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Abstract

After a short introduction to the finite dimensional case of orbit spaces and a
summary of the most important results on Hilbert manifolds and smooth infinite
dimensional manifolds, we consider three orbit spaces related to the space Conn(E)
of connections on a fiber bundle E →M and its gauge group Gau(E).

This investigation is motivated by a decomposition of the space of metrics
Met(E) on the total space of the bundle into three parts on which Gau(E) acts,
one of them being Conn(E). For the orbit spaces related to Met(E) and to
Conn(E) × Met(V E) the direct sum of the space of connections and the space
of fiber metrics on the vertical bundle, respectively, slice theorems will be proven,
which lead to stratifications of the orbit spaces.

For the orbit space related to the space of connections on E counterexamples will
show that, except for the trivial cases of zero dimensional fiber or zero dimensional
base, no such slice theorem can exist.

Kurzfassung

Nach einer kurzen Einführung in Orbiträume im endlichdimensionalen Fall und
einer Zusammenfassung der wichtigsten Ergebnisse über Hilbert Mannigfaltigkeiten
und glatte unendlichdimensionale Mannigfaltigkeiten betrachten wir drei Orbiträu-
me, die mit den Konnexionen Conn(E) eines Faserbündels E → M und dessen
Eichgruppe Gau(E) zusammenhängen.

Dies ist motiviert durch die Zerlegung des Raumes der Metriken Met(E) auf
dem Totalraum des Bündels in drei Teile, auf denen jeweils die Eichgruppe wirkt.
Einer dieser Teile ist der Raum der Konnexionen Conn(E). Für den Orbitraum zu
Met(E) und dem Orbitraum zu Conn(E) ×Met(V E), der direkten Summe der
Räume der Konnexionen und der Fasermetriken auf dem vertikalen Bündel, wird
ein Scheibensatz bewiesen, der zu einer Stratifizierung der Orbiträume führt.

Für den Orbitraum, der zum Raum der Konnexionen gehört, wird mit Hilfe von
Gegenbeispielen gezeigt, daß kein Scheibensatz existieren kann, ausgenommen in
den trivialen Fällen von nulldimensionaler Basis oder nulldimensionaler Faser.
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1. Introduction

In modern mathematics and physics actions of Lie groups on manifolds and
the resulting orbit spaces (moduli spaces) are of great interest. For example, the
moduli space of principal connections on a principal fiber bundle modulo the group
of principal bundle automorphisms is the proper configuration space for Yang–Mills
field theory (as e.g. outlined in [Gribov 1977], [Singer 1978], and [Narasimhan,
Ramadas 1979]).

Usually, when symmetries and invariance groups are considered, a problem re-
duces to the corresponding orbit space, and therefore the structure of these spaces
has to be investigated. This structure theory is quite complicated in general, since
these spaces usually are singular spaces and not again manifolds. In fact, only if the
action of the Lie group is free (i.e. all isotropy subgroups of single points are triv-
ial), the resulting orbit space bears a manifold structure and forms together with
the manifold and the quotient map a principal fiber bundle, whose structure is well
known. More often, the orbit space admits a stratification into smooth manifolds
with an open and dense largest stratum, the set of principal orbits (see section 2).
This stratified space can then be treated almost like a manifold when taking spe-
cial care. The existence of such a stratification is usually shown by proving the
existence of slices at every point for the group action.

All these problems arise already, if both the Lie group and the manifold are finite
dimensional. As shown in section 4, both notions can be very widely generalized to
infinite dimensions, and again the structure of the, now often infinite dimensional,
moduli spaces is interesting. For example the above mentioned configuration space
of Yang–Mills theory is constructed from infinite dimensional spaces. Again, a slice
theorem for the action is the way to prove existence of a (generalized) stratification
of the moduli space. This slice theorem turns out to be more difficult than in the
finite dimensional case, because of the lack of an inverse function theorem. In order
to reduce this problem to a very special inverse function theorem with very strong
prerequisites, an approach using Hilbert manifolds and Sobolev completions has to
be taken in order to construct the slice via inverse limits of Hilbert manifolds.

In spite of these technical difficulties, these infinite dimensional generalizations
are very interesting, since many problems in modern theoretical physics lead to
moduli spaces in the infinite dimensional setting. Not only the above mentioned
Yang–Mills theory is considered, but also the space of Riemannian metrics modulo
the group of diffeomorphisms, which appears in General Relativity, (principal) fiber
bundle connections modulo the gauge group arise from gauge theories, and also one
approach to quantization, the geometric quantization method, is taken via orbit
spaces, as described in [Kirillov 1982], [Kirillov 1990], and [Vizman 1994].

Also, very recent research in theoretical physics is connected to moduli spaces:
e.g. invariance of Euler numbers of moduli spaces of instantons on 4–manifolds
[Vafa, Witten 1990], moduli spaces of parabolic Higgs bundles, which are connected
to Higgs fields [Maruyama, Yokogawa 1992], [Nakajima 1996].

In algebraic topology moduli spaces play an important role, either, [Maruyama
1996], [Simpson 1994], [Simpson 1995], and also the definition of the famous Don-
aldson Polynomials involves moduli spaces ([Donaldson 1990]).
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In this thesis, I will try to analyze the structure of some moduli spaces, which
are connected with the space of connections on a general fiber bundle with compact
fiber and compact base space. In section 2 some known results about actions of
finite dimensional groups on finite dimensional manifolds will be recalled, such that
the notion of slices will become clear. Then in sections 3 and 4 the basic facts
about Hilbert manifolds and about infinite dimensional smooth manifolds and Lie
groups will be introduced. Slice theorems for two moduli spaces will be shown in
section 5. In section 6, finally, counterexamples will show that there cannot exist
a slice theorem for the moduli space Conn(E)/Gau(E) of connections on a general
fiber bundle modulo the gauge group.

The result is connected with a slice theorem for Met(M)/Diff(M), the orbit
space of metrics on a manifold with respect to the action of the group of diffeo-
morphisms proved by [Ebin 1968], another slice theorem proved by [Kondracki,
Rogulski 1986] for Conn(P )/Gau(P ), the space of connections on a principal fiber
bundle modulo the gauge group, [Cerf] for F/Diff(R) the space of functions of finite
codimension at critical points on R modulo the diffeomorphism group. For a general
survey on slice theorems and slices see [Isenberg, Marsden 1982], where a slice the-
orem for the space of solutions of Einstein’s equations modulo the diffeomorphism
group is proven.

Finally, the non-existence of the slice theorem in the case connections on a fiber
bundle modulo the gauge group is connected to the fact, that C∞(S1,R)/Diff(S1),
where the diffeomorphisms act by composition, admits in general no slices, except
when restricted to the space of functions of finite codimension at critical points.
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2. G–manifolds and Lie group actions

In this section, I want to introduce the basic facts about finite dimensional Lie
groups acting on finite dimensional manifolds (some of them without proofs). These
facts will be taken for motivation of the terms in infinite dimensions. Moreover, a
basic example will be discussed, which helps to understand the properties of slices
and sections.

Throughout this chapter all manifolds and groups are supposed to be finite
dimensional, except if stated otherwise explicitly.

2.1. Definition. Let G be a Lie group, M a smooth manifold. A smooth action
of G on M is a C∞ mapping l : G ×M → M (l(g, x) = lg(x) = lx(g) = gx), such
that

ex = x ∀x ∈M

(g1g2)x = g1(g2x) ∀g1, g2 ∈ G, x ∈M.

We say that G acts on M , or M is a G–manifold. Furthermore, a G–action on M
is called

(1) linear, if M is a vector space, and the action is a representation.
(2) affine, if M is an affine space, and all the lg are affine transformations.
(3) orthogonal, if (M,γ) is a Euclidean space, and the action is a subgroup of

O(M,γ).
(4) isometric, if (M,γ) is a Riemannian manifold, and every lg is an isometry.
(5) symplectic, if (M,ω) is a symplectic manifold, and every lg is a symplecto-

morphism.

2.2. Definition. Let M be a G–manifold, x ∈M

The set G · x := {gx | g ∈ G} is called the (G–)orbit of x.
The closed subgroup Gx := {g ∈ G | gx = x} of G is called the isotropy
subgroup of x.

Then TeG =: g, T0(G/Gx) ' g/Lie(Gx), and

G ��lx

��

M��
�

�
�

�

G/Gx p�

�

where the mapping G/Gx →M is an initial immersion with image G · x.

2.3. Lemma.

(1) Ggx = gGxg
−1

(2) G · x ∩G · y 6= ∅ =⇒ G · x = G · y
(3) Tx(G · x) = Te(lx).g

Proof. Is clear.
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2.4. Definition. For a G–manifold M , let M/G be the space of all G–orbits
equipped with the quotient topology; π : M → M/G. Then M/G is called the
orbit space (moduli space) of M with respect to G.

The set of closed subgroups of G bears an equivalence relation H ∼ H ′ : ⇐⇒
H = gH ′g−1 for some g ∈ G. The equivalence classes are called conjugacy classes.

The set of conjugacy classes admits a partial order (H) ≤ (H ′) if H ⊆ gH ′g−1

for some g ∈ G.
For an orbit G · x, by Lemma 2.3(1), the isotropy subgroups Ggx form a conju-

gacy class (Gx), which is called the isotropy type of the orbit G · x. Two orbits are
said to be of the same type if their isotropy types coincide.

2.5. Definition. For two G–manifolds M , N and a smooth mapping f : M → N
we say f is equivariant iff f(gx) = g f(x).

2.6. Definition. LetM be a G–manifold. An orbit G · x is called a principal orbit,
if there exists an open neighborhood U of x in M with ∀y ∈ U : ∃f : G · x→ G · y
G–equivariant, which is equivalent to ∀y ∈ U : ∃a ∈ G : Gx ⊆ aGya

−1.
x ∈M is called a regular point if G · x is a principal orbit, and is called singular

point otherwise.
Mreg := {regular points}, Msing := {singular points}.

2.7. Definition. Let x ∈ M , M a G–manifold. A subset S of M is called a slice
at x, if there exists a G–invariant open neighborhood U of the orbit G · x and a
smooth equivariant retraction r : U → G · x, such that S = r−1(x).

2.8. Proposition. Let M be a G–manifold and S a slice at x. Then

(1) x ∈ S and Gx · S ⊆ S
(2) g · S ∩ S 6= ∅ =⇒ g ∈ Gx
(3) G · S = {gy|g ∈ G, y ∈ S} = U with U as in definition 2.7.

Proof. Let r be the (smooth, equivariant) retraction. Then we know that r is a
submersion and S = r−1(x). Thus Gy ⊆ Gx ∀y ∈ S. Therefore, r|G·y : G · y →
G · x is also a submersion ∀y, which implies that x is a regular value for r. That
suffices to show that S = r−1(x) is a sub-manifold of U and also of M .
Thus we have y ∈ S, gy ∈ S =⇒ r(gy) = x = gr(x) = gx =⇒ g ∈ Gx, which in
return implies (2).
Then g ∈ Gx, s ∈ S =⇒ r(gs) = gr(s) = gx = x =⇒ Gx · S ⊆ S, which shows
(1).
(3) can be shown as follows: y ∈ U =⇒ ∃g ∈ G : gr(y) = x =⇒ r(gy) = gr(y) =
x =⇒ gy ∈ S. ¤

2.9. Corollary. Let S be a slice at x for the G–manifold M . Then

(1) S is a Gx–manifold
(2) For y ∈ S is Gy ⊆ Gx.
(3) If G · x is a principal orbit and Gx compact, then Gx = Gy ∀y ∈ S, i.e. all

orbits near G · x are principal, too.
(4) Two Gx–orbits Gx · s1 and Gx · s2 are of the same type, iff the two G–orbits

G · s1 and G · s2 in M are of the same type.
(5) S/Gx is isomorphic to G · S/G, an open neighborhood of G · x in the orbit

space M/G.
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Proof.

(1) is clear
(2) is clear
(3) y ∈ S =⇒ Gy ⊆ Gx(compact) =⇒ Gy is compact. G · x is principal =⇒

for y near x is Gx conjugate to a subgroup of Gy. Therefore Gx = Gy.
(4) K = Gx, s ∈ S, K acts on S. Ks = Gs (see Proposition 2.8(2)). Gxs1 =

Gxs2 =⇒ Ks1 is conjugate to Ks2 in Gx. Hence Gs1 is conjugate to Gs2 .
(5) follows from 2.8(2) and (3).

¤

2.10. Example. An elementary example will be useful to illustrate the properties
of slices a bit.

Take M = Rn and G = SO(n) acting by rotations about 0 ∈ Rn. The orbit
G · 0 = {0}, G0 = G, and the slice S at zero may be chosen to be any open ball
centered at 0. For any other point x ∈ Rn G ·x is the sphere of radius ‖x‖2 centered
at 0, Gx = {e}, and any sufficiently short line segment transversal to G · x through
x can be chosen as S.

2.11. Proposition. If S is a slice at x in a G–manifoldM . Then there exists a G–
equivariant diffeomorphism G[S] = G×Gx

S → G ·S, which maps the “zero-section”
G×Gx

{x} onto G · x.

Proof. The map f : G[S]→ G ·S given by f : [(g, s)] 7→ g · s is smooth and has the
required properties. ¤

2.12. Definition. An action l : G×M →M is called proper, if one, hence all, of
the following equivalent conditions is satisfied.

(1) (l, Id) : G×M →M ×M (g, x) 7→ (gx, x) is proper
(2) gnxn → y and xn → x imply gn has a convergent subsequence.
(3) K,L ⊂M compact =⇒ {g ∈ G|gK ∩ L 6= ∅} is compact

M is then called a proper G–manifold.

Proof. (1) =⇒ (2) is clear. Suppose (2) =⇒ (3) does not hold. Then ∃(gn) without
cluster point, gnK ∩ L 6= ∅. Choose xn ∈ K with gnxn ∈ L. Without loss of
generality xn → x, gnxn → y, which is a contradiction.
(3) =⇒ (1): (l, Id)−1(L ×K) = {(g, x) : x ∈ K, gx ∈ L} ⊆

closed
{g ∈ G : gK ∩ L 6=

∅} ×K which is compact. ¤

2.13. Lemma. (M,γ) a Riemannian manifold, l : G × M → M an effective,
isometric action, such that ľ(G) is closed in Isom(M,γ). Then l is a proper action.

Now we have collected most of the important results and terms for the first
important theorem, which was proven by R. Palais in 1961.

2.14. Slice Theorem. Let M be a G–manifold, x ∈ M such that Gx is compact
and for all open neighborhoods U of Gx in G there is an open neighborhood V of x
in M with {g ∈ G|gV ∩ V 6= ∅} ⊆ U . Then there exists a slice at x.

Idea of proof. Take a Riemannian metric onM , and construct aGx–invariant metric
γ̃. Now construct a so called “almost slice” S̃: S̃ := expγ̃x(Tx(G · x)

⊥ ∩ B(ε)). If
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you take an open neighborhood U of 0 in G/Gx, such that there exists a section
χ : U → G with χ(0) = e. Then

f : U × S̃ →M (u, s) 7→ χ(u) · s is a diffeomorphism (maybe for somewhat smaller

U , S̃) onto an open neighborhood of x inM . Using the assumption of the theorem,

you get a neighborhood V of x in M , such that S = S̃ ∩ V is the required slice.
The complete proof can be found in [Palais 1961].

In the proof of the infinite dimensional slice theorem most of the “easy-to-
construct” things like the manifold G/Gx, χ, and Tx(G · x)

⊥ will make much more
difficulty, and constructing these will be the first crucial step in obtaining the slice
theorem.

2.15. Theorem. In every proper G–manifold M , there exists a slice at every point
x ∈M .

Proof. Gx is compact, since the action is proper. Now let U be an open neigh-
borhood of Gx in G. Then there exists an open neighborhood V of Gx with
Gx · V = V . (Gx · Gx = Gx; Thus ∀(a, b) ∈ Gx × Gx exist open neighborhoods
Aa,b of a in G and Ba,b of b in G such that Aa,b · Ba,b ⊆ U . Since Gx is compact
Gx ⊂open

⋃n
i=1Ba,bi =: Ba. Let Aa :=

⋂n
i=1Aa,bi . Then Aa · Ba ⊆ U . Further-

more Gx ⊂open

⋃n
j=1Aaj and W :=

⋂n
j=1Bbi is open in G, Gx ⊆ W , Gx ·W ⊆ U ,

V = Gx ·W .)
Now let U = GxU be a neighborhood of cosets. lx : G → G · x is a closed

mapping. Thus (G \ U) · x is closed in G · x, therefore in M . This implies the
existence of a neighborhood W of x such that W ∩ (G \ U) · x = ∅. Without
loss of generality let W be compact. Then {g ∈ G | gW ∩W 6= ∅} is compact
(2.12(3)). K := {g ∈ G \ U | gW ∩ W 6= ∅} is a compact subset of G \ U .
k ∈ K =⇒ k x ∈ (G \ U) · x =⇒ k x ∈ M \W (which is open). Therefore,
there exist neighborhoods Qk of k, Vk of x such that Qk · Vk ⊆ M \ W . Some
Qk1 . . . Qkn cover K, V :=

⋂n
i=1 Vki is neighborhood of x in M , without loss of

generality V ⊆W .
Let gV ∩ V 6= ∅. Then gW ∩W 6= ∅, and therefore g ∈ U ∪K. If g ∈ K, then

there exists i such that g ∈ Qki . But then gV ⊆ QkiV ⊆M \W ⊆M \ V and this
implies gV ∩ V = ∅ which is a contradiction. Therefore g ∈ U . ¤

2.16. Theorem (Palais 1961). For a proper G–manifold M , x ∈M the following
are equivalent

(1) Gx is compact and there exists a slice at x.
(2) There exists a neighborhood U of x in M , s.t. {g ∈ G|gV ∩ V 6= ∅} has

compact closure in G.

Proof. in [Palais 1961].

2.17. Corollary. M proper G–manifold =⇒ M/G is completely regular and
locally compact (hence T2).

2.18. Lemma. If M is a proper G–manifold, then there exists a principal orbit
type.
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2.19. Theorem. M a proper G–manifold. Then the set of all regular points in M
is open and dense.

2.20. Theorem. M a proper G–manifold, x ∈ M . Then x has a G–invariant
open neighborhood U , such that U contains only finitely many orbit types.

2.21. Theorem. M a proper G–manifold, then the space Msing/G of all singular
G–orbits does not locally dissect M/G.

2.22. Corollary. M connected proper G–manifold. Then

(1) M/G is connected
(2) M has exactly one principal orbit type.
(3) The set of all principal orbits is open and dense.

Most of these facts essentially follow from the existence of slices. In infinite
dimensions analogous results can be likewise proven, if the existence of such slices
is ensured.

However, first we will have to define most of the involved terms like manifold,
Lie group, tangent space, . . . in infinite dimensions. The next two chapters are
devoted to this.
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3. Banach and Hilbert manifolds

In this chapter I will give a brief excursion on Banach and Hilbert manifolds
which is in part excerpted from [Lang 1995]. More detail can (e.g.) be found there.

3.1. Definition. A topological vector space is a vector space E over R equipped
with a topology such that the operations + : E ×E → E (addition of vectors) and
· : R× E → E (multiplication with scalars) are continuous.

Throughout our presentation all topological vector spaces will be Hausdorff and
locally convex (i.e. every neighborhood U of 0 ∈ E contains an open convex neigh-
borhood V of 0.)

The set of continuous linear maps ϕ : E → F (E and F being two topological
vector spaces) will be denoted by L(E,F ), and we set L(E) := L(E,R).

The vector space of n–linear maps ψ : E×· · ·×E → F will be denoted Ln(E,F ),
and as above Ln(E) := Ln(E,R).

3.2. Definition. A locally convex topological space E will be called a Fréchet
space if its topology is metrizable (i.e. there exists a metric d : E × E → R+

0 , such
that every neighborhood U of 0 ∈ E contains a ball Bε := {v ∈ E|d(0, e) < ε}.),
and it is complete (i.e. all Cauchy sequences converge).

A Fréchet space space E will be called a Banach space if its metric is defined by
a norm ‖.‖ : E → R+

0 (i.e. d(v, w) = ‖v − w‖). It is well known, that for Banach
spaces E,F the norm ‖A‖ := sup‖x‖E=1‖Ax‖F for A ∈ L(E,F ) makes L(E,F )
into a Banach space.

A Banach space is called a Hilbert space if the norm is defined by an inner
product 〈., .〉 : E × E → R (i.e. ‖v‖ =

√
〈v, v〉).

3.3. Proposition. Let E,F be Banach spaces, f ∈ L(E,F ). Assume G ⊂ F is an
(algebraic) linear complement to im f and G is closed in F . Then im f is closed in
F and F = im f ⊕G.

Proof. See [Palais 1965, proof of Theorem 1] ¤

3.4. Definition. Let E,F be two Banach spaces, and f : U ⊂
open

E → F be a

continuous map. We say that f is differentiable at a point x0 ∈ U if there exists a
λ ∈ L(E,F ) such that

lim
y→0

‖f(x0 + y)− f(x0)− λ(y)‖

‖y‖
= 0.

λ is then uniquely determined, and we set Df(x0) := λ and call it the derivative
of f at x0. If f is differentiable at every point x ∈ U then we get a map Df : U →
L(E,F ), and we say f is differentiable.

If Df is again continuous we say that f is of class C1. Maps of class Cp for p ≥ 1
are then defined inductively. The p–th derivative of f will be Dpf := D(Dp−1f),
a map of U to L(E,L(E, . . . , L(E,F ) . . . )), which can be identified with Lp(E,F ).
A map f is said to be of class Cp if Dkf exists for 1 ≤ k ≤ p, and is continuous.

The usual results like chain rule, and linearity hold as in the finite dimensional
case.
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3.5. Definition. Let E1, E2, F be Banach spaces, Ui ⊂open
Ei and f : U1 × U2 → F

be a continuous map. If (u, v) ∈ U×V and we keep v fixed, then f( , v) : U2 → F ,
and we define the partial derivative as

∂1f(u, v) := D(f( , v))(u),

which is a map U × V → L(E1, F ). Similarly, we may define ∂2f . The total
derivative and the partials are related as follows.

Proposition. Let Ei, F be Banach spaces, Ui ⊂open
Ei, and f : U1 × · · · × Un → F

continuous. Then f is of class Cp if and only if each partial derivative ∂if : U1 ×
· · ·×Un → L(Ei, F ) exists and is of class Cp−1. In that case for v = (v1, . . . , vn) ∈
U1 × · · · × Un, and (w1, . . . , wn) ∈ E1 × · · · × En we have

Df(v) · (w1, . . . , wn) =
n∑

i=1

∂if(v) · wi.

3.6. The inverse mapping theorem. The inverse mapping theorem is one of the
main reasons for considering Banach and Hilbert spaces (and the yet to be defined
Banach and Hilbert manifolds), since in most of the smooth infinite dimensional
spaces of chapter 4 this theorem does not hold. This arises as the main difficulty in
proving theorems for these spaces, and long ways have to be taken to circumvent
this difficulty. Most of these ways lead to Banach and Hilbert completions of the
spaces.

Both the inverse function theorem and the existence theorem for differential
equations (which is extremely important also) are based on the following

Shrinking Lemma. Let E be a complete metric space, with distance function d,
and let f : E → E. Assume the existence of a constant 0 < C < 1, such that, for
any v, w ∈ E, we have

d(f(v), f(w)) ≤ Cd(v, w).

Then f has a unique fixed point x (x = f(x)). Given any point x0 ∈ E, then
x = limn→∞ fn(x0) with f

n(v) = f(fn−1(v)).

Inverse mapping theorem. Let E,F be Banach spaces, U ⊂
open

E, and let f : U →
F be a Cp–map with p ≥ 1. Assume that for some point x0 ∈ U , the derivative
Df(x0) : E → F is a top-linear isomorphism (the inverse is continuous also). Then
f is a local Cp–isomorphism at x0. (i.e. there exists an open neighborhood V of x0
such that f |V is a Cp–isomorphism onto an open subset of F .)

Proof. Since a top-linear isomorphism is C∞, we may assume without loss of gen-
erality that E = F , and Df(x0) is the identity (Consider Df(x0)

−1 ◦ f instead of
f). Furthermore, we may assume that x0 = 0 and f(x0) = 0.

Set g(x) = x − f(x). Then Dg(x0) = 0, and by continuity there exists r > 0
such that, if ‖x‖ < 2r, we have ‖Dg(x)‖ < 1

2 . Then ‖g(x)‖ ≤
1
2 by the mean value

theorem. Thus g(Br(0)) ⊂ B r
2
(0).

Claim: For y ∈ B 1
2
(0) there exists x ∈ Br(0) such that f(x) = y.

Proof: Consider the map
gy = y + x− f(x).
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If ‖y‖ ≤ r
2 and ‖x‖ ≤ r, then ‖gy(x)‖ ≤ r, and hence gy may be viewed as a

mapping of the complete metric space Br(0) into itself. gy is a contracting map,
since

‖gy(v)− gy(w)‖ = ‖g(v)− g(w)‖ ≤
1
2‖v − w‖

by the mean value theorem for v, w ∈ Br(0). By the Shrinking Lemma we find that
gy has a unique fixed point x, which is the solution we were looking for.

By this claim we obtain a local inverse f−1. It is continuous, since

‖v − w‖ ≤ ‖f(v)− f(w)‖+ ‖g(v)− g(w)‖ ≤ 2‖f(v)− f(w)‖.

Furthermore, f−1 is differentiable in B r
2
(0) by the following argument: Let v1, v2 ∈

Br(0), w1, w2 ∈ B r
2
(0), with f(vi) = wi. Then

‖f−1(w1)− f
−1(w2)−Df(v2)

−1(w1 − w2)‖ =

= ‖v1 − v2 −Df(v2)
−1(f(v1)− f(v2))‖ ≤

≤ ‖Df(v2)
−1‖ ‖Df(v2)(v1 − v2)− f(v1) + f(v2)‖ =

= o(|v1 − v2|) = o(|w1 − w2|),

where the first o–term is correct, since f is differentiable, and the last equality
follows from the already proved continuity of f−1. So the differentiability of f−1

is proved, and its derivative is D(f−1)(y) = Df(f−1(y))−1 for y ∈ B r
2
(0). Since

f−1, Df are continuous and taking inverses is C∞, D(f−1) is continuous, so f−1 is
C1. By induction, it follows that f−1 is Cp if f is. ¤

3.7. The Implicit Mapping Theorem. Let E,F,G be Banach spaces, U ⊂
open

E,

V ⊂
open

F , and let f : U ×V → G be a Cp mapping. Let (u0, v0) ∈ U ×V , and assume

that
∂2f(u0, v0) : F → G

is a top-linear isomorphism. Let f(u0, v0) = C. Then there exists a continuous
map g : U0 → V defined on an open neighborhood U0 of u0 such that g(u0) = v0,
and such that

f(x, g(x)) = C

for all x ∈ U0. If U0 is taken sufficiently small then g is uniquely determined, and
is also of class Cp.

Proof. Without loss of generality we may assume that ∂2f(u0, v0) is the identity
(simply replace f by ∂2f(u0, v0)

−1 ◦ f). Consider the map ϕ : U × V → E × F
ϕ(x, y) = (x, f(x, y)). Then we compute

Dϕ(u0, v0) =

(
IdE 0

∂1f(u0, v0) ∂2f(u0, v0)

)
=

(
IdE 0

∂1f(u0, v0) IdF

)
,

which obviously is invertible. Hence, ϕ is locally invertible by 3.6. Since we have
ϕ−1(x, z) = (x, h(x, z)) for some mapping h of class Cp. We set g(x) = h(x,C).
Then g is also of class Cp and

(x, f(x, g(x))) = ϕ(x, g(x)) = ϕ(x, h(x,C)) = ϕ(ϕ−1(x,C)) = (x,C).
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This proves the existence of g. For the uniqueness we suppose that g′ is a continuous
map defined near u0 such that g′(u0) = v0 and f(x, g′(x)) = C for all x near
u0. Then g′(x) is near v0 for such x, and hence ϕ(x, g′(x)) = (x,C). Since ϕ is
invertible near (u0, v0), it follows that there is a unique point (x, y) near (u0, v0)
such that ϕ(x, y) = (x,C). Let U0 be a small ball on which g is defined. If g′ is
also defined on U0, then the argument above shows that g and g′ coincide on some
smaller neighborhood of u0. Let x ∈ U0 and let u′ = x − u0. Consider the set
{t ∈ [0, 1]|g(u0 + tu′) = g′(u0 + tu′)}. This set is nonempty, so let T be its least
upper bound. By continuity we get g(u0 + Tu′) = g′(u0 + Tu′). If T < 1 we can
apply the existence and uniqueness part we have already proved to show that g and
g′ are equal in a neighborhood of u0 + Tu′. Therefore, T = 1, and the uniqueness
is proved, as well as the theorem. ¤

3.8. Banach Manifolds. Let M be a topological Hausdorff space. A chart on M
is a triple (U, u,E), where U ⊂

open
M and u : U → V ⊂

open
E is a homeomorphism onto

an open set in a Banach space E.
An atlas of class Cp (0 ≤ p ≤ ∞) is a set A = {(Ui, ui, Ei)|i ∈ I} of charts

satisfying the following conditions:

(1) {Ui|i ∈ I} is a covering of M
(2) For each pair of indices (i, j) ∈ I × I the map

uj ◦ u
−1
i : ui(Ui ∩ Uj)→ uj(Ui ∩ Uj)

is a Cp diffeomorphism.

If p ≥ 1 we see by (2) that if Ui ∩ Uj is nonempty Ei ' Ej . Therefore, on each
connected component of M we can assume that all Ei are equal, say E. In the
following we will assume that all Ei are isomorphic, which is not a big assumption,
since we could prove all theorems for each connected component separately.

We say that two atlases A1 and A2 are Cp equivalent if the atlas A1 ∪ A2 is a
Cp atlas. An equivalence class of Cp atlases is said to define the structure of a Cp

Banach manifold on M , and if all Ei are isomorphic to the space E we say M is
modeled on E. If the modeling space E is a Hilbert space, we call M a Hilbert
manifold.

Let M and N be two Banach manifolds, and let f : M → N be a continuous
map. We shall say f ∈ Cp(M,N) if for all x ∈ M , there exist charts (U, u) of M
with x ∈ U and (V, v) of N with f(x) ∈ N such that v ◦ f ◦ u−1 : u(U) → v(V )
is Cp as a mapping of Banach spaces. A bijective mapping is said to be a Cp

diffeomorphism if f and f−1 are both Cp.
Manifolds, mappings, . . . of class C∞ will also be called smooth in the sequel.

3.9. Submanifolds, Immersions, Submersions. Let M be a Cp Banach mani-
fold. A subset N ⊂M is called submanifold ofM if at each point x ∈ N there exists
a chart (U, u) ofM such that there are two Banach spaces E1, E2 with E1×E2 ' E,
and u(U) = V1 × V2 with Vi ⊂open

Ei and u(N ∩ U) = V1 × {0}.

Then the collection of pairs (U ∩N,pr1 ◦ (u|U∩N )) is an atlas of class Cp for N .
This structure satisfies a universal mapping property, which characterizes it:

Given any map f : Z →M from a manifold Z into M such that f(Z) is contained
in N . Let fN : Z → N be the induced map. Then f is Cp if and only if fN is Cp.
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A submanifold N is always locally closed in M (i.e. every point x ∈ N has an
open neighborhood U in M such that N ∩ U is closed in U). We say that N is a
closed submanifold of M if N is a closed topological subspace of M .

Let f : Z →M be a Cp map, and let z ∈ Z. We say that f is an immersion at z
if there exists an open neighborhood V of z such that f |U induces an isomorphism
of V onto a submanifold of M . We call f an immersion if it is an immersion at
every point z ∈ Z. An immersion f is called a (closed) embedding if it gives an
isomorphism onto a (closed) submanifold of M .

A mapping f : M → Z is called a submersion at a point x ∈ M if there exists
a chart (U, u) at x and a chart (V, v) at f(x) such that u gives an isomorphism of
U on a product U1 × U2 (U1, U2 open in some Banach spaces), and such that the
map vfu−1 : U1 × U2 → V is a projection. We say that f is a submersion if it is a
submersion at every point. Submersions are open mappings.

A criterion for immersions and submersions will be given in 3.10 using the tangent
space:
On every point x ∈ M we consider triples (U, u,X) where (U, u) is a chart at x
and X ∈ E. We call two such triples (U, u,X), (V, v, Y ) equivalent if and only
if D(vu−1)(u(x)).X = Y . An equivalence class of such triples is called a tangent
vector of M at x. The set TxM of such tangent vectors is called the tangent space
of M at x. Each chart (U, u) determines a bijection of TxM to the modeling space
E of M by which TxM gets the structure of a Banach space. Using the tangent
spaces, we can interpret the derivative of a Cp mapping f : M → N by means of
charts as a continuous linear mapping Txf : TxM → Tf(x)N (essentially as in the
finite dimensional case).

Proposition. Let M and N be Banach manifolds of class Cp (p ≥ 1), and let
f :M → N be a Cp mapping. Take x ∈M . Then

(1) f is an immersion at x if and only if the map Txf is injective and splits
(i.e. it exists a top-linear isomorphism α : Tf(x)N → F1 × F2 such that
α ◦ Txf induces a top-linear isomorphism of TxM onto F1 × {0}.)

(2) f is a submersion at x if and only if the map Txf is surjective and its kernel
splits (i.e. is closed and has closed complement).

Proof. This is an immediate consequence of the inverse mapping theorem. ¤

3.10. Partitions of unity. Unlike for finite dimensional manifolds the existence
of partitions of unity is even in the Banach case not always satisfied. The problem
for constructing differentiable partitions of unity is the existence of a differentiable
norm. However, if we put strong restrictions on the topology of M , we will get the
existence:

Theorem. Let M be a Banach manifold modeled on E which is locally compact,
and whose topology has a countable base. Then M admits partitions of unity: i.e.
for every open covering {Vi} there exists a subordinate open covering {Ui} of M
and a family of functions fi :M → R satisfying the following conditions

(1) For all x ∈M we have fi(x) ≥ 0.
(2) The support of fi is contained in Ui.
(3) The covering is locally finite (i.e. every x ∈ M has a neighborhood which

intersects only finitely many Ui).
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(4) For each x ∈M we have
∑
i fi(x) = 1.

Proof. The proof will be left out, but can be found in [Lang 1995, II §3]. ¤

However, since the only locally compact Banach spaces are finite dimensional we
have not won too much. The proof can be carried over to the situation where M
is paracompact, and there is a differentiable norm on E which is equivalent to the
original one, but it is difficult to check the existence of such a norm. However, in
one case we can always construct differentiable partitions of unity:

3.11. Theorem. Let M be a paracompact manifold of class Cp modeled on a
separable Hilbert space H. Then M admits partitions of unity of class Cp.

Proof. For this proof we will need a few definitions and some lemmas.

Definition. A subset V of a metric space (X, d) is called scalloped, if there exist
open balls Bri(xi) in X such that

V = Br0(x0) ∩ C(Br1) ∩ · · · ∩ C(Brn).

where C(A) shall denote the set theoretical complement of A.

Lemma 1. Let (X, d) be a metric space and {Bri(xi)} (i ∈ N) a countable covering
of a subset W by open balls. Then there exists a locally finite open covering {Vi}
(i ∈ N) of W such that Vi ⊂ Bri(xi) for all i, and such that Vi is scalloped for all
i.

Proof. Define Vi inductively by the following construction. Let V1 := Br1(x1).
Then set r′ji := rj −

1
i , and let

Vi := Bri(xi) ∩
i−1⋂

j=1

C(Br′ji(xj)),

replacing all balls of negative radius by the empty set. By construction, each Vi is
scalloped and is contained in Bri(xi). Take x ∈W , and let k be the smallest index
such that x ∈ Brk(xk). Then x ∈ Vk, because otherwise, x would be in C(Vk). But

C(Vk) = C(Brk) ∪
k−1⋃

j=1

Br′
kj
(xj),

and thus x lies in some Brj (xj) with j ≤ k − 1 which is a contradiction.

For proving the locally finiteness, take again x ∈W . Then x ∈ Brk(xk) for some
k. Let ε > 0 be so small that Bε(x) ⊂ Brk(xk). For all sufficiently large i the
ball B ε

2
(x) ⊂ Br′

ki
(xk), and therefore by construction B ε

2
(x)∩ Vi = ∅. Thus B ε

2
(x)

meets only finitely many Vi. ¤
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Lemma 2. Let U be an open ball in the Hilbert space H, and let V be a scalloped
open subset. Then there exists a C∞-function ψ : H → R such that ψ|C(V ) ≡ 0 and
ψ|V > 0.

Proof. Since V is scalloped, we have V = Br0(x0) ∩
⋂n
i=1 C(Bri(xi)). For i =

1, . . . , n choose a function ϕi : H → R such that

0 < ϕi(x) ≤ 1 if x ∈ C(Bri(xi))

ϕi(x) = 0 if x ∈ Bri(xi).

Let ϕ0 : H → R be a function such that ϕ(x) > 0 on U and ϕ(x) = 0 outside U .
Set

ψ(x) :=
n∏

i=0

ϕi(x).

Then ψ satisfies the requirement. ¤

Proposition. Let A1, A2 be two nonempty, closed, disjoint subsets of a separable
Hilbert space H. Then there exists a smooth function ψ : H → R such that ψ|A1 ≡ 0
and ψ|A2 ≡ 1, and 0 ≤ ψ(x) ≤ 1 for all x (i.e. H is smoothly normal).

Proof. By the theorem of Lindelöf, we can find countably many open balls Bri(xi)
(i ∈ N) covering A2 such that each Bri(xi) is contained in C(A1). Let W =⋃
i∈N Bri(xi). By Lemma 1 we can find a locally finite refinement {Vi} of scalloped

open sets. By Lemma 2, we find functions ϕi positive on Vi and zero outside of Vi.
Let ϕ =

∑
i∈N ϕi (the sum is finite at each point of W , since the Vi are a locally

finite covering). Then ϕ is positive on A2, and ϕ|A1 ≡ 0.
Let U be the open neighborhood of A2 on which ϕ > 0. Then A2 and C(U) are

disjoint closed sets. We then apply the construction above to get another function
σ : H → R which is positive on C(U) and is identically zero on A2. By setting

ψ :=
ϕ

ϕ+ σ

we get the required function. ¤

Proof of Theorem 3.11. Let Br(x) be an open ball in H. By

y 7→
y√

r2 − 〈y, y〉

Br(x) is diffeomorphic toH. Take any point x ∈M , and a neighborhood V of x. We
can find a chart (U, u) of M at x such that u(U) = H, and U ∈ V . Given an open
covering ofM we, therefore, can find an atlas {(Uα, uα)} such that uα(Uα) = H for
all α, and the Uα are subordinate to the given covering. By paracompactness, we
can find a refinement {Ũi} of the covering {Uα} which is locally finite. Each Ũi is
contained in some Uα(i). Let ũi = ui|Ũi . Again by paracompactness we find open

refinements {Vi} and {Wi} such that

W i ⊂ Vi ⊂ V i ⊂ Ũi.
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By construction ũi(W i) and ũi(V i) are closed in H. By the proposition, we can
find functions ϕi on H with ϕi|ũi(W i)

= 1 and ϕi|H−ũi(Vi) = 0, being between 0

and 1, otherwise. Set ψi = ϕi ◦ ui. Then ψi is 0 on M − Vi and 1 on W i. Set
ψ =

∑
i ψi, and fi =

ψi
ψ . Then the {fi} are the desired partition of unity. ¤

Since partitions of unity are the only known means of gluing together local
mappings, this theorem gives a hint on the importance of Hilbert manifolds (i.e.
manifolds modeled on Hilbert spaces). A very important class of Hilbert spaces
will be considered in paragraph 3.21.

3.12. Vector bundles. The partitions of unity discussed above are an essential
tool when considering vector bundles.

LetM be a Cp Banach manifold modeled on a Banach space B, let E be another
Banach manifold, and π : E → M be a Cp map. Let F be a Banach space. Let
{Ui} be an open covering of M , and for each i suppose that we have a mapping
τi : π

−1(Ui)→ Ui × F satisfying the following conditions:

(1) The map τi is a Cp diffeomorphism such that the following diagram com-
mutes:

π−1(Ui)
�τi�

�
� ���π

Ui × F�
�

���
pr1

Ui

In particular, we obtain an isomorphism on each fiber

τix : π−1(x)→ F.

(2) For each pair of open sets Ui, Uj the map

τjxτ
−1
ix : F → F

is a top-linear isomorphism.
(3) If Ui and Uj are two members of the covering, then the map of Ui ∩Uj into

L(F, F ) given by
x 7→ (τjτ

−1
i )x

is a Cp mapping.

Then we call (Ui, τi) a trivializing covering for π or E, and that {τi} are its trivial-
izing maps. If x ∈ Ui, we say that (Ui, τi) trivializes at x. Two trivializing coverings
are called to be equivalent if their union is a trivializing covering. An equivalence
class of such trivializing coverings is said to give the quadruple (E, π,M,F ) the
structure of a vector bundle. M is called the base (space), E the total space, π the
bundle (or footpoint) projection. The Banach space F is called the standard fiber.
The space π−1(x) is called the fiber over x.

Note the difference to the finite dimensional case: (3) is implied by (2) there. In
the infinite dimensional case it has to be stated explicitly.

The maps τijx = τix ◦ τ
−1
jx , are called the transition functions associated with

the covering. They satisfy the so called cocycle condition

τkjx ◦ τjix = τkix, (i.p. τijx = τ−1jix).
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As in the finite dimensional case, the cocycle of transition functions characterizes
the vector bundle.

A vector bundle (E, π,M,F ) is called trivializable if it is isomorphic to (M ×
F,pr1,M, F ).

Let (E, π,M,F ) and (E′, π′,M ′, F ′) be two vector bundles. A Cp vector bundle
morphism f between these bundles consists of a pair of Cp mappings f0 :M →M ′

and f : E → E′ satisfying the following conditions:

(1) The diagram

E
f

−−−−→ E′

π

y
yπ′

M −−−−→
f0

M ′

is commutative for each x ∈M fx : Ex → E′f(x), and the induced map is a

continuous linear map.
(2) For each x0 ∈M there exist trivializing maps

τ : π−1(U)→ U × F

τ ′ : π′
−1

(U ′)→ U ′ × F ′

at x0 and f(x0) respectively, such that f0(U) is contained in U ′, and such
that the map

U → L(F, F ′)

x 7→ τ ′f0(x) ◦ fx ◦ τ
−1
x

is Cp.

We will usually write f : E → E ′ to denote a vector bundle morphism.
Let (E, π,M,F ) be a vector bundle, and f : N → M a Cp map. Then

(f∗(E), f∗(π), N, F ) is a vector bundle called the pull back of E along f , and the
pair (f, π∗(f)) is a vector bundle morphism.

f∗(E)
π∗(f)
−−−−→ E

f∗(π)

y
yπ

N −−−−→
f

M

An important vector bundle is the tangent bundle of a manifold. Let M be a
manifold of class Cp with p ≥ 1. Let TM be the disjoint union of the vector spaces
TxM from 3.9. Let π : TM → M map TxM to x, and set F = B the modeling
space of M . Take an atlas (Ui, ui) of M . From the definition of tangent vectors as
triples (Ui, ui, Xi) we immediately get a bijection

τi : π
−1(Ui) = TUi → Ui × F
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which commutes with the projection on Ui, that is such that

π−1(Ui)
�τi�

�
� ���π

Ui × F�
�

���
pr1

Ui

is commutative. Furthermore, if we set for any two charts (Ui, ui) and (Uj , uj)

uij = uju
−1
i , then we obtain transition mappings

τji = τjτ
−1
i : ui(Ui ∩ Uj)× F → uj(Ui ∩ Uj)× F

by the formula
τji(x,X) = (uji(x), Duji(x) ·X)

for x ∈ Ui ∩ Uj and X ∈ F . Since the derivative Duji is of class Cp−1 and is an
isomorphism at x, we find all conditions for a vector bundle satisfied. Therefore,
TM is a vector bundle of class Cp−1.

Given a Cp map f : M → N , we can define Tf : TM → TN to be simply
Txf on each fiber TxM . It is easy to check that Tf is a vector bundle morphism
TM → TN of class Cp−1 called the tangent map of f . Locally, the map is given as
Tf(x,X) = (f(x), Df(x) ·X).

Another useful definition follows: A mapping f : E → E ′ between vector bundles

(E, π,M,F ) and (E′, π′,M, F ′) is called fiber preserving, if f(π−1(x)) ⊂ π′
−1

(x)
for all x ∈M .

3.13. Sections of bundles, vector fields. Let M be a Cp manifold, and take a
Cq vector bundle (M,E, π, F ) over M (q ≤ p). A Cr section of E (r ≤ q) is a Cr

map ξ : M → E with π ◦ ξ = IdM . The set of all such sections will be denoted by
Cr(E).

If E = TM such a section ξ of class Cp−1 will be called a (time-independent)
vector field on M . The set of all vector fields on M will be denoted by X(M).

Like in the finite dimensional case, some constructions can be applied to vector
bundles, but more care has to be taken with the topology: V ⊕W , V ⊗W , V ∗ =
L(V,R), and ΛnV can e.g. be constructed. Sections of tensor products of TE and
TE∗ are also called tensor fields.

3.14. The existence theorem for differential equations. There is an existence
theorem for the flow of vector fields similar to the finite dimensional case. Since we
will only need the existence of local flows, only that result will be mentioned.

Let f : J × U → E be a Cp mapping (p ≥ 0), 0 ∈ J an open interval in R and
U ⊂ E open (i.e. the local representation of a time-dependent vector field).

For a point x0 ∈ U , an integral curve for f with initial condition x0 is a mapping
of class Cr (r ≥ 1)

α : J0 → U

α(0) = x0

α′(t) = f(t, α(t)),
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where 0 ∈ J0 is an open subinterval of J .
A local flow for f at x0 is a mapping

α : J0 × U0 → U

αx(t) = α(t, x),

where 0 ∈ J0 is an open subinterval of J , and x0 ∈ U0 ⊂ U is an open subset, and
αx is an integral curve for f with initial condition x.

Having these definitions in mind, we find the following results, similar to the
finite dimensional case.

Proposition. In the situation above, let 0 < a < 1 be a real number such that
B3a(x0) lies in U . Assume that f is a continuous map bounded by a constant
L ≥ 1 on J ×U and satisfies a Lipschitz condition on U , uniformly with respect to
J , with constant K ≥ 1. If b < a

LK , then for each x ∈ Ba(x0) there exists a unique
local flow

α : (−b, b)×Ba(x0)→ U.

If f is of class Cp, so is each integral curve αx.
The local flow α is continuous, and the map x 7→ αx of Ba(x0) into the space of

curves satisfies a Lipschitz condition.

If we take f Cp with p ≥ 1 then we get stronger results.

Theorem. Let f be a (local) vector field on U of class Cp (p ≥ 1), and let x0 ∈ U .
Then there exists a unique local flow for f at x0. We can select a (maximal)

open subinterval J0 of J containing 0 and an open subset U0 of U containing x0,
such that the unique local flow

α : J0 × U0 → U

is of class Cp, and such that ∂2α satisfies the differential equation

∂1∂2α(t, x) = ∂2f(t, α(t, x))∂2α(t, x)

on J0×U0 with initial condition ∂2α(0, x) = Id. Usually, α will then be denoted by

Flf .

Proof. The proof can e.g. be found in [Lang 1995, IV.§1]. It depends heavily on
the Shrinking Lemma, and on the Banach space norm.

3.15. Corollary. Let U , V be open sets in Banach spaces E, F respectively. Let
J be an open interval of R containing 0, and let g : J × U × V → F be a Cr map
(r ≥ 1). Let (u0, v0) be a point in U × V . Then there exist open balls J0, U0, V0
centered at 0, u0, v0 respectively, and a unique map of class Cr h : J0×U0×V0 → V
such that h(0, u, v) = v and

∂1h(t, u, v) = g(t, u, h(t, u, v))

for all (t, u, v) ∈ J0 × U0 × V0.

Proof. This follows from the existence and uniqueness of the local flow of the vector
field on U × V G : J × U × V → E × F given by G(t, u, v) = (0, g(t, u, v)). Then

h(t, u, v) = pr2 ◦Fl
G(t, u, v). ¤
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3.16. Corollary. The function h from Corollary 3.15 satisfies the equation

∂1∂2h(t, u, v) · x = ∂2g(t, u, h(t, u, v)) · x+ ∂3g(t, u, h(t, u, v)) · ∂2h(t, u, v) · x

for all x ∈ E.

Proof. This is just calculation, using the result above. ¤

3.17. Corollary. Let J be an open interval of R containing 0 and take U ⊂
open

E.

Let f : J × U → E be a continuous map, which is Lipschitz on U uniformly for
every compact subinterval of J . Let t0 ∈ J and let ϕ1, ϕ2 be two C1 maps such
that ϕ1(t0) = ϕ2(t0) and satisfying the relation

ϕ′i(t) = f(t, ϕi(t))

for all t ∈ J . Then ϕ1(t) = ϕ2(t).

Proof. This follows directly from the existence and uniqueness result for differential
equations. ¤

3.18. Integrable subbundles. Let V be a tangent subbundle over M . We say
V is integrable at a point x0 if there exists a submanifold N of M containing x0
such that the tangent map of the inclusion i : N → M induces a vector bundle
isomorphism of TN with the subbundle V restricted to N . Equivalent is, for each
y ∈ N the tangent map Tyj : TyN → TyM induces a top-linear isomorphism of
TyN onto Vy.

We say that V is integrable if it is integrable at every point.

3.19. Frobenius’ Theorem. Let M be a Banach manifold of class Cp for p ≥ 2
and let S be a subbundle of TM . Then S is integrable if and only if S is involutive
(i.e. for each point z ∈M and vector fields X, Y defined on an open neighborhood
of z which lie in V , the bracket [X,Y ] also lies in S).

Proof. The part integrable =⇒ involutive follows just by the functoriality of vector
fields and their relations under tangent maps. The converse is the difficult direction.

The proof will be carried out locally. We first try to find a suitable description
of the bundle S in local terms.

Take z ∈M . We can then find a product decomposition of an open neighborhood
W of z, say U × V , open subsets of Banach spaces E and F , respectively, such
that the point has coordinates (u0, v0) and such that S|W can be written as the
image of an injective vector bundle map f : U × V × E ↪→ U × V × E × F with
f(u0, v0) : E ↪→ E × F is the canonical embedding E ↪→ E × {0}. Without loss of
generality we may assume that pr1 ◦f(u, v) = IdE for all (u, v) ∈ U × V . Thus we
may describe f by a Cp−1 mapping (also called) f : U × V → L(E,F ).

Further note that a subbundle S of TM is integrable at a point z ∈M if and only
if there exists an open neighborhood W of z and a diffeomorphism ϕ : U ×V →W
of a product of open subsets of Banach spaces onto W such that the composition

T1(U×V ) ↪→ T (U×V )
Tϕ
→ TW is a bundle isomorphism onto S|W , where T1(U×V )

is the subbundle of T (U×V ) whose fibers are TxU×0 ⊆ TxU×TyV = T(x,y)(U×V ),
x ∈ U , y ∈ V .
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Now take the local representations of a vector field X over W = U × V . Then
X ∈ S|W if and only if X2(u, v) = f(u, v) · X1(u, v), where X1 and X2 are the
projections of X to E and F respectively. In other words, iff X is of the form
X(u, v) = (X1(u, v), f(u, v).X2(u, v)), for some Cp−1 map X1 : U × V → E. If X,
Y are vector fields of this type, then [X,Y ] ∈ S|W if and only if

Df ·X · Y1 = Df · Y ·X1,

which can be calculated from the local representation of [ , ]. Having expressed
all data locally, the following result remains to be shown.

Proposition. Let U , V be open subsets of Banach spaces E, F respectively. Let
f : U × V → L(E,F ) be a Cr map (r ≥ 1). Assume that if X1, Y1 : U × V → E
are two Cr maps and that

Df · (X1, f ·X1) · Y1 = Df · (Y1, f · Y1) ·X1.

Let (u0, v0) ∈ U × V . Then there exist open neighborhoods U0 ⊂ U , V0 ⊂ V of u0,
v0 respectively, and a unique Cr map α : U0 × V0 → V such that

∂1α(u, v) = f(u, α(u, v)),

and α(u0, v) = v for all (u, v) ∈ U0 × V0.

Proof. By acting by a translation we can without loss of generality assume that
(u0, v0) = (0, 0) ∈ E × F . Now set g(t, u, v) = f(tu, v) · u. u ∈ Bε(0) ⊂ U a
small ball in E. Then by Corollary 3.15 we obtain h : J0 × E0 × V0 → V with
initial condition h(0, u, v) = v for all u ∈ E0, satisfying the differential equation
∂1h(t, u, v) = f(tu, h(t, u, v)) · u. Changing variables by t = at′ and u = a−1u′ for
a small a > 0, we can assume that 1 ∈ J0, provided E0 is small enough.

Set α(u, v) = h(1, u, v). Then we have to calculate ∂2h(t, u, v). From Corollary
3.16 we obtain for any vector x ∈ E,

∂1∂2h(t, u, v) · x = t∂1f(tu, h(t, u, v)) · x · u+

+ ∂2f(tu, h(t, u, v)) · ∂2h(t, u, v) · x · u+ f(tu, h(t, u, v)) · x.

Now let k(t) = ∂2h(t, u, v) · x − tf(tu, h(t, u, v)) · x. Then k(0) = 0, and using the
local version of the integrability for the fields u and x, we get

Dk(t) = ∂2f(tu, h(t, u, v)) · k(t) · u.

By Corollary 3.17 we know that k(t) ≡ 0 is the unique solution. Thus

∂1h(t, u, v) = tf(tu, h(t, u, v)),

and hence
∂1α(u, v) = f(u, α(u, v)).

¤



22

Having this result, we can set ϕ : U0 × V0 → U × V as ϕ(u, v) = (u, α(u, v)).
Then

Dϕ(u0, v0) =

(
Id 0

f(u0, v0) Id

)
,

which, obviously, is a top-linear isomorphism. Thus by the inverse mapping theorem
3.6 ϕ is a local diffeomorphism at (u0, v0). Furthermore, for (x, y) ∈ E×F we have

∂1ϕ(u, v) · (x, y) = (x, ∂1α(u, v) · x) = (x, f(u, α(u, v)) · x),

which shows that the bundle is integrable. ¤

3.20. Corollary. Let M be a Banach manifold, S an involutive subbundle of TX.
Then for any x ∈ M , there is a neighborhood W of x and a diffeomorphism ϕ :
U × V → W (U , V open neighborhood in Banach spaces) such that ϕ(0, 0) = x,

and the composition T1(U ×V ) ↪→ T (U ×V )
Tϕ
→ TW is a bundle isomorphism onto

S|W , where T1(U × V ) is the subbundle of T (U × V ) whose fibers are TxU × 0 ⊆
TxU × TyV = T(x,y)(U × V ), x ∈ U , y ∈ V .

Proof. This is just a reformulation of the local version of V being integrable.

3.21. Sobolev spaces. These important spaces have been developed in [Sobolev
1936]. Lets start with the space L2(Rm,Cn) of all Lebesgue square integrable
functions. This space is, as is well known, a Hilbert space with the inner product

〈f, g〉0 :=

∫
〈f(x), g(x)〉 dx.

Definition. The space of rapidly decreasing functions S(Rm,Cn) is the vector
space of all C∞–functions f : Rm → Cn, which satisfy that for every multiindex α
and every p ∈ N0 exists a cαp ≥ 0 such that for all x ∈ Rn

‖x‖p‖Dαf(x)‖ ≤ cαp.

Obviously, S(Rm,Cn) ⊂ L2(Rm,Rn).
For all f ∈ S(Rm,Cn) we define the Fourier transformation F0 as

(F0f)(x) := (2π)−
m
2

∫
e−i〈x,y〉f(y) dy.

Having this, we get the well known result

Proposition. F0S(Rm,Cn) ⊂ S(Rm,Cn), and for every f ∈ S(Rm,Cn) and every
multiindex α

DαF0f = (−1)|α|F0Mαf, MαF0f = F0D
αf,

where (Mαf)(x) = xαf(x) componentwise.
F0 is a bijective linear mapping of S(Rm,Cn) onto itself and

(F−10 g)(x) = (2π)−
m
2

∫
ei〈x,y〉g(y) dy.

Furthermore, (F0f)(x) = (F−10 f)(−x) for all f ∈ S(Rm,Cn) and F 4
0 = Id.

The following describes the extension of F0 to L2(Rm,Cn), which is well known,
also.
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Theorem. F0 and F−10 preserve the L2–norm, and there exist unique extensions

F , F̃ of F0 and F−10 , respectively, as bounded unitary operators on L2(Rm,Cn),
and F̃ = F ∗ = F−1, F 4 = Id. The operator F is called Fourier transformation on
L2(Rm,Cn).

Furthermore, the following are equivalent

(1) Ff · Fg ∈ L2(Rm,Cn),
(2) F−1f · F−1g ∈ L2(Rm,Cn),
(3) f ∗ g ∈ L2(Rm,Cn),

and in that case f ∗ g = F−1(Ff · Fg).

Definition. In the following set for x ∈ Rm

ks(x) := (1 + ‖x‖2)
s
2

and
L2s(Rm,Cn) := {f ∈ L2(Rm,Cn)|ksf ∈ L2(Rm,Cn)}.

L2s(Rm,Cn) is a dense subspace of L2(Rm,Cn).

〈f, g〉(s) :=

∫
〈f(x), g(x)〉ks(x)

2 dx

for f, g ∈ L2s(Rm,Cn) defines an inner product on L2s(Rm,Cn). This inner product
makes L2s(Rm,Cn) to a separable Hilbert space, isomorphic to L2(Rm,Cn) by Us :
f 7→ ksf : L2s(Rm,Cm)→ L2(Rm,Cn).

The Sobolev space of order s is defined by

Hs(Rm,Cn) := {f ∈ L2(Rm,Cn)|Ff ∈ L2s(Rm,Cn)} = F−1L2s(Rm,Cn).

Hs(Rm,Cn) is a dense subspace of L2(Rm,Cn). It is a separable Hilbert space by
defining for f, g ∈ Hs(Rm,Cn)

〈f, g〉s := 〈Ff, Fg〉(s)

‖f‖s :=
√
〈f, f〉s.

Obviously, H0(Rm,Cn) = L2(Rm,Cn).

The functions in Hs(Rm,Cn) are in a weak sense differentiable:

Theorem.

(1) Let s ≥ 1, wj = (δj1, . . . , δjm), (Mjg)(x) = xjg(x) and fj,ε(x) = f(x+εwj)
for j = 1, 2, . . . ,m, and δij denotes the Kronecker δ symbol. Then for all
f ∈ Hs(Rm,Cn) and j = 1, 2, . . . ,m

lim
ε→0

1

iε
(fj,ε − f) = F−1MjFf.

in the L2–sense. Is f ∈ S(Rm,Cn), then the limit coincides with Dαf
with α = (δj1, . . . , δjm). We write Dαf for this limit in any case, even if
f /∈ S(Rm,Cn).
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(2) If α is a multiindex with |α| ≤ s, then the derivative Dαf can be calculated
iteratively. The order of differentiation can be exchanged.

(3) If s ∈ N0, then ‖f‖s is equivalent to the norms

‖f‖s,0 =

√∑

|α|≤s

‖Dαf‖2

‖f‖s,1 =

√
‖f‖22 +

∑

|α|=s

‖Dαf‖2.

(4) For all g ∈ H |α|(Rm,Cn) is 〈Dαf, g〉0 = 〈f,D
αg〉0.

(5) The function Dαf ∈ L2(Rm,Cn) is uniquely determined by

〈Dαf, g〉0 = 〈f,D
αg〉0

for all g ∈ C∞0 (Rm,Cn), the space of all functions Rm → Cn of compact
support.

(6) For s ≥ 0 are C∞0 (Rm,Cn) ⊂ S(Rm,Cn) and C∞0 (Rm,Rn) ⊂ Hs(Rm,Cn)
dense subspaces with respect to the norm ‖ ‖s.

Definition. The spaces L2(Rm,Rn), L2s(Rm,Rn), and Hs(Rm,Rn) shall be just
the subspaces of almost everywhere real valued functions of the spaces L2(Rm,Cn),
L2s(Rm,Cn), and Hs(Rm,Cn), respectively. The results above are true for the
spaces of real valued functions, also.

The result, which is one of the reasons for the importance of Sobolev spaces is
the

3.22. Sobolev Lemma. Let s > k + m
2 , then the inclusions Hs(Rm,Cn) ⊂

Ck(Rm,Cn) and Hs(Rm,Rn) ⊂ Ck(Rm,Rn) are continuous linear maps.

Proof. in [Sobolev 1938].

Analogously, we define the spaces Hs(U,Rn) for open subsets U of Rm.

Next we will prove some useful results, which we will need in the next sections.

3.23. Lemma. Let Dn denote the open unit ball in Rn, and let f : Dn → Dn and
g : Dn → Rk be Hs–maps (s > n

2 +1) such that Df has everywhere maximal rank.

Then g ◦ f ∈ Hs(Dn,Rk), and the map (f, g) → g ◦ f is jointly continuous near
(f, g), as a map ◦ : Hs(Dn, Dn)×H

s(Dn,Rk)→ Hs(Dn,Rk).

Proof. Recall that by the Sobolev Lemma 3.22 Hs(Dn, Dn) ⊂ C1(Dn, Dn) is
continuous. By induction, we will prove that ◦ : Hs(Dn, Dn) × Hr(Dn,Rk) →
Hr(Dn,Rk) is continuous.

For k = 0 we check
∫
Dn
‖g ◦ f‖2. But

∫
Dn
‖g ◦ f‖2 =

∫
f(Dn)

‖g‖21/|det(J(f))|

with J(f) the Jacobian of f . Since Dn is compact, J(f) is bounded away from zero.
Therefore, ◦(Hs(Dn, Dn) ×H

0(Dn,Rk)) ⊂ H0(Dn,Rk). Take ε > 0, f ′ such that∫
Dn
‖f − f ′‖ < ε/(4maxx∈Dn

‖Dxg‖
2) (this is possible since the L1 norm is weaker
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than the Hs norm) and (
∫
Dn
‖g− g′‖)2 < ε/(4maxx∈Dn

{1/|det(J(f ′))(x)|}). Fur-

ther choose δ such that maxx∈Dn
{1/|det(J(f))(x)|, 1/|det(J(f ′))(x)|} < ε/4δ, and

pick g∞ ∈ C∞(Dn,Rk) so that
∫
Dn
‖g∞ − g‖ < δ. Then we compute

∫

Dn

‖g ◦ f − g′ ◦ f ′‖2 ≤

∫

Dn

‖g ◦ f − g∞ ◦ f‖2 +

∫

Dn

‖g∞ ◦ f − g∞ ◦ f ′‖2+

+

∫

Dn

‖g∞ ◦ f ′ − g ◦ f ′‖2 +

∫

Dn

‖g ◦ f ′ − g′ ◦ f ′‖2

≤

∫

Dn

‖g∞ − g‖2
1

|det(J(f))|
+ max
x∈Dn

‖Dxg‖
2

∫

Dn

‖f − f ′‖+

+

∫

Dn

‖g∞ − g‖2
1

|det(J(f ′))|
+

∫

Dn

‖g − g′‖
1

|det(J(f ′))|

<
ε

4
+
ε

4
+
ε

4
+
ε

4
< ε,

which proves the continuity of ◦ : Hs(Dn, Dn)×H
0(Dn,Rk)→ H0(Dn,Rk).

For the inductive step we will need the following

3.24. Lemma. Let l > n
2 , k ≤ l. Let B be any bilinear map B : Rp × Rq →

Rr. Then B̃ : H l(Bn,Rp) × Hk(Bn,Rq) → Hk(Dn,Rr) defined by B̃(f, g)(x) =
B(f(x), g(x)) is a continuous bilinear map.

Proof. In [Palais 1968, 9.13] ¤

Next we assume the lemma for Hs ×Hr → Hr for r < s. We then prove it for
Hs ×Hr+1 → Hr+1. Since g ◦ f ∈ Hr+1(Dn,Rk) if D(g ◦ f) ∈ Hr(Dn, L(Rn,Rk))
we compute D(g ◦ f) = (Dg ◦ f) · Df . But Dg ∈ Hr(Dn, L(Rn,Rk)), thus
Dg ◦ f ∈ Hr(Dn, L(Rn,Rk)) by the induction assumption. Furthermore, Df ∈
Hs−1(Dn, L(Rn,Rn)), and s−1 ≥ r, so we find that by Lemma 3.24, (Dg◦f)·Df ∈
Hr(Dn, L(Rn,Rk)).

Take (f ′, g′) near (f, g) in Hs(Dn, Dn)×H
r+1(Dn,Rk). Then (f ′, Dg′) is near

(f,Dg) in Hs(Dn, Dn) × Hr(Dn, L(Rn,Rk)), so Dg ◦ f is near Dg′ ◦ f ′ by the
induction assumption. Also Df ′ is near Df in Hs−1(Dn, L(Rn,Rn)). Since we
have r ≤ s−1, s−1 > n

2 , (Dg
′ ◦f ′) ·Df ′ is near (Dg◦f) ·Df in Hr(Dn, L(Rn,Rk))

by Lemma 3.24. ¤

3.25. Sobolev completions of spaces of vector bundle sections. To over-
come certain difficulties which arise while working with manifolds modeled on
Fréchet spaces (or on general convenient spaces (see section 4)), we construct Hilbert
manifold completions of these spaces in the following way.

For any vector bundle V overM construct the s-th jet bundle J s(V ), and endow
Js(V ) with an inner product 〈 , 〉s. Taking any volume form d vol on M , we get
an inner product ( , )s on C∞(Js(V )), the space of smooth Js(V )–sections by

(a, b)s :=

∫

M

〈a, b〉sd vol .

Since there exists the natural map js : C∞(V )→ C∞(Js(V )), ( , )s defines an
inner product on C∞(V ), also.
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DefineHs(V ) as the Hilbert space completion of C∞(V ) with respect to ( , )s.
Taking other choices for d vol and 〈 , 〉s changes the inner product, but any two
such constructed inner products are equivalent.

3.26. Lemma (Sobolev Lemma). Let s > k + 1
2 dim(M), then the inclusion

Hs(V ) ⊂ Ck(V ) is a continuous linear map.

Proof. See [Palais 1965], but follows essentially from the Sobolev Lemma 3.22.

3.27. Theorem. If V and W are vector bundles over M and f : V → W is
a smooth fiber preserving map, then for s > 1

2 dim(M), the map f̃ : Hs(M,V ) →

Hs(M,W ) defined by f̃(α) = f ◦α is smooth, and its derivatives satisfy the formula

Dk
αf̃(x1, . . . , xk)(p) = Dk

α(p)f(x1(p), . . . , xk(p)), with p ∈M .

Proof. In [Palais 1968, 11.3]. ¤

3.28. Differential operators. Let V and W be vector bundles over M , and let
D : C∞(V ) → C∞(W ) be a k-th order differential operator. Let V and W have
smooth inner products 〈 , 〉V and 〈 , 〉W , respectively, and let vol be a smooth
volume form on M so that H0(V ) and H0(W ) have explicit inner products.

A k-th order differential operator D∗ : C∞(W ) → C∞(V ) is called an adjoint
of D if for all v ∈ C∞(V ), w ∈ C∞(W ),

∫
M
〈Dv,w〉W d vol =

∫
M
〈v,D∗w〉V d vol.

Every operator D has a unique adjoint.

For any x ∈ M , and ξ ∈ T ∗x , the symbol of D at ξ, σξ(D) is a linear map
Vx →Wx. It can be shown that

σξ(D1 ◦D2) = σξ(D1) ◦ σξ(D2), and σξ(D
∗) = σξ(D)∗,

where σξ(D)∗ : Wx → Vx is the adjoint of σξ(D) (with respect to the given inner
products on Vx and Wx).

We say that D has injective symbol if σξ(D) is an injective map for all ξ 6= 0,
and we call D elliptic, if σξ(D) is an isomorphism for ξ 6= 0.

The equations above show that D∗ ◦D is elliptic if and only if D has injective
symbol.

Any k-th order operator D extends uniquely from a map C∞(V )→ C∞(W ) to
a continuous linear map Ds : H

s(V )→ Hs−k(W ).

3.29. Proposition. If D is a k-th order elliptic operator from V to W . Then

(1) kerD = kerDs is a finite dimensional subspace of C∞(V ), and similarly
kerD∗ = kerD∗s is a finite dimensional subspace of C∞(W ).

(2) Hs−k(W ) = imDs ⊕ kerD∗, in particular imDs is closed in Hs−k(W ).

Proof. The proof can be found in [Palais 1965, pp.178–179]. ¤

3.30. Proposition. If D has injective symbol then

(1) Hs−k(V ) = im(D∗ ◦D)s+k + kerD∗ ◦D.
(2) kerD∗ ◦D = kerD and im(D∗ ◦D)s+k = imD∗s .
(3) imDs+k is closed in Hs(W ), and Hs(W ) = imDs+k ⊕ kerD∗s .
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Proof. (1) follows from 3.29(2) and the fact that D∗ ◦D is selfadjoint.
(2): Let 〈 , 〉V,0 be the inner product on H0(V ) and 〈 , 〉W,0 be the one on
H0(W ). Of course, ker(D∗ ◦D) ⊃ kerD. Also if D∗Dv = 0, 0 = 〈D∗Dv, v〉V,0 =
〈Dv,Dv〉W,0, so Dv = 0. Therefore kerD∗ ◦ D = kerD. Furthermore, im(D∗ ◦
D)s+k ⊂ imD∗s , since (D∗ ◦D)s+k = D∗s ◦ Ds+k. By (1) it has only to be shown
that imD∗s ∩kerD

∗ ◦D = {0} or that imD∗s ∩kerD = {0}. If Dv = 0 and v = D∗w
then D ◦D∗w = 0, so 0 = 〈D ◦D∗w,w〉W,0 = 〈D

∗w,D∗w〉V,0, and so v = D∗w = 0,
which in turn implies (2).
(3): Since kerD∗s is closed by Lemma 3.3 we need only show that Hs(W ) =
imDs+k ⊕ kerD∗s is true in the algebraic sense.

Let w ∈ Hs(W ) such that D∗sw = 0 and w = Ds+kv. Then 0 = 〈D∗s ◦
Ds+kv, v〉E,0 = 〈Ds+kv,Ds+k〉F,0, so w = 0. Therefore, imDs+k ∩ kerD∗s = {0}.

D∗s(H
s(W )) = D∗s ◦Ds+k(H

s+k(V )) by (2), Hs(W ) = D∗s
−1(D∗s(Hs(W ))), and

thus
Hs(W ) = D∗s

−1(D∗s ◦Ds+k(H
s+k(V ))) = kerD∗s + imDs+k.

This implies (3). ¤
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4. Smooth infinite dimensional manifolds

Throughout this and the following chapters, I will use the term smooth manifold
in the sense of [Kriegl, Michor 1997]. I will use the notion of Frölicher–Kriegl
calculus and of convenient vector spaces.

I will not define more than the most basic facts of the Frölicher–Kriegl calculus,
since that would exceed the goal of this thesis. However, the most important results
can be found in [Frölicher, Kriegl 1988] or [Kriegl, Michor 1997]. Most of the results,
which are presented in this chapter are taken from [Kolář et al. 1993], [Michor 1988],
[Michor 1991], and [Kriegl, Michor 1997].

First we will define a suitable generalization of Fréchet spaces which will fit
extraodinary well in a category theoretical way to infinite dimensional calculus.
These spaces will later serve for the local models of manifolds.

4.1. Definition. Let E be a locally convex vector space. A curve c : R → E will
be called differentiable if the derivative c′(t) = limh→0

1
h (c(t+ h)− c(t)) at t exists

for all t. A curve c is called smooth (or C∞) if all iterated derivatives exist. The
set of all smooth curves will be denoted by C∞(R, E). It will be equipped with
the bornologification of the topology of uniform convergence on compact sets, in all
derivatives separately. (Note: Smoothness is not primarily a topological concept,
but rather a concept of bounded sets, hence a bornological concept. Therefore, the
bornologification.)

A sequence {xn} in E is called Mackey–convergent to x if there exists a positive
sequence {µn} in R with µn → 0 and 1

µn
(xn − x) is bounded.

The c∞–topology on a locally convex vector space is the final topology with re-
spect to all smooth curves R → E. (Note: The c∞–topology is in general not a
vector space topology on E. However, the finest locally convex topology coarser
than the c∞–topology is the bornologification of the original locally convex topol-
ogy.)

A locally convex vector space E is called convenient (or c∞–complete) if one
of the following equivalent conditions is satisfied. (There are more equivalent con-
ditions than these, which can be found together with the proof of equivalence in
[Kriegl, Michor 1997, Theorem 1.22].)

(1) Any Mackey-Cauchy sequence converges (i.e. E is Mackey–complete).
(2) E is c∞–closed in any locally convex space.
(3) For any smooth curve c1 ∈ C

∞(R, E) there exists a curve c2 ∈ C
∞(R, E)

with c′2 = c1 (i.e. the existence of an antiderivative).
(4) If c : R → E is a curve such that ` ◦ c : R → R is smooth for all ` ∈ E∗,

then c is smooth.

4.2. Theorem. The following constructions preserve c∞–completeness:

(1) limits,
(2) direct sums,
(3) strict inductive limits of sequences of closed embeddings,
(4) formation of `∞(X, ), where X is a set together with a family B of subsets

of X containing the finite ones, which are called bounded, and `∞(X,F )
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denotes the space of all functions f : X → F bounded on all B ∈ B,
supplied with the topology of uniform convergence on the sets in B.

Proof. See [Kriegl, Michor 1997, Theorem 1.23].

4.3. Definition. A mapping f : E ⊇ U → F between convenient spaces, defined
on a c∞–open subset U of E is called smooth (C∞) if it maps smooth curves in U
to smooth curves in F .

By C∞(U,F ) we will denote the space of all smooth maps U → F . This space
is locally convex, with pointwise linear structure and the bornologification of the
initial topology with respect to all mappings c∗ : C∞(U,F ) → C∞(R, F ) for c ∈
C∞(R, U). Then C∞(U,F ) is a convenient vector space.

4.4. Proposition. A (multi)linear map f : E1 × · · · × En → F , where Ei, F are
convenient spaces, is smooth if and only if f is bounded.

We equip the space L(E1, . . . , En;F ) of all such maps with the topology of uni-
form convergence on bounded sets. Then L(E1, . . . , En;F ) is a closed linear sub-
space of C∞(E1 × · · · × En, F ), hence convenient.

There are natural bornological isomorphisms

L(E1, . . . , En;F ) ' L(E1, . . . , El;L(El+1, . . . , En;F )).

This is called the exponential law for the linear maps.

Proof. See [Kriegl, Michor 1997, Propostion 3.2]

4.5. Theorem (Cartesian closedness). The category of convenient vector spaces
and smooth mappings is cartesian closed. So there is natural bijection

C∞(E × F,G) ' C∞(E,C∞(F,G)).

Furthermore, the following canonical mappings are smooth.

ev : C∞(E,F )× E → F, ev(f, x) = f(x)

ins : E → C∞(F,E × F ), ins(x)(y) = (x, y)

( )∧ : C∞(E,C∞(F,G))→ C∞(E × F,G)

( )∨ : C∞(E × F,G)→ C∞(E,C∞(F,G))

comp : C∞(F,G)× C∞(E,F )→ C∞(E,G), comp(f, g)(x) = f(g(x))

C∞( , ) : C∞(F, F ′)× C∞(E′, E)→ C∞(C∞(E,F ), C∞(E′, F ′))

(f, g) 7→ (h 7→ f ◦ h ◦ g)
∏

:
∏

C∞(Ei, Fi)→ C∞(
∏

Ei,
∏

Fi)

Proof. See [Kriegl, Michor 1997, 1.36]

The following lemma provides strong means for proving many results in the
Frölicher–Kriegl calculus.
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4.6. Lemma. Uniform boundedness principle. Let E be a locally convex
vector space and let S be a point seperating set of bounded linear mappings with
common domain E. Then the following conditions are equivalent.

(1) If F is a c∞–complete locally convex vector space and f : F → E is linear
and λ ◦ f is bounded for all λ ∈ S, then f is bounded.

(2) If {bn} is an unbounded sequence in E with λ(bn) bounded for all λ ∈ S,
then there is some {tn} ∈ `

1 such that
∑
tnbn does not converge in E for

the initial locally convex topology induced by S.

We then say that E satisfies the uniform S-boundedness principle if these conditions
are satisfied.

A convenient vector space E satisfies the uniform S-boundedness principle for
each point separating set S of bounded linear mappings on E if and only if there
exists no strictly weaker ultrabornological topology than the bornological topology of
E.

The space C∞(U,E) satisfies the uniform boundedness principle for the set S :=
{evx : x ∈ U}.

Proof. See [Kriegl, Michor 1997, 3.21–3.25]

The importance of the Frölicher–Kriegl calculus is also due to the fact that the
function spaces in finite dimensions are all convenient vector spaces.

4.7. Proposition. Let M be a smooth finite-dimensional paracompact manifold.
Then the space C∞(M,R) of all smooth functions on M is a convenient vector
space and satisfies the uniform boundedness principle for the point evaluations.
The structure is e.g. given by the following description: The initial structure with
respect to the cone

C∞(M,R)
c∗
−→ C∞(R,R)

for all c∗ ∈ C∞(R,M).

Proof. Other equivalent descriptions and the proof can be found in [Kriegl, Michor
1997, 3.31].

By considering smooth spaces, which are the category theoretical basis of the
smooth calculus, many results can be proved by using the Cartesian closedness.
However, one cannot differentiate in smooth spaces, so I will not show the devel-
opment of the theory here, and rather give a cite: [Kriegl, Michor 1997, section
4].

A very important notion, as always in the theory of manifolds, is the existence
of smooth partitions of unity, since they are the only known means of gluing local
results together to yield global results.

4.8. Definition. A convenient vector space is said to be smoothly normal if for any
two closed disjoint subsets A1, A2 ⊂ X there is a smooth function f with f |A1 ≡ 0
and f |A2 ≡ 1.

It is called smoothly paracompact if it is paracompact and smoothly normal.
Then the vector space admits smooth bump functions (i.e. for any neighborhood

U of x there exists a smooth function f such that f(x) = 1 and the carrier carr(f) ⊂
U).
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Note: A nuclear convenient space admits smooth bump functions.

4.9. Definition. A chart (U, u) on a setM is a bijection u : U → u(U) ⊂ EU from
a subset U ⊂M onto a c∞–open subset of a convenient vector space EU . For two
charts (Uα, uα) and (Uβ , uβ) on M the mapping uαβ := uα ◦ uβ : uβ(Uα ∩ Uβ) →
uα(Uα ∩ Uβ) is called the chart changing.

A family (Uα, uα)α∈A of charts is called an atlas of M , if {Uα} is a covering of
M and all chart changings are defined on c∞–open subsets. Such an atlas is called
C∞ if all chart changings are smooth. Two C∞–atlases are called C∞–equivalent
if their union is again a C∞–atlas. An equivalence class of C∞–atlases is called a
C∞–structure onM . A setM together with a C∞–structure is called C∞–manifold.

A mapping f : M → N between manifolds is called smooth if for each x ∈ M
and each chart (V, v) on N with f(x) ∈ V there is a chart (U, u) in M with x ∈ U ,
f(U) ⊂ V , such that v ◦ f ◦ u−1 is smooth. This is the case if and only if f ◦ c is
smooth for each smooth curve c : R→M .

We will denote by C∞(M,N) the space of all smooth mappings f :M → N . A
smooth bijective mapping f : M → N is called a diffeomorphism if f−1 is smooth
also.

The natural topology on a C∞–manifold M is the identification topology with
respect to some C∞–atlas (Uα, uα)α∈A, where W ⊂ M is open if and only if
uα(Uα ∩W ) is c∞–open in EUα for all α.

M is called smoothly Hausdorff if the smooth functions in C∞(M,R) separate
points in M .

A C∞–manifold M will be called a smooth manifold if it is smoothly Hausdorff
and pure (i.e. the isomorphism type of the modeling spaces Eα, which is constant
on each connected component of M , is constant on M). If a smooth manifold,
which is smoothly paracompact, is modeled on a convenient vector space which is
smoothly normal then M admits smooth partitions of unity.

N ⊂ M is called a submanifold , if for each x ∈ N there is a chart (U, u) of
M such that u(U ∩ N) = u(U) ∩ FU , where FU is a closed linear subspace of the
convenient model space EU . Of course, N is itself a manifold with (U ∩N,u|U∩N )
as charts for all (U, u), which are as above.

A submanifold N is called splitting submanifold of M if there is a cover of N by
submanifold charts (U, u) as above such that the FU ⊂ EU are complemented (i.e.
splitting) linear subspaces.

4.10. Tangent bundles. In finite dimensions, and up to Banach manifolds, the
two descriptions of the tangent spaces as spaces of tangent vectors, and on the
other hand, as spaces of derivations, coincide. This is in general not the case for
manifolds modeled on convenient vector spaces. Therefore, we will spend some time
on the definition of the tangent bundles.

Let E be a convenient vector space, U an open subset of E, a ∈ U . A kinematic
tangent vector with footpoint a is a pair (a,X) with X ∈ E. Let the kinematic
tangent space TaU ' E be the space of all kinematic tangent vectors with footpoint
a. It consists of all derivatives c′(0) at 0 of smooth curves c : R→ E with c(0) = a,
thus the name kinematic. Similar to the finite dimensional case, a kinematic tangent
vector induces a continuous derivation over eva.
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An operational tangent vector with footpoint a is a bounded derivation ∂ :
C∞a (U,R) → R over eva. Let the operational tangent space DaU be the space
of all such derivations. It can be equipped with a convenient vector space struc-
ture, and for all a ∈ U these spaces are isomorphic. DU :=

⋃
a∈U DaU .

However, usually TaE and DaE are not isomorphic! For more information see
[Kriegl, Michor 1997, 19.6]

We can then define the kinematic and operational tangent bundles as quotient
sets with respect to an equivalence relation. Let us start with an atlas for the
manifold M (Uα, uα : Uα → Eα)α∈A. Then we define manifolds

TM :=

(
⋃

α∈A

Uα × Eα × {α}

)/
∼,

(x, v, α) ∼ (y, w, β) ⇐⇒ x = y ∧ d(uαβ)(uβ(x))w = v

with charts (TUα, Tuα), where TUα = π−1M (Uα) (πM being the footpoint projection)
and Tuα([x, v, α]) = (uα(x), v), and

DM :=

(
⋃

α∈A

D(uα(Uα))× {α}

)/
∼,

(∂, α) ∼ (∂′, β) ⇐⇒ D(uαβ)∂
′ = ∂

with charts (DUα, Duα), where DUα = π−1M (Uα) and Duα([∂, α]) = ∂. There is an
embedding TM ↪→ DM .

As expected, a smooth mapping f : M → N induces smooth mappings Tf :
TM → TN and Df : DM → DN , which are fiber linear, and Tf is the restriction
of Df to TM .

4.11. Vector bundles. Let p : E →M be a smooth mapping between manifolds.
A vector bundle chart on (E, p,M) is a pair (U,ψ), where U is an open subset of
M , and ψ is a fiber respecting diffeomorphism as in the following diagram:

E|U := p−1(U) �ψ
�
�
� ���
p

U × V�
�

���
pr1

U

V is a convenient vector space, called the standard fiber. Two vector bundle charts
(Uα, ψα) and (Uβ , ψβ) are called compatible, if ψα◦ψ

−1
β is a fiber linear isomorphism,

i.e. (ψα◦ψ
−1
β )(x, v) = (x, ψαβ(x)v) for some mapping ψαβ : Uα∩Uβ → GL(V ). This

mapping is then unique and smooth into L(V, V ) and is called transition function.
A vector bundle atlas is a collection of pairwise compatible vector bundle charts

(Uα, uα)α∈A such that the Uα are an open cover of M . Two vector bundle atlasses
are called equivalent if their union is again a vector bundle atlas.

A smooth vector bundle (E, p,M) consists of smooth manifolds E (the total
space), M (the base space), a smooth mapping p : E → M (the projection, which
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turns out to be a surjective submersion), and an equivalence class of vector bundle
atlasses (the vector bundle structure). Similar to the finite dimensional case, we
can describe vector bundles over M by the cocycle of transition functions, and the
isomorphism classes by cohomological means.

TM and DM are two important examples of vector bundles. Like in the finite
dimensional case, and in the Banach case, one can perform certain operations on
vector bundles. However, one has to take much more care in bornological and
topological questions. For two vector bundles (E, p,M) and (F, q,M) the following
constructions are, e.g., possible, yielding again vector bundles overM : ΛkE, E⊕F ,
E∗, ΛE :=

⊕
k∈N0

ΛkE, E⊗̂F , L(E,F ).

4.12. Sections of vector bundles. There is a unique structure of a convenient
vector space on each fiber Ex of a vector bundle (E, p,M), induced by the vector
bundle charts. So 0x ∈ Ex is a special element, and 0 : M → E, 0(x) = 0x is a
smooth mapping, the zero section.

A section s of (E, p,M) is a smooth mapping s :M → E with p ◦ s = IdM . The
space of all smooth sections of the bundle (E, p,M) is denoted by C∞(E). It is a
vector space with fiberwise addition and scalar multiplication. It is equipped with
the structure of a convenient vector space given by the closed embedding

C∞(E)→
∏

α

C∞(Uα, V )

s 7→ pr2 ◦ψα ◦ (s|Uα)

where (Uα, ψα) is a vector bundle atlas. This structure is independent of the choice
of the atlas.

The space C∞(E) satisfies the uniform boundedness principle with respect to
the point evaluations evx : C∞(E)→ Ex for all x ∈M .

As usual the sections of the tangent bundles are called (here kinematic, and
operational respectively) vector fields on M .

4.13. Differential Forms. The definition of the tangent bundles has provided us
with a severe technical difficulty, but if we want to define differential forms, these
difficulties even increase.

The first problem is the definition of the cotangent spaces, since there are of
course also two of them: Take the covariant smooth functor, which takes the con-
venient vector space E to its dual E ′. Applying this functor to the tangent bundles
TM and DM , we get the kinematic (T ′M) and operational (D′M) cotangent bun-
dles, respectively. By taking spaces of sections, we can define the kinematic and
operational 1-forms.

However, for the definition of higher order forms, we have to take deeper inves-
tigations. There are at least eight possible choices for the space of k-forms, which
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coincide in the finite dimensional case.

C∞(Λk(D′M)) ��
� ���

�

C∞(LkAlt(DM,M × R))�
� � �

�

C∞(Λk(T ′M)) �

�

C∞(LkAlt(TM,M × R))

ΛkAHomA(C
∞(DM), A) ��

� � �
Homk,Alt

A (C∞(DM), A)�
� � �

ΛkAHomA(C
∞(TM), A) � Homk,Alt

A (C∞(TM), A)

where A := C∞(M,R) and Λk denotes the bornological exterior product and ΛkA
the convenient module exterior product.

A careful examination in [Kriegl, Michor 1997] shows that the space with the
most fruitful features leads to the definition

Ωk(M) := C∞(LkAlt(TM,M × R)).

This space is isomorphic as convenient vector space to the closed linear subspace of
C∞(TM ×M · · · ×M TM,R) consisting of all fiberwise k-linear alternating smooth
functions. Using this definition, all the important mappings

d : Ωk(M)→ Ωk+1(M)

i : C∞(TM)× Ωk(M)→ Ωk−1(M)

L : C∞(TM)× Ωk(M)→ Ωk(M)

f∗ : Ωk(M)→ Ωk(N)

are smooth, and there is a working notion of De Rham cohomology. However, in
this thesis we will not be concerned with this.

4.14. The Frölicher–Nijenhuis Bracket. Now consider the graded commuta-
tive algebra

Ω(M) =
⊕

k≥0

Ωk(M) =

∞⊕

k=−∞

Ωk(M)

of differential forms on M , where Ωk(M) = 0 for k < 0. A graded derivation of
degree k on Ω(M) is a bounded linear map D : Ω(M)→ Ω(M) with D(Ωl(M)) ⊆
Ωk+l(M) and

D(φ ∧ ψ) = D(φ) ∧ ψ + (−1)klφ ∧D(ψ) for φ ∈ Ωl(M).

The space of all such derivations is called Derk Ω(M). The space

DerΩ(M) =
⊕

k

Derk Ω(M)
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with the graded commutator [D1, D2] = D1 ◦ D2 − (−1)k1k2D2 ◦ D1 for Di ∈
Derki Ω(M) is a graded Lie algebra. The bracket is graded anticommutative and
satisfies the graded Jacobi identity

[D1, [D2, D3]] = [[D1, D2], D3] + (−1)k1k2 [D2, [D1, D3]].

A derivation D ∈ DerΩ(M) is called algebraic if D|Ω0(M) = 0. Then D(f.φ) =
f.D(φ) for f ∈ C∞(M,R) and φ ∈ Ω(M).

For the definition of the Frölicher–Nijenhuis bracket we will have to consider the
space of vector valued kinematic differential forms

Ω(M ;TM) =
⊕

k≥0

Ωk(M ;TM) =
⊕

k≥0

C∞(LkAlt(TM ;TM)).

For K ∈ Ωk(M ;TM) and L ∈ Ωl(M ;TM) the formula

[K,L](X1, . . . , Xk+l) =

= 1
k!l! sgnσ

∑

σ

[K(Xσ1, . . . , Xσk), L(Xσ(k+1), . . . , Xσ(k+l))]+

+ (−1)k
(

1
k!(l−1)!

∑

σ

sgnσL([Xσ1,K(Xσ2, . . . , Xσ(k+1))], Xσ(k+2), . . . )−

− 1
2!(k−1)!(l−1)!

∑

σ

sgnσL(K([Xσ1, Xσ2], Xσ3, . . . ), Xσ(k+2), . . . )

)
+

+ (−1)l(k+1)
(

1
l!(k−1)!

∑

σ

sgnσK([Xσ1, L(Xσ2, . . . , Xσ(l+1))], Xσ(l+2), . . . )−

− 1
2!(k−1)!(l−1)!

∑

σ

sgnσK(L([Xσ1, Xσ2], Xσ3, . . . ), Xσ(l+2), . . . )

)

defines a graded anticommutative bracket, which satisfies the graded Jacobi iden-
tity, the Frölicher–Nijenhuis bracket. This makes Ω(M ;TM) to a graded Lie alge-
bra. In the above situation [K,L] ∈ Ωk+l(M ;TM) and

[L(K),L(L)] = L([K,L]) ∈ DerΩ(M),

IdTM is in the center, and the mapping L : Ω∗(M ;TM)→ Der∗ Ω(M) is an injective
homomorphism of graded Lie algebras.

4.15. f–relatedness of the Frölicher–Nijenhuis bracket. Let f :M → N be
a smooth mapping between manifolds. Two vector valued forms K ∈ Ωk(M ;TM)
and L ∈ Ωl(M ;TM) are called f–related (f–dependent), if for all Xi ∈ TxM

Txf
−1Lf(x)(Txf ·X1, . . . , Txf ·Xk) = Kx(X1, · · · , Xk).

Theorem. If Kj and Lj are f–related for j = 1, 2 then their Frölicher–Nijenhuis
brackets [K1,K2] and [L1, L2] are also f–related.
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4.16. Lie groups. A smooth manifold G is called a Lie group if there are smooth
mappings µ : G × G → G and ν : G → G, such that (G,µ, ν) is a group with
multiplication µ, inversion ν, and unit element e. µa(b) = µb(a) = µ(a, b) = a · b

A kinematic vector field ξ on G is called left invariant , if µ∗aξ = ξ for all a ∈ G,
where µ∗aξ = Tµa−1 ◦ξ◦µa. The vector space XL(G) of all left invariant vector fields
on G is closed under the Lie bracket, so it is a sub Lie algebra of X(G). Since every
left invariant vector field ξ is uniquely determined by ξ(e) ∈ TeG (ξ(a) = Teµa.ξ(e)),
the Lie algebra of left invariant vector fields is linearly isomorphic to TeG. This
isomorphism induces on TeG a Lie algebra structure. This Lie algebra is called the
Lie algebra of G, and is denoted by Lie(G) or by g.

An important example of an infinite dimensional Lie group is the group Diff(M)
of diffeomorphisms of a compact finite dimensional manifold. Its Lie algebra is the
algebra of vector fields X(M).
Diff(M) is a regular Lie group, which is an extremely important subset of all

Lie groups. For more information on regular Lie groups see [Kriegl, Michor 1997,
section 29].

Now, we have mentioned the most important definitions and results of the
Frölicher–Kriegl calculus applied to differential geometry. In the following we will
concentrate on fiber bundles and the basis for the slice theorems we will consider
in the next section.

4.17. Definition. A fiber bundle (E, p,M, S) consists of smooth (here finite di-
mensional) manifolds E, M , S and a smooth mapping p : E → S. Moreover, each
x ∈ M possesses an open neighborhood U , such that E|U := p−1(U) is diffeomor-
phic to U × S via a fiber respecting diffeomorphism.

E|U
�ψ

�
�
� ���
p

U × S�
�

���
pr1

U

E is then called the total space, M the basis (or base space), and S the standard
fiber. (U,ψ), as above, is called a fiber chart; (Uα, ψα), such that (Uα) cover M
is a (fiber) bundle atlas. As for vector bundles there is a cocycle of transition
functions constructed as follows. For two charts (Uα, ψα) and (Uβ , uβ), we consider
the mapping

ψα ◦ ψ
−1
β (x, s) = (x, ψαβ(x, s)),

where ψαβ : (Uαβ := Uα∩Uβ)×S → S is smooth, and ψαβ(x, ) is a diffeomorphism
of S for each x ∈ Uαβ . Thus ψαβ : Uαβ → Diff(S). They again satisfy the cocycle
conditions for x ∈ Uα ∩ Uβ ∩ Uγ

ψαβ(x) ◦ ψβγ(x) = ψαγ(x)

ψαα(x) = IdS .

As usual, a cocycle of transition functions reproduces the fiber bundle. For the
notions presented here see [Michor 1988], [Michor 1991], and [Kolář et al. 1993].
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4.18. Lemma. Let M , N be finite dimensional manifolds, let p : N → M be
a proper surjective submersion (fibered manifold), and let M be connected. Then
(N, p,M, S) is a fiber bundle, where S is diffeomorphic to p−1(x) for an x ∈M .

Proof. We have to construct a fiber chart at each x0 ∈M . Take (U, u) a chart cen-
tered at x0 on M such that u(U) ∼= Rm. For each x ∈ U let ξx(y) := (Tyu)

−1.u(x),

then ξx ∈ X(U), depending smoothly on x ∈ U , such that u(Flξxt u−1(z)) =
z + t.u(x). Thus, each ξx is a complete vector field on U . Since p is a proper
submersion, with the help of a partition of unity on p−1(U) we may construct vec-
tor fields ηx ∈ X(p−1(U)) which depend smoothly on x ∈ U and are p–related to

ξx : Tp.ηx = ξx ◦ p. Therefore, p ◦ Flηxt = Flξxt ◦p and Flηxt is fiber respecting, and
since each fiber is compact and ξx is complete, ηx has a global flow, too. If we define
S := p−1(x0) then φ : U × S → p−1(U), defined by φ(x, y) = Flηx1 (y), is a fiber
respecting diffeomorphism, and thus (U, φ) is a fiber chart. Since M is connected,
the fibers p−1(x) are all diffeomorphic. ¤

4.19. Definition. Let (E, p,M, S) be a fiber bundle. We consider the fiber linear
mapping Tp : TE → TM and its kernel V E := kerTp, the vertical bundle of E.

A vector valued 1–form Φ ∈ Ω1(E;V E) which satisfies Φ◦Φ = Φ and imΦ = V E
(a projection TE ³ V E) is called a connection on (E, p,M, S).

Since kerΦ is of constant rank, kerΦ is a subbundle of TE, called the space of
horizontal vectors or horizontal bundle HE. (Of course, TE = V E ⊕HE.)

Consider (Tp, πE) : TE → TM×ME. Then (Tp, πE)
−1(0p(u), u) = VuE. There-

fore, (Tp, πE)|HE : HE → TM×M E is an injective, fiber linear mapping, and thus
a fiber linear isomorphism. C := [(Tp, πE)|HE ]

−1 : TM ×M E → HE ↪→ TE is
right inverse to (Tp, πE), called the horizontal lift with respect to Φ. The connection
between Φ and C is as follows,

Φ(ξu) = ξu − C(Tp.ξu, u) ξu ∈ TuE.

χ := IdTE −Φ = C ◦ (Tp, πE) is called the horizontal projection.

4.20. Pullback bundle. Let (E, p,M, S) be a fiber bundle and f : N → M a
smooth mapping. Since p is a submersion, f and p are transversal. Thus the
pullback f∗E of the fiber bundle E along f exists.

f∗E
p∗f
−−−−→ E

yf∗p
yp

N −−−−→
f

M

Proposition.

(1) (f∗E, f∗p,N, S) is again a fiber bundle and p∗f is a fiberwise diffeomor-
phism.

(2) If Φ ∈ Ω1(E;TE) is a connection on E, then f∗Φ defined by

(f∗Φ)u(x) := Tu(p
∗f)−1.Φ.Tu(p

∗f).X

for X ∈ TuE) is a connection on f∗E. f∗Φ and Φ are p∗f–dependend.
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Proof. (1): If (Uα, ψα) is a fiber bundle atlas of (E, p,M, S), then the collection
(f−1(Uα), (f

∗p, pr2◦ψα◦p
∗f)) is obviously a fiber bundle atlas for (f ∗E, f∗p,N, S),

by the formal universal properties of a pullback.
(2) is obvious. ¤

4.21. Remark. Parallel transport.
Let Φ be a connection on the fiber bundle (E, p,M, S) and let c : (a, b) → M be
a smooth curve with 0 ∈ (a, b), c(0) = x. Then there exists a neighborhood U of
Ex × {0} in Ex × (a, b) and a smooth mapping Ptc : U → E, such that

(1) p(Pt(c, t, ux)) = c(t), if defined and Pt(c, 0, ux) = ux.
(2) Φ( ddt Pt(c, t, ux)) = 0c(t), if defined.
(3) Reparametrization invariance: If f : (a′, b′) → (a, b) is a smooth mapping

with 0 ∈ (a′, b′), then Pt(c, f(t), ux) = Pt(c ◦ f, t,Pt(c, f(0), ux)), where
defined.

(4) U is maximal for (1) and (2).
(5) parallel transport is smooth as a mapping C∞(R,M) ×(ev0,M,p) E × R ⊃

U
Pt
−→ E, where U is its domain of definition.

4.22. Definition. Let (E, p,M, S) be a fiber bundle and (Uα, ψα) a fixed bundle
atlas. Then Frölicher–Kriegl calculus implies that C∞(Uαβ , C

∞(S, S)) ⊆ C∞(Uαβ×
S, S) and equality if and only if S is compact. Therefore, we will restrict ourselves
to compact S from now on.

We define the non–linear frame bundle of (E, p,M, S) as

Diff{S,E} :=
⋃

x∈M

Diff(S,Ex)

together with the differentiable structure which is obtained if the functor Diff(S, )
is applied to the cocycle of transition functions (ψαβ). The cocycle for Diff{S,E},
which is constructed in this procedure describes the structure of a smooth principal
fiber bundle (see [Michor 1991]) with structure group Diff(S). (The right action is
given by composition from the right.)

Since ev : Diff(S)× S → S is smooth, we may consider the associated bundle

Diff{S,E}[S, ev] =
Diff{S,E} × S

Diff(S)
.

ev : Diff{S,E}×S → E is invariant under the Diff(S) action and thus factorizes to
a smooth mapping Diff{S,E}[S, ev]→ E as it is shown in the following diagram.

Diff{S,E} × S −−−−→
pr

Diff{S,E}×S
Diff(S)

yev
∥∥∥

E ←−−−−−−−−−−−
is Diffeomorphism

Diff{S,E}[S, ev]

Therefore, the name non–linear frame bundle is justified.
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4.23. Lemma. Diff{S,E} is a smooth splitting submanifold of Emb(S,E), with
the obvious embedding.

4.24. Connections on Diff{S,E} and E. Let Φ ∈ Ω1(E, TE) be a connection
on E. We want to lift it to a principal connection on Diff{S,E}. If we use a result
of [Michor 1980], we get

T Diff{S,E} =
⋃

x∈M

{
f ∈ C∞(S, TE|Ex)

∣∣∣∣ Tp ◦ f = one point in TxM

and πE ◦ f ∈ Diff(S,Ex)

}

If we consider ω(f) := T (πE ◦ f)
−1 ◦ Φ ◦ f : S → TE → V E → TS for f ∈

T Diff{S,E}, then ω(f) is a vector field and we get

Lemma. ω ∈ Ω1(Diff{S,E};X(S)) is a principal connection, and the induced con-
nection on E = Diff{S,E}[S, ev] coincides with Φ.

and

Theorem. Let (E, p,M, S) be a fiber bundle with compact standard fiber S. Then
there is a bijective correspondence between connections on E and principal connec-
tions on Diff{S,E}.

Proofs. See [Michor 1991, 13.3]

4.25. Definition. Diff{E,E} :=
⋃
x∈M Diff(Ex, Ex) with the smooth structure,

which is described by the cocycle Diff(ψ−1αβ , ψαβ) = (ψαβ)∗(ψαβ)
∗, when again (ψαβ)

is the cocycle for (E, p,M, S).

Lemma. The associated bundle Diff{S,E}[Diff(S), conj] is isomorphic to the fiber
bundle Diff{E,E}.

Proof. The mapping A : Diff{S,E}×Diff(S)→ Diff{E,E}, given by A(f, g) := f ◦
g◦f−1 : Ex → S → S → Ex for f ∈ Diff(S,Ex) is Diff(S) invariant. Thus, it factors
to a smooth mapping Diff{S,E}[Diff(S)]→ Diff{E,E}. It is bijective and admits
smooth inverses locally over M , so it is a fiber respecting diffeomorphism. ¤

4.26. Definition. The gauge group Gau(E) of the bundle (E, p,M, S) is the group
of all principal fiber bundle automorphisms of the Diff(S)–bundle Diff{S,E}, which
cover the identity on M . Lemma 4.25 implies that Gau(S) is equal to the space of
sections of the bundle Diff{E,E} = Diff{S,E}[Diff(S), conj].

4.27. Results. Bearing in mind, that we have restricted ourselves to compact S,
we get the following results.

Theorem. The gauge group Gau(E) = C∞(Diff{E,E}) is a splitting closed sub-
group of Diff(E). It admits an exponential mapping, which is not surjective on any
neighborhood of the identity. The Lie algebra consists of all vertical vector fields
with compact support on E with the negative of the usual Lie bracket.

Proof. Since S is compact, we see from a local application of the exponential law
(see [Frölicher, Kriegl 1988]) that C∞(Diff{E,E} → M) ↪→ Diff(E) is an embed-
ding of a splitting submanifold, which proves the first assertion. A curve of principal
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bundle automorphisms of Diff{S,E} → M through the identity is a smooth curve
through the identity in Diff(E) consisting of fiber representing maps. The deriva-
tive of such a curve is thus an arbitrary vertical vector field with compact support.
The space of all these derivatives is therefore the Lie algebra of the gauge group,
with the negative of the usual Lie bracket. The exponential mapping is given by the
flow of such vector fields. Since on each fiber it is just isomorphic to the exponential
mapping of Diff(S), it has all properties of the latter. ¤

4.28. Definition. Let J1(E) → E the affine 1–jet bundle of sections of E → M .
We have J1(E) = {l ∈ L(TxM,TuE) : Tp ◦ l = IdTxM , u ∈ E, p(u) = x}. Then a
section of J1(E)→ E is just a horizontal lift mapping TM ×M E → TE, which is
fiber linear over E. Therefore, it describes a connection like in 4.19. Thus, we may
view C∞(J1(E)→ E) ∼= Conn(E) as the space of connections on E.

4.29. Curvature. If Φ ∈ Conn(E) then Φ ∈ Ω1(E;V E) and Φ◦Φ = Φ. Using the
Frölicher–Nijenhuis bracket (cf. 4.14), we may define

R = 1
2 [Φ,Φ] =

1
2 [Id−Φ, Id−Φ] ∈ Ω2(E;V E).

the curvature of Φ. R satisfies the Bianchi identity [Φ, R] = 0.

4.30. The action of Gau(E) on Conn(E). Let again Conn(E) = {Φ ∈ Ω1(E;TE) :
Φ ◦ Φ = Φ,Φ(TE) = V E}. Since S is compact, Conn(E) is diffeomorphic to
C∞(J1(E)). The action of γ ∈ Gau(E) ⊆ Diff(E) on Φ ∈ Conn(E) is given by

γ∗Φ = (γ−1)∗Φ = Tγ ◦ Φ ◦ Tγ−1

Then from [Michor 1991, Theorem 6.6] we get

Theorem. The action of the gauge group Gau(E) on the space of connections
Conn(E) is smooth.

4.31. Remark. The infinitesimal action can be found as follows. Let X be a
vertical vector field with compact support on E and FlXt the global flow. Then we
find

d

dt

∣∣∣∣
0

(FlXt )∗Φ = LX Φ = [X,Φ]

TΦ Conn(E) = {Ψ ∈ Ω1(E;TE) : Ψ|V E = 0}

The infinitesimal orbit at Φ in TΦ Conn(E) is {[X,Φ] : X ∈ C∞c (V E)}.
The isotropy subgroup IΦ of a connection Φ is {γ ∈ Gau(E) : γ∗Φ = Φ}, clearly

just the group of those f , which respect the horizontal bundle HE = ker(Φ). This
group is often infinite dimensional. The non-compactness of this group gives rise
to some difficulty, and is the essential reason why there exists no slice theorem for
Conn(E)/Gau(E).

4.32. Definition. The orbit space (moduli space) Conn(E)/Gau(E) is the space
of Gau(E)–orbits in Conn(E).

This space is the main interest of our studies. In the next chapters we will
formulate the problem, mention similar results, and consider slice theorems for
moduli spaces related to this moduli space.
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5. Slice theorems for Met(E)/Gau(E) and (Conn(E)×Met(V E))/Gau(E)

First, we will discuss the slice theorem for Met(E)/Gau(E), which will be
proved closely following the proof of the slice theorem for Met(E)/Diff(E) by
[Ebin 1968]. Later we will use that result and a “decomposition theorem” from
[Gil–Medrano et al. 1992] to carry the result fromMet(E)/Gau(E) to (Conn(E)×
Met(V E))/Gau(E). However, if we want to use the same result to remove the
Met(V E) term in (Conn(E) ×Met(V E))/Gau(E) difficulties arise, but that will
be described in the following chapter.

5.1. Definition. Let (E, p,M, S) be a fiber bundle, M and S both compact, and
let Met(E) be the space of Riemannian metrics on E. Since the group Gau(E)
is a subgroup of Diff(E), it acts on Met(E), also. Let Met(E)/Gau(E) be the
corresponding moduli space.

5.2. Remark. The method of proving a slice theorem for this space follows essen-
tially the proof for the action of a compact finite dimensional Lie group on a finite
dimensional manifold as e.g. in [Borel 1960] or [Palais 1961].

However, if one tries to copy that proof difficulties arise. First, Gau(E) is not
compact, not even locally compact. Therefore, integration with respect to the Haar
measure yielding a Gau(E)–invariant metric on E is not possible. Also, we cannot
easily conclude that an orbit Gau(E) · x is closed in E, and that Gau(E)/Gau(E)x
is a manifold and in fact homeomorphic to Gau(E) · x.

Furthermore, the problem which forces us to take the detour via Hilbert man-
ifolds is a topological one. Met(E) is a manifold modeled on neighborhoods of
a Fréchet space, and Gau(E) is also modeled on Fréchet spaces. The lack of an
implicit function theorem in Fréchet spaces has the very disturbing consequence,
that the exponential mapping, Exp, for Gau(E), although it can be proved to exist,
is not a diffeomorphism onto any neighborhood of the identity, which is used very
heavily in the usual proof of a slice theorem. However, in spite of the detour, we
will need a very restricted inverse function theorem on Fréchet spaces, but with
strong prerequisites.

5.3. Hilbert manifold completions. To overcome the topological difficulties
mentioned above, we consider the Sobolev completions of the manifolds Met(E)
and Gau(E).

Recall the constructions from 3.25, and now construct analogously for an arbi-
trary fiber bundle (F, π,N, S ′) the space of Hs–sections Hs(F ), which consists of
all sections, whose partial derivatives in local coordinates up to order s are square
integrable. Hs(F ) is a Hilbert manifold modeled on the Sobolev space Hs(Rn,Rm),
where n = dim(N) and m = dim(S ′).

Again, the Sobolev lemma holds: For s > k + n
2 the inclusion map Hs(F ) ⊂

Ck(F ) into the Banach manifold Ck(F ) is continuous.
This result is proven in [Palais 1968].

5.4. The space of metrics Mets(E). Now consider the vector bundle S2T ∗E
over E. Met(E) is the space of smooth sections of this bundle, which are positive
definite everywhere. Now consider C0(S2T ∗E), the space of continuous sections



44

of S2T ∗E. It follows that C0Met(E) ⊂ C0(S2T ∗E), the subset of everywhere
positive definite sections is an open subspace.

Now define the Sobolev extensionMets(E) ofMet(E) for s > n
2 asHs(S2T ∗E)∩

C0Met(E). Mets(E) is an open subset of Hs(S2T ∗E), a convex positive cone,
and therefore a Hilbert manifold.

The tangent space TgMets(E) can be canonically identified at each point g with
Hs(S2T ∗E).

We can construct a Riemannian structure on Mets(E) as follows: Since every
g ∈Mets(E) defines a Riemannian structure on TE, it induces a (C0) Riemannian
structure g̃ on S2T ∗E and a (C0) volume form d volg on E. Now define for φ, ψ ∈
Hs(S2T ∗E) = TgMets(E) an inner product

(φ, ψ)gs :=

∫

E

g̃(φ, ψ)d volg,

which induces the H0–topology on Hs(S2T ∗E). Therefore, Hs(S2T ∗E) is unfor-
tunately not complete under ( , )gs . Thus, we cannot define a real Riemannian
structure onMets(E). However, ( , )gs is a positive definite inner product every-
where, therefore we call Gs(φ, ψ) := (g 7→ (φg, ψg)

g
s) a weak Riemannian structure

onMets(E).

Lemma. The weak Riemannian structure Gs onMets(E) is smooth.

Proof. It suffices to show that the function Gs(φ, ψ). :Mets(E) → R g 7→ (φ, ψ)gs
is smooth for φ, ψ ∈ Hs(S2T ∗E), uniformly in Hs–norms of φ and ψ.

Take g0 ∈ Mets(E), and let d volg0 be the corresponding volume form on E.
Consider f : Mets(E) → Hs(E,R) defined by the equation f(g)d volg0 = d volg

and h :Mets(E)→ Hs(E,R), h(g) = g̃(φ, ψ).

Now let F be the subbundle in S2T ∗E of positive definite forms on each TpE.
Obviously, there exist functions f̄ , h̄ : F → E × R with f(g) = f̄ ◦ g, h(g) = h̄ ◦ g.
Thus, by Theorem 3.27, f and h, and hence fh are smooth functions from H s(F ) =
Mets(E)→ Hs(E,R). ¤

5.5. Connection and Exponential mapping on Mets(E).

Proposition.

(1) The weak Riemannian structure defined above admits a unique connection
∇ which respects Gs.

(2) This connection defines an exponential mapping, which is a local diffeomor-
phism TMets(E)→Mets(E) at the zero section.

Proof. (1): By [Lang 1995, Theorem VIII.4.1] there exists for any Riemannian
metric g on a Hilbert manifold a unique connection ∇ with

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ)(1)

∇XY −∇YX − [X,Y ] = 0.(2)
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However, since we have only a weak Riemannian metric, a problem arises. Assume,
that we have already found such a connection. In our case, we may compute

XGs(Y,Z) = Gs(∇XY,Z) +Gs(Y,∇XZ)

Y Gs(Z,X) = Gs(∇Y Z,X) +Gs(Z,∇YX)

ZGs(X,Y ) = Gs(∇ZX,Y ) +Gs(X,∇ZY )

∣∣∣∣∣∣∣

+

+

−

giving

XGs(Y,Z) + Y Gs(Z,X)− ZGs(X,Y ) =

= Gs(∇XY +∇YX,Z) +Gs(∇XZ −∇ZX,Y ) +Gs(∇Y Z −∇ZY,X) =

= Gs([X,Z], Y ) +Gs([Y,Z], X) +Gs(2∇XY − [X,Y ], Z),(3)

and thus

2Gs(∇XY,Z) = XGs(Y,Z) + Y Gs(Z,X)− ZGs(X,Y )+

+Gs([X,Y ], Z)−Gs([Y,Z], X) +Gs([Z,X], Y ).

Now we would like to conclude that ∇XY is uniquely determined by this equation.
But, since we Gs is only a weak Riemannian metric, we cannot conclude that a
solution ∇XY exists, although if it exist it is uniquely determined.

Since Gs defines the H0–topology on Hs(S2T ∗E), we may conclude, that a
solution exists in H0(S2T ∗E). Everything that remains to show now is that this
solution, in fact, lies in Hs(S2T ∗E).

Equip Mets(E) with the canonical coordinate system it inherits as a subset of
Hs(S2T ∗E), and fix g ∈Mets(E). If we consider g as a section of Hom(TE, T ∗E),
we can write any element of Hs(S2T ∗E) as g · a where a ∈ Hs(Hom(TE, TE)).
Thus, vector fields X, Y , and Z can be written as g · a, g · b, and g · c in the
canonical coordinate system. Then for h ∈ Mets(E), h̃(Y,Z) = tr(h−1gbh−1gc)),
where h−1 is regarded as a section of Hom(T ∗E, TE). Furthermore, (Y,Z)hs =∫
E
tr(h−1gbh−1gc)

√
det(hg−1) d volg. Let ht := h+ tga. Then

XGs(Y,Z)g =
d

dt

∣∣∣∣
t=0

(∫

E

tr(h−1t gbh−1t gc
√

det(htg−1) d vol
g)
)

=

∫

E

(
− tr(h−1gah−1gbh−1gc+ h−1gbh−1gah−1gc)+

+ 1
2 tr(h

−1gbh−1gc) tr(h−1ga)
)√

det(hg−1) d volg

and

Gs([X,Y ], Z)g =

∫

E

tr(h−1gah−1gbh−1gc− h−1gbh−1gah−1gc)
√

det(hg−1) d volg .

Using equation (3), we end up with

(∇XY )h =

= g
(
−h−1gah−1gb+ 1

4 (tr(h
−1ga)b+ tr(h−1gb)a− tr(h−1gah−1gb)g−1h)

)
.
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Since a, b, g, and h are Hs, (∇XY )h is Hs as well, so the weak Riemannian struc-
ture defines a connection onMets(E) for any s > n

2 .
(2): Furthermore, (∇YX)h is clearly smooth in h. Therefore, it is a smooth con-
nection and defines a smooth exponential map Exps in the usual way, with all
standard properties. In particular, Exps is a diffeomorphism from a neighborhood
of the zero section of TMets(E)→Mets(E). ¤

5.6. The group Gaus(E). Recalling 5.3 we may restrict our attention to the special
fiber bundle (F = E×E,pr1, E,E), whose sections are exactly the mappings E →
E. C1(F ) is then the space of all C1–mappings with the topology of uniform conver-
gence up to the first derivative. Define C1Diff(E) := {f ∈ C1(F )|∃f−1 ∈ C1(F )}.
The Sobolev extension of Diff(E) is then defined as Diffs(E) := C1Diff(E)∩Hs(F )
for s > n

2 . Since, by the Sobolev lemma, Hs(F ) ⊆ C1(F ) is continuous, Diffs(F )
is open in Hs(F ), and therefore is also a Hilbert manifold. Locally it looks like
Hs(TE).

We know from theorem 4.27 that Gau(E) is a splitting closed subgroup ofDiff(E).
Thus, we define the Sobolev extension Gaus(E) of Gau(E) as the topological com-
pletion of Gau(E) in Diffs(E).

Remark. Note, that Gaus(E) is exactly the subgroup of Diffs(E) of all fiber re-
specting diffeomorphisms, which cover the identity on M .

Proof. Both conditions can be described by continuous equations, and the inverse
of a fiber respecting diffeomorphism is also fiber respecting. ¤

Proposition. Gaus(E) is a topological group. (Note, that it is not a Hilbert Lie
group.)

Proof. Since, by construction, Gaus(E) is a group and a closed submanifold of
Diffs(E), it remains to show that Diffs(E) is a topological group.

First we determine the tangent space T Diffs(E). TφDiff
s(E) = Hs(φ∗TE). By

the way, Tφ Gau
s(E) = Hs

vert(φ
∗TE).

In [Palais 1968, §4], it was shown that Hs(TM) is linearly isomorphic to a closed
subspace of

⊕m
i=1H

s(Bin,R), where each Bin is the closed n-dimensional disc. From
the local structure of Diffs(E), it only remains to show that the composition map
◦ : Hs(Dn, Dn) × H

s(Dn,R) → Hs(Dn,R) is continuous. But this is assured by
Lemma 3.23. That shows that the composition map is continuous.

The proof, that the inverse–mapping is continuous, is very similar, also. From
definition of Diffs(E), we know that for f ∈ Diffs(E), f−1 ∈ C1Diff(E). Therefore,
it remains to show that f−1 ∈ Hs or D(f−1) ∈ Hs−1. This can be achieved as
follows. Consider the map i : GL(n,R) → GL(n,R) the matrix inversion. Then
D(f−1) = i ◦Df ◦ f−1. Df ∈ Hs−1 and s− 1 > n

2 , and therefore by Theorem 3.27

i◦Df ∈ Hs−1. Now we use induction to show that for 0 < k ≤ s,Dk(f−1) = gk◦f
−1

for gk ∈ H
s−k. For k = 1 we have shown that already. Assume, the fact is true for

k. Then we compute Dk+1(f−1) = Dgk ◦ f
−1 · D(f−1) = (Dgk · (i ◦ Df)) ◦ f

−1.
Since Dgk ∈ Hs−k−1 and i ◦ Df ∈ Hs−1, gk+1 = Dgk · (i ◦ Df) ∈ Hs−k−1 by
lemma 3.24. Now we see that Ds(f−1) ∈ H0, since f−1 ∈ C1Diff(E) already.
Thus, D(f−1) ∈ Hs−1, so f−1 ∈ Diffs(E). The continuity of the inversion map is

proved analogously. Since C1Diff(E) is a topological group, f−1 is close to f ′
−1
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in the C1–topology, if f is close to f ′ in Diffs(E). Using the same induction as
above, we show that g′1 = i ◦Df ′ is close to g1 in Hs−1, and inductively g′k is close

to gk in Hs−k. Hence, g′s is close to gs in H0. Again, since f−1 is close to f ′
−1

in C1 already, Dsf ′
−1

= g′s ◦ f
′−1 is close to Dsf in H0. Thus Df ′

−1
is close to

Df−1 in Hs−1, therefore, f ′
−1

is close to f−1 in Diffs(E), which proves continuity
of ( )−1. ¤

5.7. Proposition. Let γ ∈ Gaus(E).

(1) The right multiplication rγ : Gaus(E)→ Gaus(E) is smooth.
(2) The left multiplication lγ : Gaus(E) → Gaus(E) is smooth for γ ∈ Gau(E)

(i.e. a smooth gauge transformation).

Proof. (1): We know already that rγ is smooth. Locally Gaus(E) looks like a closed
subset of Hs(V ) for a vector bundle V . Locally rga is the restriction of φ 7→ φ ◦ γ
Hs(V ) → Hs(W ) to that subset for W another vector bundle. Since this map is
the restriction of a linear map and continuous it is smooth.
(2): Consider again the trivial fiber bundle (F = E×E,pr1, E,E). Let γ̃ : E×E →
E × E be the map (p, q) 7→ (p, γ(q)). Since γ is C∞, so is γ̃. Also lγ : Hs(F ) →
Hs(F ) is the mapping φ 7→ γ̃ ◦ φ. This is smooth by theorem 3.27. ¤

5.8. Proposition. The action of Gau(E) on C∞(S2T ∗E) can be extended to an
action ` : Gaus+1(E)×Hs(S2T ∗E)→ Hs(S2T ∗E), which is continuous and linear
(thus smooth) in the second variable. We write `(γ, g) = `g(γ) = `γ(g).

If g ∈ C∞(S2T ∗E) then `g : Gaus+1(E)→ Hs(S2T ∗E) is smooth.

Proof. We define the extension of the action by the same formula as usual as
(`(γ, g))x(X,Y ) = gγ(x)(Tγ · TX, Tγ · TY ), regarding elements of Gaus+1(E) as

elements in Diffs+1(E). First we check that this action is continuous and is well
defined (i.e. has range in Hs(S2T ∗E)). We check this in local coordinates. There
Gaus+1(E) looks like a closed subset in Hs+1(Bn,Rn) and Hs(S2T ∗E) looks like

Hs(Bn,R
1
2n(n+1)). The map γ 7→ Tγ : Hs+1(Bn,Rn) → Hs(Bn,Rn(n+1)) is

continuous. The map (γ, g) 7→ g ◦ γ : Hs+1(Bn,Rn) × Hs(Bn,R
1
2n(n+1)) →

Hs(Bn,R
1
2n(n+1)) is continuous by Lemma 3.23. Considering the map (Tγ, g◦γ) 7→

`(γ, g) : Hs(Bn,Rn(n+1))×Hs(Bn,R
1
2n(n+1)) → Hs(Bn,R

1
2n(n+1)), we see that it

is bilinear. Therefore, it is smooth by Lemma 3.24. Thus ` is continuous and well
defined. Obviously, ` is linear in the second variable. For g ∈ C∞(S2T ∗E) we see
that (γ, g) 7→ g ◦γ is smooth by Theorem 3.27. Therefore, `g is also smooth in that
case.

5.9. Proposition.

(1) The weak Riemannian structure Gs on Mets(E) is invariant under the
action of Gaus+1(E).

(2) There exists a Riemannian structure Gs on Mets(E) which is invariant
under Gaus+1(E).

Proof. (1): Take γ ∈ Gaus+1(E). Then `γ(Mets(E)) =Mets(E) and `γ is linear,
so for g ∈ Mets(E) Tg`γ = `γ . Take Xg, Yg ∈ TgMets(E) = Hs(S2T ∗E). Pick
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p ∈ E, then g̃(Xg, Yg)p = tr(g−1Xgg
−1Yg)p and

˜̀
γg(`γ .Xg, `γ .Yg)p =

= tr((Tγgγ(p)Tγ
>)−1TγXg,γ(p)Tγ

>(Tγgγ(p)Tγ
>)−1TγYg,γ(p)Tγ

>) =

= g̃(Xg, Yg)γ(p),

with > indicating transposition. γ acts as a diffeomorphism also naturally on vol-
ume forms on E, and it is clear that γ∗d volg coincides with d vol`γg. `γ acts as an

isometry onMets(E) since, by the substitution rule,
∫
E
˜̀
γg(`γ .Xg, `γ .Yg)d vol

`γg =∫
E
g̃(Xg, Yg)d vol

g. Then `γ(∇XY |g) = ∇`γ(Xg)`γ(Yg) forX,Y ∈ X(Mets(E)), and
Exps ◦T`γ = `γ ◦Exps (where one of the sides of the equation is defined, the other
is defined and the equation holds).
(2): To construct the Gaus+1(E)–invariant Riemannian structure, we assume that
s > n

2 + 1, for then all elements ofMets(E) are C1.

It suffices to define Gsg on H0(Js(S2T ∗E)) to get it on the space Hs(S2T ∗E) =
TgMets(E). We start by defining Gsg for g ∈ Met(E). To do that we first note,
that g induces a smooth isomorphism J s(S2T ∗E) ∼=

⊕s
i=0 S

2T ∗E ⊗ SiT ∗E, as
follows: g defines a covariant derivative for sections of TE, T ∗E, and hence on
S2T ∗E. Using this covariant derivative, we easily find the required isomorphism.
Then we use the inner product induced by g on SiT ∗E and d volg to define the
inner product Gsg on H0(Js(S2T ∗E)).

This, however, is more than we need. We do not need that isomorphism to be
smooth. The only thing we have to know is, that it induces a continuous linear
map Hs(S2T ∗E)→ H0(

⊕s
i=0 S

2T ∗E ⊗ SiT ∗E) =
⊕s

i=0H
0(S2T ∗E ⊗ SiT ∗E) for

g ∈ Mets(E). This is what we show. The individual maps Di
g : Hs(S2T ∗E) →

Hs−i(S2T ∗E ⊗ SiT ∗E) can be shown to be continuous as follows.
D0
g is the identity. By induction, we will assume thatDi

g is linear and continuous,

and show that then Di+1
g is continuous. Di+1

g = ∇ig ◦D
i
g, where ∇

i
g is the covariant

derivative on S2T ∗E ⊗ SiT ∗E induced by g. Now for φ ∈ Hs−i(S2T ∗E ⊗ SiT ∗E)

in local coordinates we have ∇ig(φ) = ∂φ
∂x + Γ · φ, where Γ denotes the Riemann–

Christoffel symbols with respect to g. g is Hs, thus Γ is Hs−1, and ∂φ
∂x is Hs−i−1.

Therefore, ∇ig : Hs−i → Hs−i−1 is continuous, so Di+1
g is continuous, as required.

Clearly, Gs gives a weak Riemannian structure for TMets(E), and Gsg induces
the Hs–topology on TgMets(E) for g ∈ Met(E). It remains to show, that it also
induces the Hs–topology for all g ∈ Mets(E). By construction, it clearly induces
the H0–topology. Again, by induction, we assume that we have already shown
that it induces the H i–topology (i < s). We now prove, that it then induces the
Hi+1–topology for i < s.

Let ‖ ‖i be a fixed norm on Hs(S2T ∗E) giving the H i topology (0 ≤ i ≤ s).
That Gsg induces the H i–topology means that

min
‖φ‖i=1

( i∑

j=0

‖Dj
g(φ)‖

0
g

)
> 0,

where ‖ ‖0g denotes theH
0 norm induced by g. For the inductive step, assume that

Gsg does not induce the H i+1–topology. That means, that there exists a sequence
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{φn} with ‖φn‖
i+1 = 1 and

∑i+1
j=0 ‖D

j
g(φn)‖

0
g → 0. But then, since Gsg induces the

Hi–topology, we know ‖φn‖
i → 0. But, setting ψn = Di

g(φn), we get ‖ψn‖
0
g → 0.

We have already seen above, that Di+1
g (φn) = ∂ψn

∂x + ψn · Γ. Thus, ‖ψn‖
0
g → 0

implies ‖ψn · Γ‖
0
g → 0. Hence, since ‖Di+1

g (φn)‖
0
g → 0, ‖∂ψn∂x ‖

0
g → 0 also. But

‖φn‖
i → 0 and ‖∂ψn∂x ‖

0
g → 0 imply ‖φn‖

i+1 → 0 which is a contradiction. Thus Gsg
defines a strong inner product for every g ∈Mets(E).

The next thing to show is that Gs is Gau
s+1(E) invariant. The proof is the same

as in (1), but additionally we have to use that Tγ(∇
`γg
X Y ) = ∇TγXTγY . It follows

that γ∗(Di
gφ) = Di

`γg
(γ∗φ). Thus, the two isomorphisms of J s(S2T ∗E) induced by

g and `γg commute with `. The remainder is analogous to (1).
What remains is, that Gs is a continuous Riemannian structure. From the local

description, we see that Γ is differentiated no more than s − 1 times, and it is
composed of g and ∂g

∂x . Everything else follows from [Schwartz 1964, pp. 158–159].
It even follows that Gs is smooth, but we will not use that fact. ¤

5.10. Construction of the manifold Gaus(E)/Gau(E)g. Pick g ∈Met(E), and
let Gaus(E)g be the isotropy subgroup of Gaus(E), s > n

2 + 1. Then Gaus(E)g is
the set of Hs diffeomorphisms, which are fiber respecting, cover the identity on M ,
and are isometries with respect to g. By [Palais 1957] it is well known that any
C1–isometry of a smooth metric is smooth. Therefore, since C1 Gau(E) ⊃ Gaus(E),
Gaus(E)g ⊂ Gau(E) and Gaus(E)g = Gau(E)g for all s > n

2 + 1. By [Kobayashi,
Nomizu 1963] and [Palais 1957] we know the following

Theorem. Let X be a smooth compact manifold with smooth Riemannian metric
g. Let φn, φ ∈ Diff(X)g. If φn → φ and Tφn → Tφ uniformly on X (i.e. C1–
convergence), then φn → φ uniformly in all derivatives (i.e. C∞–convergence). If
Diff(X)g is given the topology of uniform Ck–convergence (1 ≤ k ≤ ∞), Diff(X)g
is a compact Lie group.

By the first part of this theorem, the topology of Diff(X)g is independent of k.
Also A : Diff(X)g ×X → X defined by A(φ, x) = φ(x) induces a natural identifi-
cation i between the Lie algebra G of Diff(X)g and the set V of vector fields on X
whose one parameter groups of diffeomorphisms lie in Diff(X)g. This identification
i is defined by i(Y )x = T(Id,x)A(Y, 0) where Id is the identity of Diff(X)g.

Since Gau(E)g ⊆ Diff(E)g is a closed subgroup, Gau(E)g is a compact Lie group.
Its topology is also independent of the choice of k. The Lie algebra of Gau(E)g can
be identified as the Lie subalgebra Gaug of G of all vertical vector fields in V.

5.11. Lemma. i : Gau(E)g ⊆ Gau
s(E) is a smooth embedding.

Proof. We prove in two steps and use Corollary 3.15.

Claim 1: i : Gau(E)g ⊆ Gau
s(E) is smooth.

Since, by Proposition 5.7 rγ is smooth for any γ ∈ Gau(E)g, and i = rγ ◦ i ◦ rγ−1 ,
we only need to show smoothness at the identity Id ∈ Gau(E)g. For doing this, we

use a standard chart for Gau(E)g. Let Exp
Gaug be the exponential mapping of the

Lie group Gau(E)g. It is a diffeomorphism from a neighborhood U of zero in Gaug
to a neighborhood of Id.
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In Corollary 3.15 set g : J × U × V → F as g(t, u, v) = u, and note that

ExpGaug (u) is the map v 7→ h(1, u, v). Let h̃ : U0 → Gaus(E) be defined as

h̃(u) = (v 7→ h(1, u, v)). Then smoothness of i is equivalent to smoothness of h̃.

We prove dk

dvk
(h̃)(v)(x1, . . . , xk) = ∂k2h(1, u, v)(x1, . . . , xk). For k = 1 this means

limt→0
h(u+tx1)−h(u)

t converges at each point v ∈ V to ∂1h(1, u, v)(x). Since, by the
theorem, h is a smooth map, the convergence is uniform in all derivatives. That
means, it converges also in the Hs–topology. The same works for k > 1, so h̃ is
smooth, and so is i.

Claim 2: i : Gau(E)g ⊆ Gau
s(E) is an embedding.

Since Gau(E)g is compact, i is a homeomorphism onto its image. TIdi : Gaug →

TId Gau
s(E) is given by x 7→ Dh̃(0)(x) = (v 7→ ∂2h(1, 0, v)(x)). If Dh̃(0)(x) = 0

then ∂2h(1, 0, v)(x) = 0 for all v. But, by construction, h(1, x, v) = h(t, 1tx, v),
so then ∂2h(t, 0, v)(x) = 0, and 0 = ∂1∂2h(1, 0, v)(x) = ∂2(∂1h(1, 0, v))(x) =
∂2f(1, 0, v)(x) = x. Thus, x = 0, so TIdi is injective. Its image is finite dimen-
sional, therefore closed in TId Gau

s(E). Transporting by right multiplication, we
find that Ti is injective on each fiber, and its image is closed in its fiber. ¤

5.12. Lemma. Let S =
⋃
γ∈Gaus(E) TIdrγ(Gaug). Then S is a smooth involutive

subbundle of T (Gaus(E)).
The elements of S are the vectors in T Gaus(E) which are tangent to some coset

Gau(E)gγ, i.e. the elements of T Gau(E)gγ ⊂ T Gau
s(E).

Proof. At first we prove that the composition mapping ◦ : Gau(E)g × Gau
s(E) →

Gaus(E) is smooth. We know from Proposition 5.7 that ◦ is smooth in either
variable individually, that ∂i ◦ . (i = 1, 2) is continuous in both variables, and that
it can locally be described by a map which is linear in the first variable. We only
need to show existence and continuity of the higher partial derivatives. But locally

∂k2∂
j
1 ◦ . =

{
∂k2 ◦ . j = 1

0 j 6= 1.

This proves the first step.
Let {Xi} be a basis of Gaug, and define Vi by (Vi)γ = Trγ(Xi). Vi is smooth

because ◦ is, and {Vi} is clearly a basis everywhere. Furthermore, [Vi, Vj ]γ =
[Trγ(Xi), T rγ(Xj)] = Trγ([Xi, Xj ]) which is in S since [Xi, Xj ] ∈ Gaug. Since S
has finite dimensional fiber, this suffices to prove the first part of the proposition.
The second part is obvious. ¤

5.13. The manifold structure of Gaus(E)/Gau(E)g. Consider the usual pro-
jection π : Gaus(E) ³ Gaus(E)/Gau(E)g, and equip Gaus(E)/Gau(E)g with the
quotient topology.

From Frobenius’ theorem 3.20 we get for any γ ∈ Gaus(E) a neighborhood W of
γ and a diffeomorphism φ : U × V → W such that for any fixed v ∈ V , φ|U × {v}
is a diffeomorphism onto a neighborhood of φ(0, v) in the coset Gau(E)γφ(0, v).
Especially, we can find a neighborhoodW of Id small enough so that Gau(E)g∩W =
φ(U, 0).
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To assure that π ◦ φ|(0×V0) : V0 → Gau
s(E)/Gau(E)g is a homeomorphism onto

a neighborhood of Gau(E)g in Gaus(E)/Gau(E)g for certain smaller V0, such that
we can use that to define charts, we will need the following Lemma.

Lemma. There exist connected neighborhoods U0, V0 of zero in a Banach space,
included in U , V , such that if W0 = φ(U0 × V0), for any γ ∈ W0, there exists a
unique v ∈ V0 such that Gau(E)gγ ∩W0 = φ(U0, v).

Proof. Since Gaus(E) is a topological group, we get neighborhoods W1, W2 of
Id such that W1 · W1 ⊂ W , W2 · W

−1
2 ⊂ W1, and W1 = φ(U1 × V1), where

U1 ⊂ U , V1 ⊂ V are connected balls about 0. Next pick U0, V0 so small that
φ(U0 × V0) = W0 ⊂ W2. Take γ ∈ W0, and η ∈ Gau(E)gγ ∩W0. Then ηγ−1 ∈
Gau(E)gγ ∩W0 ·W

−1
0 ⊂ Gau(E)g ∩W1. Hence, ηγ−1 ∈ φ(U1, 0).

Let l := {t · φ−1(ηγ−1)|t ∈ [0, 1]} ⊂ U1 be a line. Then φ(l) is a smooth curve
from Id to ηγ−1 in Gau(E)g ∩W1. Thus, φ(l)γ is a smooth curve c from γ to η in
(Gau(E)g ∩W1)γ ⊂ Gau(E)gγ ∩W ⊂ φ(U × V ). From the construction of φ, we
know that the tangent to c at any point lies in Tφ(TU). Therefore, if γ = φ(u, v0)
and η = φ(u′, v), we get v0 = v, and so η ∈ φ(U, v). Since η ∈ Gau(E)gγ ∩W0

was arbitrary, we get Gau(E)gγ ∩W0 ⊂ φ(U0, v), and v ∈ V0 is unique, and by the
paragraph before the Lemma, φ(U0, v) ⊂ Gau(E)gγ ∩W0. ¤

Now define charts for Gaus(E)/Gau(E)g by right translation

ψγ := π ◦ rγ ◦ φ : V0 → Gau(E)gγ.

ψγ clearly is injective and ψγ(V0) covers a neighborhood of Gau(E)gγ. We compute

ψ−1γ ◦ ψη(v) = ψ−1γ (Gau(E)gφ(0, v) · η) = pr2 φ
−1(Gau(E)gφ(0, v) · η · γ

−1),

which is a smooth map. Therefore, the maps are smoothly compatible, and hence
Gaus(E)/Gau(E)g is a smooth manifold.

Note, that the usual right action rγ on Gaus(E)/Gau(E)g is smooth.

5.14. Proposition.

(1) The map π : Gaus(E) ³ Gaus(E)/Gau(E)γ admits a smooth local cross
section at any coset Gau(E)γη.

(2) Let N be any manifold. A map f : Gaus(E)/Gau(E)γ → N is smooth if
and only if f ◦ π : Gaus(E)→ N is smooth. In particular, π is smooth.

Proof. (1): Define sγ : Gaus(E)/Gau(E)g → Gau
s(E) on a neighborhood of γ by

sγ := rγ ◦ φ ◦ ψ
−1
γ .

π ◦ sγ is the identity, and sγ(Gau(E)gγ) = γ. Furthermore, sγ is obviously smooth.
(2): ⇐=: Suppose f ◦ π is smooth. Near Gau(E)gγ, f = f ◦ π ◦ sγ , thus f is a
composition of smooth mappings.
=⇒ : π is smooth, since in charts ψγ and rγ ◦ φ, π=̂ pr2 : U × V → V . Thus f ◦ π
is smooth, if f is. ¤
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5.15. The map of Gaus+1(E) onto an orbit through g. Consider again the map

`g. Since `g(Gau(E)g) = g, `g induces a map ˜̀g : Gaus+1(E)/Gau(E)g →Mets(E).

We will show that ˜̀g is a diffeomorphism onto the orbit of Gaus+1(E) through g.

Lemma. ˜̀g is smooth and injective.

Proof. `g is smooth and `g = ˜̀g ◦ π. By Proposition 5.14(2) ˜̀g is smooth. Since
˜̀g(Gau(E)gγ) = ˜̀g(Gau(E)gη), `

g(γ) = `g(η), hence γη−1 ∈ Gau(E)g, and finally
Gau(E)gγ = Gau(E)gη. ¤

To show that ˜̀g is an immersion, we must show that the tangent mapping
Tp ˜̀

g : Tp(Gau
s+1(E)/Gau(E)g) → T˜̀g(p)(Mets(E)) is injective and has closed

range. First we will consider the map TId`
g : TId(Gau

s+1(E)) → Tg(Mets(E)).

Recalling, that TId(Gau
s+1(E)) ∼= Hs+1(V E) and TgMets(E) ∼= Hs(S2T ∗E), we

can formulate the following

5.16. Lemma. TId`
g, with the identifications defined above, is the first order dif-

ferential operator Le(X) = LX(g) (the Lie derivative of g with respect to the vertical
vector field X).

Proof. We know that L·(g) and TId`
g are both continuous linear mapsHs+1(V E)→

Hs(S2T ∗E) because they are of first order. Thus we only have to show that they
agree on the dense subset C∞(V E). Take any X ∈ C∞(V E). This X generates a
one parameter subgroup of diffeomorphisms γt. The map c : R→ Gaus+1(E) given
by t 7→ γt is a smooth curve in Gaus+1(E). Tsc = (x 7→ Xγs(x)) ∈ Tγs(Gau

s+1(E)).

To compute TId`
g(X), we compute d

dt |0(`
g ◦ c(t)) = d

dt |0(`γt(g)). By definition,

at each point x ∈ E, d
dt |0(`γt(gx)) = LX(g)x. Since `

g is smooth, d
dt (`

g ◦ c(t)) exists
in Hs(S2T ∗E), and it is the map x 7→ LX(g)x. ¤

Tγ`
g for any γ ∈ Gaus+1(E) can be computed by right translation to the

identity: Tγ`
g(Tγ(Gau

s+1(E))) = γ∗ ◦ Le ◦ Tγ(rγ−1)(Tγ(Gau
s+1(E))). Therefore,

Tγ`
g(Tγ Gau

s+1(E)) ∼= TId`
g(TId Gau

s+1(E)).

Now, if we want to show that Tγ`
g(Tγ Gau

s+1(E)) is closed in T`g(γ)Mets(E) =

Hs(S2T ∗E), it is sufficient to prove it for γ = Id. By 5.16 we, therefore, examine
the map Le.

5.17. Proposition.

(1) The map Le : H
s+1(V E)→ Hs(S2T ∗E) has closed image, and the comple-

ment of im(Le) is closed.

(2) im(Tπ(γ) ˜̀
g) is closed and has closed complement in T`g(γ)Mets(E).

Proof. (1): By Proposition 3.30 we need only show that for ξ 6= 0 ∈ T ∗xE σξ(Le) is
injective, where σξ(Le) denotes the symbol of Le at ξ ∈ T ∗xE. Let Y ∈ TxE and
η ∈ T ∗xE be the element associated to Y by the metric g. Then

σξ(Le)(Y ) = η ⊗ ξ + ξ ⊗ η,

which is injective.
(2): `g = ˜̀g ◦ π and Tπ is onto Tπ(γ)(Gau

s+1(E)/Gau(E)g), so the image of Tγ`
g

coincides with the image of Tπ(γ). This fact, together with (1) proves (2). ¤
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5.18. Proposition. ˜̀g : Gaus+1(E)/Gau(E)g →Mets(E) is an injective immer-
sion.

Proof. For proving this fact, it remains to show that T ˜̀g is injective in every tangent
space. But we know already that Tγ`

g = Tπ(γ) ˜̀
g ◦ Tγπ, and therefore injectivity

can be proven by the following claim:
Claim: If X ∈ Tγ Gau

s+1(E) with Tγ`
g(X) = 0, then Tγπ(X) = 0.

To prove this, we consider as first case γ = Id. There TId`
g = Le. If Le(X) = 0

then X is a smooth vertical vector field and LX(g) = 0. Thus, the one parameter
subgroup {ηt} generated by X lies in Gau(E)g. Hence, π({ηt}) ≡ Gau(E)g, and
therefore TIdπ(X) = 0. ¤

The next step will be showing that ˜̀g is actually an embedding with closed image
inMets(E).

5.19. Proposition. If s > n
2 + 2 then ˜̀g : Gaus+1(E)/Gau(E)g →Mets(E) is a

homeomorphism onto a closed subset ofMets(E).

Proof. Let {γn} be any sequence in Gaus+1(E) such that `γn(g)→ g′. Consider the
exponential mappings exp, exp′, expn : TE → E of g, g′, and `γn(g), respectively.

Since E is compact, there exists a positive real ε such that any ball of radius
smaller than ε with respect to g in E is contained in some normal coordinate
neighborhood of E. For g′ there similarly exists a real number ε′.

Now set K = maxX∈TE(g
′(X,X)/g(X,X)), and pick a finite set {ei} of points

in E such that for each i, Ui is a normal coordinate neighborhood with respect to
g centered at ei, of radius less than δ = K−

1
2 min(ε, ε′), and the Ui are a covering

of E. Further pick {Xj
i } such that for each fixed i, {Xj

i }j is an orthonormal basis
with respect to g of TeiM .

Claim 1: You can find a finite set {fi} ⊂ E, {Y ji } ⊂ TE and a subsequence {γnk}

such that γnk(ei)→ fi and Tγnk(X
j
i )→ Y ji for all i, j. Furthermore, Y ji is a basis

of TfiE.
Proof: It is immediate from the compactness of E that there exists a subsequence ηk
of γn such that for all i there is an fi and ηk(ei)→ fi. Let C = max(i,j)(g

′(Xj
i , X

j
i )).

Since `ηk(g) → g′, for every (i, j) we have g(TηkX
j
i , TηkX

j
i ) → g′(Xj

i , X
j
i ). Thus

for k large enough g(TηkX
j
i , TηkX

j
i )

1
2 ≤ 2C. If you define BN (E) = {X ∈

TE|g(X,X)
1
2 ≤ N}, then B2L(E) is compact, and TηkX

j
i ∈ B2L(E) for large

k. The existence of a subsequence as asked for in the claim and the existence of
the Y ji follow again from compactness of E. The Y ji obviously are a basis.

From now, we denote γnk again by γn for convenience.
Claim 2: There exists γ ∈ C1 Gau(E) such that γn → γ.

Proof: Consider a fixed Ui about ei. If e ∈ Ui, e = exp(
∑
j a

j
iX

j
i ) with

∑
j(a

j
i )
2 <

δ. Thus, γn(e) = γn(
∑
j a

j
iX

j
i ) = expn ◦Tγn(

∑
j a

j
iX

j
i ). Since Tγn(X

j
i ) → Y ji

{Tγn(X
j
i )} is a bounded set. Furthermore, on bounded sets expn converges C1 to

exp′ (since s > n
2 +2), thus γn(e)→ exp′(

∑
j a

j
iY

j
i ). Define γ(e) = exp′(

∑
j a

j
iY

j
i ),

then γn converges C1 to γ on Ui. Extend γ to a map on E by gluing together the
definitions on all Ui. The two constructions on e ∈ Ui∩Uj coincide since the γn are
maps on E and γn(e)→ γ(e). Therefore, γ is well defined on E, and since γn → γ
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on each Ui, γn → γ on E. On Ui is γ = exp′ ◦λ ◦ exp−1ei , where expei : TeiE → E is

exp |TeiE , and λ : TeiE → TfiE is the linear map given on the basis by λ(Xj
i ) = Y ji .

Since g′(Y ji , Y
j
i ) ≤ K, λ ◦ exp−1ei (Ui) is contained in a neighborhood of zero of g′-

radius ≤ ε′. This proves that exp′ |λ◦exp−1
ei
(Ui)

is a C1–diffeomorphism. Hence, γ|Ui
is a C1–diffeomorphism onto a neighborhood of γ(ei), and thus γ(E) is open in E.
Since E is compact, γ(E) is closed also.
Let d, dn, d

′ be the (topological) metrics on E induced by g, `γn(g), and g′, re-
spectively. Let l be the Lebesgue number of the covering Ui with respect to d (i.e.,
if d(e, f) < l, there is some Ui such that e, f ∈ Ui.). For we know that γ|Ui is
injective, we take e, f ∈ E such that d(e, f) ≥ l. Then, dn(γn(e), γn(f)) ≥ l for k
big. But `γn(g) → γ′ and γn(e) → γ(e), γn(f) → γ(f). Thus, d′(γ(e), γ(f)) ≥ l,
so γ(e) 6= γ(f). Therefore, γ is injective, by the above argument it is onto, hence
a C1–diffeomorphism. Since γn → γ in C1Diff(E), `γn(g)→ `γ(g) in C

0Met(E),
so `γ(g) = g′. Next, we have to show that γ actually is in C1 Gau(E).
γ(p−1(x)) ⊂ p−1(x) since all γn(p

−1(x)) ⊂ p−1(x) and p−1(x) is closed for all
x ∈ M , and p(γ(e)) = p(limn→∞ γn(e)) = limn→∞ p(γn(e)) = limn→∞ p(e) = p(e)
since p is continuous and all γn ∈ Gau

s+1(E). Hence, γ ∈ C1 Gau(E).
Closely following Palais’ idea in Ebin’s proof we show what remains to be proved.
We know that given `γn(g) → g′ inMets(E), there exists a subsequence {γnk}

of {γn} such that γnk → γ in C1 Gau(E) and `γ(g) = g′. Consider the Riemann-
Christoffel-symbols nΓ

k
ij , and

′Γkij of `γn(g), and g
′, respectively. Set nζ

k
ij = nΓ

k
ij −

′Γkij . Since λγn(g) → g′ in Mets(E), the functions nζ
k
ij → 0 Hs−1 and hence

C1. Now we denote by γn again the subsequence γnk . If we represent γn in local
coordinates by f in(x

1, . . . , xm) and γ by f i(x1, . . . , xm), then

nΓ
k
ij =

(
∂f jn
∂xr

)−1(
∂f in
∂xs

)−1
Γtrs

(
∂fkn
∂xt

)
−

(
∂2fkn
∂xs∂xr

)(
∂f in
∂xs

)−1(
∂f jn
∂xr

)−1
.

The first term tends C0 to ( ∂f
i

∂xr )
−1(∂f

j

∂xs )
−1Γtrs(

∂fk

∂xt ), so the second term goes to

(
∂f j

∂xr

)−1(
∂f i

∂xs

)−1
Γtrs

(
∂f i

∂xt

)
− ′Γkij .

Therefore,

(
∂2fkn
∂xr∂xs

)
→

((
∂f j

∂xr

)−1(
∂f i

∂xs

)−1
Γtrs

(
∂f i

∂xt

)
− ′Γkij

)(
∂f in
∂xs

)−1(
∂f jn
∂xr

)−1

converges C0. This means that fn converges C2, so in particular γ ∈ C2Diff(E).
As above we show that indeed γ ∈ C2 Gau(E). Then

′Γkij =

(
∂f j

∂xr

)−1(
∂f i

∂xs

)−1
Γtrs

(
∂fk

∂xt

)
−

(
∂2fk

∂xs∂xr

)(
∂f i

∂xs

)−1(
∂f j

∂xr

)−1
.

Now assume γn → γ in Gaut(E) for t ≤ s. Then since nζ
k
ij → 0 in Hs−1, and

∂fin
∂xj →

∂fi

∂xj in Ht−1 and in C0, by an application of the Sobolev lemma 3.22,
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∂2fin
∂xj∂xk

→ ∂2fin
∂xj∂xk

in Ht−1. Therefore, we find fn → f in Ht+1. Thus, by induction

we find γn → γ in Diffs+1(E), by the same argument as above we prove γn → γ in

Gaus+1(E), and g′ = `γ(g) ∈ ˜̀g(Gaus+1(E)/Gau(E)g), thus the orbits are closed.

The last fact to show is that Gau(E)gγn → Gau(E)gγ in Gaus+1(E)/Gau(E)g. If we
assume the contrary, this implies the existence of a neighborhood U of Gau(E)gγ
and of a subsequence {γnk} such that γnk /∈ U ∀k. But by the above we can
find a subsequence {ζm} of {γnk} such that ζm → γ′ in Gaus+1(E) and `γ′(g) =
g′. Therefore, Gau(E)gγ

′ = Gau(E)gγ and for large m, Gau(E)gζm ∈ U , which
contradicts the assumption. ¤

5.20. Slice theorem. Let s > n
2 + 2 and ` : Gaus+1(E) ×Mets(E) →Mets(E)

be the usual action. Then there exists for every g ∈ Mets(E) a submanifold S of
Mets(E) containing g, which is diffeomorphic to a ball in Hilbert space, such that:

(1) If γ ∈ Gau(E)g, `(γ, S) = S.

(2) If γ ∈ Gaus+1(E), such that `(γ, S) ∩ S 6= ∅, then γ ∈ Gau(E)g.

(3) There exists a local cross section s : Gaus+1(E)/Gau(E)g → Gau
s+1(E)

defined on a neighborhood U of the identity coset such that if F : U × S →
Mets(E) is defined by F (u, t) := `(s(u), t), then F is a homeomorphism
onto a neighborhood of g.

Proof. Up to now we have shown that ˜̀g is a diffeomorphism of Gaus+1(E)/Gau(E)g
onto Osg := Gaus+1(E) · g, the orbit through g. First we will construct the normal
bundle ν(Osg) of O

s
g inMets(E).

Obviously, Osg is a smooth submanifold of Mets(E), which is by 5.4 equipped
with a weak smooth Riemannian structure Gs. We consider TMets(E)|Os

g
, the

subset of all tangent vectors in TMets(E) whose base points are in Osg. It is a
vector bundle over Osg and TOsg is a subbundle of it. We define

ν(Osg) := {X ∈ TMets(E)|Os
g
|∀Y ∈ TOsg : Gs(X,Y ) = 0}.

Because Gs is only a weak Riemannian metric, it is not automatic that the normal
bundle ν(Osg) is a smooth subbundle of TMets(E)|Os

g
. To show this, we will

construct a smooth surjective vector bundle map Φ : TMets(E)|Os
g
→ TOsg whose

kernel is ν(Osg).

From 3.30 and 5.17 we know that the fiber of ν(Osg) is kerL∗e, where L∗e :

Hs(S2T ∗E) → Hs−1(TE). Because the weak Riemannian structure of Mets(E)
is preserved by the action of Gaus+1(E), the fiber of ν(Osg) at any point `γ(g) is
γ∗(kerLe).

Set Φ := Le ◦ (L
∗
eLe)

−1 ◦ L∗e where we consider L∗e : H
s(S2T ∗E)→ Hs−1(V E),

Le : H
s+1(V E)→ Hs(S2T ∗E), and regard L∗e ◦ Le as a map

L∗e ◦ Le : L
∗
eLe(H

s+3(V E)) ⊂ Hs+1(V E)→ L∗eLe(H
s+1(V E)) ⊂ Hs−1(V E).

Since L∗eLe is elliptic and selfadjoint, it is an isomorphism on these sets, and since
L∗e(H

s(S2T ∗E)) = L∗eLe(H
s+1(V E)), the composition Le ◦ (L

∗
eLe)

−1 ◦ L∗e makes
sense.
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On the fiber at `γ(g) define Φ to be γ∗ ◦ Le ◦ (L
∗
eLe)

−1 ◦ L∗e ◦ γ
∗−1. Then by

3.30 and the fact that T`γ(g)(O
s
g) = T`γTg(O

s
g), it is obvious that ν(Osg) = kerΦ

and that Φ is onto. It remains to show that Φ is a smooth bundle map.
Let Φγ be Φ restricted to the fiber at `γ(g). Assume s > n

2 + 2.
Next take local trivializations of TMets(E)|Os

g
and TOsg over some neighborhood

U . There γ → Φγ can be viewed as a map U → L(Hs(S2T ∗E), Le(H
s+1(V E))).

Taking U small enough such that there exists by proposition 5.13 a local section
s : U → Gaus+1(E). In the sequel, we will not distinguish between U and s(U). It
suffices to show that γ → Φγ is smooth in order to prove that Φ is a smooth bundle
map.

Set, therefore, Lγ := γ∗ ◦Le ◦ (Trγ)
−1 = Tγ`

g, then L∗γ = Trγ ◦L
∗
e ◦ (γ

∗)−1, thus

Φγ = Lγ ◦ (L
∗
γ ◦ Lγ)

−1 ◦ L∗γ .
Since, obviously, γ → Lγ is smooth, we only need to show that γ → L∗γ is smooth

also. Because then, L∗γLγ : Tγ(Gau
s+1(E)/Gau(E)g) → Tγ(Gau

s−1(E)/Gau(E)g)
is an isomorphism, and γ → L∗γLγ is smooth. Since we are in the setting of Banach

spaces, we conclude that γ → (L∗γLγ)
−1 is smooth also, hence γ → Φγ is smooth.

Let us concentrate on γ → L∗γ . L
∗
γ ∈ L(H

s(S2T ∗E), L∗e(H
s(V ∗E))), and we see

that γ → L∗γ is smooth if γ → L∗γ(h) is smooth for all h ∈ Hs(S2T ∗E), and its
derivatives are bounded by constants depending only on ‖h‖. We will prove this
fact by computing in local coordinates.

We find from [Palais 1965, chapter 4, §4] that

L∗e(h)
l =

∂hjkA
ijkl

∂xi
+ hjkB

jkl

where Aijkl and Bjkl are rational functions of the {gij} and their first derivatives.
Let {τ ij} be the matrix of first derivatives of γ−1. Then (γ∗)−1(h)ij = τki (hkl ◦

γ−1)τ lj . Also if Xi is a vertical vector field in local coordinates Trγ(X
i) = Xi ◦ γ,

since rγ looks locally like a linear map (Proposition 5.7). Thus, we compute

L∗γ(h)
i =

(
(τmj ◦ γ)

∂hmn
∂xl

(τnk ◦ γ) +
∂τmj γ

∂xl
h(τnk ◦ γ)+

+ (τmj ◦ γ)hmn
∂τnk ◦ γ

∂xl

)
(Aijkl ◦ γ) + (τnk ◦ γ)hmn(τ

m
l ◦ γ)(B

ikl ◦ γ).

τ ◦ γ is the inverse of the matrix of first derivatives of γ, so L∗γ(h) consists of a
rational function in the first and second derivatives of γ times the smooth functions
Aijkl and Bijk composed with γ. Therefore, using Lemma 3.24 and Theorem 3.27,
we see that γ → L∗γ(h) is smooth as a map from Gaus+1(E) → Hs−1(V E). Each
derivative of the map is bounded by a constant involving the functions {gij} and
their derivatives, and involving the Hs–norm of h, since h and its first derivatives
appear in a linear fashion. Thus γ → L∗γ is smooth.

By the arguments given before, we see that Φ is a smooth bundle projection
TMets(E)|Os

g
→ TOsg with kernel ν(Osg). Therefore, ν(Osg) is a smooth bundle

over Osg.
This normal bundle now enables us to construct the requested slice. To ac-

complish this, we consider the exponential map Exps : TMets(E) → Mets(E)
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of the weak Riemannian structure on Mets(E). Then Exps |ν(Os
g)

is a diffeo-

morphism from a neighborhood of the zero section of ν(Osg) to a neighborhood
of Osg in Mets(E). (Here, we essentially need that we are in the Hilbert space
setting). There exists a small neighborhood U of g in Osg with a local section

s : U → Gaus+1(E), and a small neighborhood V of zero in ν(Osg)g such that
if W = {γ∗(v)|v ∈ V, γ ∈ s(U)} ⊂ ν(Osg), Exps |W is a diffeomorphism onto a
neighborhood of g inMets(E).

Consider the strong inner product Gsg( , ) on Hs(S2T ∗E) (see Proposition
5.9). As we have seen, Gau(E)g acts as a group of orthogonal transformations with
respect to Gsg( , ). A suitable V for above is then e.g. the set

V = {X ∈ TMets(E)|X ∈ ν(Osg)g,Gsg(X,X) < ε2}.

We choose U and V small enough such that Exps(W ) ∩Osg = U .
By Gs( , ) we denote again the strong Riemannian structure on Mets(E)

from 5.9 and by Brg the ball of radius r about g with respect to Gs. Then for

some δ > 0, Exps(W ) ⊃ B2δ
g . Take U1 ⊂ U , and pick ε1 < ε giving V1 ⊂ V and

W1 = {γ∗(v)|v ∈ V1, γ ∈ s(U1)} such that Exps(W1) ⊂ Bδg . Define the slice as
S := Exps(V1). We next prove the three required properties.
(1): Let γ ∈ Gau(E)g and x = exp(v) ∈ S, v ∈ V1. Then

`γ(x) = `γ(Exps(v)) = Exps(γ
∗(v))

γ∗ : ν(Osg)g → ν(Osg)g, since it preserves Gs and the weak Riemannian structure
Gs. Therefore, `γ(x) = Exps(γ

∗(v)) ∈ S.
(2): Assume that there exist γ ∈ Gaus+1(E) and x, y ∈ S such that `γ(x) = y.
Then Gs(g, y) < δ, and δ > Gs(g, x) = Gs(`γ(g), `γ(x)). Thus Gs(g, `γ(g)) < 2δ
and `γ(g) ∈ Exps(W ) and `γ(g) ∈ U . If x = Exps(a) and y = Exps(b), then
Exps(b) = Exps(γ

∗(a)) and b, γ∗(a) ∈ W . Since Exps |W is injective, γ∗(a) = b, so
since a, b ∈ V , `γ(g) = g or γ ∈ Gau(E)g.
(3): Let s and U be as above. Let W2 = {γ∗(v)|v ∈ V1, γ ∈ s(U)}. Then, since
Exps |W2 is a diffeomorphism onto a neighborhood of g, F : U × S → Mets(E)
defined by F (u, x) = `(s(u), x) is a continuous bijection onto Exps(W2). For z ∈
Exps(W2)

F−1(z) = (πExp−1s (z), `((s ◦ π ◦ Exp−1s (z))−1, z))

where π : ν(Osg) → Osg is the bundle projection map. Therefore, F−1 is continu-
ous. ¤

5.21. Corollary. Let s > n
2 +2 and ` : Gaus+1(E)×Mets(E)→Mets(E) be the

usual action. Then there exists a neighborhood N of Osg and a smooth equivariant
deformation retract of N onto Ogs .

Proof. Following the notation of Theorem 5.20, let W3 = {γ∗(v)|v ∈ V1, γ ∈
Gaus+1(E)}, and set N = Exps(W3).

Exps |W2 is a diffeomorphism, and since Exps(γ
∗(v)) = `γ(Exps(v)) for any

γ∗(v), Exps |W3 is a local diffeomorphism. Furthermore,

Exps(W3) =
⋃

γ∈Gaus+1(E)

`γ(Exps(W2)),
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so Exps(W3) is a neighborhood of Osg. Next we show that Exps |W3 is injective. As-

sume Exps(γ
∗
1 (v1)) = Exps(γ

∗
2 (v2)). Then `−1γ2 `γ1(Exps(v1)) = `γ1γ−1

2
Exps(v2) =

Exps(v2). But since Exps(v1),Exps(v2) ∈ S by Theorem 5.20(2) γ1γ
−1
2 ∈ Gau(E)g.

Thus, (γ1γ
−1
2 )∗(v1) ∈ V1, so since Exps is injective on V1, γ

∗
1 (v1) = γ∗2 (v2).

Thus Exps |W3 : W3 → N is a diffeomorphism. But then r : N × [0, 1] → N ,
defined by r(x, t) = Exps(tExp

−1
s (x)) is the required deformation retract. It is

equivariant and smooth, since Exps is. ¤

5.22. Smooth Slice theorem. Let ` : Gau(E)×Met(E)→Met(E) be the usual
action. Then for every g ∈Met(E), there exists a contractible subset S ofMet(E)
containing g, such that

(1) If γ ∈ Gau(E)g, `(γ, S) = S.
(2) If γ ∈ Gau(E), such that `(γ, S) ∩ S 6= ∅, then γ ∈ Gau(E)g.
(3) There exists a local cross section s : Gau(E)/Gau(E)g → Gau(E) defined on

a neighborhood U of the identity coset such that if F : U × S →Met(E) is
defined by F (u, t) := `(s(u), t), then F is a homeomorphism onto a neigh-
borhood of g.

Proof. If Ss is the slice from Theorem 5.20 define S := Ss ∩Met(E).
(1): obvious.
(2): obvious.
(3): Let Us be the U of Theorem 5.20 and set U := U s ∩ Gau(E)/Gau(E)g. Let
u ∈ U , so u = Gau(E)gγ, γ ∈ Gau(E). Let s be the local cross section from
5.20. Then s(u) = ηγ, with η ∈ Gau(E)g ⊂ Gau(E), so s(u) ∈ Gau(E). Thus
s(u) ⊂ Gau(E).

Next assume xn → x in U . By the definition of the topology of Gau(E)/Gau(E)g,
there exist {γn}, γ ∈ Gau(E) such that π(γn) = xn, π(γ) = x, and γn → γ in
Gau(E), and there exists {ηn}, η ∈ Gau(E)g with ηns(xn) = γn and ηs(x) = γ.

Because xn → x in Us, s(xn) → s(x) in Gaus+1(E), and since Gaus+1(E) is a
topological group, this means that ηn → η in Gaus+1(E). Therefore, ηn → η in
C1 Gau(E), and by Theorem 5.10 ηn → η in Gau(E). But since s(xn) = η−1n γn and
s(x) = η−1γ, we get s(xn) → s(x) in Gau(E), so s is continuous, and s is a local
cross section s : U → Gau(E).

Define again F : U × S →Met(E) as F (u, x) = `(s(u), x). It remains to show
that F is a homeomorphism onto a neighborhood of g inMet(E), which reduces to
showing that F (U ×S) = Exp(W2)∩Met(E) (c.f. Theorem 5.20) which clearly is a
neighborhood of g inMet(E), and that F−1 is continuous. For we know the formula
for F−1 from Theorem 5.20, it finally suffices to show that Exp |TMet(E)∩W2

:
TMet(E) ∩W2 →W2 ∩Met(E) is a homeomorphism in the C∞ topologies:
Take g̃ = Exp(w) ∈ Met(E), w ∈ W2. Then Exp−1(g̃) ∈ Th(M) for h ∈ Og, and
therefore g̃ = `s(h)(`Exp(s(h)−1w) = F (h, `s(h)−1(g̃)). So, it remains to show that
Exp is a homeomorphism.

This follows from a very restricted implicit function theorem for Fréchet spaces
(Theorem 5.23). ¤

5.23. Theorem. Let V and W be any vector bundles over E associated to the
tangent bundle or the vertical bundle (e.g. TE, V E, T ∗E, S2T ∗E, . . . ). Then for
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any γ ∈ Gau(E) there is a natural linear map γ∗ : H0(V ) → H0(W ). Let A ⊂
Hs(V ) and B ⊂ Hs(W ) be submanifolds such that for all γ ∈ Gau(E), γ∗(A) ⊂ A,
γ∗(B) ⊂ B. Assume f : A → B is a diffeomorphism such that f ◦ γ∗ = γ∗ ◦ f
for all γ ∈ Gau(E). Then f(A ∩ C∞(V )) ⊂ B ∩ C∞(W ), and f |A∩C∞(V ) is a
homeomorphism onto B ∩ C∞(W ).

Proof. Since elements of Gau(E) act naturally on Hs(V ) and Hs(W ), one can
define Lie derivatives for such sections. If a ∈ A, a ∈ C∞(V ) iff all its iterated Lie
derivatives exist. But f ◦ γ∗ = γ∗ ◦ f implies LX(f(a)) = Tf L(a) (or LX(f(a)) =
V f L(a) depending which bundles V and W are chosen). This can be extended to
higher Lie derivatives. Therefore, if all Lie derivatives of a exist, all Lie derivatives
of f(a) exist. Furthermore, an → a is C∞ if all Lie derivatives of an converge to
those of a. But then f(an)→ f(a) in all Lie derivatives, hence f(an)→ f(a) C∞.
Hence f is continuous in the C∞ topologies. Since the hypothesis of the Theorem
is symmetric in f and f−1, we see that f is a homeomorphism. ¤

Now we have constructed slices for the Hilbert manifold situation and using these
for the smooth case. Next we will figure out, how this slice theorem leads to a kind
of stratification in the infinite dimensional case, at least to the largest open and
dense stratum.

5.24. Theorem. Let G be the set of all g ∈Met(E) with trivial isotropy group.

(1) G is open inMet(E)
(2) G is dense in Met(E) if the base manifold M and the standard fiber S are

at least of dimension 1.

Proof. (1): Take g ∈ Met(E) and V any neighborhood of Id in Gau(E). Next

consider the U,F from Theorem 5.22, set Ũ := U ∩ π(V ), and let N = F (Ũ , S). N
is a neighborhood of g. For arbitrary h ∈ N , h = F (ũ, x), so k = `s(ũ)−1(h) ∈ S. By

Theorem 5.22(2) Gau(E)g = Gau(E)k. Thus if γ = s(ũ), we get γ−1 Gau(E)kγ ⊂
Gau(E)g. But π(γ) = ũ ∈ U , and therefore γ ∈ V . So we have proven that for every
nerighborhood V of Id in Gau(E), there exists a neighborhood N of g such that for
every h ∈ N exists γ ∈ V such that Gau(E)g = γ−1 Gau(E)hγ. This implies (1).
(2): Take g ∈ Met(E). We have to show, that in any neighborhood of g we can
find h such that Gau(E)h = {Id}.

Let S(E) be the unit sphere bundle of TE. For h ∈Met(E) set fh : S(E)→ R
as

fh(X) =
Ric(X,X)

h(X,X)
.

where Ric(X,X) denotes the Ricci tensor of h. In normal coordinates xn (with
respect to g) at e ∈ E.

fg(∂n) =
1

2

∑

i

(
∂2gii
(∂xn)2

− 2
∂2gin
∂xi∂xn

+
∂2gnn
∂x2i

)
.

Next take ε ∈ C∞(S2T ∗E) such that εe = 0 and
∂εij
∂xn
|p = 0, with ε very near to

zero in C∞(S2T ∗E) being nonzero only on a given neighborhood U of e, and such
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that fg+ε(∂n) > fg(∂n). We, furthermore, calculate

fg+ε(∂n) = fg(∂n) +
1

2

∑

i

(
∂2εii
(∂xn)2

− 2
∂2εin
∂xi∂xn

+
∂2εnn
∂x2i

)
.

So we can construct for every metric g, every point e ∈ E, and every neighborhood
U of p a metric g̃ which is arbitrarily near g, g = g̃ outside U and fg̃(X) = fg(X)
for all X ∈ S(E).

We also see that for any h ∈ Met(E) and γ ∈ Gau(E)h, fh(TγX) = fh(X) for
every X ∈ S(E). Now choose p, X ∈ Sp(E) such that fg(X) is maximal. As U
take a neighborhood of p which is contained in a normal coordinate neighborhood,
and take ε as above. Set g1 = g + ε, and let e1 ∈ E and X1 ∈ S(E) be chosen
that fg1(X1) is again maximal. e1 ∈ U , since g = g1 outside U . Next select a
neighborhood U1 ⊂ U of e1 with radius rg(U1) <

1
2rg(U). For the setting e1, U1

find a ε1 as above and iterate the construction to inductively define h = g+ε+
∑
i εi,

ê = lim ei. We have then got a metric h such that for a Z ∈ Sê(E), fh(Z) > fh(Y )
for all Y ∈ S(E) − Sê(E), and g = h outside U . Since for γ ∈ Gau(E)h fh(X) =
fh(TγX) for all X ∈ S(E), the maximality at ê implies γ(ê) = ê.

Now set Kδ
ê = {x ∈ E|dh(x, ê) = δ}, where dh is the metric induced by h.

Choose δ in a way that Kδ
ê ∩ U = ∅ and Kδ

ê is included in a normal coordinate
neighborhood of ê. Using the above procedure, change h to h1 around Kδ

ê , leaving
h1 = h on U , so that for ê1 ∈ K

δ
ê and X1 ∈ Sê1(E) fh1(X) > fh1(X1) > fh1(Y ) for

all Y ∈ S(Kδ
ê )− Sê1(E).

By the same argument as before γ ∈ Gau(E)h1 implies γ(ê) = ê, γ(ê1) = ê1.

Take Kδδ1
êê1

= {x ∈ E|dh1(x, ê) = δ, dh1(x, ê1) = δ1} and iterate the construction
above, giving points ê, ê1, . . . , ên, and metrics h1, . . . , hn with the properties that
γ ∈ Gau(E)hn implies γê = ê and γêi = êi. All êi are in Kδ

ê , so there exist
Yi ∈ Tê(E) such that êi = exp(Yi) where exp is the exponential map of hn. The
{êi} can be chosen in a way that the Yi form a basis of TêE. For γ ∈ Gau(E)hn we
get exp(Yi) = êi = γ(êi) = γ(exp(Yi)) = exp(TγYi), hence Yi = TγYi, so Têγ = Id.
Since Gau(E) ⊂ Diff(E), γ is an isometry for hn, and since γ(ê) = ê and Têγ = Id,
we get γ = Id. Hence, Gau(E)hn = {Id} and hn is arbitrarily close to g. Therefore,
G is dense inMet(E). ¤

5.25.Remark: A stratification forMet(E)/Gau(E). By iterating the construc-
tions above, one can then show that Met(E)/Gau(E) = M1 ∪M2 ∪ . . . , where
M1 = G and Mi ⊂ ∂Mi−1. All the manifolds are modeled on Fréchet spaces, giving
Met(E)/Gau(E) the structure of a stratified manifold.

5.26. The slice theorem for (Conn(E)×Met(V E))/Gau(E). Next make use of
the following result from [Gil–Medrano et al. 1994]:

Definition. LetM be a smooth (connected) finite dimensional manifold, and let V
be a distribution on it. We denote by (M,V, πV ) the vector subbundle determined
by V , and by (M,N = TM/V, πN ) the normal bundle. i : V ↪→ TM shall denote
the embedding, and p : TM ³ N the epimorphism onto the normal bundle. An
almost product structure on M is a P ∈ C∞(L(TM,TM)) such that P 2 = Id.
Every almost product structure on M induces a decomposition of TM of the form
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TM = ker(P−Id)⊕ker(P+Id). These subbundles are called vertical and horizontal,
and will be denoted V P and HP respectively. We are given in a natural way the
vertical and horizontal projections vP = 1

2 (P+Id) and hP = 1
2 (P−Id). The almost

product structure P also determines a monomorphism CP : N → TM , called the
horizontal lifting, given by CP ◦ p = hP . It is an isomorphism onto HP inverse to
p|Hp .

For a given distribution V inM we will denote by PV (M) the space of all almost
product structures with V P = V . So choosing an element of PV (M) is equivalent
to choosing a subbundle of TM complementary to V . This subbundle is given by
ker(P + Id).

Theorem. Let M be a smooth finite dimensional connected manifold, then there
is a real analytic diffeomorphism

Met(M) 'Met(N)×Met(V )× PV (M).

whereMet(M) as usual denotes the Riemannian metrics on M , andMet(N) and
Met(V ) denote the bundle metrics on N and V respectively.

Proof. [Gil–Medrano et al. 1994, Proposition 4.4] ¤

5.27. Application to E and V E. Consider, as before, the vertical bundle of the
fiber bundle E. It is, of course, also given by a vertical distribution on E. An
almost product structure on E is just a projection onto V E, hence a connection on
E. Thus PV E(E) = Conn(E), so the Theorem in 5.26 is applicable to our situation.
We, therefore, have

Met(E) 'Met(NE)×Met(V E)× Conn(E).

Since Gau(E) acts naturally on Met(E), it also acts on the spaces on the right
hand side of the above equation. The action on Conn(E) is just the usual action.

The action on gV ∈Met(V E) is given by

(γ∗gV )p(v
ΦX, vΦY ) = gV γ(p)(v

γ∗ΦX, vγ
∗ΦY ),

and the action onMet(NE) is trivial.
Using this result, we may use the slice theorem forMet(E)/Gau(E) to gain the

following theorem for (Conn(E)×Met(V E))/Gau(E).

5.28. Theorem. Let ˆ̀ : Gau(E)× Conn(E)×Met(V E)→ Conn(E)×Met(V E)
be the restriction of the action ` : Gau(E) ×Met(E) → Met(E) to Conn(E) ×

Met(V E). As seen before, ˆ̀ is an action on Conn(E) ×Met(V E), and for every
g̃ ∈ Conn(E)×Met(V E) there exists a contractible subset S of Conn(E)×Met(V E)
containing g̃, such that

(1) If γ ∈ Gau(E)g̃, ˆ̀(γ, S) = S.
(2) If γ ∈ Gau(E), such that `(γ, S) ∩ S 6= ∅, then γ ∈ Gau(E)g̃.
(3) There exists a local cross section s : Gau(E)/Gau(E)g̃ → Gau(E) defined on

a neighborhood U of the identity coset such that if F : U × S → Conn(E)×

Met(V E) is defined by F (u, t) := ˆ̀(s(u), t), then F is a homeomorphism
onto a neighborhood of g̃.



62

Proof. Consider the decomposition Met(E) = Conn(E) ×Met(V E) ×Met(NE)
which get from 5.27. Choose a g ∈ Met(E) with (pr1×pr2)(g) = g̃. Denote
by SMet(E) the slice for g of Theorem 5.22, and set S := pr1×pr2(SMet(E)). Iff
γ ∈ Gau(E)g̃ then γ ∈ Gau(E)g since the action on the third factor is trivial. We
then have
(1):

ˆ̀
γ(S) = ˆ̀

γ((pr1×pr2)(SMet(E)) = (pr1×pr2)(`γ(SMet(E))) =

= (pr1×pr2)(SMet(E)) = S.

(2): If γ ∈ Gau(E), such that ˆ̀
γ(S) ∩ S 6= ∅. Set ḡ := pr3(g). Let x, y ∈ S

be chosen such that ˆ̀
γ(x) = y. Denote by ig : S → SMet(E) the map ig : x 7→

(pr1×pr2)
−1(x) × pr−13 (ḡ). Then `γ(ig(x)) = ig(y), and since SMet(E) is a slice,

we get γ ∈ Gau(E)g, therefore γ ∈ Gau(E)g̃.
(3): Take the cross section s from 5.22, the same U as in 5.22, and denote by F ′

the homeomorphism of 5.22. Then F = (pr1×pr2) ◦F
′ ◦ (IdU ×ig) is a homeomor-

phism onto the neighborhood (pr1×pr2)(F
′(U × SMet(E))) of g̃ as a composition

of homeomorphisms. ¤

5.29. Remark. As in 5.24 one can again show that the set of principal orbits G,
where the isotropy group is trivial, is open and dense, and like in 5.25 a strati-
fication into smooth manifolds modeled on Fréchet spaces exists for (Conn(E) ×
Met(V E))/Gau(E).

In the next chapter we will, however, see that the factorMet(V E) is crucial for
the existence of a slice theorem. When omitted, it can be shown that there exist
elements of Conn(E) where no slice can possibly exist.
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6. Conn(E)/Gau(E) and why no slice theorem exists

The non–existence of the slice theorem follows from a counterexample which is
inspired by a counterexample for the action of Diff(S1) on C∞(S1,R) and the fact
that when slices exist locally the isotropy subgroup of an element cannot increase.

6.1. Proposition. Let the action of G on M have a slice S at x. Then there is a
neighborhood U of x such that

(1) if y ∈ U ∩ S, then Gy ⊂ Gx,
(2) if y ∈ U , then Gy is conjugate to a subgroup of Gx.

Proof. (1) follows directly from slice property (2) (see e.g. Theorem 5.22) as follows.
Let y ∈ S and some g ∈ Gy so that gy = y. It follows that gS ∩ S 6= ∅, and so by
property (2) we must have g ∈ Gx.
(2): Let U be the neighborhood described in slice property (3). Then there must
exist some g ∈ G such that g−1y ∈ S. Applying (1) to g−1y, we then find that
g−1Gyk ⊂ Gx. ¤

6.2. The counterexample for C∞(S1,R)/Diff(S1). Let h(t) : S1 → R be a
smooth bump function with

h(t) =

{
0, x /∈ [0, 14 ]

> 0, x ∈]0, 14 [.

Then set hn(t) = 1
4nh(4

n(x −
1− 1

4n

3 )). Then hn(t) is nonzero in the interval

]
1− 1

4n

3 ,
1− 1

4n+1

3 [. Defining

f(t) =
∞∑

n=0

hn(t)e
− 1

(x− 1
3
)2

we get a positive smooth function, which has zeros exactly on t =
1− 1

4n

3 , and which

is flat at t = 1
3 .

In every neighborhood of f lies a function

fN (t) =

N∑

n=0

hn(t)e
− 1

(t− 1
3
)2

which has only finitely many zeros and is identically zero in the interval [
1− 1

4N+1

3 , 13 ].
All diffeomorphisms in the isotropy subgroup of f are also contained in the

isotropy subgroup of fN , but the latter group contains additionally all diffeomor-

phisms of S1 which have support only on [
1− 1

4N+1

3 , 13 ]. This is a contradiction to
the fact that locally the isotropy subgroup cannot increase (i.e. to proposition 6.1).

6.3. Remark. The counterexample above also works, when replacing zeros of the
function with zeros of the derivative. In the Conn(E)/Gau(E) case neither of these
work, since the action is more complicated. So one has to search for an expression
in the connection Φ for which the action is simpler. It turns out that the curvature
of Φ is such a convenient expression.
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6.4. The curvature of a connection. In 4.29 we have defined the curvature R
of a connection Φ. For a gauge transformation γ ∈ Gau(E) we have that Φ and
γ∗(Φ) are γ–related. By theorem 4.15 we hence get that R and γ∗R are γ–related.
But for γ ∈ Gau(E)Φ this means that for all e ∈ E

(γ∗R)e = Re.

This is the simple action we were looking for. In order to construct a counterex-
ample to the slice theorem, we have to investigate the local description of the
curvature.

6.5. Christoffel forms. Let Φ be a connection on (E, p,M, S), and (Uα, ψα) a
fiber bundle atlas with transition functions (ψαβ). Let us consider the connection
(ψ−1α )∗Φ ∈ Ω1(Uα × S;Uα × TS). It may be written in the form

(ψ−1α )∗(ξx, ηy) =: −Γα(ξx, y) + ηy for ξx ∈ TxUα and ηy ∈ TyS,

since it reproduces vertical vectors. The Γα are given by

(0x,Γ
α(ξx, y)) := −Tψα.Φ.T (ψα)

−1.(ξx, 0y).

They can then be considered as elements of the space Ω1(Uα;X(S)). These Γα are
called the Christoffel forms of the connection Φ with respect to the bundle atlas
(Uα, ψα).

6.6. Lemma. The curvature R of Φ satisfies the (local) Maurer–Cartan formula.

(ψ−1α )∗R = dΓα + 1
2 [Γ

α,Γα]X(S).

Proof.

(ψ−1α )∗R((ξ1, η1), (ξ2, η2)) =

= (ψ−1α )∗Φ[(Id−(ψ−1α )∗Φ)(ξ1, η1), (Id−(ψ
−1
α )∗Φ)(ξ2, η2)] =

= (ψ−1α )∗Φ[(ξ1,Γ
α(ξ1)), (ξ2,Γ

α(ξ2))] =

= (ψ−1α )∗Φ
(
[ξ1, ξ2], ξ1Γ

α(ξ2)− ξ2Γ
α(ξ1) + [Γα(ξ1),Γ

α(ξ2)]
)
=

= −Γα([ξ1, ξ2]) + ξ1Γ
α(ξ2)− ξ2Γ

α(ξ1) + [Γα(ξ1),Γ
α(ξ2)] =

= dΓα(ξ1, ξ2) + [Γα(ξ1),Γ
α(ξ2)]X(S). ¤

6.7. The counterexample for dimM ≥ 2. We will construct locally a connec-
tion, which satisfies that in any neighborhood there exist connections which have
a bigger isotropy subgroup.

Let n = dimS, and let h : Rn → R be a smooth nonnegative bump function,
which satisfies carrh = {s ∈ Rn| ‖s− s0‖ < 1}. Set

hr(s) := rh(s0 +
1
r (s− s0)),
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then carrhr = {s ∈ Rn| ‖s− s0‖ < r}. Next define

hs1r (s) := h(s− (s1 − s0)),

which implies carrhs1r = {s ∈ Rn| ‖s − s1‖ < r}. Using these functions, we can
define new functions fk for k ∈ N as

fk(s) = hsk
‖z‖/2k

(s),

where z := s∞−s0
3 for some s∞ ∈ Rn and sk := s0+ z(2

∑k
`=0

1
2`
− 1− 1

2k
). Further

set

fN (s) := e
− 1

‖s−s∞‖2

N∑

k=0

1
4k
fk(s),

f(s) := lim
N→∞

fN (s).

The functions fN and f are smooth, respectively, since all the functions fk are

smooth, and on every point s at most one summand is nonzero. carr fN =
⋃N
k=0{s ∈

Rn| ‖s−sk‖ < 1
2k
‖z‖}, carr f =

⋃∞
k=0{s ∈ Rn| ‖s−sk‖ < 1

2k
‖z‖}, fN and f vanish

in all derivatives in all xk, and f vanishes in all derivatives in s∞.

Let ψ : E|U → U×S be a fiber bundle chart of E with a chart u : U
∼=
−→ Rm onM ,

and let v : V
∼=
−→ Rn be a chart on S. Choose g ∈ C∞c (M,R) with ∅ 6= supp g ⊂ U

and dg ∧ du1 6= 0 on an open dense subset of supp g, choose s0 and s∞ as inner
points in supp g. Then we can define (denoting by ui and vj the coordinates in U
and V , respectively) a Christoffel form as in 6.5 by

Γ := g du1 ⊗ f(v)∂v1 ∈ Ω1(U,X(S)).

This defines a connection Φ on E|U which can be extended to a connection Φ on
E by the following method. Take a smooth functions k1, k2 ≥ 0 on M satisfying
k1 + k2 = 1 and k1 = 1 on supp g and supp k1 ⊂ U and any connection Φ′ on E,
and set Φ = k1Φ

Γ+k2Φ
′, where ΦΓ denotes the connection which is induced locally

by Γ. In any neighborhood of Φ there exists a connection ΦN defined by

ΓN := g du1 ⊗ fN (s)∂v1 ∈ Ω1(U,X(S)),

and extended like Φ.

Claim: There is no slice at Φ.
Proof: We have to consider the isotropy subgroups of Φ and ΦN . Since the con-
nections Φ and ΦN coincide outside of U , we may investigate them locally on
W = {u : k1(u) = 1} ⊂ U . The curvature of Φ is given locally on W by 6.6 as

RU := dΓ− 1
2 [Γ,Γ]

X(S)
∧ = dg ∧ du1 ⊗ f(v)∂v1 − 0.
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For every element of the gauge group Gau(E) which is in the isotropy group Gau(E)Φ
the local representative over W which looks like γ̃ : (u, v) 7→ (u, γ(u, v)) by 6.6
satisfies

Tv(γ(u, )).Γ(ξu, v) = Γ(ξu, γ(u, v))− Tu(γ( , v)).ξu,

g(u)du1 ⊗ f(v)
∑

i

∂γ1

∂vi
∂vi = g(u)du1 ⊗ f(γ(u, v))∂v1 −

∑

i,j

∂γi

∂uj
duj ⊗ ∂vi .

Comparing the coefficients of duj ⊗ ∂vi we get the following equations for γ over
W .

∂γi

∂uj
= 0 for (i, j) 6= (1, 1),

g(u)f(v)
∂γ1

∂v1
= g(u)f(γ(u, v))−

∂γ1

∂u1
.(1)

Considering next the transformation γ̃∗RU = RU of the curvature 1.2 we get

Tv(γ(u, )).RU (ξu, ηu, v) = RU (ξu, ηu, γ(u, v)),

dg ∧ du1 ⊗ f(v)
∑

i

∂γ1

∂vi
∂vi = dg ∧ du1 ⊗ f(γ(u, v))∂v1 .

Another comparison of coefficients yields the equations

f(v)
∂γ1

∂vi
= 0 for i 6= 1,

f(v)
∂γ1

∂v1
= f(γ(u, v)),(2)

whenever dg ∧ du1 6= 0, but this is true on an open dense subset of supp g. Finally,
putting (2) into (1) shows

∂γi

∂uj
= 0 for all i, j.

Collecting the results on supp g, we see that γ has to be constant in all directions
of u. Furthermore, wherever f is nonzero, γ1 is a function of v1 only and γ has to
map zero sets of f to zero sets of f .

Replacing Γ by ΓN we get the same results with f replaced by fN . Since
f = fN wherever fN is nonzero or f vanishes, γ in the isotropy group of Φ obeys
all these equations not only for f but also for fN on supp fN ∪ f ⊂ (0). On
B := carr f\ carr fN the gauge transformation γ is a function of v1 only, hence
it cannot leave the zero set of fN by construction of f and fN . Therefore, γ
obeys all equations for fN whenever it obeys all equations for f , thus every gauge
transformation in the isotropy subgroup of Φ is in the isotropy subgroup of ΦN .

On the other hand, any γ having support in B changing only in v1 direction not
keeping the zero sets of f invariant defines a gauge transformation in the isotropy
subgroup of ΦN which is not in the isotropy subgroup of Φ.

Therefore, there exists in every neighborhood of Φ a connection ΦN whose
isotropy subgroup is bigger than the isotropy subgroup of Φ. Thus, by proposi-
tion 6.1 there exists no slice at Φ. ¤
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6.8. The counterexample for dimM = 1. The situation is somewhat different
if dimM = 1, i.e. M = S1. In this case, the method of 6.7 is not applicable,
since there is no function g satisfying dg ∧ du1 6= 0 on an open and dense subset
of supp g. However, any connection Φ on E is flat. Hence, the horizontal bundle
is integrable, the horizontal foliation induced by Φ exists and determines Φ. Any
gauge transformation leaving Φ invariant also has to map leaves of the horizontal
foliation to other leaves of the horizontal foliation.

We shall construct connections Φλ
′

near Φλ such that the isotropy groups in
Gau(E) look radically different near the identity, contradicting 6.1.

Let us assume without loss of generality that E is connected, and then, by
replacing S1 by a finite covering if necessary, that the fiber is connected. Then
there exists a smooth global section χ : S1 → E. By [Michor 1980, Lemma 10.9]
there exists a tubular neighborhood π : U ⊂ E → im(χ) such that π = χ ◦ p|U
(i.e. a tubular neighborhood with vertical fibers). This tubular neighborhood then
contains an open thickened sphere bundle with fiber S1 × Rn−1, and since we
are only interested in gauge transformations near IdE , which e.g. keep a smaller
thickened sphere bundle inside the larger one, we may replace E by an S1-bundle.
By replacing the Klein bottle by a 2-fold covering we may finally assume that the
bundle is pr1 : S

1 × S1 → S1.
Consider now connections where the horizontal foliation is a 1-parameter sub-

group with slope λ. We see that the isotropy group equals S1 if λ is irrational,
and equals S1 times the diffeomorphism group of a closed interval if λ is rational.
Since in every neighborhood of a 1-parameter subgroup with irrational slope are
some having rational slope, we see that there cannot be a slice theorem for one
dimensional M , either. ¤

The counterexamples constructed in 6.7 and 6.8 imply the following

6.9. Theorem. Let (E, p,M, S) be a fiber bundle such thatM , S are both compact,
and dimM ≥ 1 and dimS ≥ 1. Further denote the usual action by l : Gau(E) ×
Conn(E) → Conn(E). Then there exists Φ ∈ Conn(E) such that there does not
exist a contractible subset S (a slice) of Conn(E) containing Φ, such that

(1) If γ ∈ Gau(E)Φ, `(γ, S) = S.
(2) If γ ∈ Gau(E), such that `(γ, S) ∩ S 6= ∅, then γ ∈ Gau(E)Φ.
(3) There exists a local cross section s : Gau(E)/Gau(E)Φ → Gau(E) defined

on a neighborhood U of the identity coset such that if F : U ×S → Conn(E)
is defined by F (u, t) := `(s(u), t), then F is a homeomorphism onto a neigh-
borhood of Φ.

Proof. See 6.7 and 6.8 ¤
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Winterschool on Geometry and Physics in Srńi Jänner 1990
Winterschool on Geometry and Physics in Srńi Jänner 1991
Winterschool on Geometry and Physics in Srńi Jänner 1992
Winterschool on Geometry and Physics in Zd́ikov Jänner 1993
Winterschool on Geometry and Physics in Srńi Jänner 1994
Winterschool on Geometry and Physics in Srńi Jänner 1995
Conference on Noncommutative Differential Geometry in Třešť Mai 1995
Winterschool on Geometry and Physics in Srńi Jänner 1997
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Berufe:

1.–31. August 1984
1.–31. August 1985 HIFI–Studio Felix Durdik, Wien X,

Verkauf von HIFI– und Fernsehgeräten
1. August — 20. September 1986 Siemens Programm und Systementwicklung

Wien XXI, Abteilung PS-3.A.3.1
1. Okt. 1989 — 31. Aug. 1990 Studienassistent am Institut für

angewandte und numerische Mathematik
der Technischen Universität Wien

1. Juli 1987 — 30. Sept. 1987
1. Juli 1988 — 31. Aug. 1988
1. Juli 1989 — 31. Aug. 1989
1. Feb. 1990 — 28. Feb. 1990
1. Juli 1990 — 15. Aug. 1990
1. Feb. 1991 — 28. Feb. 1991
1. Juli 1991 — 31. Aug. 1991
1. Feb. 1992 — 29. Feb. 1992
1. Juli 1992 — 30. Sept. 1992 Alcatel Austria—Elin Research Center,

Abteilung Software Engineering, Wien XXI
1. Okt. 1992 — 31. Juli. 1993
1. Okt. 1993 — 30. Sept. 1994 Vertragsassistent (1/2) am Institut für

Mathematik der Universität Wien
1. Jan. 1994 — 31. Aug. 1994 Zweite 1/2 Vertr.ass.stelle in Vertretung
seit 1. Okt. 1994 Universitätsassistent am Institut für

Mathematik der Universität Wien
1. Okt. 1995 — 31. Mai 1996 Grundwehrdienst beim FM Tech. D.

des Stabes Fernmeldeführung
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A. Cap, H. Schichl, J. Vanžura, On twisted tensor products of algebras, Comm. Algebra 23 (1995),
4701–4735.

S. Dallwig, A. Neumaier, H. Schichl, GLOPT - A Program for Constrained Global Optimization,

Developments in Global Optimization (I. Bomze et al., eds.), (Proc. 3rd Workshop Global
Optimization, Szeged 1995), 1995.


