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Abstract. We clarify the question whether for a smooth curve of polynomials one

can choose the roots smoothly and related questions. Applications to perturbation
theory of operators are given.
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1. Introduction

We consider the following problem. Let

(1) P (t) = xn − a1(t)x
n−1 + · · · + (−1)nan(t)

be a polynomial with all roots real, smoothly parameterized by t near 0 in R. Can
we find n smooth functions x1(t), . . . , xn(t) of the parameter t defined near 0, which
are the roots of P (t) for each t? We can reduce the problem to a1 = 0, replacing
the variable x by with the variable y = x− a1(t)/n. We will say that the curve (1)
is smoothly solvable near t = 0 if such smooth roots xi(t) exist.

We describe an algorithm which in the smooth and in the holomorphic case
sometimes allows to solve this problem. The main results are: If all roots are real
then they can always be chosen differentiable, but in general not C1 for degree
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n ≥ 3; and in degree 2 they can be chosen twice differentiable but in general not
C2. If they are arranged in increasing order, they depend continuously on the
coefficients of the polynomial, and if moreover no two of them meet of infinite order
in the parameter, then they can be chosen smoothly. We also apply these results to
obtain a smooth 1-parameter perturbation theorem for selfadjoint operators with
compact resolvent under the condition, that no pair of eigenvalues meets of infinite
order.

We thank C. Fefferman who found a mistake in a first version of 2.4, to M.
and Th. Hoffmann-Ostenhof for their interest and hints, and to Jerry Kazdan for
arranging [15].

2. Choosing differentiable square and cubic roots

2.1. Proposition. The case n = 2. Let P (t)(x) = x2 − f(t) for a function f
defined on an open interval, such that f(t) ≥ 0 for all t.

If f is smooth and is nowhere flat of infinite order, then smooth solutions x exist.
If f is C2 then C1-solutions exist.
If f is C4 then twice differentiable solutions exist.

Proof. Suppose that f is smooth. If f(t0) > 0 then we have obvious local smooth

solutions ±
√

f(t). If f(t0) = 0 we have to find a smooth function x such that
f = x2, a smooth square root of f . If f is not flat at t0 then the first nonzero
derivative at t0 has even order 2m and is positive, and f(t) = (t − t0)

2mf2m(t),

where f2m(t) :=
∫ 1

0
(1−r)2m−1

(2m−1)! f (2m)(t0 + r(t − t0)) dr gives a smooth function and

f2m(t0) = 1
(2m)!f

(2m)(t0) > 0. Then x(t) := (t − t0)
m

√

f2m(t) is a local smooth

solution. One can piece together these local solutions, changing sign at all points
where the first non-vanishing derivative of f is of order 2m with m odd. These
points are discrete.

Let us consider now a function f ≥ 0 of class C2. We claim that then x2 = f(t)
admits a C1-root x(t), globally in t. We consider a fixed t0. If f(t0) > 0 then there

is locally even a C2-solution x±(t) = ±
√

f(t). If f(t0) = 0 then f(t) = (t− t0)
2h(t)

where h ≥ 0 is continuous and C2 off t0 with h(t0) = 1
2f ′′(t0). If h(t0) > 0 then

x±(t) = ±(t − t0)
√

h(t) is C2 off t0, and

x′
±(t0) = lim

t→t0

x±(t) − x±(t0)

t − t0
= lim

t→t0
±

√

h(t) = ±
√

h(t0) = ±
√

1
2f ′′(t0).

If h(t0) = 0 then we choose x±(t0) = 0, and any choice of the roots is then
differentiable at t0 with derivative 0, by the same calculation.

One can piece together these local solutions: At zeros t of f where f ′′(t) > 0
we have to pass through 0, but where f ′′(t) = 0 the choice of the root does not
matter. The set {t : f(t) = f ′′(t) = 0} is closed, so its complement is a union of
open intervals. Choose a point in each of these intervals where f(t) > 0 and start
there with the positive root, changing signs at points where f(t) = 0 6= f ′′(t): these
points do not accumulate in the intervals. Then we get a differentiable choice of
a root x(t) on each of this open intervals which extends to a global differentiable
root which is 0 on {t : f(t) = f ′′(t) = 0}.
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Note that we have

x′(t) =

{

f ′(t)
2x(t) if f(t) > 0

±
√

f ′′(t)/2 if f(t) = 0

In points t0 with f(t0) > 0 the solution x is C2; locally around points t0 with
f(t0) = 0 and f ′′(t0) > 0 the root x is C1 since for t 6= t0 near t0 we have f(t) > 0
and f ′(t) 6= 0, so by l’Hospital we get

lim
t→t0

x′(t)2 = lim
t→t0

f ′(t)2

4f(t)
= lim

t→t0

2f ′(t)f ′′(t)

4f ′(t)
=

f ′′(t0)

2
= x′(t0)

2,

and since the choice of signs was coherent, x′ is continuous at t0; if f ′′(t0) = 0 then
x′(t0) = 0 and x′(t) → 0 for t → t0 for both expressions, by lemma 2.2 below. Thus
x is C1.

If moreover f ≥ 0 is C4, then the solution x from above may be modified
to be twice differentiable. Near points t0 with f(t0) > 0 any continuous root

t 7→ x±(t) = ±
√

f(t) is even C4. Near points t0 with f(t0) = f ′(t0) = 0 we have
f(t) = (t− t0)

2h(t) where h ≥ 0 is C2. We may choose a C1-root z with z2 = h by
the arguments above, and then x(t) := (t− t0)z(t) is twice differentiable at t0 since
we have

x′(t) − x′(t0)

t − t0
=

z(t) + (t − t0)z
′(t) − z(t0)

t − t0

= z′(t) +
z(t) − z(t0)

t − t0
→ 2z′(t0) = ±

√

f (4)(t0)

4!
.

If f(t0) = f ′′(t0) = f (4)(t0) = 0 then any C1 choice of the roots is twice differen-
tiable at t0, in particular x(t) = |t − t0|z(t).

Now we can piece together this solutions similarly as above. Let y be a global
C1-root of f , chosen as above changing sign only at points t with f(t) = 0 < f ′′(0).
We put x(t) = ε(t)y(t), where ε(t) ∈ {±1} will be chosen later. The set {t : f(t) =
f ′′(t) = f (4)(t) = 0} has a countable union of open intervals as complements. In
each of these intervals choose a point t0 with f(t0) > 0, near which y is C4. Now
let ε(t0) = 1, and let ε change sign exactly at points with f(t) = f ′′(t) = 0 but
f (4)(t) > 0. These points do not accumulate inside the interval. Then x is twice
differentiable. ¤

2.2. Lemma. Let f ≥ 0 be a C2-function with f(t0) = 0, then for all t ∈ R we
have

(1) f ′(t)2 ≤ 2f(t) max{f ′′(t0 + r(t − t0)) : 0 ≤ r ≤ 2}.

Proof. If f(t) = 0 then f ′(t) = 0 so (1) holds. We use the Taylor formula

(2) f(t + s) = f(t) + f ′(t)s +

∫ 1

0

(1 − r)f ′′(t + rs) dr s2
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In particular we get (replacing t by t0 and then t0 + s by t)

f(t) = 0 + 0 +

∫ 1

0

(1 − r)f ′′(t0 + r(t − t0)) dr (t − t0)
2(3)

≤ (t − t0)
2

2
max{f ′′(t0 + r(t − t0)) : 0 ≤ r ≤ 2}

Now in (2) we replace s by −εs (where ε = sign(f ′(t))) to obtain

(4) 0 ≤ f(t − εs) = f(t) − |f ′(t)|s +

∫ 1

0

(1 − r)f ′′(t − εrs) dr s2

Let us assume t ≥ t0 and then choose (using (3))

s(t) :=

√

2f(t)

max{f ′′(t0 + r(t − t0)) : 0 ≤ r ≤ 2} ≤ t − t0.

Note that we may assume f(t) > 0, then s(t) is well defined and s(t) > 0. This
choice of s in (4) gives

|f ′(t)| ≤ 1

s(t)

(

f(t) +
s(t)2

2
max{f ′′(t − εrs(t)) : 0 ≤ r ≤ 1}

)

≤ 1

s(t)

(

f(t) +
s(t)2

2
max{f ′′(t − r(t − t0)) : −1 ≤ r ≤ 1}

)

=
2f(t)

s(t)
=

√

2f(t) max{f ′′(t0 + r(t − t0)) : 0 ≤ r ≤ 2}

which proves (1) for t ≥ t0. Since the assertion is symmetric it then holds for all
t. ¤

2.3. Examples. If f ≥ 0 is only C1, then there may not exist a differentiable root
of x2 = f(t), as the following example shows: x2 = f(t) := t2 sin2(log t) is C1, but
±t sin(log t) is not differentiable at 0.

If f ≥ 0 is twice differentiable there may not exist a C1-root: x2 = f(t) =
t4 sin2( 1

t ) is twice differentiable, but ±t2 sin(1
t ) is differentiable, but not C1.

If f ≥ 0 is only C3, then there may not exist a twice differentiable root of
x2 = f(t), as the following example shows: x2 = f(t) := t4 sin2(log t) is C3, but
±t2 sin(log t) is only C1 and not twice differentiable.

2.4. Example. If f(t) ≥ 0 is smooth but flat at 0, in general our problem has
no C2-root as the following example shows, which is an application of the general
curve lemma 4.2.15 in [5]: Let h : R → [0, 1] be smooth with h(t) = 1 for t ≥ 0 and
h(t) = 0 for t ≤ −1. Then the function

f(t) : =

∞
∑

n=1

hn(t − tn).

(

2n

2n
(t − tn)2 +

1

4n

)

, where

hn(t) : = h

(

n2

(

1

n.2n+1
+ t

))

.h

(

n2

(

1

n.2n+1
− t

))

and

tn : =
n−1
∑

k=1

(

2

k2
+

2

k.2k+1

)

+
1

n2
+

1

n.2n+1
,
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is ≥ 0 and is smooth: the sum consists of at most one summand for each t, and
the derivatives of the summands converge uniformly to 0: Note that hn(t) = 1 for
|t| ≤ 1

n.2n+1 and hn(t) = 0 for |t| ≥ 1
n.2n+1 + 1

n2 hence hn(t − tn) 6= 0 only for

rn < t < rn+1, where rn :=
∑n−1

k=1

(

2
k2 + 2

k.2k+1

)

. Let cn(s) := 2n
2n s2 + 1

4n ≥ 0 and

Hi := sup{|h(i)(t)| : t ∈ R}. Then

n2 sup{|(hn · cn)(k)(t)| : t ∈ R} = n2 sup{|(hn · cn)(k)(t)| : |t| ≤ 1

n.2n+1
+

1

n2
}

≤ n2
k

∑

i=0

(

k

i

)

n2iHi sup{|c(k−i)
n (t)| : |t| ≤ 1

n.2n+1
+

1

n2
}

≤
( k

∑

i=0

(

k

i

)

n2i+2Hi

)

sup{|c(j)
n (t)| : |t| ≤ 2, j ≤ k}

and since cn is rapidly decreasing in C∞(R, R) (i.e. {p(n) cn : n ∈ N} is bounded in
C∞(R, R) for each polynomial p) the right side of the inequality above is bounded
with respect to n ∈ N and hence the series

∑

n hn( −tn)cn( −tn) converges
uniformly in each derivative, and thus represents an element of f ∈ C∞(R, R).
Moreover we have

f(tn) =
1

4n
, f ′(tn) = 0, f ′′(tn) =

2n

2n−1
.

Let us assume that f(t) = g(t)2 for t near supn tn < ∞, where g is twice differen-
tiable. Then

f ′ = 2gg′

f ′′ = 2gg′′ + 2(g′)2

2ff ′′ = 4g3g′′ + (f ′)2

2f(tn)f ′′(tn) = 4g(tn)3g′′(tn) + f ′(tn)2

thus g′′(tn) = ±2n, so g cannot be C2, and g′ cannot satisfy a local Lipschitz
condition near lim tn. Another similar example can be found in 7.4 below.

According to [15], some results of this section are contained in Frank Warners
dissertation (around 1963, unpublished): Non-negative smooth functions have C1

square roots whose second derivatives exist everywhere. If all zeros are of finite
order there are smooth square roots. However, there are examples not possessing
a C2 square root. Here is one:

f(t) = sin2(1/t)e−1/t + e−2/t for t > 0, f(t) = 0 for t ≤ 0.

This is a sum of two non-negative C∞ functions each of which has a C∞ square
root. But the second derivative of the square root of f is not continuous at the
origin.

In [6] Glaeser proved that a non-negative C2-function on an open subset of R
n

which vanishes of second order has a C1 positive square root. A smooth function
f ≥ 0 is constructed which is flat at 0 such that the positive square root is not C2.
In [4] Dieudonné gave shorter proofs of Glaeser’s results.
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2.5. Example. The case n ≥ 3. We will construct a polynomial

P (t) = x3 + a2(t)x − a3(t)

with smooth coefficients a2, a3 with all roots real which does not admit C1-roots.
Multiplying with other polynomials one then gets polynomials of all orders n ≥ 3
which do not admit C1-roots.

Suppose that P admits C1-roots x1, x2, x3. Then we have

0 = x1 + x2 + x3

a2 = x1x2 + x2x3 + x3x1

a3 = x1x2x3

0 = ẋ1 + ẋ2 + ẋ3

ȧ2 = ẋ1x2 + x1ẋ2 + ẋ2x3 + x2ẋ3 + ẋ3x1 + x3ẋ1

ȧ3 = ẋ1x2x3 + x1ẋ2x3 + x1x2ẋ3

We solve the linear system formed by the last three equations and get

ẋ1 =
ȧ3 − ȧ2x1

(x2 − x1)(x3 − x1)

ẋ2 =
ȧ3 − ȧ2x2

(x3 − x2)(x1 − x2)

ẋ3 =
ȧ3 − ȧ2x3

(x1 − x3)(x2 − x3)
.

We consider the continuous function

b3 := ẋ1ẋ2ẋ3 =
ȧ3
3 + ȧ2

2ȧ3a2 − ȧ3
2a3

4a3
2 + 27a2

3

.

For smooth functions f and ε with ε2 ≤ 1 we let

u : = −12a2 := f2

v : = 108a3 := εf3.

then all roots of P are real since a2 ≤ 0 and 432(4a3
2+27a2

3) = v2−u3 = f6(ε2−1) ≤
0. We get then

11664b3 =
4v̇3 − 27uu̇2v̇ + 27u̇3v

v2 − u3

= 4
f3ε̇3 + 9f2ḟ ε̇2ε + 27fḟ2ε̇(ε2 − 1) + 27ḟ3ε(ε2 − 3)

ε2 − 1
.

Now we choose

f(t) : =
∞
∑

n=1

hn(t − tn).
( n

2n
(t − tn)

)

,

ε(t) : = 1 −
∞
∑

n=1

hn(t − tn).
1

8n
,
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where hn and tn are as in the beginning of 2.4. Then f(tn) = 0, ḟ(tn) = n
2n , and

ε(tn) = 1
8n , hence

108b3(tn) =
ḟ(tn)3ε(tn)(ε(tn)2 − 3)

ε(tn)2 − 1
∼ n3 → ∞

is unbounded on the convergent sequence tn. So the roots cannot be chosen locally
Lipschitz, thus not C1.

3. Choosing local roots of real polynomials smoothly

3.1. Preliminaries. We recall some known facts on polynomials with real coeffi-
cients. Let

P (x) = xn − a1x
n−1 + · · · + (−1)nan

be a polynomial with real coefficients a1, . . . , an and roots x1, . . . , xn ∈ C. It
is known that ai = σi(x1, . . . , xn), where σi (i = 1, . . . , n) are the elementary
symmetric functions in n variables:

σi(x1, . . . , xn) =
∑

1≤j1<···<ji≤n

xj1 . . . xji

Denote by si the Newton polynomials
∑n

j=1 xi
j which are related to the elementary

symmetric function by

(1) sk − sk−1σ1 + sk−2σ2 + · · · + (−1)k−1s1σk−1 + (−1)kkσk = 0 (k ≤ n)

The corresponding mappings are related by a polynomial diffeomorphism ψn, given
by (1):

σn : = (σ1, . . . , σn) : R
n → R

n

sn : = (s1, . . . , sn) : R
n → R

n

sn : = ψn ◦ σn

Note that the Jacobian (the determinant of the derivative) of sn is n! times the
Vandermonde determinant: det(dsn(x)) = n!

∏

i>j(xi−xj) =: n! Van(x), and even

the derivative itself d(sn)(x) equals the Vandermonde matrix up to factors i in the
i-th row. We also have det(d(ψn)(x)) = (−1)n(n+3)/2n! = (−1)n(n−1)/2n!, and
consequently det(dσn(x)) =

∏

i>j(xj − xi). We consider the so-called Bezoutiant

B :=









s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
...

sn−1 sn . . . s2n−2









.

Let Bk be the minor formed by the first k rows and columns of B. From

Bk(x) =









1 1 . . . 1
x1 x2 . . . xn
...

...
...

xk−1
1 xk−1

2 . . . xk−1
n









·











1 x1 . . . xk−1
1

1 x2 . . . xk−1
2

...
...

...
1 xn . . . xk−1

n
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it follows that

(2) ∆k(x) := det(Bk(x)) =
∑

i1<i2<···<ik

(xi1 −xi2)
2 . . . (xi1 −xik

)2 . . . (xik−1
−xik

)2,

since for n × k-matrices A one has det(AA⊤) =
∑

i1<···<ik
det(Ai1,...,ik

)2, where
Ai1,...,ik

is the minor of A with indicated rows. Since the ∆k are symmetric we

have ∆k = ∆̃k ◦ σn for unique polynomials ∆̃k and similarly we shall use B̃.

3.2. Theorem. (Sylvester’s version of Sturm’s theorem, see [14], [10]) The roots

of P are all real if and only if the symmetric (n × n) matrix B̃(P ) is positive

semidefinite; then ∆̃k(P ) := ∆̃k(a1, . . . , an) ≥ 0 for 1 ≤ k ≤ n. The rank of B
equals the number of distinct roots of P and its signature equals the number of
distinct real roots.

3.3. Proposition. Let now P be a smooth curve of polynomials

P (t)(x) = xn − a1(t)x
n−1 + · · · + (−1)nan(t)

with all roots real, and distinct for t = 0. Then P is smoothly solvable near 0.
This is also true in the real analytic case and for higher dimensional parameters,

and in the holomorphic case for complex roots.

Proof. The derivative d
dxP (0)(x) does not vanish at any root, since they are dis-

tinct. Thus by the implicit function theorem we have local smooth solutions x(t)
of P (t, x) = P (t)(x) = 0. ¤

3.4. Splitting Lemma. Let P0 be a polynomial

P0(x) = xn − a1x
n−1 + · · · + (−1)nan.

If P0 = P1 ·P2, where P1 and P2 are polynomials with no common root. Then for P
near P0 we have P = P1(P )Ṗ2(P ) for real analytic mappings of monic polynomials
P 7→ P1(P ) and P 7→ P2(P ), defined for P near P0, with the given initial values.

Proof. Let the polynomial P0 be represented as the product

P0 = P1.P2 = (xp − b1x
p−1 + · · · + (−1)pbp)(x

q − c1x
q−1 + · · · + (−1)qcq),

let xi for i = 1, . . . , n be the roots of P0, ordered in such a way that for i = 1, . . . , p
we get the roots of P1, and for i = p + 1, . . . , p + q = n we get those of P2. Then
(a1, . . . , an) = φp,q(b1, . . . , bp, c1, . . . , cq) for a polynomial mapping φp,q and we get

σn = φp,q ◦ (σp × σq),

det(dσn) = det(dφp,q(b, c)) det(dσp) det(dσq).

From 3.1 we conclude
∏

1≤i<j≤n

(xi − xj) = det(dφp,q(b, c))
∏

1≤i<j≤p

(xi − xj)
∏

p+1≤i<j≤n

(xi − xj)

which in turn implies

det(dφp,q(b, c)) =
∏

1≤i≤p<j≤n

(xi − xj) 6= 0

so that φp,q is a real analytic diffeomorphism near (b, c). ¤
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3.5. For a continuous function f defined near 0 in R let the multiplicity or order
of flatness m(f) at 0 be the supremum of all integer p such that f(t) = tpg(t)
near 0 for a continuous function g. If f is Cn and m(f) < n then f(t) = tm(f)g(t)
where now g is Cn−m(f) and g(0) 6= 0. If f is a continuous function on the space
of polynomials, then for a fixed continuous curve P of polynomials we will denote
by m(f) the multiplicity at 0 of t 7→ f(P (t)).

The splitting lemma 3.4 shows that for the problem of smooth solvability it is
enough to assume that all roots of P (0) are equal.

Proposition. Suppose that the smooth curve of polynomials

P (t)(x) = xn + a2(t)x
n−2 − · · · + (−1)nan(t)

is smoothly solvable with smooth roots t 7→ xi(t), and that all roots of P (0) are
equal. Then for (k = 2, . . . , n)

m(∆̃k) ≥ k(k − 1) min
1≤i≤n

m(xi)

m(ak) ≥ k min
1≤i≤n

m(xi)

This result also holds in the real analytic case and in the smooth case.

Proof. This follows from 3.1.(2) for ∆k, and from ak(t) = σk(x1(t), . . . , xn(t)). ¤

3.6. Lemma. Let P be a polynomial of degree n with all roots real. If a1 = a2 = 0
then all roots of P are equal to zero.

Proof. From 3.1.(1) we have
∑

x2
i = s2(x) = σ2

1(x) − 2σ2(x) = a2
1 − 2a2 = 0. ¤

3.7. Multiplicity lemma. Consider a smooth curve of polynomials

P (t)(x) = xn + a2(t)x
n−2 − · · · + (−1)nan(t)

with all roots real. Then, for integers r, the following conditions are equivalent:

(1) m(ak) ≥ kr for all 2 ≤ k ≤ n.

(2) m(∆̃k) ≥ k(k − 1)r for all 2 ≤ k ≤ n.
(3) m(a2) ≥ 2r.

Proof. We only have to treat r > 0.
(1) implies (2): From 3.1.(1) we have m(s̃k) ≥ rk, and from the definition of

∆̃k = det(B̃k) we get (2).

(2) implies (3) since ∆̃2 = −2na2.
(3) implies (1): From a2(0) = 0 and lemma 3.6 it follows that all roots of the

polynomial P (0) are equal to zero and, then, a3(0) = · · · = an(0) = 0. There-
fore, m(a3), . . . ,m(an) ≥ 1. Under these conditions, we have a2(t) = t2ra2,2r(t)
and ak(t) = tmkak,mk

(t) for k = 3, . . . , n, where the mk are positive integers and
a2,2r, a3,m3

, . . . , an,mn
are smooth functions, and where we may assume that either

mk = m(ak) < ∞ or mk ≥ kr.
Suppose now indirectly that for some k > 2 we have mk = m(ak) < kr. Then

we put

m := min(r,
m3

3
, . . . ,

mn

n
) < r.
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We consider the following continuous curve of polynomials for t ≥ 0:

P̄m(t)(x) := xn + a2,2r(t)t
2r−2mxn−2

− a3,m3
(t)tm3−3mxn−3 + · · · + (−1)nan,mn

(t)tmn−nm.

If x1, . . . , xn are the real roots of P (t) then t−mx1, . . . , t
−mxn are the roots of P̄m(t),

for t > 0. So for t > 0, P̄m(t) is a family of polynomials with all roots real. Since
by theorem 3.2 the set of polynomials with all roots real is closed, P̄m(0) is also a
polynomial with all roots real.

By lemma 3.6 all roots of the polynomial P̄m(0) are equal to zero, and for
those k with mk = km we have ak,mk

(0) = 0 and, therefore, m(ak) > mk, a
contradiction. ¤

3.8. Algorithm. Consider a smooth curve of polynomials

P (t)(x) = xn − a1(t)x
n−1 + a2(t)x

n−2 − · · · + (−1)nan(t)

with all roots real. The algorithm has the following steps:

(1) If all roots of P (0) are pairwise different, P is smoothly solvable for t near
0 by 3.3.

(2) If there are distinct roots at t = 0 we put them into two subsets which splits
P (t) = P1(t).P2(t) by the splitting lemma 3.4. We then feed Pi(t) (which
have lower degree) into the algorithm.

(3) All roots of P (0) are equal. We first reduce P (t) to the case a1(t) = 0 by
replacing the variable x by y = x − a1(t)/n. Then all roots are equal to 0
so m(a2) > 0.

(3a) If m(a2) is finite then it is even since ∆̃2 = −2na2 ≥ 0, m(a2) = 2r and by
the multiplicity lemma 3.7 ai(t) = ai,ir(t)t

ir (i = 2, . . . , n) for smooth ai,ir.
Consider the following smooth curve of polynomials

Pr(t)(x) = xn + a2,2r(t)x
n−2 − a3,3r(t)x

n−3 · · · + (−1)nan,nr(t).

If Pr(t) is smoothly solvable and xk(t) are its smooth roots, then xk(t)tr are
the roots of P (t) and the original curve P is smoothly solvable too. Since
a2,2m(0) 6= 0, not all roots of Pr(0) are equal and we may feed Pr into step
2 of the algorithm.

(3b) If m(a2) is infinite and a2 = 0, then all roots are 0 by 3.6 and thus the
polynomial is solvable.

(3c) But if m(a2) is infinite and a2 6= 0, then by the multiplicity lemma 3.7 all
m(ai) for 2 ≤ i ≤ n are infinite. In this case we keep P (t) as factor of the
original curve of polynomials with all coefficients infinitely flat at t = 0 after
forcing a1 = 0. This means that all roots of P (t) meet of infinite order of
flatness (see 3.5) at t = 0 for any choice of the roots. This can be seen as
follows: If x(t) is any root of P (t) then y(t) := x(t)/tr is a root of Pr(t),
hence by 4.1 bounded, so x(t) = tr−1.ty(t) and t 7→ ty(t) is continuous at
t = 0.
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This algorithm produces a splitting of the original polynomial

P (t) = P (∞)(t)P (s)(t)

where P (∞) has the property that each root meets another one of infinite order at
t = 0, and where P (s)(t) is smoothly solvable, and no two roots meet of infinite
order at t = 0, if they are not equal. Any two choices of smooth roots of P (s) differ
by a permutation.

The factor P (∞) may or may not be smoothly solvable. For a flat function f ≥ 0
consider:

x4 − (f(t) + t2)x2 + t2f(t) = (x2 − f(t)).(x − t)(x + t).

Here the algorithm produces this factorization. For f(t) = g(t)2 the polynomial is
smoothly solvable. For the smooth function f from 2.4 it is not smoothly solvable.

4. Choosing global roots of polynomials differentiably

4.1. Lemma. For a polynomial

P (x) = xn − a1(P )xn−1 + · · · + (−1)nan(P )

with all roots real, i.e. ∆̃k(P ) = ∆̃k(a1, . . . , an) ≥ 0 for 1 ≤ k ≤ n, let

x1(P ) ≤ x2(P ) ≤ · · · ≤ xn(P )

be the roots, increasingly ordered.
Then all xi : σn(Rn) → R are continuous.

Proof. We show first that x1 is continuous. Let P0 ∈ σn(Rn) be arbitrary. We have
to show that for every ε > 0 there exists some δ > 0 such that for all |P − P0| < δ
there is a root x(P ) of P with x(P ) < x1(P0)+ε and for all roots x(P ) of P we have
x(P ) > x1(P0) − ε. Without loss of generality we may assume that x1(P0) = 0.

We use induction on the degree n of P . By the splitting lemma 3.4 for the C0-case
we may factorize P as P1(P ) ·P2(P ), where P1(P0) has all roots equal to x1 = 0 and
P2(P0) has all roots greater than 0 and both polynomials have coefficients which
depend real analytically on P . The degree of P2(P ) is now smaller than n, so by
induction the roots of P2(P ) are continuous and thus larger than x1(P0) − ε for P
near P0.

Since 0 was the smallest root of P0 we have to show that for all ε > 0 there exists
a δ > 0 such that for |P − P0| < δ any root x of P1(P ) satisfies |x| < ε. Suppose
there is a root x with |x| ≥ ε. Then we get as follows a contradiction, where n1 is
the degree of P1. From

−xn1 =

n1
∑

k=1

(−1)kak(P1)x
n1−k

we have

ε ≤ |x| =
∣

∣

∣

n1
∑

k=1

(−1)kak(P1)x
1−k

∣

∣

∣
≤

n1
∑

k=1

|ak(P1)| |x|1−k <

n1
∑

k=1

εk

n1
ε1−k = ε,
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provided that n1|ak(P1)| < εk, which is true for P1 near P0, since ak(P0) = 0. Thus
x1 is continuous.

Now we factorize P = (x − x1(P )) · P2(P ), where P2(P ) has roots x2(P ) ≤
· · · ≤ xn(P ). By Horner’s algorithm (an = bn−1x1, an−1 = bn−1 + bn−2x1, . . . ,
a2 = b2 + b1x1, a1 = b1 + x1) the coefficients bk of P2(P ) are again continuous and
so we may proceed by induction on the degree of P . Thus the claim is proved. ¤

4.2. Theorem. Consider a smooth curve of polynomials

P (t)(x) = xn + a2(t)x
n−2 − · · · + (−1)nan(t)

with all roots real, for t ∈ R. Let one of the two following equivalent conditions be
satisfied:

(1) If two of the increasingly ordered continuous roots meet of infinite order
somewhere then they are equal everywhere.

(2) Let k be maximal with the property that ∆̃k(P ) does not vanish identically

for all t. Then ∆̃k(P ) vanishes nowhere of infinite order.

Then the roots of P can be chosen smoothly, and any two choices differ by a
permutation of the roots.

Proof. The local situation. We claim that for any t0, without loss t0 = 0, the
following conditions are equivalent:

(1) If two of the increasingly ordered continuous roots meet of infinite order at
t = 0 then their germs at t = 0 are equal.

(2) Let k be maximal with the property that the germ at t = 0 of ∆̃k(P ) is not

0. Then ∆̃k(P ) is not infinitely flat at t = 0.
(3) The algorithm 3.8 never leads to step (3c).

(3) =⇒ (1). Suppose indirectly that two nonequal of the increasingly ordered
continuous roots meet of infinite order at t = 0. Then in each application of step (2)
these two roots stay with the same factor. After any application of step (3a) these
two roots lead to nonequal roots of the modified polynomial which still meet of
infinite order at t = 0. They never end up in a facter leading to step (3b) or
step (1). So they end up in a factor leading to step (3c).
(1) =⇒ (2). Let x1(t) ≤ · · · ≤ xn(t) be the continuous roots of P (t). From 3.1, (2)
we have

(4) ∆̃k(P (t)) =
∑

i1<i2<···<ik

(xi1 − xi2)
2 . . . (xi1 − xin

)2 . . . (xik−1
− xik

)2.

The germ of ∆̃k(P ) is not 0, so the germ of one summand is not 0. If ∆̃k(P ) were
infinitely flat at t = 0, then each summand is infinitely flat, so there are two roots
among the xi which meet of infinite order, thus by assumption their germs are
equal, so this summand vanishes.
(2) =⇒ (3). Since the leading ∆̃k(P ) vanishes only of finite order at zero, P has
exactly k different roots off 0. Suppose indirectly that the algorithm 3.8 leads to
step (3c), then P = P (∞)P (s) for a nontrivial polynomial P (∞). Let x1(t) ≤ · · · ≤
xp(t) be the roots of P (∞)(t) and xp+1(t) ≤ · · · ≤ xn(t) those of P (s). We know
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that each xi meets some xj of infinite order and does not meet any xl of infinite

order, for i, j ≤ p < l. Let k(∞) > 2 and k(s) be the number of generically different
roots of P (∞) and P (s), respectively. Then k = k(∞) + k(s), and an inspection of
the formula for ∆̃k(P ) above leads to the fact that it must vanish of infinite order
at 0, since the only non-vanishing summands involve exactly k(∞) many generically
different roots from P (∞).

The global situation. From the first part of the proof we see that the algorithm
3.8 allows to choose the roots smoothly in a neighborhood of each point t ∈ R, and
that any two choices differ by a (constant) permutation of the roots. Thus we may
glue the local solutions to a global solution. ¤

4.3. Theorem. Consider a curve of polynomials

P (t)(x) = xn − a1(t)x
n−1 + · · · + (−1)nan(t), t ∈ R,

with all roots real, where all ai are of class Cn. Then there is a differentiable curve
x = (x1, . . . , xn) : R → R

n whose coefficients parameterize the roots.

That this result cannot be improved to C2-roots is shown already in 2.4, and
not to C1 for n ≥ 3 is shown in 2.5.

Proof. First we note that the multiplicity lemma 3.7 remains true in the Cn-case
for r = 1 in the following sense, with the same proof:
If a1 = 0 then the following two conditions are equivalent

(1) ak(t) = tkak,k(t) for a continuous function ak,k, for 2 ≤ k ≤ n.

(2) a2(t) = t2a2,2(t) for a continuous function a2,2.

In order to prove the theorem itself we follow one step of the algorithm. First
we replace x by x + 1

na1(t), or assume without loss that a1 = 0. Then we choose a
fixed t, say t = 0.

If a2(0) = 0 then it vanishes of second order at 0: if it vanishes only of first

order then ∆̃2(P (t)) = −2na2(t) would change sign at t = 0, contrary to the
assumption that all roots of P (t) are real, by 3.2. Thus a2(t) = t2a2,2(t), so by
the variant of the multiplicity lemma 3.7 described above we have ak(t) = tkak,k(t)
for continuous functions ak,k, for 2 ≤ k ≤ n. We consider the following continuous
curve of polynomials

P1(t)(x) = xn + a2,2(t)x
n−2 − a3,3(t)x

n−3 · · · + (−1)nan,n(t).

with continuous roots z1(t) ≤ · · · ≤ zn(t), by 4.1. Then xk(t) = zk(t)t are dif-
ferentiable at 0, and are all roots of P , but note that xk(t) = yk(t) for t ≥ 0,
but xk(t) = yn−k(t) for t ≤ 0, where y1(t) ≤ · · · ≤ yn(t) are the ordered roots of
P (t). This gives us one choice of differentiable roots near t = 0. Any choice is then
given by this choice and applying afterwards any permutation of the set {1, . . . , n}
keeping invariant the function k 7→ zk(0).

If a2(0) 6= 0 then by the splitting lemma 3.4 for the Cn-case we may factor
P (t) = P1(t) . . . Pk(t) where the Pi(t) have again Cn-coefficients and where each
Pi(0) has all roots equal to ci, and where the ci are distinct. By the arguments
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above the roots of each Pi can be arranged differentiably, thus P has differentiable
roots yk(t).

But note that we have to apply a permutation on one side of 0 to the original
roots, in the following case: Two roots xk and xl meet at zero with xk(t)− xl(t) =
tckl(t) with ckl(0) 6= 0 (we say that they meet slowly). We may apply to this choice
an arbitrary permutation of any two roots which meet with ckl(0) = 0 (i.e. at least
of second order), and we get thus any differentiable choice near t = 0.

Now we show that we choose the roots differentiable on the whole domain R.
We start with with the ordered continuous roots y1(t) ≤ · · · ≤ yn(t). Then we put

xk(t) = yσ(t)(k)(t)

where the permutation σ(t) is given by

σ(t) = (1, 2)ε1,2(t) . . . (1, n)ε1,n(t)(2, 3)ε2,3(t) . . . (n − 1, n)εn−1,n(t)

and where εi,j(t) ∈ {0, 1} will be specified as follows: On the closed set Si,j of all t
where yi(t) and yj(t) meet of order at least 2 any choice is good. The complement
of Si,j is an at most countable union of open intervals, and in each interval we
choose a point where we put εi,j = 0. Going right (and left) from this point we
change εi,j in each point where yi and yj meet slowly. These points accumulate
only in Si,j . ¤

5. The real analytic case

5.1. Theorem. Let P be a real analytic curve of polynomials

P (t)(x) = xn − a1(t)x
n−1 + · · · + (−1)nan(t), t ∈ R,

with all roots real.
Then P is real analytically solvable, globally on R. All solutions differ by per-

mutations.

By a real analytic curve of polynomials we mean that all ai(t) are real analytic
in t (but see also [8]), and real analytically solvable means that we may find xi(t)
for i = 1, . . . , n which are real analytic in t and are roots of P (t) for all t. The
local existence part of this theorem is due to Rellich [11], Hilfssatz 2, his proof uses
Puiseux-expansions. Our proof is different and more elementary.

Proof. We first show that P is locally real analytically solvable, near each point
t0 ∈ R. It suffices to consider t0 = 0. Using the transformation in the introduction
we first assume that a1(t) = 0 for all t. We use induction on the degree n. If n = 1
the theorem holds. For n > 1 we consider several cases:

The case a2(0) 6= 0. Here not all roots of P (0) are equal and zero, so by the
splitting lemma 3.4 we may factor P (t) = P1(t).P2(t) for real analytic curves of
polynomials of positive degree, which have both all roots real, and we have reduced
the problem to lower degree.

The case a2(0) = 0. If a2(t) = 0 for all t, then by 3.6 all roots of P (t) are 0,
and we are done. Otherwise 1 ≤ m(a2) < ∞ for the multiplicity of a2 at 0, and
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by 3.6 all roots of P (0) are 0. If m(a2) > 0 is odd, then ∆̃2(P )(t) = −2na2(t)
changes sign at t = 0, so by 3.2 not all roots of P (t) are real for t on one side of 0.
This contradicts the assumption, so m(a2) = 2r is even. Then by the multiplicity
lemma 3.7 we have ai(t) = ai,ir(t)t

ir (i = 2, . . . , n) for real analytic ai,ir, and we
may consider the following real analytic curve of polynomials

Pr(t)(x) = xn + a2,2r(t)x
n−2 − a3,3r(t)x

n−3 · · · + (−1)nan,nr(t),

with all roots real. If Pr(t) is real analytically solvable and xk(t) are its real analytic
roots, then xk(t)tr are the roots of P (t) and the original curve P is real analytically
solvable too. Now a2,2r(0) 6= 0 and we are done by the case above.

Claim. Let x = (x1, . . . , xn) : I → R
n be a real analytic curve of roots of P on

an open interval I ⊂ R. Then any real analytic curve of roots of P on I is of the
form α ◦ x for some permutation α.

Let y : I → R
n be another real analytic curve of roots of P . Let tk → t0 be a con-

vergent sequence of distinct points in I. Then y(tk) = αk(x(tk)) = (xαk1, . . . , xαkn)
for permutations αk. By choosing a subsequence we may assume that all αk are
the same permutation α. But then the real analytic curves y and α ◦ x coincide on
a converging sequence, so they coincide on I and the claim follows.

Now from the local smooth solvability above and the uniqueness of smooth so-
lutions up to permutations we can glue a global smooth solution on the whole of
R. ¤

5.2. Remarks and examples. The uniqueness statement of theorem 5.1 is wrong
in the smooth case, as is shown by the following example: x2 = f(t)2 where f is
smooth. In each point t where f is infinitely flat one can change sign in the solution
x(t) = ±f(t). No sign change can be absorbed in a permutation (constant in t). If
there are infinitely many points of flatness for f we get uncountably many smooth
solutions.

Theorem 5.1 reminds of the curve lifting property of covering mappings. But
unfortunately one cannot lift real analytic homotopies, as the following example
shows. This example also shows that polynomials which are real analytically pa-
rameterized by higher dimensional variables are not real analytically solvable.

Consider the 2-parameter family x2 = t21 + t22. The two continuous solutions are
x(t) = ±|t|, but for none of them t1 7→ x(t1, 0) is differentiable at 0.

There remains the question whether for a real analytic submanifold of the space
of polynomials with all roots real one can choose the roots real analytically along
this manifold. The following example shows that this is not the case:

Consider

P (t1, t2)(x) = (x2 − (t21 + t22)) (x − (t1 − a1)) (x − (t2 − a2)),

which is not real analytically solvable, see above. For a1 6= a2 the coefficients
describe a real analytic embedding for (t1, t2) near 0.

6. Choosing roots of complex polynomials

6.1. In this section we consider the problem of finding smooth curves of complex
roots for smooth curves t 7→ P (t) of polynomials

P (t)(z) = zn − a1(t)z
n−1 + · · · + (−1)nan(t)
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with complex valued coefficients a1(t), . . . , an(t). We shall also discuss the real
analytic and holomorphic cases. The definition of the Bezoutiant B, its principal
minors ∆k, and formula 3.1.(2) are still valid. Note that now there are no restric-
tions on the coefficients. In this section the parameter may be real and P (t) may
be smooth or real analytic in t, or the parameter t may be complex and P (t) may
be holomorphic in t.

6.2. The case n = 2. As in the real case the problem reduces to the following
one: Let f be a smooth complex valued function, defined near 0 in R, such that
f(0) = 0. We look for a smooth function g : (R, 0) → C such that f = g2. If m(f) is

finite and even, we have f(t) = tm(f)h(t) with h(0) 6= 0, and g(t) := tm(f)/2
√

h(t)
is a local solution. If m(f) is finite and odd there is no solution g, also not in the
real analytic and holomorphic cases. If f(t) is flat at t = 0, then one has no definite
answer, and the example 2.4 is still not smoothly solvable.

6.3. The general case. Proposition 3.3 and the splitting lemma 3.4 are true in
the complex case. Proposition 3.5 is true also because it follows from 3.1.(2). Of
course lemma 3.6 is not true now and the multiplicity lemma 3.7 only partially
holds:

6.4. Multiplicity Lemma. Consider the smooth (real analytic, holomorphic)
curve of complex polynomials

P (t)(z) = zn + a2(t)z
n−2 − · · · + (−1)nan(t).

Then, for integers r, the following conditions are equivalent:

(1) m(ak) ≥ kr for all 2 ≤ k ≤ n.

(2) m(∆̃k) ≥ k(k − 1)r for all 2 ≤ k ≤ n.

Proof. (2) implies (1): Since ∆̃2 = na2 we have s2(0) = −2a2(0) = 0. From

∆̃3(0) = −s3(0)2 we then get s3(0) = 0, and so on we obtain s4(0) = · · · = sn(0) =
0. Then by 3.1.(1) ai(0) = 0 for i = 3, . . . , n. The rest of the proof coincides with
the one of the multiplicity lemma 3.7. ¤

6.5. Algorithm. Consider a smooth (real analytic, holomorphic) curve of poly-
nomials

P (t)(z) = zn − a1(t)z
n−1 + a2(t)z

n−2 − · · · + (−1)nan(t)

with complex coefficients. The algorithm has the following steps:

(1) If all roots of P (0) are pairwise different, P is smoothly (real analytically,
holomorphically) solvable for t near 0 by 3.3.

(2) If there are distinct roots at t = 0 we put them into two subsets which
factors P (t) = P1(t).P2(t) by the splitting lemma 3.4. We then feed Pi(t)
(which have lower degree) into the algorithm.

(3) All roots of P (0) are equal. We first reduce P (t) to the case a1(t) = 0 by
replacing the variable x by y = x − a1(t)/n. Then all roots are equal to 0
so ai(0) = 0 for all i.

If there does not exist an integer r > 0 with m(ai) ≥ ir for 2 ≤ i ≤ n, then
by 3.5 the polynomial is not smoothly (real analytically, holomorphically)
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solvable, by proposition 3.5: We store the polynomial as an output of the
procedure, as a factor of P (n) below.

If there exists an integer r > 0 with m(ai) ≥ ir for 2 ≤ i ≤ n, let
ai(t) = ai,ir(t)t

ir (i = 2, . . . , n) for smooth (real analytic, holomorphic)
ai,ir. Consider the following smooth (real analytic, holomorphic) curve of
polynomials

Pr(t)(x) = xn + a2,2r(t)x
n−2 − a3,3r(t)x

n−3 · · · + (−1)nan,nr(t).

If Pr(t) is smoothly (real analytically, holomorphically) solvable and xk(t)
are its smooth (real analytic, holomorphic) roots, then xk(t)tr are the roots
of P (t) and the original curve P is smoothly (real analytically, holomorphi-
cally) solvable too.

If for one coefficient we have m(ai) = ir then Pr(0) has a coefficient
which does not vanish, so not all roots of Pr(0) are equal, and we may feed
Pr into step (2).

If all coefficients of Pr(0) are zero, we feed Pr again into step (3).
In the smooth case all m(ai) may be infinite; In this case we store the

polynomial as a factor of P (∞) below.

In the holomorphic and real analytic cases the algorithm provides a splitting of
the polynomial P (t) = P (n)(t)P (s)(t) into holomorphic and real analytic curves,
where P (s)(t) is solvable, and where P (n)(t) is not solvable. But it may contain
solvable roots, as is seen by simple examples.

In the smooth case the algorithm provides a splitting near t = 0

P (t) = P (∞)(t)P (n)(t)P (s)(t)

into smooth curves of polynomials, where: P (∞) has the property that each root
meets another one of infinite order at t = 0; and where P (s)(t) is smoothly solvable,
and no two roots meet of infinite order at t = 0; P (n) is not smoothly solvable, with
the same property as above.

6.6. Remarks. If P (t) is a polynomials whose coefficients are meromorphic func-
tions of a complex variable t, there is a well developed theory of the roots of
P (t)(x) = 0 as multi-valued meromorphic functions, given by Puiseux or Laurent-
Puiseux series. But it is difficult to extract holomorphic information out of it, and
the algorithm above complements this theory. See for example Theorem 3 on page
370 (Anhang, §5) of [1]. The question of choosing roots continuously has been
treated in [2]: one finds sufficient conditions for it.

7. Choosing eigenvalues and eigenvectors of matrices smoothly

In this section we consider the following situation: Let A(t) = (Aij(t)) be a
smooth (real analytic, holomorphic) curve of real (complex) (n × n)-matrices or
operators, depending on a real (complex) parameter t near 0. What can we say
about the eigenvalues and eigenfunctions of A(t)?

Let us first recall some known results. These have some difficulty with the
interpretation of the eigenprojections and the eigennilpotents at branch points of
the eigenvalues, see [7], II, 1.11.
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7.1. Result. ([7], II, 1.8) Let C ∋ t 7→ A(t) be a holomorphic curve. Then all
eigenvalues, all eigenprojections and all eigennilpotents are holomorphic with at
most algebraic singularities at discrete points.

7.2. Result. ([11], Satz 1) Let t 7→ A(t) be a real analytic curve of hermitian com-
plex matrices. Let λ be a k-fold eigenvalue of A(0) with k orthonormal eigenvectors
vi, and suppose that there is no other eigenvalue of A near λ. Then there are k real
analytic eigenvalues λi(t) through λ, and k orthonormal real analytic eigenvectors
through the vi, for t near 0.

The condition that A(t) is hermitian cannot be omitted. Consider the following
example of real semisimple (not normal) matrices

A(t) :=

(

2t + t3 t
−t 0

)

,

λ±(t) = t +
t2

2
± t2

√

1 + t2

4 , x±(t) =

(

1 + t
2 ± t

√

1 + t2

4

−1

)

,

where at t = 0 we do not get a base of eigenvectors.

7.3. Result. (Rellich [13], see also Kato [7], II, 6.8) Let A(t) be a C1-curve of
symmetric matrices. Then the eigenvalues can be chosen C1 in t, on the whole
parameter interval.

For an extension of this result to Hilbert space, under stronger assumptions,
see 7.8, whose proof will need 7.3. This result is best possible for the degree of
continuous differentiability, as is shown by the following example.

7.4 Example. Consider the symmetric matrix

A(t) =

(

a(t) b(t)
b(t) −a(t)

)

The characteristic polynomial of A(t) is λ2 − (a(t)2 + b(t)2). We shall specify the
entries a and b as smooth functions in such a way, that a(t)2 + b(t)2 does not admit
a C2-square root.

Assume that a(t)2 + b(t)2 = c(t)2 for a C2-function c. Then we may compute as
follows:

c2 = a2 + b2

cc′ = aa′ + bb′

(c′)2 + cc′′ = (a′)2 + aa′′ + (b′)2 + bb′′

c′′ =
1

c

(

(a′)2 + aa′′ + (b′)2 + bb′′ − (c′)2
)

=
1

c

(

(a′)2 + aa′′ + (b′)2 + bb′′ − (aa′ + bb′)2

c2

)

=
(ab′ − ba′)2 + a3a′′ + b3b′′ + ab2a′′ + a2bb′′

c3
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By c2 = a2 + b2 we have

∣

∣

∣

∣

a3

c3

∣

∣

∣

∣

≤ 1,

∣

∣

∣

∣

b3

c3

∣

∣

∣

∣

≤ 1,

∣

∣

∣

∣

ab2

c3

∣

∣

∣

∣

≤ 1√
3
,

∣

∣

∣

∣

a2b

c3

∣

∣

∣

∣

≤ 1√
3
.

So for C2-functions a, b, and continuous c all these terms are bounded. We will
now construct smooth a and b such that

(

(ab′ − ba′)2

c3

)2

=
(ab′ − ba′)4

(a2 + b2)3

is unbounded near t = 0. This contradicts that c is C2. For this we choose a and b
similar to the function f in example 2.4 with the same tn and hn:

a(t) : =

∞
∑

n=1

hn(t − tn).

(

2n

2n
(t − tn) +

1

4n

)

,

b(t) : =

∞
∑

n=1

hn(t − tn).

(

2n

2n
(t − tn)

)

.

Then a(tn) = 1
4n , b(tn) = 0, |c(tn)| = 1

4n , and b′(tn) = 2n
2n .

7.5. Result. (Rellich [12], see also Kato [7], VII, 3.9) Let A(t) be a real analytic
curve of unbounded self-adjoint operators in a Hilbert space with common domain
of definition and with compact resolvent.

Then the eigenvalues and the eigenvectors can be chosen real analytically in t,
on the whole parameter domain.

7.6. Theorem. Let A(t) = (Aij(t)) be a smooth curve of complex hermitian
(n×n)-matrices, depending on a real parameter t ∈ R, acting on a hermitian space
V = C

n, such that no two of the continuous eigenvalues meet of infinite order at
any t ∈ R if they are not equal for all t.

Then all the eigenvalues and all the eigenvectors can be chosen smoothly in t, on
the whole parameter domain R.

The last condition permits that some eigenvalues agree for all t — we speak of
higher ‘generic multiplicity’ in this situation.

Proof. The proof will use an algorithm.
Note first that by 4.2 the characteristic polynomial

P (A(t))(λ) = det(A(t) − λI)(1)

= λn − a1(t)λ
n−1 + a2(t)λ

n−2 − · · · + (−1)nan(t)

=

n
∑

i=0

Trace(ΛiA(t))λn−i

is smoothly solvable, with smooth roots λ1(t), . . . λn(t), on the whole parameter
interval.
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Case 1: distinct eigenvalues. If A(0) has some eigenvalues distinct, then one can
reorder them in such a way that for i0 = 0 < 1 ≤ i1 < i2 < · · · < ik < n = ik+1 we
have

λ1(0) = · · · = λi1(0) < λi1+1(0) = · · · = λi2(0) < · · · < λik+1(0) = · · · = λn(0)

For t near 0 we still have

λ1(t), . . . , λi1(t) < λi1+1(t), . . . , λi2(t) < · · · < λik+1(t), . . . , λn(t)

Now for j = 1, . . . , k + 1 consider the subspaces

V
(j)
t =

ij
⊕

i=ij−1+1

{v ∈ V : (A(t) − λi(t))v = 0}

Then each V
(j)
t runs through a smooth vector subbundle of the trivial bundle

(−ε, ε) × V → (−ε, ε), which admits a smooth framing eij−1+1(t), . . . , eij
(t). We

have V =
⊕k+1

j=1 V
(j)
t for each t.

In order to prove this statement note that

V
(j)
t = ker

(

(A(t) − λij−1+1(t)) ◦ . . . ◦ (A(t) − λij
(t))

)

so V
(j)
t is the kernel of a smooth vector bundle homomorphism B(t) of constant rank

(even of constant dimension of the kernel), and thus is a smooth vector subbundle.
This together with a smooth frame field can be shown as follows: Choose a basis of
V such that A(0) is diagonal. Then by the elimination procedure one can construct
a basis for the kernel of B(0). For t near 0, the elimination procedure (with the
same choices) gives then a basis of the kernel of B(t); the elements of this basis are
then smooth in t, for t near 0.

From the last result it follows that it suffices to find smooth eigenvectors in each
subbundle V (j) separately, expanded in the smooth frame field. But in this frame
field the vector subbundle looks again like a constant vector space. So feed each of
this parts (A restricted to V (j), as matrix with respect to the frame field) into case
2 below.

Case 2: All eigenvalues at 0 are equal. So suppose that A(t) : V → V is hermitian

with all eigenvalues at t = 0 equal to a1(0)
n , see (1).

Eigenvectors of A(t) are also eigenvectors of A(t) − a1(t)
n I, so we may replace

A(t) by A(t)− a1(t)
n I and assume that for the characteristic polynomial (1) we have

a1 = 0, or assume without loss that λi(0) = 0 for all i and so A(0) = 0.
If A(t) = 0 for all t we choose the eigenvectors constant.

Otherwise let Aij(t) = tA
(1)
ij (t). From (1) we see that the characteristic polyno-

mial of the hermitian matrix A(1)(t) is P1(t) in the notation of 3.8, thus m(ai) ≥ i
for 2 ≤ i ≤ n (which follows from 3.5 also).

The eigenvalues of A(1)(t) are the roots of P1(t), which may be chosen in a smooth
way, since they again satisfy the condition of theorem 4.2. Note that eigenvectors
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of A(1) are also eigenvectors of A. If the eigenvalues are still all equal, we apply
the same procedure again, until they are not all equal: we arrive at this situation
by the assumption of the theorem. Then we apply case 1.

This algorithm shows that one may choose the eigenvectors xi(t) of A(t) in a
smooth way, locally in t. It remains to extend this to the whole parameter interval.

If some eigenvalues coincide locally, then on the whole of R, by the assumption.
The corresponding eigenspaces then form a smooth vector bundle over R, by case 1,
since those eigenvalues, which meet in isolated points are different after application
of case 2.

So we we get V =
⊕

W
(j)
t where each W

(j)
t is a smooth sub vector bundles of

V × R, whose dimension is the generic multiplicity of the corresponding smooth
eigenvalue function. It suffices to find global orthonormal smooth frames for each
of these vector bundles; this exists since the vector bundle is smoothly trivial, by
using parallel transport with respect to a smooth Hermitian connection. ¤

7.7. Example. (see [11], §2) That the last result cannot be improved is shown by
the following example which rotates a lot:

x+(t) : =

(

cos 1
t

sin 1
t

)

, x−(t) :=

(

− sin 1
t

cos 1
t

)

, λ±(t) = ±e−
1

t2 ,

A(t) : = (x+(t), x−(t))

(

λ+(t) 0
0 λ−(t)

)

(x+(t), x−(t))−1

= e−
1

t2

(

cos 2
t sin 2

t

sin 2
t − cos 2

t

)

.

Here t 7→ A(t) and t 7→ λ±(t) are smooth, whereas the eigenvectors cannot be
chosen continuously.

7.8. Theorem. Let t 7→ A(t) be a smooth curve of unbounded self-adjoint op-
erators in a Hilbert space with common domain of definition and with compact
resolvent. Then the eigenvalues of A(t) may be arranged in such a way that each
eigenvalue is C1.

Suppose moreover that no two of the continuously chosen eigenvalues meet of
infinite order at any t ∈ R if they are not equal. Then the eigenvalues and the
eigenvectors can be chosen smoothly in t, on the whole parameter domain.

Remarks. That A(t) is a smooth curve of unbouded operators means the follow-
ing: There is a dense subspace V of the Hilbert space H such that V is the domain
of definition of each A(t), and such that A(t)∗ = A(t) with the same domains V ,
where the adjoint operator A(t)∗ is defined by 〈A(t)u, v〉 = 〈u,A(t)∗v〉 for all v for
which the left hand side is bounded as function in u ∈ H. Moreover we require that
t 7→ 〈A(t)u, v〉 is smooth for each u ∈ V and v ∈ H. This implies that t 7→ A(t)u
is smooth R → H for each u ∈ V by [9], 2.3 or [5], 2.6.2.

The first part of the proof will show that t 7→ A(t) smooth implies that the
resolvent (A(t) − z)−1 is smooth in t and z jointly, and only this is used later in
the proof.

It is well known and in the proof we will show that if for some (t, z) the resolvent
(A(t) − z)−1 is compact then for all t ∈ R and z in the resolvent set of A(t).
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Proof. For each t consider the norm ‖u‖2
t := ‖u‖2 + ‖A(t)u‖2 on V . Since A(t) =

A(t)∗ is closed, (V, ‖ ‖t) is again a Hilbert space with inner product 〈u, v〉t :=
〈u, v〉 + 〈A(t)u,A(t)v〉. All these norms are equivalent since (V, ‖ ‖t + ‖ ‖s) →
(V, ‖ ‖t) is continuous and bijective, so an isomorphism by the open mapping
theorem. Then t 7→ 〈u, v〉t is smooth for fixed u, v ∈ V , and by the multilinear
uniform boundedness principle ([9], 5.17 or [5], 3.7.4 + 4.1.19) the mapping t 7→
〈 , 〉t is smooth into the space of bounded bilinear forms on (V, ‖ ‖s) for each
fixed s. By the exponential law ([9], 3.12 or [5], 1.4.3) (t, u) 7→ ‖u‖2

t is smooth
from R × (V, ‖ ‖s) → R for each fixed s. Thus all Hilbert norms ‖ ‖t are locally
uniformly equivalent, since {‖u‖t : |t| ≤ K, ‖u‖s ≤ 1} is bounded by LK,s in R, so
‖u‖t ≤ LK,s‖u‖s for all |t| ≤ K. Let us now equip V with one of the equivalent
Hilbert norms, say ‖ ‖0. Then each A(t) is a globally defined operator V → H
with closed graph and is thus bounded, and by using again the (multi)linear uniform
boundedness theorem as above we see that t 7→ A(t) is smooth R → L(V,H).

If for some (t, z) ∈ R × C the bounded operator A(t) − z : V → H is invertible,
then this is true locally and (t, z) 7→ (A(t)−z)−1 : H → V is smooth since inversion
is smooth on Banach spaces.

Since each A(t) is hermitian the global resolvent set {(t, z) ∈ R×C : (A(t)− z) :
V → H is invertible} is open, contains R × (C \ R), and hence is connected.

Moreover (A(t) − z)−1 : H → H is a compact operator for some (equivalently
any) (t, z) if and only if the inclusion i : V → H is compact, since i = (A(t)−z)−1 ◦
(A(t) − z) : V → H → H.

Let us fix a parameter s. We choose a simple smooth curve γ in the resolvent
set of A(s) for fixed s.

(1) Claim For t near s, there are C1-functions t 7→ λi(t) : 1 ≤ i ≤ N which
parametrize all eigenvalues (repeated according to their multiplicity) of A(t)
in the interior of γ. If no two of the generically different eigenvalues meet
of infinite order they can be chosen smoothly.

By replacing A(s) by A(s)−z0 if necessary we may assume that 0 is not an eigenvalue
of A(s). Since the global resolvent set is open, no eigenvalue of A(t) lies on γ or
equals 0, for t near s. Since

t 7→ − 1

2πi

∫

γ

(A(t) − z)−1 dz =: P (t, γ)

is a smooth curve of projections (on the direct sum of all eigenspaces corresponding
to eigenvalues in the interior of γ) with finite dimensional ranges, the ranks (i.e.
dimension of the ranges) must be constant: it is easy to see that the (finite) rank
cannot fall locally, and it cannot increase, since the distance in L(H,H) of P (t) to
the subset of operators of rank ≤ N = rank(P (s)) is continuous in t and is either
0 or 1. So for t near s, there are equally many eigenvalues in the interior, and we
may call them µi(t) : 1 ≤ i ≤ N (repeated with multiplicity). Let us denote by
ei(t) : 1 ≤ i ≤ N a corresponding system of eigenvectors of A(t). Then by the
residue theorem we have

N
∑

i=1

µi(t)
pei(t)〈ei(t), 〉 = − 1

2πi

∫

γ

zp(A(t) − z)−1 dz
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which is smooth in t near s, as a curve of operators in L(H,H) of rank N , since 0
is not an eigenvalue.

(2) Claim. Let t 7→ T (t) ∈ L(H,H) be a smooth curve of operators of rank N in
Hilbert space such that T (0)T (0)(H) = T (0)(H). Then t 7→ Trace(T (t)) is
smooth near 0 (note that this implies T smooth into the space of nuclear op-
erators, since all bounded linear functionals are of the form A 7→ Trace(AB),
by [9], 2.3 or 2.14.(4).

Let F := T (0)(H). Then T (t) = (T1(t), T2(t)) : H → F ⊕ F⊥ and the image of
T (t) is the space

T (t)(H) = {(T1(t)(x), T2(t)(x)) : x ∈ H}
= {(T1(t)(x), T2(t)(x)) : x ∈ F} for t near 0

= {(y, S(t)(y)) : y ∈ F}, where S(t) := T2(t) ◦ (T1(t)|F )−1.

Note that S(t) : F → F⊥ is smooth in t by finite dimensional inversion for T1(t)|F :
F → F . Now

Trace(T (t)) = Trace

((

1 0
−S(t) 1

) (

T1(t)|F T1(t)|F⊥

T2(t)|F T2(t)|F⊥

) (

1 0
S(t) 1

))

= Trace

((

T1(t)|F T1(t)|F⊥

0 −S(t)T1(t)|F⊥ + T2(t)|F⊥

)(

1 0
S(t) 1

))

= Trace

((

T1(t)|F T1(t)|F⊥

0 0

) (

1 0
S(t) 1

))

, since rank = N

= Trace

(

T1(t)|F + (T1(t)|F⊥)S(t) T1(t)|F⊥

0 0

)

= Trace
(

T1(t)|F + (T1(t)|F⊥)S(t) : F → F
)

,

which is visibly smooth since F is finite dimensional.
From claim (2) we now may conclude that

N
∑

i=1

µi(t)
p = − 1

2πi
Trace

∫

γ

zp(A(t) − z)−1 dz

is smooth for t near s.
Thus the Newton polynomial mapping sN (µ1(t), . . . , µN (t)) is smooth, so also

the elementary symmetric polynomial σN (µ1(t), . . . , µN (t)) is smooth, and thus
{µi(t) : 1 ≤ i ≤ N} is the set of roots of a polynomial with smooth coefficients.
By theorem 4.3 there is an arrangement of these roots such that they become
differentiable. If no two of the generically different ones meet of infinite order, by
theorem 4.2 there is even a smooth arrangement.

To see that in the general case they are even C1 note that the images of the
projections P (t, γ) of constant rank for t near s describe the fibers of a smooth
vector bundle. The restriction of A(t) to this bundle, viewed in a smooth framing,
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becomes a smooth curve of symmetric matrices, for which by Rellich’s result 7.3
the eigenvalues can be chosen C1. This finishes the proof of claim (1).

(3) Claim. Let t 7→ λi(t) be a differentiable eigenvalue of A(t), defined on some
interval. Then

|λi(t1) − λi(t2)| ≤ (1 + |λi(t2)|)(ea|t1−t2| − 1)

holds for a continuous positive function a = a(t1, t2) which is independent
of the choice of the eigenvalue.

For fixed t near s take all roots λj which meet λi at t, order them differentiably near
t, and consider the projector P (t, γ) onto the joint eigenspaces for only those roots
(where γ is a simple smooth curve containing only λi(t) in its interior, of all the
eigenvalues at t). Then the image of u 7→ P (u, γ), for u near t, describes a smooth
finite dimensional vector subbundle of R×H, since its rank is constant. For each u
choose an othonormal system of eigenvectors vj(u) of A(u) corresponding to these
λj(u). They form a (not necessarily continuous) framing of this bundle. For any
sequence tk → t there is a subsequence such that each vj(tk) → wj(t) where wj(t)
is again an orthonormal system of eigenvectors of A(t) for the eigenspace of λi(t).
Now consider

A(t) − λi(t)

tk − t
vi(tk) +

A(tk) − A(t)

tk − t
vi(tk) − λi(tk) − λi(t)

tk − t
vi(tk) = 0,

take the inner product of this with wi(t), note that then the first summand vanishes,
and let tk → t to obtain

λ′
i(t) = 〈A′(t)wi(t), wi(t)〉 for an eigenvector wi(t) of A(t) with eigenvalue λi(t).

This implies, where Vt = (V, ‖ ‖t),

|λ′
i(t)| ≤ ‖A′(t)‖L(Vt,H)‖wi(t)‖Vt

‖wi(t)‖H

= ‖A′(t)‖L(Vt,H)

√

‖wi(t)‖2
H + ‖A(t)wi(t)‖2

H

= ‖A′(t)‖L(Vt,H)

√

1 + λi(t)2 ≤ a + a|λi(t)|,

for a constant a which is valid for a compact interval of t’s since t 7→ ‖ ‖2
t is

smooth on V . By Gronwall’s lemma (see e.g. [3], (10.5.1.3)) this implies claim (3).
By the following arguments we can conclude that all eigenvalues may be num-

bered as λi(t) for i in N or Z in such a way that they are differentiable (by which
we mean C1, or C∞ under the stronger assumption) in t ∈ R. Note first that by
claim (3) no eigenvalue can go off to infinity in finite time since it may increase at
most exponentially. Let us first number all eigenvalues of A(0) increasingly.

We claim that for one eigenvalue (say λ0(0)) there exists a differentiable extension
to all of R; namely the set of all t ∈ R with a differentiable extension of λ0 on the
segment from 0 to t is open and closed. Open follows from claim (1). If this intervall
does not reach infinity, from claim (3) it follows that (t, λ0(t)) has an accumulation
point (s, x) at the the end s. Clearly x is an eigenvalue of A(s), and by claim (1)
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the eigenvalues passing through (s, x) can be arranged differentiably, and thus λ0(t)
converges to x and can be extended differentiably beyond s.

By the same argument we can extend iteratively all eigenvalues differentiably to
all t ∈ R: if it meets an already chosen one, the proof of 4.3 shows that we may
pass through it coherently.

Now we start to choose the eigenvectors smoothly, under the stronger assump-
tion. Let us consider again eigenvalues {λi(t) : 1 ≤ i ≤ N} contained in the interior
of a smooth curve γ for t in an open interval I. Then Vt := P (t, γ)(H) is the fiber
of a smooth vector bundle of dimension N over I. We choose a smooth framing
of this bundle, and use then the proof of theorem 7.6 to choose smooth sub vector
bundles whose fibers over t are the eigenspaces of the eigenvalues with their generic
multiplicity. By the same arguments as in 7.6 we then get global vector sub bundles
with fibers the eigenspaces of the eigenvalues with their generic multiplicity, and
finally smooth eigenvectors for all eigenvalues. ¤
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