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Tensor fields and connections
on holomorphic orbit spaces of finite groups

Andreas Kriegl, Mark Losik, and Peter W. Michor ∗

Abstract. For a representation of a finite group G on a complex vector space
V we determine when a holomorphic

(
p
q

)
-tensor field on the principal stratum

of the orbit space V/G can be lifted to a holomorphic G -invariant tensor field
on V . This extends also to connections. As a consequence we determine those
holomorphic diffeomorphisms on V/G which can be lifted to orbit preserving
holomorphic diffeomorphisms on V . This in turn is applied to characterize
complex orbifolds.
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1. Introduction

Locally, an orbifold Z can be identified with the orbit space B/G , where
B is a G-invariant neighborhood of the origin in a vector space V with a finite
group G ⊂ GL(V ) and, using this identification, one can easily define local
(and then global) tensor fields and other differential geometrical objects in Z as
appropriate G-invariant tensor fields and objects on B ⊂ V . In particular, one
can naturally define Riemannian orbifolds, Einstein orbifolds, symplectic orbifolds,
Kähler-Einstein orbifolds etc.

We study complex orbifolds, that is, orbifolds modeled on orbit spaces
V/G , where G is a finite subgroup of GL(V ) for a complex vector space V . In
particular, the orbit spaces Z = M/G of a discrete proper group G of holomorphic
transformations of a complex manifold M are complex orbifolds.

An orbifold X has a structure defined by the sheaf FX of local invariant
holomorphic functions in a local uniformizing system. X has also a stratification
by strata S which are glued from local isotropy type strata of local uniformizing
systems. In particular, the regular stratum X0 is an open dense complex manifold
in X .

Holomorphic geometric objects on X (e.g. tensor fields and connections) are
locally defined as invariant objects on the uniformizing system. Their restrictions
to the regular stratum X0 are usual holomorphic geometric objects on the complex
manifold X0 .

A natural question is to characterize these restrictions, i.e. to describe tensor
fields and connections on X0 which are extendible to X . We look at the lifting
problem for connections because this allows a very elegant approach to the lifting
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problem for holomorphic diffeomorphisms. And the last problem has immediate
consequences for characterizing complex orbifolds, i.e., for answering the following
question: Which data does one need besides FX and X0 to characterize a complex
orbifold X ? The main goal of the paper is to answer these questions.

We have first to investigate the local situation, thus we consider a finite
subgroup G ⊂ GL(V ) and the orbit space Z = V/G with the structure given
by the sheaf FV/G of invariant holomorphic functions on V , and the orbit type
stratification. The prime role is played by strata of codimension 1 with the orders
of the corresponding stabilizer groups, which are arranged in the reflection divisor
DV/G which keeps track of all complex reflections in G . It turns out that the
union Z1 of Z0 and of all codimension 1 strata is a complex manifold, see 3.5.
We characterize all G-invariant holomorphic tensor fields and connections on V
in terms of the reflection divisor of the corresponding meromorphic tensor field
and connection on Z1 , see 3.7 and 4.2. Our result gives a generalization 3.9 of
Solomon’s theorem [10], see 3.10. Using the lifting property of connections we
are able to prove that a holomorphic diffeomorphism Z = V/G → V/G′ = Z ′

between two orbit spaces has a holomorphic lift to V which is equivariant over an
isomorphism G→ G′ if and only if f respects the regular strata and the reflection
divisors, i.e. f(Z0) ⊂ Z ′0 and f∗(DZ) ⊂ DZ′ . In fact we give two proofs of this
result, which in [4] is carried over to the algebraic geometry setting for algebraically
closed ground fields of characteristic 0. The related problem of lifting (smooth)
homotopies from (general) orbit spaces has been treated in [1] and [9].

Applying the local results we prove that a complex orbifold X is uniquely
determined by the sheaf FX , the regular stratum X0 , and the reflection divisor
DX alone, see 6.6.

2. Preliminaries

2.1. The orbit type stratification. Let V be an n-dimensional complex vector
space, G a finite subgroup of GL(V ), and π : V → V/G the quotient projection.
The ring C[V ]G has a minimal system of homogeneous generators σ1, . . . , σm . We
will use the map σ = (σ1, . . . , σm) : V → Cm . Denote by Z the affine algebraic
variety in Cm defined by the relations between σ1, . . . , σm . It is known that
σ(V ) = Z .

We consider the orbit space V/G endowed with the quotient topology as a
local ringed space defined by the following sheaf of rings FV/G : if U is an open
subset of V/G , FV/G(U) is equal to the space of G-invariant holomorphic functions
on π−1(U). Clearly one may consider sections of FV/G on U as functions on U . We
call these functions holomorphic functions on U . It is known that the map of the
orbit space V/G to Z induced by the map σ is a homeomorphism. Moreover, this
homeomorphism induces an isomorphism of the sheaf FV/G(U) and the structure
sheaf of the complex algebraic variety Z (see [7]). Via the above isomorphism
we identify the local ringed spaces V/G and Z . Under this identification the
projection π is identified with the map σ . Let G and G′ be finite subgroups of
GL(V ) and let Z = V/G and Z ′ = V/G′ be the corresponding orbit spaces. By
definition a holomorphic diffeomorphism of the orbit space Z to the orbit space
Z ′ is an isomorphism of Z to Z ′ as local ringed spaces.
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Let K be a subgroup of G , (K) the conjugacy class of K . Denote
by V(K) the set of points of V whose isotropy groups belong to (K) and put
Z(K) = π(V(K)). It is known that {Z(K)} is a finite stratification of Z , called
the isotropy type stratification, into locally closed irreducible smooth algebraic
subvarieties (see [5]). Denote by Zi the union of the strata of codimension greater
than i and put Zi = Z \Zi . Then Z0 is the principal stratum of Z , i.e. Z0 = Z(K)

for K = {id} . It is known that Z0 is a Zariski open subset of Z and a complex
manifold. It is clear that the restriction of the map σ to the set Vreg of regular
points of V is an tale map onto Z0 .

In this paper we consider the orbit space Z = V/G with the above structure
of local ringed space and the stratification {Z(K)} .

2.2. The divisor of a tensor field. We shall use divisors of meromorphic
functions on a complex manifold X . For technical reasons (see e.g. the last formula
of this section) we define div(0) =

∑
S∞.S , where the sum runs over all complex

subspaces of X of codimension 1.

Let f and g be two meromorphic functions on X . Then we have div(f +
g) ≥ min{div(f), div(g)} , where div(f) denote the divisor of f . Taking the
minimum means: For each irreducible complex subspace S of X of codimension
1 belonging to the support of f or g take the minimum of the coefficients in Z of
S in div(f) and div(g).

Let P be a meromorphic tensor field (i.e., with meromorphic coefficient
functions in local coordinates) on X . In local holomorphic coordinates y1, . . . , yn

on an open subset U ⊂ X the tensor field P can be written as

P |U =
∑

i1,...,ip,j1,...,jq

P
i1...ip
j1...jq

∂

∂yi1
⊗ · · · ⊗ ∂

∂yip
⊗ dyj1 ⊗ dyjq .

and we define the divisor of P on U as the minimum of all divisors div(P
i1...ip
j1...jq

) ∈
Div(U) for all coefficient functions of P . The resulting coefficient of the com-
plex subspace S of codimension 1 in div(P ) ∈ Div(U) does not depend on the
choice of the holomorphic coordinate system; e.g., for a vector field

∑
iX

i ∂
∂yi =∑

i,kX
i ∂uk

∂yi
∂
∂uk we have

div
(∑

i

X i∂u
k

∂yi

)
≥ min

i
div
(
X i∂u

k

∂yi

)
= min

i

(
div(X i)+div

(∂uk
∂yi

))
≥ min

i
div(X i).

Finally we define the divisor of P on X by gluing the local divisors for any
holomorphic atlas of X . Note that a tensor field P is holomorphic if and only if
div(P ) ≥ 0.

3. Invariant tensor fields

3.1. Let P be a G-invariant holomorphic tensor field of type
(
p
q

)
on V . Since σ

is an tale map on Vreg , there is a unique holomorphic tensor field Q on Z0 of type(
p
q

)
such that the pullback σ∗(Q) coincides with the restriction of P to Vreg . It is

clear that the tensor field P is uniquely defined by Q .
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Consider a holomorphic tensor field Q of type
(
p
q

)
on Z0 and its pullback

σ∗(Q) which is a G-invariant holomorphic tensor field on Vreg . Then by the
Hartogs extension theorem, σ∗(Q) has a G-invariant holomorphic extension to V
iff it has a holomorphic extension to σ−1(Z1).

Denote by H the set of all reflection hyperplanes corresponding to all com-
plex reflections in G and, for each H ∈ H , by eH the order of the cyclic subgroup
of G fixing H . It is clear that σ(∪H∈HH) contains all strata of codimension 1.
This implies immediately the following

3.2. Proposition. If H = Ø, for each holomorphic tensor field P0 on Z0 the
pullback σ∗(P0) has a G-invariant holomorphic extension to V .

3.3. The reflection divisor of the orbit space. Consider the set RZ of all
hyper surfaces σ(H) in Z , where H runs through all reflection hyperplanes in V .
Note that σ(H) is a complex subspace of Z1 of codimension 1. We endow each
S = σ(H) ∈ RZ with the label eH of the hyperplane H . It is easily seen that this
label does not depend on the choice of H , we denote it by eS and we consider
eS. S as an effective divisor on Z and we consider the effective divisor in Z1

D = DV/G = DZ =
∑
S∈RZ

eS. S,

which we call the reflection divisor.

3.4. Basic example. Let the cyclic group Zr = Z/rZ with generator ζr = e2πi/r

act on C by z 7→ e2πik/rz for r ≥ 2. The generating invariant is τ(z) = zr .

We consider first a holomorphic tensor field P = f(z)(dz)⊗q⊗ ( ∂
∂z

)⊗p on C .
It is invariant, ζ∗rP = P , if and only if f(ζrz) = ζp−qr f(z), so that in the expansion
f(z) =

∑
k≥0 fkz

k at 0 of f the coefficient fk 6= 0 at most when k ∼= p−q mod r .
Writing p− q = rs+ t with s ∈ Z and 0 ≤ t < r we see that P is invariant if and
only if f(z) = ztg(zr) for holomorphic g .

We use the coordinate y = τ(z) = zr on C/Zr = C , τ ∗dy = rzr−1dz and
τ ∗( ∂

∂y
|C\0) = 1

rzr−1
∂
∂z
|C\0 , and we write

P |C\0 = g(zr)zt(dz)⊗q ⊗ ( ∂
∂z

)⊗p

= g(y)zt(rzr−1)p−q(dy)⊗q ⊗ ( ∂
∂y

)⊗p

= g(y)z−rs(rzr)p−q(dy)⊗q ⊗ ( ∂
∂y

)⊗p

= g(y)rp−qyp−q−s(dy)⊗q ⊗ ( ∂
∂y

)⊗p

(we omitted τ ∗ ). Thus a holomorphic tensor field P of type
(
p
q

)
on C is Zr -

invariant if and only if P |C\0 = τ ∗Q for a meromorphic tensor field

Q = g(y)ym(dy)⊗q ⊗ ( ∂
∂y

)⊗p

on C with g holomorphic with g(0) 6= 0 and with

m ≥ p− q − s.

It is easily checked that the above inequality is equivalent to the following one

mr + (q − p)(r − 1) ≥ 0.
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3.5. Suppose H 6= Ø. Let z ∈ Z1 \ Z0 and v ∈ σ−1(z). Then there is a unique
hyperplane H ∈ H such that v ∈ H and the isotropy group Gv is isomorphic to a
cyclic group. It is evident that the order rz = eH of Gv depends only on z = σ(v)
and is locally constant on Z1 \ Z0 .

By the holomorphic slice theorem (see [5], [6]) there is a Gv -invariant open
neighborhood Uv of v in V such that the induced map Uv/Gv → V/G is a local
biholomorphic map at v .

Choose orthonormal coordinates z1, . . . , zn in V with respect to a G-
invariant Hermitian inner product on V , so that H = {zn = 0} . Then the
ring C[V ]Gv is generated by z1, . . . , zn−1, (zn)r , where r = rz .

Put τ 1 = z1, . . . , τn−1 = zn−1 , τn = (zn)r , and τ = (τ 1, . . . , τn) : Uv → Cn .
Then there are holomorphic functions f i (i = 1, . . . , n) in an open neighborhood
Wz of z ∈ Cm such that τa = fa ◦ σ|Uv . On the other hand, we know that in an
open neighborhood of v all σa for (a = 1, . . . ,m) are holomorphic functions of the
τ i . We denote by yi the holomorphic function on Z such that τ i = yi ◦ σ . Then
we can use yi as coordinates of Z defined in the open neighborhood Wz ⊆ Cm of
z . Note that we found holomorphic coordinates near each point of Z1 , so we have:

Corollary. The union Z1 of all codimension ≤ 1 strata, with the restriction of
the sheaf FV/G , is a complex manifold.

3.6. The reflection divisor of a meromorphic tensor field on Z1 . Let
ΓM(T pq (Z1)) be the space of meromorphic tensor fields (i.e. with meromorphic
coefficient functions in local holomorphic coordinates on the complex manifold
Z1 ), and let P ∈ ΓM(T pq (Z1)).

Let S be an irreducible component of Z1 \Z0 and let z ∈ S . Local coordi-
nates y1, . . . , yn on U ⊂ Z1 , centered at z , are called adapted to the stratification
of Z1 if S = {yn = 0} near z . By definition the coordinates y1, . . . , yn from 3.5
have this property. Denote by Oz the ring of germs of holomorphic functions and
by Mz the field of germs of meromorphic functions, both at z ∈ Z1 .

Let y1, . . . , yn be local coordinates on U ⊂ Z1 , centered at z , adapted to
the stratification of Z1 . Then on U the meromorphic tensor field P is given by

P |U =
∑

i1,...,ip,j1,...,jq

P
i1...ip
j1...jq

∂

∂yi1
⊗ · · · ⊗ ∂

∂yip
⊗ dyj1 ⊗ dyjq .

where the P
i1...ip
j1...jq

are meromorphic on U . Let us fix one nonzero summand of the

right hand side: for the coefficient function we have P
i1...ip
j1...jq

= (yn)mf for some
integer m such that the germs at z of yn , g , and h are pairwise relatively prime
in Oz where f = g/h ∈ Mz . Suppose that the factor ∂

∂yn appears exactly p′

times and the factor dyn appears exactly q′ times in this summand. The integer

µ = mr + (q′ − p′)(r − 1),

a priori depending on z , is constant along an open dense subset of S and it is called
the reflection residuum of the summand at S . Finally let µS(P ) be the minimum
of the reflection residua at S of all summands of P in the representation of P .

Let ỹ1, . . . , ỹn be arbitrary local coordinates on U ⊂ Z1 , centered at z ,
adapted to the stratification of Z1 . In a neighborhood of z we have yn = fỹn ,
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where f is a holomorphic function such that f(z) 6= 0. Remark that ỹn divides
∂yn

∂ỹi and ∂ỹn

∂yi (i = 1, . . . , n) in Oz . A straightforward calculation using the above

remark shows that the values of µS(P ) calculated in the coordinates ỹi and in the
coordinates yi are the same. Then µS(P ) does not depend on the choice of the
system of local coordinates adapted to the stratification of Z1 . For details see [4]:
there we checked this in the algebraic geometry setting where the use of tensor
fields is less familiar.

We now can define the reflection divisor

divD(P ) = divDV/G
(P ) ∈ Div(U)

as follows: take the divisor div(P ), and for each irreducible component S of
Z1 \Z0 do the following: if S appears in the support of div(P ) ∈ Div(U), replace
its coefficient by µS(P ); if it does not appear, add µS(P ).S to it. If S is not
contained in Z1 \ Z0 , we keep its coefficient in div(P ).

Finally we glue the global reflection divisor divD(P ) ∈ Div(Z1) from the
local ones, using a holomorphic atlas for Z1 .

3.7. Theorem. Let G ⊂ GL(V ) be a finite group, with reflection divisor
D = DV/G = DZ . Then we have:

• Let P be a holomorphic G-invariant tensor field on V . Then the reflection
divisor divD(π∗P ) ≥ 0.

• Let Q ∈ ΓM(T pq (Z1)) be a meromorphic tensor field on Z1 . Then the
G-invariant meromorphic tensor field π∗Q extends to a holomorphic G-
invariant tensor field on V if and only if divD(Q) ≥ 0.

The above remains true for G-invariant holomorphic tensor fields defined in a
G-stable open subset of V .

Proof. This follows directly from Hartogs’ extension theorem, the basic example
3.4 using y1, . . . , yn−1 as dummy variables, and the definition of the reflection
divisor divD(P ) as explained in 3.6.

3.9. Corollary. The mapping σ establishes an injective correspondence between
the space of holomorphic G-invariant tensor fields of type

(
p
q

)
on V which are

skew-symmetric with respect to the covariant entries, and the space of holomorphic
tensor fields on Z1 of the same type and the same skew-symmetry condition. If
p = 0 the correspondence is bijective.

The above remains true for G-invariant holomorphic tensor fields defined
in a G-stable open subset of V .

Proof. Let P be a holomorphic G-invariant tensor field on V satisfying the
conditions of the corollary. For each nonzero decomposable summand of π∗P take
the integers m , p′ , and q′ defined in 3.6. By skew symmetry of P we have q′ ≤ 1.
By Theorem 3.7 we get divD(π∗P ) ≥ 0 and thus mr ≥ (p′ − q′)(r − 1) > −r . So
m ≥ 0 and the summand is holomorphic on Z1 .

If Q is a holomorphic differential form on Z1 its pullback σ∗Q is a G-
invariant holomorphic form on σ−1(Z1) and then has a holomorphic extension to
the whole of V .
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3.10. Remarks. Note that Corollary 3.9 is a generalization of Solomon’s theorem
(see [10]): If G ⊂ GL(V ) is a finite complex reflection group then every G-
invariant polynomial exterior q -form ω on V can be written as ω = σ∗ϕ for a
polynomial q -form ϕ on Cn , where σ = (σ1, . . . , σn) : V → Cn is the mapping
consisting of a minimal system of homogeneous generators of C[V ]G .

Actually, in the case of a reflection group Z = Cn and each holomorphic(
p
q

)
-tensor field Q on Z1 has a holomorphic extension to Z by Hartogs’ extension

theorem.

4. Invariant complex connections

4.1. Let Γ be a holomorphic G-invariant complex connection on V . Then the
image σ∗Γ of Γ under the map σ defines a holomorphic complex connection on
Z0 .

Let z ∈ Z1 \ Z0 , v ∈ σ−1(z), and r the order of Gv . Consider the coordi-
nates zi in V defined in 3.5. Denote by Γijk the components of the connection Γ
with respect to these coordinates. By assumption, the Γijk are holomorphic func-
tions on V . Recall the standard formula for the image γ of Γ under a holomorphic
diffeomorphism f = (ya(xi))

γabc ◦ f =
∂ya

∂xi
∂xj

∂yb
∂xk

∂yc
Γijk(x

l)− ∂2ya

∂xi∂xj
∂xi

∂yb
∂xj

∂yc
.

Remark that the similar formula is true for the transformation of the components
of connection under the change of coordinates.

Consider the generator g of the cyclic group Gv given by 3.5. Since g
acts linearly, the connection reacts to it like a

(
1
2

)
-tensor field. Thus by the

considerations of 3.4 we get in the notation of 3.5, where i, j, k = 1, . . . , n− 1:

Γijk = Γ̃ijk ◦ σ, Γnjk =
1

r
znΓ̃njk ◦ σ, Γijn = r(zn)r−1Γ̃ijn ◦ σ,

Γink = r(zn)r−1Γ̃ink ◦ σ, Γnjn = Γ̃njn ◦ σ, Γnnk = Γ̃nnk ◦ σ,
Γinn = r2(zn)r−2Γ̃inn ◦ σ, Γnnn = r(zn)r−1Γ̃nnn ◦ σ,

where the Γ̃abc are holomorphic functions of the coordinates ya (a = 1, . . . , n)
introduced in 3.5.

Using the transformation formula for connections, we get the following
formulas for the components γabc of the meromorphic connection σ∗Γ with respect
to the coordinates ya

γijk = Γ̃ijk, γnjk = ynΓ̃njk, γijn = Γ̃ijn, γink = Γ̃ink, (4.1.1)

γnjn = Γ̃njn, γnnk = Γ̃nnk, γinn =
1

yn
Γ̃inn, γnnn = Γ̃nnn −

r − 1

ryn
.

Let ỹa for a = 1, . . . , n be other local coordinates centered at z and adapted
to the stratification of Z1 . Then in a neighborhood of z we have

yn = fỹn, ỹn = f̃yn,
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where f and f̃ are holomorphic functions in a neighborhood of z and f̃f = 1.
Then we have

∂yn

∂ỹi
=
∂f

∂ỹi
ỹn,

∂ỹn

∂yi
=
∂f

∂yi
yn (i = 1, . . . , n− 1)

and on S = {yn = 0}
∂yn

∂ỹn
= f,

∂̃yn

∂yn
= f̃ .

Using these formulas one can check that in the coordinates ỹa the formulas 4.1.1
have the same form as in the coordinates ya . For example, for the new component
γ̃nnn we have

γ̃nnn +
r − 1

rỹn
=

(r − 1)

(
1− f̃ ∂ỹn

∂yn

(
∂yn

∂ỹn

)2)
rynf̃

+ h,

where h is a holomorphic function near z . Since on S = {yn = 0} we have

1− f̃ ∂ỹ
n

∂yn

(
∂yn

∂ỹn

)2

= 1− f̃ 2f 2 = 0,

yn divides in Oz the function

1− f̃ ∂ỹ
n

∂yn

(
∂yn

∂ỹn

)2

.

Thus

γ̃nnn +
r − 1

rỹn

is holomorphic in a neighborhood of z .

4.2. Theorem. Let γ be a holomorphic complex linear connection on Z0 such that
for each z ∈ Z1 \Z0 it has an extension to a neighborhood of z whose components
in the coordinates adapted to the stratification of Z1 are defined by the formulas
4.1.1 where Γ̃abc are holomorphic. Then there is a unique G-invariant holomorphic
complex linear connection Γ on V such that σ∗Γ coincides with γ on Z0 . This
remains true if we replace V by a G-open subset of G.

Proof. Since σ is tale on the principal stratum, there is a unique G-invariant
complex linear connection Γ0 on σ−1(Z0) such that σ∗Γ0 = γ . The condition
of the theorem implies that the connection Γ0 has a holomorphic extension to
σ−1(Z1). Then by Hartogs’ extension theorem the connection Γ0 has a unique
holomorphic extension Γ to the whole of V .

5. Lifts of diffeomorphisms of orbit spaces

5.1. Let G and G′ be finite subgroups of GL(V ) and GL(V ′) and let F be
a holomorphic diffeomorphism V → V ′ which maps G-orbits to G′ -orbits bijec-
tively. Then the map F induces an isomorphism f of the sheaves FV/G → FV ′/G′ ,
i.e. a holomorphic diffeomorphism of orbit spaces V/G and V ′/G′ .



Kriegl, Losik, Michor 9

Lemma. There is a unique isomorphism a : G → G′ such that F ◦ g = a(g) ◦ F
for every g ∈ G.

Note that a and its inverse a−1 map complex reflections to complex reflec-
tions.

Proof. The cardinalities of the two groups are the same since F maps a generic
regular orbit to a regular orbit. Consequently, it maps regular points to regular
points and we have σ′ ◦F = f ◦ σ : V → V ′/G′ for a holomorphic diffeomorphism
f : V/G → V ′/G′ , where σ : V → V/G and σ′ : V ′ → V ′/G′ are the quotient
projections.

Fix some G-regular v ∈ V . Then F (v) and F (gv) for g ∈ G are regular
points of V ′ of the same orbit. Therefore, there is a unique a(g) ∈ G such that
F (gv) = a(g)(F (v)). We have σ′ ◦F ◦g = f ◦σ ◦g = f ◦σ = σ′ ◦F = σ′ ◦a(g)◦F .
Since σ′ is tale on V ′reg we see that F ◦ g = a(g) ◦ F locally near v and thus
globally. By uniqueness, the map g → a(g) is an isomorphism of G onto G′ .

In this section we study when a diffeomorphism f of the orbit spaces
Z → Z ′ has a holomorphic lift F .

5.2. Corollary. Let F : V → V be a holomorphic diffeomorphism which
maps G-orbits onto G′ -orbits, and f : Z → Z ′ the corresponding holomorphic
diffeomorphism of the orbit spaces. Then f maps the isotropy type stratification
of Z onto that of Z ′ and, moreover, it maps DZ to DZ′ .

Proof. This follows from Lemma 5.1 and the definition 3.3 of the reflection divisor.

5.3. Theorem. Let G and G′ be two finite subgroups of GL(V ) and let f : Z →
Z ′ be a holomorphic diffeomorphism of the corresponding orbit spaces such that
f(Z0) = Z ′0 and f∗(DZ) = DZ′ . If Q is a holomorphic tensor field of type

(
p
q

)
on

Z0 which satisfies the conditions of Theorem 3.7, then f∗(Q) also satisfies these
conditions on Z ′0 and thus there exists a unique G′ -invariant holomorphic tensor
field Q′ of type

(
p
q

)
such that σ′∗Q

′ coincides with f∗Q on Z ′0 .

This is also true for holomorphic connections if we replace Theorem 3.7 by
Theorem 4.2. The theorem remains true if we replace V by invariant open subsets
of V .

Proof. Since f(Z0) = Z ′0 the tensor field f∗Q is also holomorphic on Z ′0 . Let
z ∈ Z1 \ Z0 . Then there is a complex space S ∈ RZ of codimension 1 such
that z ∈ S . By assumption f(z) ∈ Z ′1 \ Z ′0 and f(z) ∈ f(S) ∈ RZ′ and
rz = eS = ef(S) = rf(z) . Now, obviously f∗Q satisfies the conditions of Theorem
3.7 at f(x). Thus there exists a G′ -invariant holomorphic tensor field Q′ on V
with σ′∗Q

′ = f∗Q .

A similar argument applies to connections.

5.4 Theorem. Let G and G′ be two finite subgroups of GL(V ). Let f : Z → Z ′

be a holomorphic diffeomorphism of the orbit spaces such that f(Z0) = Z ′0 and
f∗(DZ) = DZ′ .

Then f lifts to a holomorphic diffeomorphism F : V → V , i.e. σ′ ◦ F =
f ◦ σ .
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The local version is also true. Namely, if B is a ball in the vector space V
centered at 0 (for an invariant Hermitian metric), U = σ(B), and f : U → Z ′

is a local holomorphic diffeomorphism of U onto a neighborhood U ′ of σ′(0) such
that f(U ∩ Z0) = U ′ ∩ Z ′0 and f maps DZ ∩ U to DZ′ ∩ U ′ , then there is a
holomorphic lift F : B → V .

Proof. Let Γ be the natural flat connection on V . Then Γ is uniquely defined by
the holomorphic connection σ∗Γ on Z0 which satisfies the conditions of Theorem
4.2. By Theorem 5.3 there is a unique G-invariant holomorphic complex linear
connection Γ′ on V such that σ′∗Γ

′ coincides with f∗(σ∗Γ) on Z ′0 . It is evident
that Γ′ is a torsion free flat connection, since Γ is it and Γ′ is locally isomorphic
to Γ on an open dense subset.

Let v ∈ V be G-regular and let v′ ∈ V be G′ -regular, such that (f◦σ)(v) =
σ′(v′). Then there is a biholomorphic map F of a neighborhood W of v onto a
neighborhood of v′ such that σ′ ◦ F = f ◦ σ on W and F (v) = v′ . Moreover
by construction F is a locally affine map of the affine space (V,Γ) into (V,Γ′)
equipped with the above structures of locally affine spaces, thus we have

F = expΓ′

v′ ◦TvF ◦ (expΓ
v )−1 (1)

where expΓ
v : TvV → V is the holomorphic geodesic exponential mapping centered

at v given by the connection Γ and its induced spray. It is globally defined,
thus complete and a holomorphic diffeomorphism since Γ is the standard flat
connection. Likewise expΓ′

v′ is the holomorphic exponential mapping of the flat
connection Γ′ . The formula above extends F to a globally defined holomorphic
mapping if expΓ′

v′ : TvV → V is also globally defined (complete). Assume for
contradiction that this is not the case. Let F be maximally extended by equation
(1); it still projects to f : Z → Z ′ . We consider expΓ′

v′ as a real exponential
mapping, and then there is a real geodesic which reaches infinity in finite time and
this is the image under F of a finite part expΓ

v ([0, t0)w) of a real geodesic of Γ
emanating at v . The sequence expΓ

v ((t0 − 1/n)w) converges to expΓ
v (t0w) in V ,

but its image under F diverges to infinity by assumption. On the other hand, the
image under F is contained in the set (σ′)−1(fσ(expΓ

v ([0, t0]w))) which is compact
since σ′ is a proper mapping. Contradiction.

Any holomorphic lift F of a holomorphic diffeomorphism f is a holomor-
phic diffeomorphism of V which maps G-orbits onto G′ orbits, by the following
argument: Let F ′ be a holomorphic lift of f−1 . Evidently the map F ′ ◦ F pre-
serves each G-orbit. Then, for a G-regular point v ∈ V , there is a g ∈ G such
that F ′ ◦ F = g in a neighborhood of v and, then, on the whole of V . Similarly
F ◦ F ′ = g′ ∈ G′ . This implies that F is a holomorphic diffeomorphism of V . By
definition the lift F respects the partitions of V into orbits.

We give a second proof of Theorem 5.4 based on the known results about
the fundamental groups of Vreg and Z0 for finite complex reflection groups. It is
an extension of the proof of [8], using results of [2].

5.5. Lemma. Let G and G′ be two finite subgroups of GL(V ) and let f : Z →
Z ′ be a holomorphic diffeomorphism of the corresponding orbit spaces. Suppose
v0 ∈ Vreg , v′0 ∈ V ′reg , and f ◦ σ(v0) = σ′(v′0). If the image of the fundamental
group π1(Vreg, v0) under f ◦ σ is contained in the subgroup σ′∗(π1(Vreg), v

′
0) of

π1(Z ′0, σ
′(v′0)), the holomorphic lift of f ◦ σ mapping v0 to v′0 exists.
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Proof. Consider the restriction ϕ of the map f ◦ σ to Vreg . Since the restriction
of σ to Vreg is a covering map onto Z0 , the condition of the lemma implies that
there is a holomorphic lift F0 of the map ϕ to Vreg . The map F0 is bounded
on B ∩ Vreg for each compact ball B in V since its image is contained in the
compact set (σ′)−1(f(σ(B))). Then by the Riemann extension theorem F0 has a
holomorphic extension F to V which is the required holomorphic lift of f .

5.6. Next we prove Theorem 5.4 in the case when the group G is generated by
complex reflections. Put

B := π1(Z0) and P := π1(Vreg).

The groups B and P are called the braid group and the pure braid group associated
to G , respectively. It is clear that the map σ induces an isomorphism of P onto
a subgroup of B .

The following results about the groups B and P are well known (see,
for example, [2]). The braid group B is generated by those elements which are
represented by loops around the hypersurfaces σ(H) for H ∈ H . The pure braid
group P is generated by the elements of B of the type seH , where s is any of the
above generators of B represented by a loop around the hypersurface σ(H). This
implies the following

Proposition. Suppose the group G is generated by complex reflections. Let f be
a holomorphic diffeomorphism of the orbit space Z = Cn with f(Z0) = Z0 which
also preserves DZ . Then f |Z0 preserves the subgroup P of B .

The following proposition is an immediate consequence of Lemma 5.5 and
Proposition 5.6.

5.7. Proposition. Suppose the groups G and G′ are generated by complex reflec-
tions. Let f : Z → Z ′ be a holomorphic diffeomorphism between the corresponding
orbit spaces, such that f(Z0) = Z ′0 and f∗(DZ) = DZ′ .

Then f has a holomorphic lift F to V .

Second proof of 5.4. Now let G ⊂ GL(V ) be a finite group and let G1 be
the subgroup generated by all complex reflections in G . Clearly G1 is a normal
subgroup of G . Let G2 = G/G1 . Let σ1

1, . . . , σ
n
1 be a system of homogeneous

generators of C[V ]G1 and σ1 : V → Cn the corresponding orbit map. Then the
action of G on V induces the action of the group G2 on V1 := Cn = σ1(V ).
Since each representation of the group G2 is completely reducible, by standard
arguments of invariant theory, we may assume that the generators σi1 ’s are chosen
in such a way that the above action of G2 on V1 = Cn is linear. Then the
representation of G2 on V1 contains no complex reflections. Let σ1

2, . . . , σ
m
2 be a

system of homogeneous generators of C[V1]G2 and σ2 : V1 → Cm the corresponding
orbit map. Then σi = σi2 ◦ σ1 (i = 1, . . . ,m) is a system of generators of C[V ]G

with orbit map σ = σ2 ◦ σ1 . Similarly for G′ .

Let f : Z → Z ′ be a holomorphic diffeomorphism, such that f(Z0) = Z ′0
and f∗(DZ) = DZ′ . Since the group G2 contains no complex reflections the set
V1,reg of regular points of the action of G2 on V1 is obtained from V1 by removing
some subsets of codimension ≥ 2. And similarly for G′ . Then the fundamental
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group π1(V1,reg) = π1(V1) = 0 is trivial and by lemma 5.5 the diffeomorphism
f has a holomorphic lift F1 : V1 → V ′1 which is a holomorphic diffeomorphism
mapping the principal stratum to the principal stratum, and the reflection divisor
to the reflection divisor, since G2 contains no complex reflections on V1 . Thus
the diffeomorphism F1 has a holomorphic lift to V by Proposition 5.7, which is a
holomorphic lift of f .

6. An intrinsic characterization of a complex orbifold

We recall the definition of orbifold.

6.1. Definition. [11] Let X be a Hausdorff space. An atlas of a smooth n-
dimensional orbifold on X is a family {Ui}i∈I of open sets that satisfy:

1. {Ui}i∈I is an open cover of X.

2. For each i ∈ I we have a local uniformizing system consisting of a triple
(Ũi, Gi, ϕi), where Ũi is a connected open subset of Rn containing the origin,
Gi is a finite group of diffeomorphisms acting effectively and properly on Ũi ,
and ϕi : Ũi → Ui is a continuous map of Ũi onto Ui such that ϕi ◦ g = ϕi
for all g ∈ Gi and the induced map of Ũi/Gi onto Ui is a homeomorphism.
The finite group Gi is called a local uniformizing group.

3. Given x̃i ∈ Ũi and x̃j ∈ Ũj such that ϕi(x̃i) = ϕj(x̃j), there is a diffeomor-
phism gij : Ṽj → Ṽi from a neighborhood Ṽj ⊆ Ũj of x̃j onto a neighborhood
Ṽi ⊆ Ũi of x̃i such that ϕj = ϕi ◦ gij .

Two atlases are equivalent if their union is again an atlas of a smooth orbifold
on X . An orbifold is the space X with an equivalence class of atlases of smooth
orbifolds on X .

If we take in the definition of orbifold Cn instead of Rn and require that Gi

is a finite group of holomorphic diffeomorphisms acting effectively and properly on
Ũi and the maps gij are biholomorphic, we get the definition of complex analytic
n-dimensional orbifold.

6.2. Theorem. [11] Let M be a smooth manifold and G a proper discontinuous
group of diffeomorphisms of M . Then the orbit space M/G has a natural structure
of smooth n-dimensional orbifold. If M is a complex n-dimensional manifold and
G is a group of holomorphic diffeomorphisms of M , the orbit space M/G is a
complex n-dimensional orbifold.

6.3 Definitions. In the definition of atlas of a complex orbifold on X we can
always take Ũi to be balls of the space Cn (with respect to some Hermitian metric)
centered at the origin and the finite subgroups Gi to be subgroups of the GL(n)
acting naturally on Cn . In the sequel we consider atlases of complex orbifolds
satisfying these conditions.

Let X be a complex orbifold with an atlas (Ũi, Gi, ϕi). A function f : Ui →
C is called holomorphic if f ◦ ϕi is a holomorphic function on Ũi . The germs of
holomorphic functions on X define a sheaf FX on X . It is evident that the sheaf
FX depends only on the structure of complex orbifold on X .
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Consider a uniformizing system (Ũi, Gi, ϕi) of the above atlas and the
corresponding action of Gi on Cn . Then we have the isotropy type stratification
of the orbit space Cn/Gi , the induced stratification of Ui , and the divisor DUi

.

By corollary 5.2 we get the stratification on X by gluing the strata on the
Ui ’s. Denote by X0 the principal stratum of this stratification. By definition, for
each x ∈ X0 , for each uniformizing system (Ũi, Gi, ϕi), and for each y ∈ Ũi such
that ϕi(y) = x , the isotropy group Gy of y is trivial. Note that X0 is a complex
manifold. Note that X1 is also a complex manifold since this holds locally as noted
in 3.5.

Denote by RX the set of all strata of codimension 1 of X . Since the
pullbacks of the reflection divisors DUi

to Ui ∩Uj agree by 5.2 we may glue them
into the reflection divisor DX on X1 .

6.4. Definition. Let X and X̃ be two smooth orbifolds. The orbifold X̃ is called
a covering orbifold for X with a projection p : X̃ → X if p is a continuous map of
underlying topological spaces and each point x ∈ X has a neighborhood U = Ũ/G
(where Ũ is an open subset of Rn ) for which each component Vi of p−1(U) is
isomorphic to Ũ/Gi , where Gi ⊆ G is some subgroup. The above isomorphisms
U = Ũ/G and Vi = Ũ/Gi must respect the projections.

Note that the projection p in the above definition is not necessarily a
covering of the underlying topological spaces. It is clear that a covering orbifold for
a complex orbifold is a complex orbifold. Hereafter we suppose that all orbifolds
and their covering orbifolds are connected.

6.5. Theorem. [11] An orbifold X has a universal covering orbifold p : X̃ → X .
More precisely, if x ∈ X0 , x̃ ∈ X̃0 and p(x̃) = x, for any other covering orbifold
p′ : X̃ ′ → X and x̃′ ∈ X̃ ′ such that p′(x̃′) = x there is a cover q : X̃ → X̃ ′

such that p = p′ ◦ q and q(x̃) = x̃′ . For any points x̃, x̃′ ∈ p−1(x) there is a deck
transformation of X̃ taking x̃ to x̃′ .

Now we prove the main theorem of this section.

6.6. Theorem. An n-dimensional complex orbifold X is uniquely determined by
the sheaf of holomorphic functions FX , the principal stratum X0 , and the reflection
divisor DX .

Proof. For each x ∈ X , there exists V = Cm , a finite group G ⊂ GL(m),
a ball B in V centered at 0, an open subset U of X containing x , and an
isomorphism ψ : π(B) → U between the sheaves FZ |π(B) and FX |U . Consider
the map π : V → Z = V/G , the stratum Z0 and the reflection divisor DZ . We
suppose also that ψ(Z0 ∩ B/G) ⊆ X0 and ψ∗(Dπ(B)) = DU . It suffices to prove
that the germ of the uniformizing system {B,G, ψ ◦π|B} at x is the germ of some
uniformizing system of the orbifold X .

Let y ∈ Vreg ∩ B . Then the ring FZ(π(y)) of germs of FZ at π(y) is
isomorphic to the ring of germs of holomorphic functions on Cn at 0 and thus we
have m = n .

Consider the uniformizing system (Ũi, Gi, ϕi) of the orbifold X , where
Ũi is a ball in Cn centered at the origin, Gi is a finite subgroup of the group
GL(n) acting naturally on V = Cn , and where ϕi(0) = x . Consider the map
πi : V → V/Gi given by some system of generators of C[V ]Gi . We may assume
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that ϕi = ψi ◦ πi|Ũi
, where ψi : FŨi/Gi

→ FUi
is an isomorphism of sheaves.

Cn B

π

��

? _oo
F

// Ũi

πi

��

� � // Cn

B/G

ψ !!CC
CC

CC
CC f

// Ũi/Gi

ψi||zz
zz

zz
zz

U

Then the maps ψ and ψi define a map (germ) f of a holomorphic diffeomorphism
B/G to Ui/Gi at 0 := π(0) such that f(0) = 0 := πi(0). Then f induces an
isomorphism FV/G(0) → FV/Gi

(0), it maps (B/G)0 to (Ũi/Gi)0 and f∗(DB/G) =
DŨi/Gi

. Thus by theorem 5.4 there is a germ of a holomorphic diffeomorphism

F : B → Ũi which is equivariant for a suitable isomorphism G→ Gi .

6.7. Corollary. Let M be a complex simply connected manifold, G a proper
discontinuous group of holomorphic diffeomorphisms of M , and FX the corre-
sponding sheaf on the orbifold X = M/G. The G-manifold M is a universal
covering orbifold for the orbifold X and it is defined uniquely up to a natural iso-
morphism of universal coverings by the sheaf FX , the principal stratum X0 , and
by the reflection divisor DX .

Proof. Evidently the manifold M is a covering orbifold for X . If X̃ is a universal
covering orbifold for X , by definition 6.4 there is a cover q : X̃ → M . By
definition X̃ should be a manifold and q a cover of manifolds. Therefore, q is a
diffeomorphism. Then the statement of the corollary follows from theorem 6.6.

An automorphism of the sheaf FX is called a holomorphic diffeomorphism
of the orbit space X . Theorem 6.5 and corollary 6.7 imply the following analogue
of Theorem 5.4.

6.8. Theorem. Let M be a complex simply connected manifold, G a proper
discontinuous group of holomorphic diffeomorphisms of M , and FX the corre-
sponding sheaf on the orbifold X = M/G. Each holomorphic diffeomorphism f of
the orbit space X preserving X0 and DX has a holomorphic lift F to M , which
is G-equivariant with respect to an automorphism of G. The lift F is unique up
to composition by an element of G.

Proof. By theorem 6.6 and corollary 6.7 the manifold M with the map f ◦ p :
M → X , where p : M → X is the projection, is a universal covering orbifold
for X . Then there is a holomorphic diffeomorphism F : M → M such that
p ◦ F = f ◦ p . The equivariance property holds locally by 5.1, thus globally. The
lift is uniquely given by choosing F (x) for a regular point x in the orbit f(p(x)).

6.9. Let V be a complex vector space with a linear action of a finite group G .
The group C∗ acts on V by homotheties and induces an action on Z = V/G .

Corollary. In this situation, the G-module V is uniquely defined up to a linear
isomorphism by the sheaf FV/G with the action of C∗ , by Z0 , and the reflection
divisor DZ .
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Proof. Consider the orbit space Z = V/G of a G-module V with the sheaf FV/G ,
regular stratum Z0 , reflection divisor DZ , and the action of C∗ induced by the
action of C∗ on V by homotheties. Suppose that we have another G′ -module
V ′ with the same data on Z ′ = V ′/G′ such that there is a biholomorphic map
f : Z → Z ′ preserving these data. By Theorem 4.5 there is a biholomorphic lift
F : V → V ′ , and by lemma 5.1 there is an isomorphism a : G → G′ such that
F ◦ g = a(g) ◦ F . Thus we may assume that G = G′ , V = V ′ , Z = Z ′ , and a
is the identity map. By definition the pullback A of the vector field on the orbit
space V/G defined by the action of the group C∗ on V/G coincides with the vector
field on V defined by the above action of the group C∗ on V . By construction
F ∗A = A and then the map F commutes with the action of C∗ on V , i.e. for each
t ∈ C∗ and v ∈ V we have F (tv) = tF (v). Since F is biholomorphic it is a linear
automorphism of the vector space V . By definition F is then an automorphism
of the G-module V .

6.10. Tensor fields and connections on orbifolds. The local results in section
3 show that the correct definition of a

(
p
q

)
-tensor field Q on an orbifold X is as

follows: Q is a meromorphic
(
p
q

)
-tensor field on X1 such that divDX

(Q) ≥ 0.

Likewise, we can define connections on orbifolds by requiring the local
conditions of section 4.
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