt(c, t, u0)) = Hol0(ω, u0).

Proof. 1. This follows from the properties of the mapping τ from 4.1 and from the
from the G-equivariance of the parallel transport:

τ(u0.g,Pt(c, 1, u0.g)) = τ(u0,Pt(c, 1, u0).g) = g−1.τ(u0,Pt(c, 1, u0)).g.

2. By reparameterizing the curve c we may assume that t = 1, and we put
Pt(c, 1, u0) =: u1. Then by definition for an element g ∈ G we have g ∈ Hol(ω, u1)
if and only if g = τ(u1,Pt(e, 1, u1)) for some closed smooth loop e through x1 :=
c(1) = p(u1), i. e.

Pt(c, 1)(rg(u0)) = rg(Pt(c, 1)(u0)) = u1g = Pt(e, 1)(Pt(c, 1)(u0))

u0g = Pt(c, 1)−1 Pt(e, 1) Pt(c, 1)(u0) = Pt(c.e.c−1, 3)(u0),

where c.e.c−1 is the curve travelling along c(t) for 0 ≤ t ≤ 1, along e(t − 1) for
1 ≤ t ≤ 3, and along c(3 − t) for 2 ≤ t ≤ 3. This is equivalent to g ∈ Hol(ω, u0).
Furthermore e is nullhomotopic if and only if c.e.c−1 is nullhomotopic, so we also
have Hol0(ω, u1) = Hol0(ω, u0). �

7. Rudiments of Lie theory for regular Lie groups

7.1. From Lie algebras to Lie groups. It is not true in general that every
convenient Lie agebra is the Lie algebra of a convenient Lie group. This is wrong
for Banach Lie algebras and Banach Lie groups, one of the first examples is from
[3], see also [7].

To Lie subalgebras in the Lie algebra of a Lie group do not correspond Lie
subgroups in general, see the following easy example:

Let g ⊂ Xc(R2) be the closed Lie subalgebra of all vector fields with compact
support on R2 of the form X(x, y) = f(x, y) ∂

∂x + g(x, y) ∂∂y where g vanishes on the
strip 0 ≤ x ≤ 1.

Claim. There is no Lie subgroup G of Diff(R2) corresponding to g.
If G exists there is a smooth curve t 7→ ft ∈ G ⊂ Diffc(R2) such that the smooth

curve Xt := ( ∂∂tft) ◦ f
−1
t in g has the property that X0 = f ∂

∂x where f = 1 near
0. But then ft moves the strip to the right for small t, so g is not invariant under
AdG(ft) = f∗t , a contradiction.

So we see that on any manifold of dimension greater that 2 there are closed Lie
subalgebras of the Lie algebra of vector fields with compact support, which do not
admit Lie subgroups.

Note that this example does not work for the Lie group of real analytic diffeo-
morphisms on a compact manifold, see [9].

7.2. Let G be a connected Lie group with Lie algebra g. For a smooth mapping
f : M → G we considered in 5.1 the right logarithmic derivative δrf ∈ Ω1(M ; g)
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which is given by δrfx := T (µf(x)−1
)◦Txf : TxM → Tf(x)G→ g and which satisfies

the left (from the left action) Maurer-Cartan equation

dδrf − 1
2

[δrf, δrf ]g∧ = 0.

Similarly the left logarithmic derivative δlf ∈ Ω1(M ; g) of f ∈ C∞(M,G) was given
by δlfx := T (µf(x)−1) ◦ Txf : TxM → Tf(x)G→ g and satisfies the right (from the
right action) Maurer Cartan equation

dδlf +
1
2

[δlf, δlf ]g∧ = 0.

For regular Lie groups we have the following converse:

Theorem. Let G be a connected regular Lie group with Lie algebra g.
If a 1-form ϕ ∈ Ω1(M ; g) satisfies dϕ − 1

2 [ϕ,ϕ]∧ = 0 then for each simply
connected subset U ⊂M there exists a smooth mapping f : U → G with δrf = ϕ|U ,
and f is uniquely detemined up to a right translation in G.

If a 1-form ψ ∈ Ω1(M ; g) satisfies dψ + 1
2 [ψ,ψ]∧ = 0 then for each simply

connected subset U ⊂M there exists a smooth mapping f : U → G with δlf = ψ|U ,
and f is uniquely determined up to a left translation in G.

The mapping f is called the left developping of ϕ, or the right developping of ψ,
respectively.

Proof. Let us treat the right logarithmic derivative since it leads to a principal con-
nection for a bundle with right principal action. For the left logarithmic derivative
the proof is similar, with the changes described in the second part of the proof of
5.1.

We put ourselves into the situation of the proof of 5.1. If we are given a 1-form
ϕ ∈ Ω1(M ; g) with dϕ− 1

2 [ϕ,ϕ]∧ = 0 then we consider the 1-form ωr ∈ Ω1(M×G; g),
given by the analogon of 5.1.(1),

(1) ωr = κl − (Ad ◦ Inv).ϕ

Then ωr is a principal connection form on M×G, since it reproduces the generators
in g of the fundamental vector fields for the principal right action, i.e. the left
invariant vector fields, and ωr is G-equivariant:

((µg)∗ωr)h = ωrhg ◦ (Id× T (µg)) = T (µg−1.h−1).T (µg)−Ad(g−1.h−1).ϕ

= Ad(g−1).ωrh.

The computation in 5.1.(3) for ϕ instead of δrf shows that this connection is flat.
Since the structure group G is regular, by theorem 6.2 the horizontal bundle is
integrable, and pr1 : M ×G→M , restricted to each horizontal leaf, is a covering.
Thus it may be inverted over each simply connected subset U ⊂M , and the inverse
(Id, f) : U →M ×G is unique up to the choice of the branch of the covering, and
the choice of the leaf, i.e. f is unique up to a right translation by an element of G.
The beginning of the proof of 5.1 then shows that δrf = ϕ|U . �
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7.3. Theorem. Let G and H be Lie groups with Lie algebras g and h, respectively.
Let f : g → h be a bounded homomorphism of Lie algebras. If H is regular and if
G is simply connected then there exists a unique homomorphism F : G→ H of Lie
groups with TeF = f .

This theorem is the main result in [16], the proof there uses related methods.

Proof. We consider the 1-form

ψ ∈ Ω1(G; h), ψ := f ◦ κr, ψg(ξg) = f(T (µg
−1

).ξg),

where κr is the right Maurer Cartan form from 5.1. It satisfies the left Maurer
Cartan equation

dψ − 1
2 [ψ,ψ]h∧ = d(f ◦ κr)− 1

2 [f ◦ κr, f ◦ κr]h∧
= f ◦ (dκr − 1

2 [κr, κr]g∧) = 0,

by 5.1.(2’). But then we can use theorem 7.2 to conclude that there exists a unique
smooth mapping F : G→ H with F (e) = e and whose right logarithmic derivative
satisfies δrF = ψ. For g ∈ G we have (µg)∗ψ = ψ, thus also

δr(F ◦ µg) = δrF ◦ T (µg) = (µg)∗ψ = ψ.

By uniqueness in theorem 7.2 again the mappings F ◦ µg, F : G → H differ only
by right translation in H by (F ◦ µg)(e) = F (g), so that F ◦ µg = µF (g) ◦ F , or
F (g.g1) = F (g).F (g1). This also implies F (g).F (g−1) = F (g.g−1) = F (e) = e, so
that F is the unique homomorphism of Lie groups we looked for. �

7.4. Theorem. For a regular Lie group G we have

evolr(X).evolr(Y ) = evolr
(
t 7→ X(t) + AdG(Evolr(X)(t)).Y (t)

)
,

evolr(X)−1 = evolr
(
t 7→ −AdG(Evolr(X)(t)−1).X(t)

)
,

so that evolr : C∞(R, g)→ G is a surjective smooth homomorphism of Lie groups,
where on C∞(R, g) we consider the operations

(X ∗ Y )(t) = X(t) + AdG(Evolr(X)(t)).Y (t),

X−1(t) = −AdG(Evolr(X)(t)−1).X(t).

With this operations and with 0 as unit element (C∞(R, g), ∗) becomes again a
regular Lie group. Its Lie algebra is C∞(R, g) with bracket

[X,Y ]C∞(R,g)(t) =
[∫ t

0

X(s) ds, Y (t)
]

g
+
[
X(t),

∫ t

0

Y (s) ds
]

g

= ∂
∂t

[∫ t

0

X(s) ds,
∫ t

0

Y (s) ds
]

g
.
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Its evolution operator is given by

evol(C∞(R,g),∗)(X) : = AdG(evolG(Y s)).
∫ 1

0

AdG(EvolG(Y s)(v)−1).X(v)(s) dv,

Y s(t) : =
∫ s

0

X(t)(u)du.

Proof. For X,Y ∈ C∞(R, g) we compute
∂
∂t

(
Evolr(X)(t).Evolr(Y )(t)

)
=

= T (µEvolr(Y )(t)).T (µEvolr(X)(t)).X(t) + T (µEvolr(X)(t)).T (µEvolr(Y )(t)).Y (t)

= T (µEvolr(X)(t).Evolr(Y )(t)).(X(t) + AdG(Evolr(X)(t))Y (t)),
which implies also

Evolr(X).Evolr(Y ) = Evolr(X ∗ Y ), Evol(X)−1 = Evol(X−1).
Thus Evol : C∞(R, g)→ C∞(R, G) is a group isomorphism onto the subgroup {c ∈
C∞(R, G) : c(0) = e} of C∞(R, G) with the pointwise product, which, however,
is only a smooth space, see [4], 1.4.1. Nevertheless it follows that the product on
C∞(R, g) is associative. It is clear that these operations are smooth, so that the
convenient vector space C∞(R, g) becomes a Lie group; and C∞(R, G) becomes a
manifold.

Now we aim for the Lie bracket. We have

(X ∗ Y ∗X−1)(t) =
((

X + Ad(Evolr(X)).Y
)
∗
(
−Ad(Evolr(X)−1).X

))
(t)

= X(t) + Ad(Evolr(X)(t)).Y (t)−

−Ad
(

Evolr(X ∗ Y )(t)
)
.Ad
(

Evolr(X)(t)−1
)
.X(t)

= X(t) + Ad
(

Evolr(X)(t)
)
.Y (t)−

−Ad
(

Evolr(X)(t)
)
.Ad

(
Evolr(Y )(t)

)
.Ad
(

Evolr(X)(t)−1
)
.X(t).

We shall need

T0

(
AdG(Evolr( )(t))

)
.Y = TeAdG.T0(Evolr( )(t)).Y

= adg

(∫ t

0

Y (s) ds
)
, by 5.9.

Using this we can differentiate the conjugation,
(AdC∞(R,g)(X).Y )(t) = (T0(X ∗ ( ) ∗X−1).Y )(t)

= 0 + Ad(Evolr(X)(t)).Y (t)−

−Ad(Evolr(X)(t)).
(
T0(Ad(Evolr( )(t))).Y

)
.Ad(Evolr(X)(t)−1).X(t)

= Ad(Evolr(X)(t)).Y (t)−

−Ad(Evolr(X)(t)).adg

(∫ t

0

Y (s) ds
)
.Ad(Evolr(X)(t)−1).X(t)

= Ad(Evolr(X)(t)).Y (t)− adg.
(

Ad(Evolr(X)(t)).
∫ t

0

Y (s) ds
)
.X(t).
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Now we can compute the Lie bracket

[X,Y ]C∞(R,g)(t) =
(
T0(AdC∞(R,g)( ).Y ).X

)
(t)

= T0

(
Ad(Evolr( )(t)).X

)
.Y (t)− 0−

[
Ad(Evolr(0)(t)).

∫ t

0

Y (s) ds,X(t)
]

g

=
[∫ t

0

X(s) ds, Y (t)
]

g
−
[∫ t

0

Y (s) ds,X(t)
]

g

=
[∫ t

0

X(s) ds, Y (t)
]

g
+
[
X(t),

∫ t

0

Y (s) ds
]

g

= ∂
∂t

[∫ t

0

X(s) ds,
∫ t

0

Y (s) ds
]

g
.

Now we show that the Lie group (C∞(R, g), ∗) is regular. Let X̌ ∈ C∞(R, C∞(R, g))
correspond to X ∈ C∞(R2, g). We look for g ∈ C∞(R2, g) which satisfies the
equation 5.3.(1):

µg(t, )(Y )(s) = (Y ∗ g(t, ))(s) = Y (s) + AdG(EvolG(Y )(s)).g(t, s)

∂
∂tg(t, s) =

(
T0(µg(t, )).X(t, )

)
(s)

= X(t, s) +
(
T0

(
AdG(EvolG( )(s))

)
.X(t, )

)
.g(t, s)

= X(t, s) + adg

(∫ s

0

X(t, u)du
)
.g(t, s)

= X(t, s) +
[∫ s

0

X(t, u)du), g(t, s)
]

g
.

This is the differential equation 5.9.(3), depending smoothly on a further parameter
s, which has the following unique solution which is given by 5.9.(2)

g(t, s) : = AdG(EvolG(Y s)(t)).
∫ t

0

AdG(EvolG(Y s)(v)−1).X(v, s) dv

Y s(t) : =
∫ s

0

X(t, u)du.

Since this solution is visibly smooth in X, the Lie group C∞(R, g) is regular. For
convenience (yours, not ours) we show now (once more) that this is a solution.
Putting Y s(t) :=

∫ s
0
X(t, u)du we have by 3.9.(3)

∂
∂tg(t, s) =

= dAd( ∂∂tEvol(Y s)(t)).
∫ t

0

Ad(Evol(Y s)(v)−1).X(v, s) dv

+ Ad(Evol(Y s)(t)).Ad(Evol(Y s)(t)−1).X(t, s)
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= ((ad ◦ κr).Ad)
(
T (µEvol(Y s)(t)).Y s(t)

)
.

∫ t

0

Ad(Evol(Y s)(v)−1).X(v, s) dv

+X(t, s)

= ad(Y s(t)).Ad(Evol(Y s)(t)).
∫ t

0

Ad(Evol(Y s)(v)−1).X(v, s) dv +X(t, s)

=
[∫ s

0

X(t, u)du), g(t, s)
]

g
+X(t, s). �

7.5. Corollary. Let G be a regular Lie group. Then as smooth spaces and groups
we have the following isomorphims

(C∞(R, g), ∗) oG ∼= {f ∈ C∞(R, G) : f(0) = e}oG ∼= C∞(R, G),

where g ∈ G acts on f by (αg(f))(t) = g.f(t).g−1, and on X ∈ C∞(R, g) by
αg(X)(t) = AdG(g)(X(t)). The leftmost space is a smooth manifold, thus all spaces
are regular Lie groups.

For the Lie algebras we have an isomorphism

C∞(R, g) o g ∼= C∞(R, g),

(X, η) 7→
(
t 7→ η +

∫ t

0

X(s)ds
)

(Y ′, Y (0))← Y

where on the left hand side the Lie bracket is given by

[(X1, η1), (X2, η2)] =

=
(
t 7→ [

∫ t
0
X1(s) ds,X2(t)]g + [X1(t),

∫ t
0
X2(s) ds]g + [η1, X2(t)]g − [η2, X1]g,

[η1, η2]g
)
,

and where on the right hand side the bracket is given by

[X,Y ](t) = [X(t), Y (t)]g.

On the right hand sides the evolution operator is given by

EvolrC∞(R,G) = C∞(R,EvolrG).

7.6. Remarks. Let G be a connected regular Lie group. The smooth homomor-
phism evolrG : C∞(R, g)→ G admits local smooth sections. Namely using a smooth
chart near e of G we can choose a smooth curve cg : R → G with cg(0) = e and
cg(1) = g, depending smoothly on g, for g near e. Then s(g) := δrcg is a local
smooth section. We have an extension of groups

0→ K → C∞(R, g)
evolrG−−−→ G→ {e}
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where K = ker(evolrG) is isomorphic to the smooth group {f ∈ C∞(R, G) : f(0) =
e, f(1) = e} via the mapping EvolrG. We do not know whether K is a submanifold.

Next we consider the smooth group C∞((S1, 1), (G, e)) of all smooth mappings
f : S1 → G with f(1) = e. With pointwise multiplication this is a splitting
closed normal subgroup of the regular Lie group C∞(S1, G) with the manifold
structure described in [10] and [12]. Moreover C∞(S1, G) is the semidirect product
C∞((S1, 1), (G, e)) oG, where G acts by conjugation on C∞((S1, 1), (G, e)). So by
theorem 5.5 the subgroup C∞((S1, 1), (G, e)) is also regular.

The right logarithmic derivative δr : C∞(S1, G) → C∞(S1, g) restricts to a
diffeomorphism C∞((S1, 1), (G, e)) → ker(evolG) ⊂ C∞(S1, g), thus ker(evolG :
C∞(S1, g)→ G) is a regular Lie group isomorphic to C∞((S1, 1), (G, e)). It is also
a subgroup (via pullback by the covering mapping e2πit : R → S1) of the regular
Lie group (C∞(R, g), ∗). Note that C∞(S1, g) is not a subgroup, it is not closed
under the product ∗, if G is not abelian.
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