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SOBOLEV METRICS ON SHAPE SPACE OF SURFACES
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Dedicated to Tudor Ratiu at the occasion of his 60th birthday

Abstract. Let M and N be connected manifolds without boundary with
dim(M) < dim(N), and let M compact. Then shape space in this work is

either the manifold of submanifolds of N that are diffeomorphic to M , or

the orbifold of unparametrized immersions of M in N . We investigate the
Sobolev Riemannian metrics on shape space: These are induced by metrics of

the following form on the space of immersions:

GP
f (h, k) =

∫
M

g(P fh, k) vol(f∗g)

where g is some fixed metric on N , f∗g is the induced metric on M , h, k ∈
Γ(f∗TN) are tangent vectors at f to the space of embeddings or immersions,

and P f is a positive, selfadjoint, bijective scalar pseudo differential operator of

order 2p depending smoothly on f . We consider later specifically the operator
P f = 1+A∆p, where ∆ is the Bochner-Laplacian on M induced by the metric

f∗g. For these metrics we compute the geodesic equations both on the space

of immersions and on shape space, and also the conserved momenta arising
from the obvious symmetries. We also show that the geodesic equation is well-

posed on spaces of immersions, and also on diffeomorphism groups. We give
examples of numerical solutions.

1. Introduction

Many procedures in science, engineering, and medicine produce data in the form
of shapes. If one expects such a cloud to follow roughly a submanifold of a certain
type, then it is of utmost importance to describe the space of all possible submani-
folds of this type (we call it a shape space hereafter) and equip it with a significant
metric which is able to distinguish special features of the shapes. Most of the met-
rics used today in data analysis and computer vision are of an ad-hoc and naive
nature; one embeds shape space in some Hilbert space or Banach space and uses
the distance therein. Shortest paths are then line segments, but they leave shape
space quickly.

Riemannian metrics on shape space itself are a better solution. They lead to
geodesics, to curvature and diffusion. Eventually one also needs statistics on shape
space like means of clustered subsets of data (called Karcher means on Riemannian
manifolds) and standard deviations. Here curvature will play an essential role;
statistics on Riemannian manifolds seems hopelessly underdeveloped just now.
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1.1. The shape spaces used in this work. Thus, initially, by a shape we mean
a smoothly embedded surface in N which is diffeomorphic to M . The space of
these shapes will be denoted Be = Be(M,N) and viewed as the quotient (see [18]
for more details)

Be(M,N) = Emb(M,N)/Diff(M)

of the open subset Emb(M,N) ⊂ C∞(M,N) of smooth embeddings of M in N ,
modulo the group of smooth diffeomorphisms of M . It is natural to consider all
possible immersions as well as embeddings, and thus introduce the larger space
Bi = Bi(M,N) as the quotient of the space of smooth immersions by the group
of diffeomorphisms of M (which is, however, no longer a manifold, but an orbifold
with finite isotropy groups, see [18]).

Emb(M,N)� _

��

// // Emb(M,N)/Diff(M)� _

��

Be(M,N)� _

��
Imm(M,N) // // Imm(M,N)/Diff(M) Bi(M,N)

More generally, a shape will be an element of the Cauchy completion (i.e., the
metric completion for the geodesic distance) of Bi(M,N) with respect to a suitably
chosen Riemannian metric. This will allow for corners. In practice, discretization
for numerical algorithms will hide the need to go to the Cauchy completion.

1.2. Where this work comes from. In [20], Michor and Mumford have investi-
gated a variety of Riemannian metrics on the shape space

Bi(S
1,R2) = Imm(S1,R2)/Diff(S1)

of unparametrized immersion of the circle into the plane. In [19, section 3.10] they
found that the simplest such metric has vanishing geodesic distance; this is the
metric induced by L2(arc length) on Imm(S1,R2):

G0
f (h, k) =

∫
S1

〈h(θ), k(θ)〉|f ′(θ)| dθ,

f ∈ Imm(S1,R2), h, k ∈ C∞(S1,R2) = Tf Imm(S1,R2).

In [18] they found that the vanishing geodesic distance phenomenon for the L2-
metric occurs also in the more general shape space Imm(M,N)/Diff(M) where S1

is replaced by a compact manifold M and Euclidean R2 is replaced by Riemannian
manifold N ; it also occurs on the full diffeomorphism group Diff(N), but not on the
subgroup Diff(N, vol) of volume preserving diffeomorphisms, where the geodesic
equation for the L2-metric is the Euler equation of an incompressible fluid. In
[20, sections 3, 4 and 5] three classes of metrics were investigated: Almost local
metrics on planar curves, Sobolev metrics on planar curves, and metrics induced
from Sobolev metrics on the diffeomorphism group of the plane. The results about
almost local metrics from [20, section 3] were generalized by the authors to the case
of surfaces in [2].

Now we take up the investigations from [20, section 4]. The immersion-Sobolev
metric considered there is

GImm,p
f (h, k) =

∫
S1

(
〈h, k〉+A.〈Dp

sh,D
p
sk〉
)
.ds
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=

∫
S1

〈Lp(h), k〉ds where

Lp(h) or Lp,f (h) =
(
I + (−1)pA.D2p

s

)
(h) and Ds =

∂θ
|fθ|

.

The interesting special case p = 1 and A → ∞ has been studied in [22, 25] and in
[24] where an isometry to an infinite dimensional Grassmannian with the Fubini-
Study metric was described. In this case, the metric reduces to:

GImm,1,∞
f (h, k) =

∫
S1

〈Ds(h), Ds(k)〉.ds

The cases p = 1, 2 and A → ∞ have also been treated in [15], where estimates on
the geodesic distance are proven and the metric completion of the space of curves
is characterized.

In this work we generalize the immersion-Sobolev metrics from [20, section 4]
to higher dimensions and to non-flat ambient space, namely to the shape space
Bi(M,N) = Imm(M,N)/Diff(M) of surfaces of type M in N ; here M is a compact
orientable connected manifold of smaller dimension than N , for example a sphere
Sm,m < dim(N).

1.3. Riemannian metrics. The tangent space Tf Imm(M,N) at an immersion f
consists of all vector fields along f :

Tf Imm(M,N) = Γ(f∗TN) ∼= {h ∈ C∞(M,TN) : πTN ◦ h = f}.

A Riemannian metric on Imm(M,N) is a family of positive definite inner products
Gf (h, k) where f ∈ Imm(M,N) and h, k ∈ Tf Imm(M,N). Each metric is weak in
the sense that Gf , viewed as linear map from Tf Imm(M,N) into its dual consisting
of distributional sections of f∗TN is injective. (But it can never be surjective.)
We require that our metrics will be invariant under the action of Diff(M), hence
the quotient map dividing by this action will be a Riemannian submersion. This
means that the tangent map of the quotient map Imm(M,N) → Bi(M,N) is a
metric quotient mapping between all tangent spaces. Thus we will get Riemannian
metrics on Bi. For any f ∈ Imm(M,N) those vectors in Tf Imm(M,N) which are
Gf -perpendicuar to the Diff(M)-orbit through f are called horizontal (with respect
to G). They form the Gf -orthogonal space to the orbit. A priori we do not know
that it is a complementary space. For the metrics considered in this work it will
turn out to be a complement.

The simplest inner product on the tangent bundle to Imm(M,N) is

G0
f (h, k) =

∫
M

g(h, k) vol(f∗g),

where g = 〈 , 〉 is the Euclidean inner product on N . Since the volume form
vol(f∗g) reacts equivariantly to the action of the group Diff(M), this metric is
invariant, and the map to the quotient Bi is a Riemannian submersion for this
metric. The G0-horizontal vectors in Tf Imm(M,N) are just those vector fields
along f which are pointwise g-normal to f(M); we will call them normal fields.
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All of the metrics we will look at will be of the form (see section 6):

GPf (h, k) =

∫
M

g(P fh, k) vol(f∗g)

where P f : Tf Imm → Tf Imm is a positive bijective operator depending smoothly
on f , which is selfadjoint unbounded in the Hilbert space Tf Imm with inner product
G0
f . We will assume that P is in addition equivariant with respect to reparametriza-

tions, i.e.

P f◦ϕ = ϕ∗ ◦ P f ◦ (ϕ−1)∗ = ϕ∗(P f ) for all ϕ ∈ Diff(M).

The GP -horizontal vectors will be those h ∈ Tf Emb(M,N) = C∞(M,N) such
that P fh is normal.

The tangent map of the quotient map Emb(M,N)→ Bi(M,N) is then an isom-
etry when restricted to the horizontal spaces, just as in the finite dimensional situ-
ation. Riemannian submersions have a very nice effect on geodesics: the geodesics
on the quotient space Bi are exactly the images of the horizontal geodesics on the
top space Imm; by a horizontal geodesic we mean a geodesic whose tangent lies in
the horizontal bundle. The induced metric is invariant under the action of Diff(M)
and therefore induces a unique metric on Bi. See for example [2, section 1]. Later
in section 8 we shall consider the special case P f = 1 +A∆p.

1.4. Inner versus outer metrics. The metrics studied in this work are induced
from Imm(M,N) on shape space. One might call them inner metrics since the
differential operator governing the metric is defined intrinsic to M . Intuitively,
these metrics can be seen as describing some elastic or viscous behaviour of the
shape itself.

In contrast to these metrics, there are also metrics induced from Diff(N) on shape
space. (The widely used LDDMM algorithm uses such a metric.) The differential
operator governing these metrics is defined on all of N , even outside of the shape.
Intuitively, these metrics can be seen as describing some elastic or viscous behaviour
of the ambient space N that gets deformed as the shape changes. One might call
these metrics outer metrics.

1.5. Contributions of this work.

• This work is the first to treat Sobolev inner metrics on spaces of immersed
surfaces and on higher dimensional shape spaces.
• It contains the first description of how the geodesic equation can be for-

mulated in terms of gradients of the metric with respect to itself when the
ambient space is not flat. To achieve this, a covariant derivative on some
bundles over immersions is defined. This covariant derivative is induced
from the Levi-Civita covariant derivative on ambient space.
• The geodesic equation is formulated in terms of this covariant derivative.

Well-posedness of the geodesic equation is shown under some regularity as-
sumptions that are verified for Sobolev metrics. Well-posedness also follows
for the geodesic equation on diffeomorphism groups, where this result has
not yet been obtained in that full generality.
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• To derive the geodesic equation, a variational formula for the Laplacian
operator is developed. The variation is taken with respect to the metric on
the manifold where the Laplacian is defined. This metric in turn depends
on the immersion inducing it.
• It is shown that Sobolev inner metrics separate points in shape space when

the order of the differential operator governing the metric is high enough.
(The metric needs to be as least as strong as the H1-metric.) Thus Sobolev
inner metrics overcome the degeneracy of the L2-metric.
• The path-length distance of Sobolev inner metrics is compared to the

Fréchet distance. It would be desirable to bound Féchet distance by some
Sobolev distance. This however remains an open problem.
• Finally it is demonstrated in some examples that the geodesic equation for

the H1-metric on shape space of surfaces in R3 can be solved numerically.

Big parts of this work can also be found, partly in more details, in the doctoral
theses of Martin Bauer [4] and Philipp Harms [11].

2. Content of this work

This work progresses from a very general setting to a specific one in three steps.
In the beginning, a framework for general inner metrics is developed. Then the
general concepts carry over to more and more specific inner metrics.

• First, shape space is endowed with a general inner metric, i.e with a metric
that is induced from a metric on the space of immersions, but that is
unspecified otherwise. It is shown how various versions of the geodesic
equation can be expressed using gradients of the metric with respect to itself
and how conserved quantities arise from symmetries. (This is section 4.)
• Then it is assumed that the inner metric is defined via an elliptic pseudo-

differential operator. Such a metric will be called a Sobolev-type metric.
The geodesic equation is formulated in terms of the operator, and existence
of horizontal paths of immersions within each equivalence class of paths is
proven. (This is section 6.) Then estimates on the path-length distance
are derived. Most importantly it is shown that when the operator involves
high enough powers of the Laplacian, then the metric does not have the
degeneracy of the L2-metric. (This is section 7.)
• Motivated by the previous results it is assumed that the elliptic pseudo-

differential operator is given by the Laplacian and powers of it. Again, the
geodesic equation is derived. The formulas that are obtained are ready to
be implemented numerically. (This is section 8.)

The remaining sections cover the following material:

• Section 3 treats some differential geometry of surfaces that is needed in
this work. It is also a good reference for the notation that is used. The
biggest emphasis is on a rigorous treatment of the covariant derivative.
Some material like the adjoint covariant derivative is not found in standard
text books.
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• Section 5 contains formulas for the variation of the metric, volume form,
covariant derivative and Laplacian with respect to the immersion inducing
them. These formulas are used extensively later.
• Section 9 covers the special case of flat ambient space. The geodesic equa-

tion is simplified and conserved momenta for the Euclidean motion group
are calculated. Sobolev-type metrics are compared to the Fréchet metric
which is available in flat ambient space.
• Section 10 treats diffeomorphism groups of compact manifolds as a special

case of the theory that has been developed so far.
• In section 11 it is shown in some examples that the geodesic equation on

shape space can be solved numerically.

3. Differential geometry of surfaces and notation

In this section the differential geometric tools that are needed to deal with im-
mersed surfaces are presented and developed. The most important point is a rig-
orous treatment of the covariant derivative and related concepts.

The notation of [17] is used. Some of the definitions can also be found in [12].
A similar exposition in the same notation is [2].

3.1. Basic assumptions and conventions.

Assumption. It is always assumed that M and N are connected manifolds of finite
dimensions m and n, respectively. Furthermore it is assumed that M is compact,
and that N is endowed with a Riemannian metric g.

In this work, immersions of M into N will be treated, i.e. smooth functions M →
N with injective tangent mapping at every point. The set of all such immersions
will be denoted by Imm(M,N). It is clear that only the case dim(M) ≤ dim(N) is
of interest since otherwise Imm(M,N) would be empty.

Immersions or paths of immersions are usually denoted by f . Vector fields on
Imm(M,N) or tangent vectors with foot point f , i.e., vector fields along f , will be
called h, k,m, for example. Subscripts like ft = ∂tf = ∂f/∂t denote differentiation
with respect to the indicated variable, but subscripts are also used to indicate the
foot point of a tensor field.

3.2. Tensor bundles and tensor fields. The tensor bundles

T rsM

��

T rsM ⊗ f∗TN

��
M M

will be used. Here T rsM denotes the bundle of ( rs )-tensors on M , i.e.

T rsM =

r⊗
TM ⊗

s⊗
T ∗M,
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and f∗TN is the pullback of the bundle TN via f , see [17, section 17.5]. A tensor
field is a section of a tensor bundle. Generally, when E is a bundle, the space of its
sections will be denoted by Γ(E).

To clarify the notation that will be used later, some examples of tensor bun-
dles and tensor fields are given now. SkT ∗M = Lksym(TM ;R) and ΛkT ∗M =

Lkalt(TM ;R) are the bundles of symmetric and alternating ( 0
k )-tensors, respec-

tively. Ωk(M) = Γ(ΛkT ∗M) is the space of differential forms, X(M) = Γ(TM) is
the space of vector fields, and

Γ(f∗TN) ∼=
{
h ∈ C∞(M,TN) : πN ◦ h = f

}
is the space of vector fields along f .

3.3. Metric on tensor spaces. Let g ∈ Γ(S2
>0T

∗N) denote a fixed Riemannian
metric on N . The metric induced on M by f ∈ Imm(M,N) is the pullback metric

g = f∗g ∈ Γ(S2
>0T

∗M), g(X,Y ) = (f∗g)(X,Y ) = g(Tf.X, Tf.Y ),

where X,Y are vector fields on M . The dependence of g on the immersion f should
be kept in mind. Let

[ = ǧ : TM → T ∗M and ] = ǧ−1 : T ∗M → TM.

g can be extended to the cotangent bundle T ∗M = T 0
1M by setting

g−1(α, β) = g0
1(α, β) = α(β])

for α, β ∈ T ∗M . The product metric

grs =

r⊗
g ⊗

s⊗
g−1

extends g to all tensor spaces T rsM , and grs ⊗ g yields a metric on T rsM ⊗ f∗TN .

3.4. Traces. The trace contracts pairs of vectors and co-vectors in a tensor prod-
uct:

Tr : T ∗M ⊗ TM = L(TM, TM)→M × R

A special case of this is the operator iX inserting a vector X into a co-vector or
into a covariant factor of a tensor product. The inverse of the metric g can be used
to define a trace

Trg : T ∗M ⊗ T ∗M →M × R
contracting pairs of co-vecors. Note that Trg depends on the metric whereas Tr
does not. The following lemma will be useful in many calculations:

Lemma.

g0
2(B,C) = Tr(g−1Bg−1C) for B,C ∈ T 0

2M if B or C is symmetric.

(In the expression under the trace, B and C are seen as maps TM → T ∗M .)

Proof. Express everything in a local coordinate system u1, . . . , um of M .

g0
2(B,C) = g0

2

(∑
ik

Bikdu
i ⊗ duk,

∑
jl

Cjldu
j ⊗ dul

)
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=
∑
ijkl

gijBikg
klCjl =

∑
ijkl

gjiBikg
klClj = Tr(g−1Bg−1C)

Note that only the symmetry of C has been used. �

3.5. Volume density. Let Vol(M) be the density bundle over M , see [17, sec-
tion 10.2]. The volume density on M induced by f ∈ Imm(M,N) is

vol(g) = vol(f∗g) ∈ Γ
(
Vol(M)

)
.

The volume of the immersion is given by

Vol(f) =

∫
M

vol(f∗g) =

∫
M

vol(g).

The integral is well-defined since M is compact. If M is oriented the volume density
may be identified with a differential form.

3.6. Metric on tensor fields. A metric on a space of tensor fields is defined by
integrating the appropriate metric on the tensor space with respect to the volume
density:

g̃rs(B,C) =

∫
M

grs
(
B(x), C(x)

)
vol(g)(x)

for B,C ∈ Γ(T rsM), and

g̃rs ⊗ g(B,C) =

∫
M

grs ⊗ g
(
B(x), C(x)

)
vol(g)(x)

for B,C ∈ Γ(T rsM ⊗ f∗TN), f ∈ Imm(M,N). The integrals are well-defined
because M is compact.

3.7. Covariant derivative. Covariant derivatives on vector bundles as explained
in [17, sections 19.12, 22.9] will be used. Let ∇g,∇g be the Levi-Civita covariant
derivatives on (M, g) and (N, g), respectively. For any manifold Q and vector field
X on Q, one has

∇gX : C∞(Q,TM)→ C∞(Q,TM), h 7→ ∇gXh

∇gX : C∞(Q,TN)→ C∞(Q,TN), h 7→ ∇gXh.

Usually the symbol ∇ will be used for all covariant derivatives. It should be kept in
mind that ∇g depends on the metric g = f∗g and therefore also on the immersion
f . The following properties hold [17, section 22.9]:

(1) ∇X respects base points, i.e. π ◦∇Xh = π ◦ h, where π is the projection of
the tangent space onto the base manifold.

(2) ∇Xh is C∞-linear in X. So for a tangent vector Xx ∈ TxQ, ∇Xxh makes
sense and equals (∇Xh)(x).

(3) ∇Xh is R-linear in h.
(4) ∇X(a.h) = da(X).h + a.∇Xh for a ∈ C∞(Q), the derivation property of
∇X .

(5) For any manifold Q̃ and smooth mapping q : Q̃ → Q and Yy ∈ TyQ̃ one
has ∇Tq.Yy

h = ∇Yy
(h ◦ q). If Y ∈ X(Q1) and X ∈ X(Q) are q-related, then

∇Y (h ◦ q) = (∇Xh) ◦ q.
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The two covariant derivatives ∇gX and ∇gX can be combined to yield a covariant
derivative ∇X acting on C∞(Q,T rsM⊗TN) by additionally requiring the following
properties [17, section 22.12]:

(6) ∇X respects the spaces C∞(Q,T rsM ⊗ TN).
(7) ∇X(h ⊗ k) = (∇Xh) ⊗ k + h ⊗ (∇Xk), a derivation with respect to the

tensor product.
(8) ∇X commutes with any kind of contraction (see [17, section 8.18]). A

special case of this is

∇X
(
α(Y )

)
= (∇Xα)(Y ) + α(∇XY ) for α⊗ Y : N → T 1

1M.

Property (1) is important because it implies that ∇X respects spaces of sections of
bundles. For example, for Q = M and f ∈ C∞(M,N), one gets

∇X : Γ(T rsM ⊗ f∗TN)→ Γ(T rsM ⊗ f∗TN).

3.8. Swapping covariant derivatives. Some formulas allowing to swap covariant
derivatives will be used repeatedly. Let f be an immersion, h a vector field along
f and X,Y vector fields on M . Since ∇ is torsion-free, one has [17, section 22.10]:

(1) ∇XTf.Y −∇Y Tf.X − Tf.[X,Y ] = Tor(Tf.X, Tf.Y ) = 0.

Furthermore one has [17, section 24.5]:

(2) ∇X∇Y h−∇Y∇Xh−∇[X,Y ]h = Rg ◦ (Tf.X, Tf.Y )h,

where Rg ∈ Ω2
(
N ;L(TN, TN)

)
is the Riemann curvature tensor of (N, g).

These formulas also hold when f : R ×M → N is a path of immersions, h :
R ×M → TN is a vector field along f and the vector fields are vector fields on
R×M . A case of special importance is when one of the vector fields is (∂t, 0M ) and
the other (0R, Y ), where Y is a vector field on M . Since the Lie bracket of these
vector fields vanishes, (1) and (2) yield

(3) ∇(∂t,0M )Tf.(0R, Y )−∇(0R,Y )Tf.(∂t, 0M ) = 0

and

(4) ∇(∂t,0M )∇(0R,Y )h−∇(0R,Y )∇(∂t,0M )h = Rg
(
Tf.(∂t, 0M ), Tf.(0R, Y )

)
h.

3.9. Second and higher covariant derivatives. When the covariant derivative
is seen as a mapping

∇ : Γ(T rsM)→ Γ(T rs+1M) or ∇ : Γ(T rsM ⊗ f∗TN)→ Γ(T rs+1M ⊗ f∗TN),

then the second covariant derivative is simply ∇∇ = ∇2. Since the covariant
derivative commutes with contractions, ∇2 can be expressed as

∇2
X,Y := ιY ιX∇2 = ιY∇X∇ = ∇X∇Y −∇∇XY for X,Y ∈ X(M).

Higher covariant derivates are defined accordingly as ∇k, k ≥ 0.
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3.10. Adjoint of the covariant derivative. The covariant derivative

∇ : Γ(T rsM)→ Γ(T rs+1M)

admits an adjoint

∇∗ : Γ(T rs+1M)→ Γ(T rsM)

with respect to the metric g̃, i.e.:

g̃rs+1(∇B,C) = g̃rs(B,∇∗C).

In the same way, ∇∗ can be defined when ∇ is acting on Γ(T rsM ⊗ f∗TN). In
either case it is given by

∇∗B = −Trg(∇B),

where the trace is contracting the first two tensor slots of ∇B. This formula will
be proven now:

Proof. The result holds for decomposable tensor fields β ⊗B ∈ Γ(T rs+1M) since

g̃rs

(
∇∗(β ⊗B), C

)
= g̃rs+1

(
β ⊗B,∇C

)
= g̃rs

(
B,∇β]C

)
=

∫
M

Lβ]grs(B,C)vol(g)−
∫
M

grs(∇β]B,C)vol(g)

=

∫
M

−grs(B,C)Lβ]vol(g)−
∫
M

grs
(

Trg(β ⊗∇B), C
)
vol(g)

= g̃rs

(
− div(β])B − Trg(β ⊗∇B), C

)
= g̃rs

(
− div(β])B + Trg((∇β)⊗B)− Trg(∇(β ⊗B)), C

)
= g̃rs

(
− div(β])B + Trg(∇β)B − Trg(∇(β ⊗B)), C

)
= g̃rs

(
0− Trg(∇(β ⊗B)), C

)
Here it has been used that ∇Xg = 0, that ∇X commutes with any kind of con-
traction and acts as a derivation on tensor products [17, section 22.12] and that
div(X) = Tr(∇X) for all vector fields X [17, section 25.12]. To prove the result for
β ⊗B ∈ Γ(T rs+1M ⊗ f∗TN) one simply has to replace grs by grs ⊗ g. �

3.11. Laplacian. The definition of the Laplacian used in this work is the Bochner-
Laplacian. It can act on all tensor fields B and is defined as

∆B = ∇∗∇B = −Trg(∇2B).

3.12. Normal bundle. The normal bundle Nor(f) of an immersion f is a sub-
bundle of f∗TN whose fibers consist of all vectors that are orthogonal to the image
of f :

Nor(f)x =
{
Y ∈ Tf(x)N : ∀X ∈ TxM : g(Y, Tf.X) = 0

}
.

If dim(M) = dim(N) then the fibers of the normal bundle are but the zero vector.
Any vector field h along f ∈ Imm can be decomposed uniquely into parts tangential
and normal to f as

h = Tf.h> + h⊥,

where h> is a vector field on M and h⊥ is a section of the normal bundle Nor(f).
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3.13. Second fundamental form and Weingarten mapping. Let X and Y be
vector fields on M . Then the covariant derivative ∇XTf.Y splits into tangential
and a normal parts as

∇XTf.Y = Tf.(∇XTf.Y )> + (∇XTf.Y )⊥ = Tf.∇XY + S(X,Y ).

S is the second fundamental form of f . It is a symmetric bilinear form with values
in the normal bundle of f . When Tf is seen as a section of T ∗M ⊗ f∗TN one has
S = ∇Tf since

S(X,Y ) = ∇XTf.Y − Tf.∇XY = (∇Tf)(X,Y ).

The trace of S is the vector valued mean curvature Trg(S) ∈ Γ
(
Nor(f)

)
.

4. Shape space

Briefly said, in this work the word shape means an unparametrized surface. (The
term surface is used regardless of whether it has dimension two or not.) This sec-
tion is about the infinite dimensional space of all shapes. First some spaces of
parametrized and unparametrized surfaces are described, and it is shown how to
define Riemannian metrics on them. The geodesic equation and conserved quanti-
ties arising from symmetries are derived.

The agenda that is set out in this section will be pursued in section 6 when the
arbitrary metric is replaced by a Sobolev-type metric involving a pseudo-differential
operator and later in section 8 when the pseudo-differential operator is replaced by
an operator involving powers of the Laplacian.

4.1. Riemannian metrics on immersions. The space of smooth immersions of
the manifold M into the manifold N will be denoted by Imm(M,N) or briefly Imm.
It is a smooth Fréchet manifold containing the space Emb(M,N) of embeddings
of M into N as an open subset [14, theorem 44.1]. Consider the following natural
bundles of k-multilinear mappings:

Lk(T Imm;R)

��

Lk(T Imm;T Imm)

��
Imm Imm

These bundles are isomorphic to the bundles

L

(⊗̂k
T Imm;R

)

��

L

(⊗̂k
T Imm;T Imm

)

��
Imm Imm

where
⊗̂

denotes the c∞-completed bornological tensor product of locally convex
vector spaces [14, section 5.7, section 4.29]. Note that L(T Imm;T Imm) is not
isomorphic to T ∗Imm ⊗̂ T Imm since the latter bundle corresponds to multilinear
mappings with finite rank.
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It is worth to write down more explicitly what some of these bundles of multi-
linear mappings are. The tangent space to Imm is given by

Tf Imm = C∞f (M,TN) :=
{
h ∈ C∞(M,TN) : πN ◦ h = f

}
,

T Imm = C∞Imm(M,TN) :=
{
h ∈ C∞(M,TN) : πN ◦ h ∈ Imm

}
.

Thus Tf Imm is the space of vector fields along the immersion f . Now the cotangent

space to Imm will be described. The symbol ⊗̂C∞(M) means that the tensor product
is taken over the algebra C∞(M).

T ∗f Imm = L(Tf Imm;R) = C∞f (M,TN)′ = C∞(M)′ ⊗̂C∞(M)C
∞
f (M,T ∗N)

T ∗Imm = L(T Imm;R) = C∞(M)′ ⊗̂C∞(M)C
∞
Imm(M,T ∗N)

The bundle L2
sym(T Imm;R) is of interest for the definition of a Riemannian metric

on Imm. (The subscripts sym and alt indicate symmetric and alternating multilinear

maps, respectively.) Letting ⊗S denotes the symmetric tensor product and ⊗̂S the
c∞-completed bornological symmetric tensor product, one has

L2
sym(Tf Imm;R) = (Tf Imm ⊗̂S Tf Imm)′ =

(
C∞f (M,TN) ⊗̂S C∞f (M,TN)

)′
=
(
C∞f (M,TN ⊗S TN)

)′
= C∞(M)′ ⊗̂C∞(M)C

∞
f (M,T ∗N ⊗S T ∗N)

L2
sym(T Imm;R) = C∞(M)′ ⊗̂C∞(M)C

∞
Imm(M,T ∗N ⊗S T ∗N)

A Riemannian metric G on Imm is a section of the bundle L2
sym(T Imm;R) such

that at every f ∈ Imm, Gf is a symmetric positive definite bilinear mapping

Gf : Tf Imm× Tf Imm→ R.
Each metric is weak in the sense that Gf , seen as a mapping

Gf : Tf Imm→ T ∗f Imm

is injective. (But it can never be surjective.)

4.2. Covariant derivative ∇g on immersions. The covariant derivative ∇g de-
fined in section 3.7 induces a covariant derivative over immersions as follows. Let
Q be a smooth manifold. Then one identifies

h ∈ C∞
(
Q,T Imm(M,N)

)
and X ∈ X(Q)

with

h∧ ∈ C∞(Q×M,TN) and (X, 0M ) ∈ X(Q×M).

As described in section 3.7 one has the covariant derivative

∇g(X,0M )h
∧ ∈ C∞

(
Q×M,TN).

Thus one can define

∇Xh =
(
∇g(X,0M )h

∧
)∨
∈ C∞

(
Q,T Imm(M,N)

)
.

This covariant derivative is torsion-free by section 3.8, formula (1). It respects the
metric g but in general does not respect G.

It is helpful to point out some special cases of how this construction can be
used. The case Q = R will be important to formulate the geodesic equation. The
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expression that will be of interest in the formulation of the geodesic equation is
∇∂tft, which is well-defined when f : R → Imm is a path of immersions and
ft : R→ T Imm is its velocity.

Another case of interest is Q = Imm. Let h, k,m ∈ X(Imm). Then the covariant
derivative ∇mh is well-defined and tensorial in m. Requiring ∇m to respect the
grading of the spaces of multilinear maps, to act as a derivation on products and to
commute with compositions of multilinear maps, one obtains as in section 3.7 a co-
variant derivative∇m acting on all mappings into the natural bundles of multilinear
mappings over Imm. In particular, ∇mP and ∇mG are well-defined for

P ∈ Γ
(
L(T Imm;T Imm)

)
, G ∈ Γ

(
L2

sym(T Imm;R)
)

by the usual formulas

(∇mP )(h) = ∇m
(
P (h)

)
− P (∇mh),

(∇mG)(h, k) = ∇m
(
G(h, k))−G(∇mh, k)−G(h,∇mk).

4.3. Metric gradients. The metric gradients H,K ∈ Γ
(
L2(T Imm;T Imm)

)
are

uniquely defined by the equation

(∇mG)(h, k) = G
(
K(h,m), k

)
= G

(
m,H(h, k)

)
,

where h, k,m are vector fields on Imm and the covariant derivative of the metric
tensor G is defined as in the previous section. (This is a generalization of the
definition used in [20] that allows for a curved ambient space N 6= Rn.)

Existence of H,K has to proven case by case for each metric G, usually by partial
integration. For Sobolev metrics, this will be proven in sections 8.2 and 8.3.

Assumption. Nevertheless it will be assumed for now that the metric gradients
H,K exist.

4.4. Geodesic equation on immersions.

Theorem. Given H,K as defined in the previous section and ∇ as defined in
section 4.2, the geodesic equation reads as

∇∂tft =
1

2
Hf (ft, ft)−Kf (ft, ft).

This is the same result as in [20, section 2.4], but in a more general setting.

Proof. Let f : (−ε, ε) × [0, 1] ×M → N be a one-parameter family of curves of
immersions with fixed endpoints. The variational parameter will be denoted by
s ∈ (−ε, ε) and the time-parameter by t ∈ [0, 1]. In the following calculation, let
Gf denote G composed with f , i.e.

Gf : R→ Imm→ L2
sym(T Imm;R).

Remember that the covariant derivative on Imm that has been introduced in sec-
tion 4.2 is torsion-free so that one has

∇∂tfs −∇∂sft = Tf.[∂t, ∂s] + Tor(ft, fs) = 0.
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Thus the first variation of the energy of the curves is

∂s
1

2

∫ 1

0

Gf (ft, ft)dt =
1

2

∫ 1

0

(∇∂sGf )(ft, ft) +

∫ 1

0

Gf (∇∂sft, ft)dt

=
1

2

∫ 1

0

(∇fsG)(ft, ft) +

∫ 1

0

Gf (∇∂tfs, ft)dt

=
1

2

∫ 1

0

(∇fsG)(ft, ft)dt+

∫ 1

0

∂t Gf (fs, ft)dt

−
∫ 1

0

(∇ftG)(fs, ft)dt−
∫ 1

0

Gf (fs,∇∂tft)dt

=

∫ 1

0

G
(
fs,

1

2
H(ft, ft) + 0−K(ft, ft)−∇∂tft

)
dt.

If f(0, ·, ·) is energy-minimizing, then one has at s = 0 that

1

2
H(ft, ft)−K(ft, ft)−∇∂tft = 0. �

4.5. Geodesic equation on immersions in terms of the momentum. In the
previous section the geodesic equation for the velocity ft has been derived. In many
applications it is more convenient to formulate the geodesic equation as an equation
for the momentum G(ft, ·) ∈ T ∗f Imm. G(ft, ·) is an element of the smooth cotangent
bundle, also called smooth dual, which is given by

G(T Imm) :=
∐

f∈Imm

Gf (Tf Imm) =
∐

f∈Imm

{Gf (h, ·) : h ∈ Tf Imm} ⊂ T ∗Imm.

It is strictly smaller than T ∗Imm since at every f ∈ Imm the metric Gf : Tf Imm→
T ∗f Imm is injective but not surjective. It is called smooth since it does not contain
distributional sections of f∗TN , whereas T ∗f Imm does.

Theorem. The geodesic equation for the momentum p ∈ T ∗Imm is given by
p = G(ft, ·)

∇∂tp =
1

2
Gf
(
H(ft, ft), ·

)
,

where H is the metric gradient defined in section 4.3 and ∇ is the covariant deriv-
ative action on mappings into T ∗Imm as defined in section 4.2.

Proof. Let Gf denote G composed with the path f : R→ Imm, i.e.

Gf : R→ Imm→ L2
sym(T Imm;R).

Then one has

∇∂tp = ∇∂t
(
Gf (ft, ·)

)
= (∇∂tGf )(ft, ·) +Gf (∇∂tft, ·)

= (∇ftG)(ft, ·) +Gf

(1

2
H(ft, ft)−K(ft, ft), ·

)
= Gf

(
K(ft, ft), ·

)
+Gf

(1

2
H(ft, ft)−K(ft, ft), ·

)
�
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This equation is equivalent to Hamilton’s equation restricted to the smooth
cotangent bundle: {

p = G(ft, ·)
pt = (gradω E)(p).

Here ω denotes the restriction of the canonical symplectic form on T ∗Imm to the
smooth cotangent bundle and E is the Hamiltonian

E : G(T Imm)→ R, E(p) = G−1(p, p)

which is only defined on the smooth cotangent bundle.

4.6. Shape space. Diff(M) acts smoothly on Imm(M,N) and Emb(M,N) by
composition from the right. For Imm, the action is given by the mapping

Imm(M,N)×Diff(M)→ Imm(M,N), (f, ϕ) 7→ r(f, ϕ) = rϕ(f) = f ◦ ϕ.
The tangent prolongation of this group action is given by the mapping

T Imm(M,N)×Diff(M)→ T Imm(M,N), (h, ϕ) 7→ Trϕ(h) = h ◦ ϕ.
Shape space is defined as the orbit space with respect to this action. That means
that in shape space, two mappings differing only in their parametrization will be
regarded the same.

Theorem. Let M be compact and of dimension ≤ n. Then Emb(M,N) is the total
space of a smooth principal fiber bundle with structure group Diff(M), whose base
manifold is a Hausdorff smooth Fréchet manifold denoted by

Be(M,N) = Emb(M,N)/Diff(M).

However, the space

Bi(M,N) = Imm(M,N)/Diff(M)

is not a smooth manifold, but has singularities of orbifold type: Locally, it looks like
a finite dimensional orbifold times an infinite dimensional Fréchet space.

The proof for immersions can be found in [6] and the one for embeddings in [14,
section 44.1]. As with immersions and embeddings, the notation Bi, Be will be used
when it is clear that M and N are the domain and target of the mappings.

4.7. Riemannian metrics on shape space. We start with a metric G on Imm.
The mapping π : Imm → Bi is a submersion of smooth manifolds, that is, Tπ :
T Imm→ TBi is surjective.

V = V (π) := ker(Tπ) ⊂ T Imm

is called the vertical subbundle. The horizontal subbundle is the G-orthogonal sub-
space of V :

Hor = Hor(π,G) := V (π)⊥ ⊂ T Imm.

It need not be a complement to V (recall that the metric is weak; the complement
could be in a suitable completion of the tangent space). For all metrics in this
paper it will turn out to be a complement, however. Then any vector h ∈ T Imm
can be decomposed uniquely in vertical and horizontal components as

h = hver + hhor.
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This definition extends to the cotangent bundle as follows: An element of T ∗Imm
is called horizontal when it annihilates all vertical vectors, and vertical when it
annihilates all horizontal vectors.

In the setting described so far, the mapping

Tfπ|Horf : Horf → Tπ(f)Bi

is an isomorphism of vector spaces for all f ∈ Imm. This isomorphism will be used
to describe the tangent space to Bi. If both Imm and Bi are Riemannian manifolds
and if this isomorphism is also an isometry for all f ∈ Imm, then π is called a
Riemannian submersion. In that case, the metric G on Imm is Diff(M)-invariant.
This means that G = (rϕ)∗G for all ϕ ∈ Diff(M), where rϕ denotes the right action
of ϕ on Imm that was described in section 4.6. This condition can be spelled out
in more details using the definition of rϕ as follows:

Gf (h, k) =
(
(rϕ)∗G

)
(h, k) = Grϕ(f)

(
Trϕ(h), T rϕ(k)

)
= Gf◦ϕ(h ◦ ϕ, k ◦ ϕ).

The following theorem establishes the converse statement:

Theorem. Given a Diff(M)-invariant Riemannian metric on Imm, there is a
unique Riemannian metric on the quotient space Bi such that the quotient map
π : Imm→ Bi is a Riemannian submersion.

Proof. If the horizontal bundle Horf is a complement to Vf then Tfπ : Horf →
Tπ(f)Bi is an isomorphism (off the orbifold singularities of Bi) and we can induce
the metric on Tπ(f)Bi which is independent of the choice of f in the fiber over π(f)
by the the Diff(M)-invariance of the metric. If it is not a complement one has to
consider the metric quotient norm. See for example [19, section 3]. �

Assumption. It will always be assumed that a Diff(M)-invariant metric G on
Imm(M,N) is given and that shape space Bi is endowed with the unique metric
such that the quotient map is a Riemannian submersion.

4.8. Riemannian submersions and geodesics. It follows from the general the-
ory of Riemannian submersions that horizontal geodesics in the top space corre-
spond nicely to geodesics in the quotient space:

Theorem. Let c : [0, 1]→ Imm be a geodesic.

(1) If c′(t) is horizontal at one t, then it is horizontal at all t.
(2) If c′(t) is horizontal then π ◦ c is a geodesic in Bi.
(3) If every curve in Bi can be lifted to a horizontal curve in Imm, then there

is a one-to-one correspondence between curves in Bi and horizontal curves
in Imm. This implies that instead of solving the geodesic equation on Bi
one can equivalently solve the equation for horizontal geodesics in Imm.

See [17, section 26] for the proof.

4.9. Geodesic equation on shape space. Theorem 4.8 applied to the Riemann-
ian submersion π : Imm→ Bi yields:
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Theorem. Assuming that every curve in Bi can be lifted to a horizontal curve in
Imm, the geodesic equation on shape space is equivalent to

(1)


ft = fhor

t ∈ Hor

(∇∂tft)hor =
(1

2
H(ft, ft)−K(ft, ft)

)hor

,

where f is a horizontal curve in Imm, where H,K are the metric gradients defined
in section 4.3 and where ∇ is the covariant derivative defined in section 4.2.

This is a consequence of the Diff(M)-invariance of the metric G and the conser-
vation of the reaparametrization momentum. A general proof can be found in [11,
section 3.14].

It will be shown in section 6.9 that curves in Bi can be lifted to horizontal curves
in Imm for the very general class of Sobolev type metrics. Thus all assumptions
and conclusions of the theorem hold.

4.10. Geodesic equation on shape space in terms of the momentum. As
in the previous section, theorem 4.8 will be applied to the Riemannian submersion
π : Imm→ Bi. But this time, the formulation of the geodesic equation in terms of
the momentum will be used, see section 4.5. As will be seen in section 6.11, this is
the most convenient formulation of the geodesic equation for Sobolev-type metrics.

Theorem. Assuming that every curve in Bi can be lifted to a horizontal curve in
Imm, the geodesic equation on shape space is equivalent to the set of equations

p = Gf (ft, ·) ∈ Hor ⊂ T ∗Imm,

(∇∂tp)hor =
1

2
Gf
(
H(ft, ft), ·)hor.

Here f is a curve in Imm, H is the metric gradient defined in section 4.3, and
∇ is the covariant derivative defined in section 4.2. f is horizontal because p is
horizontal.

5. Variational formulas

Recall that many operators like

g = f∗g, S = Sf , vol(g), ∇ = ∇g, ∆ = ∆g, . . .

implicitly depend on the immersion f . In this section their derivative with respect
to f which is called their first variation will be calculated . These formulas will be
used to calculate the metric gradients that are needed for the geodesic equation.

This section is based on [2], see also [11]. Some but not all of the formulas were
known before [5, 18]. More variational formulas can be found in [5, 23, 4].

5.1. Paths of immersions. All of the differential-geometric concepts introduced
in section 3 can be recast for a path of immersions instead of a fixed immersion.
This allows to study variations of immersions. So let f : R → Imm(M,N) be a
path of immersions. By convenient calculus [14], f can equivalently be seen as
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f : R ×M → N such that f(t, ·) is an immersion for each t. The bundles over M
can be replaced by bundles over R×M :

pr∗2 T
r
sM

��

pr∗2 T
r
sM ⊗ f∗TN

��

Nor(f)

��
R×M R×M R×M

Here pr2 denotes the projection pr2 : R×M →M . The covariant derivative ∇Zh is
now defined for vector fields Z on R×M and sections h of the above bundles. The
vector fields (∂t, 0M ) and (0R, X), where X is a vector field on M , are of special
importance. In later sections they will be identified with ∂t and X whenever this
does not pose any problems. Let

inst : M → R×M, x 7→ (t, x).

Then by property 5 from section 3.7 one has for vector fields X,Y on M

∇XTf(t, ·).Y = ∇XT (f ◦ inst) ◦ Y = ∇XTf ◦ T inst ◦Y
= ∇XTf ◦ (0R, Y ) ◦ inst = ∇T inst ◦XTf ◦ (0R, Y )

=
(
∇(0R,X)Tf ◦ (0R, Y )

)
◦ inst .

This shows that one can recover the static situation at t by using vector fields on
R×M with vanishing R-component and evaluating at t.

5.2. Directional derivatives of functions. The following ways to denote direc-
tional derivatives of functions will be used, in particular in infinite dimensions.
Given a function F (x, y) for instance,

D(x,h)F will be written as a shorthand for ∂t|0F (x+ th, y).

Here (x, h) in the subscript denotes the tangent vector with foot point x and di-
rection h. If F takes values in some linear space, this linear space and its tangent
space will be identified.

5.3. Setting for first variations. In all of this chapter, let f be an immersion
and ft ∈ Tf Imm a tangent vector to f . The reason for calling the tangent vector
ft is that in calculations it will often be the derivative of a curve of immersions
through f . Using the same symbol f for the fixed immersion and for the path of
immersions through it, one has in fact that

D(f,ft)F = ∂tF (f(t)).

5.4. Variation of equivariant tensor fields. Let the mapping

F : Imm(M,N)→ Γ(T rsM)

take values in some space of tensor fields over M , or more generally in any natural
bundle over M , see [13].

Lemma. If F is equivariant with respect to pullbacks by diffeomorphisms of M ,
i.e.

F (f) = (ϕ∗F )(f) = ϕ∗
(
F
(
(ϕ−1)∗f

))
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for all ϕ ∈ Diff(M) and f ∈ Imm(M,N), then the tangential variation of F is its
Lie-derivative:

D(f,Tf.f>t )F = ∂t|0F
(
f ◦ Flf

>
t
t

)
= ∂t|0F

(
(Fl

f>t
t )∗f

)
= ∂t|0

(
Fl

f>t
t

)∗(
F (f)

)
= Lf>t

(
F (f)

)
.

This allows us to calculate the tangential variation of the pullback metric and
the volume density, for example.

5.5. Variation of the metric.

Lemma. The differential of the pullback metric{
Imm → Γ(S2

>0T
∗M),

f 7→ g = f∗g

is given by

D(f,ft)g = 2 Sym g(∇ft, T f) = −2g(f⊥t , S) + 2 Sym∇(f>t )[

= −2g(f⊥t , S) + Lf>t g.

Here Sym denotes the symmetric part of the tensor field C of type ( 0
2 ) given by(

Sym(C)
)
(X,Y ) :=

1

2

(
C(X,Y ) + C(Y,X)

)
.

Proof. Let f : R×M → N be a path of immersions. Swapping covariant derivatives
as in section 3.8, formula (3) one gets

∂t
(
g(X,Y )

)
= ∂t

(
g(Tf.X, Tf.Y )

)
= g(∇∂tTf.X, Tf.Y ) + g(Tf.X,∇∂tTf.Y )

= g(∇Xft, Tf.Y ) + g(Tf.X,∇Y ft) =
(
2 Sym g(∇ft, Tf)

)
(X,Y ).

Splitting ft into its normal and tangential part yields

2 Sym g(∇ft, T f) = 2 Sym g(∇f⊥t +∇Tf.f>t , T f)

= −2 Sym g(f⊥t ,∇Tf) + 2 Sym g(∇f>t , ·)

= −2g(f⊥t , S) + 2 Sym∇(f>t )[.

Finally the relation

D(f,Tf.f>t )g = 2 Sym∇(f>t )[ = Lf>t g

follows either from the equivariance of g with respect to pullbacks by diffeomor-
phisms (see section 5.4) or directly from

(LXg)(Y,Z) = LX
(
g(Y, Z)

)
− g(LXY,Z)− g(Y,LXZ)

= ∇X
(
g(Y,Z)

)
− g(∇XY −∇YX,Z)− g(Y,∇XZ −∇ZX)

= g(∇YX,Z) + g(Y,∇ZX) = (∇YX)[(Z) + (∇ZX)[(Y )

= (∇YX[)(Z) + (∇ZX[)(Y ) = 2 Sym
(
∇(X[)

)
(Y,Z). �
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5.6. Variation of the inverse of the metric.

Lemma. The differential of the inverse of the pullback metric{
Imm → Γ

(
L(T ∗M,TM)

)
,

f 7→ g−1 = (f∗g)−1

is given by

D(f,ft)g
−1 = D(f,ft)(f

∗g)−1 = 2g(f⊥t , g
−1Sg−1) + Lf>t (g−1)

Proof.

∂tg
−1 = −g−1(∂tg)g−1 = −g−1

(
− 2g(f⊥t , S) + Lf>t g

)
g−1

= 2g−1g(f⊥t , S)g−1 − g−1(Lf>t g)g−1 = 2g(f⊥t , g
−1Sg−1) + Lf>t (g−1) �

5.7. Variation of the volume density.

Lemma. The differential of the volume density{
Imm → Vol(M),
f 7→ vol(g) = vol(f∗g)

is given by

D(f,ft)vol(g) = Trg
(
g(∇ft, Tf)

)
vol(g) =

(
divg(f>t )− g

(
f⊥t ,Trg(S)

))
vol(g).

Proof. Let g(t) ∈ Γ(S2
>0T

∗M) be any curve of Riemannian metrics. Then

∂tvol(g) =
1

2
Tr(g−1.∂tg)vol(g).

This follows from the formula for vol(g) in a local oriented chart (u1, . . . um) on M :

∂tvol(g) = ∂t

√
det((gij)ij) du

1 ∧ · · · ∧ dum

=
1

2
√

det((gij)ij)
Tr(adj(g)∂tg) du1 ∧ · · · ∧ dum

=
1

2
√

det((gij)ij)
Tr(det((gij)ij)g

−1∂tg) du1 ∧ · · · ∧ dum

=
1

2
Tr(g−1.∂tg)vol(g)

Now one can set g = f∗g and plug in the formula

∂tg = ∂t(f
∗g) = 2 Sym g(∇ft, T f)

from 5.5. This immediately proves the first formula:

∂tvol(g) =
1

2
Tr
(
g−1.2 Sym g(∇ft, Tf)

)
= Trg

(
g(∇ft, T f)

)
.

Expanding this further yields the second formula:

∂tvol(g) = Trg
(
∇g(ft, T f)− g(ft,∇Tf)

)
= Trg

(
∇g(ft, T f)− g(ft, S)

)
= −∇∗g(ft, T f)− g

(
ft,Trg(S)

)
= −∇∗

(
(f>t )[

)
− g
(
f⊥t ,Trg(S)

)
= div(f>t )− g

(
f⊥t ,Trg(S)

)
.
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Here it has been used that

∇Tf = S and div(f>t ) = Tr(∇f>t ) = Trg
(
(∇f>t )[

)
= −∇∗

(
(f>t )[

)
.

Note that by 5.4, the formula for the tangential variation would have followed also
from the equivariance of the volume form with respect to pullbacks by diffeomor-
phisms. �

5.8. Variation of the covariant derivative. In this section, let ∇ = ∇g = ∇f∗g
be the Levi-Civita covariant derivative acting on vector fields on M . Since any two
covariant derivatives on M differ by a tensor field, the first variation of ∇f∗g is
tensorial. It is given by the tensor field D(f,ft)∇f

∗g ∈ Γ(T 1
2M).

Lemma. The tensor field D(f,ft)∇f
∗g is determined by the following relation hold-

ing for vector fields X,Y, Z on M :

g
(
(D(f,ft)∇)(X,Y ), Z

)
=

1

2
(∇D(f,ft)g)

(
X⊗Y ⊗Z+Y ⊗X⊗Z−Z⊗X⊗Y

)
Proof. The defining formula for the covariant derivative is

g(∇XY,Z) =
1

2

[
Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ])
]
.

Taking the derivative D(f,ft) yields

(D(f,ft)g)(∇XY,Z) + g
(
(D(f,ft)∇)(X,Y ), Z

)
=

1

2

[
X
(
(D(f,ft)g)(Y,Z)

)
+ Y

(
(D(f,ft)g)(Z,X)

)
− Z

(
(D(f,ft)g)(X,Y )

)
− (D(f,ft)g)(X, [Y,Z]) + (D(f,ft)g)(Y, [Z,X]) + (D(f,ft)g)(Z, [X,Y ])

]
.

Then the result follows by replacing all Lie brackets in the above formula by co-
variant derivatives using [X,Y ] = ∇XY −∇YX and by expanding all terms of the
form X

(
(D(f,ftg)(Y, Z)

)
using

X
(
(D(f,ft)g)(Y,Z)

)
=

(∇XD(f,ft)g)(Y,Z) + (D(f,ft)g)(∇XY,Z) + (D(f,ft)g)(Y,∇XZ). �

5.9. Variation of the Laplacian. The Laplacian as defined in section 3.11 can be
seen as a smooth section of the bundle L(T Imm;T Imm) over Imm since for every
f ∈ Imm it is a mapping

∆f∗g : Tf Imm→ Tf Imm.

The right way to define a first variation is to use the covariant derivative defined
in section 4.2.

Lemma. For ∆ ∈ Γ
(
L(T Imm;T Imm)

)
, f ∈ Imm and ft, h ∈ Tf Imm one has

(∇ft∆)(h) = Tr
(
g−1.(D(f,ft)g).g−1∇2h

)
−∇(

∇∗(D(f,ft)
g)+ 1

2dTrg(D(f,ft)
g)
)]h

+∇∗
(
Rg(ft, T f)h

)
− Trg

(
Rg(ft, Tf)∇h

)
.
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Proof. Let f be a curve of immersions and h a vector field along f . One has

∆ : Imm→ L(T Imm;T Imm), ∆ ◦ f = ∆f∗g : R→ Imm→ L(T Imm;T Imm).

Using property 3.7.5 one gets

(∇ft∆)(h) =
(
∇∂t(∆ ◦ f)

)
(h) = ∇∂t∆h−∆∇∂th

= −∇∂t Trg(∇2h)−∆∇∂th
= Tr

(
g−1(D(f,ft)g)g−1∇2h

)
− Trg(∇∂t∇2h)−∆(∇∂th).

The term Trg(∇∂t∇2h) will be treated further. Let X,Y be vector fields on M that
are constant in time. When they are seen as vector fields on R×M then ∇∂tX =
∇∂tY = 0. Using the formulas from section 3.8 to swap covariant derivatives one
gets

(∇∂t∇2h)(X,Y ) = ∇∂t(∇X∇Y h−∇∇XY h)

= ∇X∇∂t∇Y h+Rg(ft, T f.X)∇Y h−∇∂t∇∇XY h

= ∇X∇Y∇∂th+∇X
(
Rg(ft, T f.Y )h

)
+Rg(ft, Tf.X)∇Y h

−∇∇XY∇∂th−∇[∂t,∇XY ]h−Rg(ft, T f.∇XY )h.

The Lie bracket is

[∂t,∇f
∗g
X Y ] = (D(f,ft)∇)(X,Y )

since (now without the slight abuse of notation)

[(∂t, 0M ), (0R,∇f
∗g
X Y )] = ∂s|0 TF l(∂t,0M )

−s ◦ ∇XY ◦ Fl(∂t,0M )
s

=
(
0R, (D(f,ft)∇)(X,Y )

)
.

Therefore

(∇∂t∇2h)(X,Y ) =

= (∇2∇∂th)(X,Y ) +∇X
(
Rg(ft, T f.Y )h

)
+Rg(ft, Tf.X)∇Y h

−∇(D(f,ft)
∇)(X,Y )h−Rg(ft, Tf.∇XY )h

= (∇2∇∂th)(X,Y ) + (∇Tf.XRg)(ft, Tf.Y )h+Rg(∇Xft, Tf.Y )h

+Rg(ft,∇XTf.Y )h+Rg(ft, Tf.Y )∇Xh+Rg(ft, Tf.X)∇Y h
−∇(D(f,ft)

∇)(X,Y )h−Rg(ft, Tf.∇XY )h

= (∇2∇∂th)(X,Y ) + (∇Tf.XRg)(ft, Tf.Y )h+Rg(∇Xft, Tf.Y )h

+Rg
(
ft, (∇Tf)(X,Y )

)
h+Rg(ft, T f.Y )∇Xh+Rg(ft, T f.X)∇Y h

−∇(D(f,ft)
∇)(X,Y )h

= (∇2∇∂th)(X,Y ) +∇X
(
Rg(ft, T f.Y )h

)
+Rg(ft, Tf.X)∇Y h

−∇(D(f,ft)
∇)(X,Y )h

Putting together all terms one obtains

(∇ft∆)(h) = Tr
(
g−1(D(f,ft)g)g−1∇2h

)
− Trg

(
∇
(
Rg(ft, Tf)h

))
− Trg

(
Rg(ft, T f)∇h

)
+∇Trg(D(f,ft)

∇)h

= Tr
(
g−1(D(f,ft)g)g−1∇2h

)
+∇∗

(
Rg(ft, T f)h

)
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− Trg
(
Rg(ft, T f)∇h

)
+∇Trg(D(f,ft)

∇)h.

It remains to calculate Trg(D(f,ft)∇). Using the variational formula for ∇ from
section 5.8 one gets for any vector field Z and a g-orthonormal frame si

g
(

Trg(D(f,ft)∇), Z
)

=
1

2

∑
i

(∇D(f,ft)g)
(
si ⊗ si ⊗ Z + si ⊗ si ⊗ Z − Z ⊗ si ⊗ si

)
= −

(
∇∗(D(f,ft)g)

)
(Z)− 1

2
Trg(∇ZD(f,ft)g)

= −
(
∇∗(D(f,ft)g)

)
(Z)− 1

2
∇Z Trg(D(f,ft)g)

= −
(
∇∗(D(f,ft)g) +

1

2
dTrg(D(f,ft)g)

)
(Z)

= −g
((
∇∗(D(f,ft)g) +

1

2
dTrg(D(f,ft)g)

)]
, Z
)
.

Therefore

Trg(D(f,ft)∇) = −
(
∇∗(D(f,ft)g) +

1

2
dTrg(D(f,ft)g)

)]
. �

6. Sobolev-type metrics

Assumption. Let P be a smooth section of the bundle L(T Imm;T Imm) over Imm
such that at every f ∈ Imm the operator

Pf : Tf Imm→ Tf Imm

is an elliptic pseudo differential operator that is symmetric and positive with respect
to the H0-metric on Imm,

H0
f (h, k) =

∫
M

g(h, k)vol(g).

Note that an elliptic symmetric operator is self-adjoint by [21, 26.2]. Then P
induces a metric on the set of immersions, namely

GPf (h, k) =

∫
M

g(Pfh, k)vol(g) for f ∈ Imm, h, k ∈ Tf Imm.

The metric GP is positive definite since P is assumed to be positive with respect
to the H0-metric. In this section, the geodesic equation on Imm and Bi for the
GP -metric will be calculated in terms of the operator P and it will be proven that
it is well-posed under some assumptions.

6.1. Invariance of P under reparametrizations.

Assumption. It will be assumed that P is invariant under the action of the
reparametrization group Diff(M) acting on Imm(M,N), i.e.

P = (rϕ)∗P for all ϕ ∈ Diff(M).
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For any f ∈ Imm and ϕ ∈ Diff(M) this means

Pf = (Tfr
ϕ)−1 ◦ Pf◦ϕ ◦ Tfrϕ.

Applied to h ∈ Tf Imm this means

Pf (h) ◦ ϕ = Pf◦ϕ(h ◦ ϕ).

The invariance of P implies that the induced metric GP is invariant under the
action of Diff(M), too. Therefore it induces a unique metric on Bi as explained in
section 4.7

6.2. The adjoint of ∇P . The following construction is needed to express the
metric gradient H which is part of the geodesic equation. Hf arises from the
metric Gf by differentiating it with respect to its foot point f ∈ Imm. Since G is
defined via the operator P , one also needs to differentiate Pf with respect to its
foot point. As for the metric, this is accomplished by the covariant derivate. For
P ∈ Γ

(
L(T Imm;T Imm)

)
and m ∈ T Imm one has

∇mP ∈ Γ
(
L(T Imm;T Imm)

)
, ∇P ∈ Γ

(
L(T 2Imm;T Imm)

)
.

See section 4.2 for more details.

Assumption. It is assumed that there exists a smooth adjoint

Adj(∇P ) ∈ Γ
(
L2(T Imm;T Imm)

)
of ∇P in the following sense:∫

M

g
(
(∇mP )h, k

)
vol(g) =

∫
M

g
(
m,Adj(∇P )(h, k)

)
vol(g).

The existence of the adjoint needs to be checked in each specific example, usually
by partial integration. For the operator P = 1 +A∆p, the existence of the adjoint
will be proven and explicit formulas will be calculated in sections 8.2 and 8.3.

Lemma. If the adjoint of ∇P exists, then its tangential part is determined by the
invariance of P with respect to reparametrizations:

Adj(∇P )(h, k)> =
(
g(∇Ph, k)− g(∇h, Pk)

)]
= gradg g(Ph, k)−

(
g(Ph,∇k) + g(∇h, Pk)

)]
for f ∈ Imm, h, k ∈ Tf Imm.

Proof. Let X be a vector field on M . Then

(∇Tf.XP )(h) = (∇∂t|0Pf◦FlXt )(h ◦ FlX0 )

= ∇∂t|0
(
Pf◦FlXt (h ◦ FlXt )

)
− Pf◦FlX0

(
∇∂t|0(h ◦ FlXt )

)
= ∇∂t|0

(
Pf (h) ◦ FlXt

)
− Pf

(
∇∂t|0(h ◦ FlXt )

)
= ∇X

(
Pf (h))− Pf

(
∇Xh

)
Therefore one has for m,h, k ∈ Tf Imm that∫

M

g
(
m>,Adj(∇P )(h, k)>

)
vol(g) =

∫
M

g
(
Tf.m>,Adj(∇P )(h, k)

)
vol(g)
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=

∫
M

g
(
(∇Tf.m>P )h, k

)
vol(g)

=

∫
M

g
(
∇m>(Ph)− P (∇m>h), k

)
vol(g)

=

∫
M

(
g(∇m>Ph, k)− g(∇m>h, Pk)

)
vol(g)

=

∫
M

g
(
m>,

(
g(∇Ph, k)− g(∇h, Pk)

)])
vol(g). �

6.3. Metric gradients. As explained in section 4.4, the geodesic equation can
be expressed in terms of the metric gradients H and K. These gradients will be
computed now. We shall use that Pf is invertible on the space of smooth sections.
This follows because Pf is an elliptic, self-adjoint, and positive operator, see the
beginning of the proof of theorem 6.6 for a detailed argument.

Lemma. If Adj(∇P ) exists, then also H and K exist and are given by

Kf (h,m) = P−1
f

(
(∇mP )h+ Trg

(
g(∇m,Tf)

)
.Ph

)
Hf (h, k) = P−1

f

(
Adj(∇P )(h, k)⊥ − Tf.

(
g(Ph,∇k) + g(∇h, Pk)

)]
− g(Ph, k).Trg(S)

)
.

Proof. For vector fields m,h, k on Imm one has

(1)

(∇mGP )(h, k) = D(f,m)

∫
M

g(Ph, k)vol(g)

−
∫
M

g
(
P (∇mh), k

)
vol(g)−

∫
M

g(Ph,∇mk)vol(g)

=

∫
M

D(f,m)g(Ph, k)vol(g) +

∫
M

g(Ph, k)D(f,m)vol(g)

−
∫
M

g
(
P (∇mh), k

)
vol(g)−

∫
M

g(Ph,∇mk)vol(g)

=

∫
M

g
(
∇m(Ph), k

)
vol(g) +

∫
M

g(Ph,∇mk)vol(g)

+

∫
M

g(Ph, k)D(f,m)vol(g)

−
∫
M

g
(
P (∇mh), k

)
vol(g)−

∫
M

g(Ph,∇mk)vol(g)

=

∫
M

g
(
(∇mP )h, k

)
vol(g) +

∫
M

g(Ph, k)D(f,m)vol(g)

One immediately gets the K-gradient by plugging in the variational formula 5.7 for
the volume form:

Kf (h,m) = P−1
f

(
(∇mP )h+ Trg

(
g(∇m,Tf)

)
.Ph

)
.
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To calculate the H-gradient, one rewrites equation (1) using the definition of the
adjoint:

(∇mGP )(h, k) =

∫
M

g
(
m,Adj(∇P )(h, k)

)
vol(g) +

∫
M

g(Ph, k)D(f,m)vol(g).

Now the second summand is treated further using again the variational formula of
the volume density from section 5.7:∫

M

g(Ph, k)D(f,m)vol(g) =

∫
M

g(Ph, k) Trg
(
g(∇m,Tf)

)
vol(g)

=

∫
M

g(Ph, k) Trg
(
∇g(m,Tf)− g(m,∇Tf)

)
vol(g)

=

∫
M

g(Ph, k)
(
−∇∗g(m,Tf)− g

(
m,Trg(S)

))
vol(g)

= −
∫
M

g0
1

(
∇g(Ph, k), g(m,Tf)

)
vol(g)−

∫
M

g(Ph, k)g
(
m,Trg(S)

)
vol(g)

=

∫
M

g
(
m,−Tf. gradg g(Ph, k)− g(Ph, k) Trg(S)

)
vol(g)

Collecting terms one gets that

GPf (Hf (h, k),m) = (∇mGP )(h, k)

=

∫
M

g
(
m,Adj(∇P )(h, k)− Tf. gradg g(Ph, k)− g(Ph, k) Trg(S)

)
vol(g)

Thus the H-gradient is given by

Hf (h, k) = P−1
(

Adj(∇P )(h, k)− Tf. gradg g(Ph, k)− g(Ph, k).Trg(S)
)

The highest order term gradg g(Ph, k) cancels out when taking into account the
formula for the tangential part of the adjoint from section 6.2:

Hf (h, k) = P−1
(

Adj(∇P )(h, k)⊥ − Tf.
(
g(Ph,∇k) + g(∇h, Pk)

)]
− g(Ph, k).Trg(S)

)
. �

6.4. Geodesic equation on immersions. The geodesic equation for a general
metric on Imm(M,N) has been calculated in section 4.4 and reads as

∇∂tft =
1

2
Hf (ft, ft)−Kf (ft, ft).

Plugging in the formulas for H,K derived in the last section yields the following
theorem.

Theorem. The geodesic equation for a Sobolev-type metric GP on immersions is
given by

∇∂tft =
1

2
P−1

(
Adj(∇P )(ft, ft)

⊥ − 2.T f.g(Pft,∇ft)] − g(Pft, ft).Trg(S)
)

− P−1
(

(∇ftP )ft + Trg
(
g(∇ft, Tf)

)
Pft

)
.
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6.5. Geodesic equation on immersions in terms of the momentum. The
geodesic equation in terms of the momentum has been calculated in section 4.5 for
a general metric on immersions. For a Sobolev-type metric GP , the momentum
GP (ft, ·) takes the form

p = Pft ⊗ vol(g) : R→ T ∗Imm

since all other parts of the metric (namely the integral and g) are constant and can
be neglected.

Theorem. The geodesic equation written in terms of the momentum for a Sobolev-
type metric GP on Imm is given by:

p = Pft ⊗ vol(g)

∇∂tp =
1

2

(
Adj(∇P )(ft, ft)

⊥ − 2Tf.g(Pft,∇ft)] − g(Pft, ft) Trg(S)
)
⊗ vol(g)

6.6. Well-posedness of the geodesic equation. It will be proven that the ge-
odesic equation for a Sobolev-type metric GP on Imm is well-posed under some
assumptions on P . These assumptions are satisfied for the operator 1 + A∆p con-
sidered in section 8. It will also be shown that (π, exp) is a diffeomorphism from a
neighbourhood of the zero section in T Imm to a neighbourhood of the diagonal in
Imm× Imm.

Before we can state the theorem, we have to introduce Sobolev completions of
the relevant spaces of mappings. More information can be found in [21], [9], and in
[8]. We consider Sobolev completions of Γ(E), where E → M is a vector bundle.
First we choose a fixed (background) Riemannian metric ĝ on M and its covariant
derivative ∇M . We equip E with a (background) fiber Riemannian metric ĝE and

a compatible covariant derivative ∇̂E . Then the Sobolev space Hk(E) is the Hilbert
space completion of the space of smooth sections Γ(E) in the Sobolev norm

‖h‖2k =

k∑
j=0

∫
M

(ĝE ⊗ ĝ0
j )
(
(∇̂E)jh, (∇̂E)jh

)
vol(ĝ).

This Sobolev space does not depend on the choices of ĝ, ∇M , ĝE and ∇̂E since M
is compact: The resulting norms are equivalent.

We shall need the following results (see [8], e.g.):

Sobolev lemma. If k > dim(M)/2 then the identy on Γ(E) extends to a injective
bounded linear mapping Hk+p(E) → Cp(E) where Cp(E) carries the supremum
norm of all derivatives up to order p.

Module property of Sobolev spaces. If k > dim(M)/2 then pointwise eval-
uation Hk(L(E,E)) × Hk(E) → Hk(E) is bounded bilinear. Likewise all other
pointwise contraction operations are multilinear bounded operations.

This allows us to define Sobolev completions of Imm and T Imm. In the canonical
charts for Imm(M,N) centered at an immersion f0, every immersion corresponds
to a section of the vector bundle f∗0TN over M (see [14, section 42]). The smooth

Sobolev manifold Immk(M,N) (for k > dim(M)/2 + 1) is constructed by gluing
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together the Sobolev completions Hk(f∗0TN) of each canonical chart. One has

Immk+1(M,N) ⊂ Immk(M,N),
⋂
k

Immk(M,N) = Imm(M,N).

Similarly, Sobolev completions of the space T Imm ⊂ C∞(M,TN) are defined as

Hk-mappings from M into TN , i.e. T Immk = Hk(M,TN).

Assumption 1. P,∇P and Adj(∇P )⊥ are smooth sections of the bundles

L(T Imm;T Imm)

��

L2(T Imm;T Imm)

��

L2(T Imm;T Imm)

��
Imm Imm Imm,

respectively. Viewed locally in trivializations of these bundles,

Pfh, (∇P )f (h, k),
(

Adj(∇P )f (h, k)
)⊥

are pseudo-differential operators of order 2p in h, k separately. As mappings in the
footpoint f they are non-linear, and it is assumed that they are a composition of
operators of the following type:
(a) Local operators of order l ≤ 2p, i.e., nonlinear differential operators

A(f)(x) = A(x, ∇̂lf(x), ∇̂l−1f(x), . . . , ∇̂f(x), f(x)),

(b) Linear pseudo-differential operators of degrees li,
such that the total (top) order of the composition is ≤ 2p.

Assumption 2. For each f ∈ Imm(M,N), the operator Pf is an elliptic pseudo-
differential operator of order 2p for p > 0 which is positive and symmetric with
respect to the H0-metric on Imm, i.e.∫

M

g(Pfh, k)vol(g) =

∫
M

g(h, Pfk)vol(g) for h, k ∈ Tf Imm.

Assumption 3. P is invariant under the action of Diff(M). (See section 6.1 for
the definition of invariance.)

Theorem. Let p ≥ 1 and k > dim(M)/2 + 1, and let P satisfy assumptions 1–3.

Then the initial value problem for the geodesic equation (6.4) has unique local

solutions in the Sobolev manifold Immk+2p of Hk+2p-immersions. The solutions
depend smoothly on t and on the initial conditions f(0, . ) and ft(0, . ). The
domain of existence (in t) is uniform in k and thus this also holds in Imm(M,N).

Moreover, in each Sobolev completion Immk+2p, the Riemannian exponential
mapping expP exists and is smooth on a neighborhood of the zero section in the
tangent bundle, and (π, expP ) is a diffeomorphism from a (smaller) neigbourhood

of the zero section to a neighborhood of the diagonal in Immk+2p × Immk+2p. All
these neighborhoods are uniform in k > dim(M)/2 + 1 and can be chosen Hk0+2p-
open, for k0 > dim(M)/2 + 1. Thus both properties of the exponential mapping
continue to hold in Imm(M,N).
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This proof is partly an adaptation of [20, section 4.3]. It works in three steps:
First, the geodesic equation is formulated as the flow equation of a smooth vector
field on each Sobolev completion T Immk+2p. Thus one gets local existence and
uniqueness of solutions. Second, it is shown that the time-interval where a solution
exists does not depend on the order of the Sobolev space of immersions. Thus one
gets solutions on the intersection of all Sobolev spaces, which is the space of smooth
immersions. Third, a general argument involving the inverse function theorem on
Banach spaces proves the claims about the exponential map.

Proof. By assumption 1 the mapping Pfh is of order 2p in f and in h where f is
the footpoint of h. Therefore f 7→ Pf extends to a smooth section of the smooth
Sobolev bundle

L
(
T Immk+2p;T Immk | Immk+2p

)
→ Immk+2p,

where T Immk | Immk+2p denotes the space of all Hk tangent vectors with foot

point a Hk+2p immersion, i.e., the restriction of the bundle T Immk → Immk to
Immk+2p ⊂ Immk.

This means that Pf is a bounded linear operator

Pf ∈ L
(
Hk+2p(f∗TN), Hk(f∗TN)

)
for f ∈ Immk+2p.

It is injective since it is positive. As an elliptic operator, it is an unbounded operator
on the Hilbert completion of Tf Imm with respect to the H0-metric, and a Fredholm
operator Hk+2p → Hk for each k. It is selfadjoint elliptic, thus by [21, theorem
26.2] it has vanishing index. Since it is injective, it is thus also surjective.

By the implicit function theorem on Banach spaces, f 7→ P−1
f is then a smooth

section of the smooth Sobolev bundle

L
(
T Immk | Immk+2p;T Immk+2p

)
→ Immk+2p

As an inverse of an elliptic pseudodifferential operator, P−1
f is also an elliptic

pseudo-differential operator of order −2p.

By assumption 1 again, (∇P )f (m,h) and
(

Adj(∇P )f (m,h)
)⊥

are of order 2p in

f,m, h (locally). Therefore f 7→ Pf and f 7→ Adj(∇P )⊥ extend to smooth sections
of the smooth Sobolev bundle

L2
(
T Immk+2p;T Immk | Immk+2p

)
→ Immk+2p

Using the module property of Sobolev spaces and counting the order of all re-
maining terms in the geodesic equation 6.4, one obtains that the Christoffel symbols

1

2
Hf (h, h)−Kf (h, h) =

1

2
P−1

(
Adj(∇P )(h, h)⊥ − 2.T f.g(Ph,∇h)]

− g(Ph, h).Trg(S)− (∇hP )h− Trg
(
g(∇h, Tf)

)
Ph
)

extend to a smooth (C∞) section of the smooth Sobolev bundle

L2
sym

(
T Immk+2p;T Immk+2p

)
→ Immk+2p
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Thus h 7→ 1
2H(h, h) − K(h, h) is a smooth quadratic mapping T Imm → T Imm

which extends to smooth quadratic mappings T Immk+2p → T Immk+2p for each

k ≥ dim(2)
2 + 1. The geodesic equation

∇g∂tft =
1

2
Hf (ft, ft)−Kf (ft, ft)

can be reformulated using the linear connection Cg : TN ×N TN → TTN (hori-
zontal lift mapping) of ∇g, see [17, section 24.2]:

∂tft = C
(1

2
Hf (ft, ft)−Kf (ft, ft), ft

)
.

The right-hand side is a smooth vector field on T Immk+2p, the geodesic spray. Note
that the restriction to T Immk+1+2p of the geodesic spray on T Immk+2p equals the
geodesic spray there. By the theory of smooth ODE’s on Banach spaces, the flow
of this vector field exists in T Immk+2p and is smooth in time and in the initial
condition.

Consider a C∞ initial condition h0 ∈ T Imm with foot point f0 ∈ Imm. Sup-
pose the trajectory Flkt (h0) of geodesic spray through these initial conditions in

T Immk+2p maximally exists for t ∈ (−ak, bk), and the trajectory Flk+1
t (h0) in

T Immk+1+2p maximally exists for t ∈ (−ak+1, bk+1) with bk+1 < bk, say. By

uniqueness of solutions one has Flk+1
t (h0) = Flkt (h0) for t ∈ (−ak+1,bk+1). We now

write ∇̂ for the covariant derivative induced by g on N and the background metric
ĝ on M . Let X be a vector field on M . Applying ∇gX =: ∇̂X to the geodesic
equation and swapping covariant derivatives yields:

∇g∂t∇
g
∂t
Tf.X = ∇g∂t∇

g
Xft = ∇gX∇

g
∂t
ft +Rg(ft, Tf.X)ft

= ∇gX
(

1
2Hf (ft, ft)−Kf (ft, ft)

)
+Rg(ft, Tf.X)ft(A)

Note that iX∇̂∂t∇gft = ∇g∂t∇
g
Xft −∇

g

∇g
∂t
X
ft = ∇g∂t∇

g
Xft − 0. Thus we can omit

X and rewrite (A) as an equation for Tf . We aim to rewrite equation (A) as a
linear first order equation for the highest derivative whose coefficients are given
by Flkt (h0) and thus exist beyond (−ak+1, bk+1). For this we have to pass to one
(ore more) canonical chart for Imm and the induced trivializations of all bundles
as before and in assumption (1). Then f itself has values in a vector space and we
may regard (A) as a vector valued 1-form on M . So we rewrite (A) as:

∇̂∂tTf = ∇gft
∇̂∂t∇gft = ∇g

(
1
2Hf (ft, ft)−Kf (ft, ft)

)
+Rg(ft, T f)ft

= Y 1(f, ft)(∇̂2pTf) + Y 2(f, ft)(∇̂2p+1ft) + Y 3(f, ft).(B)

We claim that (B) consists of:

• The smooth expression Y 1(f, ft)(∇̂2p+1f) which is linear and of order 0 in ∇̂2p+1f
and where Y 1(f, ft) is of order ≤ 2p in f, ft; order here means that the expression
prolongs continuously to the corresponding Sobolev spaces.
• The smooth expression Y 2

X(f, ft)(∇̂2p+1ft) which is linear and of order 0 in

∇̂2p+1ft and where Y 2(f, ft) is of order ≤ 2p in f, ft.
• The smooth expression Y 3

X(f, ft) of order ≤ 2p in f, ft.
To see this we claim that the highest derivatives of order 2p+ 1 of f and ft appear
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only linearly in (A). This claim follows from assumption 1:
(a) For a local operator we can apply the chain rule: The highest derivative of f
appears only linearly.
(b) For a linear pseudo differential operator A of order k the commutator [∇̂, A] is
a pseudo-differential operator of order k again.
On the left hand side of (B) we write Tf =: u and ∇̂ft =: v. On the right hand

side of (B) we write ∇̂2pTf = ∇̂2pu and ∇̂2p+1ft = ∇̂2pv for the highest derivatives
only. Then the system (B) becomes:

∇̂∂tu = v

∇̂∂tv = Y 1(f, ft)(∇̂2pu) + Y 2(f, ft)(∇̂2pv) + Y 3(f, ft).(C)

The coefficients f, ft in (C) exist for t ∈ (−ak, bk) as Flkt (h0). Then (C) is a bounded

and smooth inhomogeneous linear ODE for (u, v) ∈ Ω1(M,T Immk+2p), i.e., in a
Banach space. This equation therefore has a solution (u(t), v(t)) for all t for which
the coefficients exists, thus for all t ∈ (ak, bk), which is unique for the initial values

u0 = Tf0 and v0 = ∇̂h0. The limit limt↗bk+1
(u(t), v(t)) exists in Ω1(M,T Immk+2p)

and by continuity it equals (∇̂Tf, ∇̂ft) for t = bk+1. Thus the flow line Flkt (h0) was
not maximal and can be continued. So assuming bk+1 < bk leads to a contradiction,
and thus (−ak+1, bk+1) = (−ak, bk). Iterating this procedure one concludes that

the flow line Fl∞t (h0) exists in
⋂
k≥ dim(M)

2 +1
T Immk+2p = T Imm.

It remains to check the properties of the Riemannian exponential mapping expP .
It is given by expPf (h) = c(1) where c(t) is the geodesic emanating from value f with

initial velocity h. Let k0 > dim(M)/2 + 1 and k ≥ k0. On each space T Immk+2p,
the properties claimed follow from local existence and uniqueness of solutions to
the flow equation of the geodesic spray, from the form of the geodesic equation
ftt = 1

2H(ft, ft)−K(ft, ft) when it is written down in a chart, namely linearity in
ftt and bilinearity in ft, and from the inverse function theorem which holds on each
of the Sobolev spaces Immk+2p. See for example [17, 22.6 and 22.7,] for a detailed
proof which works without any change in notation.

Immk0+2p contains Immk+2p for k > k0. Since the spray on Immk0+2p restricts
to the spray on each Immk+2p, the exponential mapping expP and the inverse
(π, expP )−1 on Immk0+2p restrict to the corresponding mappings on each Immk+2p.
Thus the neighborhoods of existence are uniform in k and can be chosen Hk0+2p-
open. �

6.7. Momentum mappings. Recall that by assumption, the operator P is in-
variant under the action of the reparametrization group Diff(M). Therefore the
induced metric GP is invariant under this group action, too. According to [20,
section 2.5] one gets:

Theorem. The reparametrization momentum, which is the momentum mapping
corresponding to the action of Diff(M) on Imm(M,N), is conserved along any
geodesic f in Imm(M,N):

∀X ∈ X(M) :

∫
M

g(Tf.X, Pft)vol(g)
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or equivalently

g
(
(Pft)

>)vol(g) ∈ Γ(T ∗M ⊗M vol(M))

is constant along f .

6.8. Horizontal bundle. The splitting of T Imm into horizontal and vertical sub-
spaces will be calculated for Sobolev-type metrics GP . See section 4.7 for the
definitions. By definition, a tangent vector h to f ∈ Imm(M,N) is horizontal if
and only if it is GP -perpendicular to the Diff(M)-orbits. This is the case if and
only if g(Pfh(x), Txf.Xx) = 0 at every point x ∈ M . Therefore the horizontal
bundle at the point f equals{

h ∈ Tf Imm : Pfh(x)⊥Txf(TxM) for all x ∈M} =
{
h : (Pfh)> = 0

}
.

Note that the horizontal bundle consists of vector fields that are normal to f when
P = Id, i.e. for the H0-metric on Imm.

Let us work out the GP -decomposition of h into vertical and horizontal parts.
This decomposition is written as

h = Tf.hver + hhor.

Then

Pfh = Pf (Tf.hver) + Pfh
hor with (Pfh)> = (Pf (Tf.hver))> + 0.

Thus one considers the operators

P>f : X(M)→ X(M), P>f (X) =
(
Pf (Tf.X)

)>
,

Pf,⊥ : X(M)→ Γ
(
Nor(f)

)
⊂ C∞(M,TN), Pf,⊥(X) =

(
Pf (Tf.X)

)⊥
.

The operator P>f is unbounded, positive and symmetric on the Hilbert completion

of Tf Imm with respect to the H0-metric since one has∫
M

g(P>f X,Y )vol(g) =

∫
M

g(Tf.P>f X,Tf.Y )vol(g)

=

∫
M

g(Pf (Tf.X), T f.Y )vol(g)

=

∫
M

g(P>f Y,X)vol(g),∫
M

g(P>f X,X)vol(g) =

∫
M

g(Pf (Tf.X), T f.X)vol(g) > 0 if X 6= 0.

Let σPf and σP
>
f denote the principal symbols of Pf and P>f , respectively. Take

any x ∈ M and ξ ∈ T ∗xM \ {0}. Then σPf (ξ) is symmetric, positive definite on
(Tf(x)N, g). This means that one has for any h, k ∈ Tf(x)N that

g
(
σPf (ξ)h, k

)
= g
(
h, σPf (ξ)k

)
, g

(
σPf (ξ)h, h

)
> 0 for h 6= 0.

The principal symbols σPf and σP
>
f are related by

g
(
σP
>
f (ξ)X,Y

)
= g
(
Tf.σP

>
f (ξ)X,Tf.Y

)
= g
(
σPf (ξ)Tf.X, Tf.Y

)
,

where X,Y ∈ TxM . Thus σP
>
f (ξ) is symmetric, positive definite on (TxM, g).

Therefore P>f is again elliptic, thus it is selfadjoint, so its index (as operator
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Hk+2p → Hk) vanishes. It is injective (since positive) with vanishing index (since
self-adjoint elliptic, by [21, theorem 26.2]) hence it is bijective and thus invertible
by the open mapping theorem. Thus it has been proven:

Lemma. The decomposition of h ∈ T Imm into its vertical and horizontal compo-
nents is given by

hver = (P>f )−1
(
(Pfh)>

)
,

hhor = h− Tf.hver = h− Tf.(P>f )−1
(
(Pfh)>

)
.

6.9. Horizontal curves. To establish the one-to-one correspondence between hor-
izontal curves in Imm and curves in shape space that has been described in theo-
rem 4.8, one needs the following property:

Lemma. For any smooth path f in Imm(M,N) there exists a smooth path ϕ in

Diff(M) with ϕ(0, . ) = IdM depending smoothly on f such that the path f̃ given

by f̃(t, x) = f(t, ϕ(t, x)) is horizontal:

g
(
Pf̃ (∂tf̃), T f̃ .TM

)
= 0.

Thus any path in shape space can be lifted to a horizontal path of immersions.

The basic idea is to write the path ϕ as the integral curve of a time dependent
vector field. This method is called the Moser-trick (see [18, Section 2.5]).

Proof. Since P is invariant, one has (rϕ)∗P = P or Pf◦ϕ(u ◦ ϕ) = (Pfu) ◦ ϕ for
ϕ ∈ Diff(M). In the following f ◦ϕ will denote the map f(t, ϕ(t, x)), etc. One looks
for ϕ as the integral curve of a time dependent vector field ξ(t, x) on M , given by
ϕt = ξ ◦ ϕ. The following expression must vanish for all x ∈M and Xx ∈ TxM :

0 = g
(
Pf◦ϕ

(
∂t(f ◦ ϕ)

)
(x), T (f ◦ ϕ).Xx

)
= g
(
Pf◦ϕ

(
(∂tf) ◦ ϕ+ Tf.(∂tϕ)

)
(x), T (f ◦ ϕ).Xx

)
= g
((

(Pf (∂tf)) + Pf (Tf.ξ)
)(
ϕ(x)

)
, Tf ◦ Tϕ.Xx

)
Since Tϕ is surjective, Tϕ.X exhausts the tangent space Tϕ(x)M , and one has(

(Pf (∂tf)) + Pf (Tf.ξ)
)(
ϕ(x)

)
⊥ f.

This holds for all x ∈M , and by the surjectivity of ϕ, one also has that(
(Pf (∂tf)) + Pf (Tf.ξ)

)
(x) ⊥ f

at all x ∈M . This means that the tangential part
(
Pf (∂tf)+Pf (Tf.ξ)

)>
vanishes.

Using the time dependent vector field

ξ = −(P>f )−1
(
(Pf∂tf)>

)
and its flow ϕ achieves this. �
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6.10. Geodesic equation on shape space. By the previous section and theo-
rem 4.8, geodesics in Bi correspond exactly to horizontal geodesics in Imm. The
equations for horizontal geodesics in the space of immersions have been written
down in section 4.9. Here they are specialized to Sobolev-type metrics:

Theorem. The geodesic equation on shape space for a Sobolev-type metric GP is
equivalent to the set of equations

ft = fhor
t ∈ Hor,

(∇∂tft)hor =
1

2
P−1

(
Adj(∇P )(ft, ft)

⊥ − g(Pft, ft).Trg(S)
)

− P−1
((

(∇ftP )ft
)⊥ − Trg

(
g(∇ft, T f)

)
Pft

)
,

where f is a horizontal path of immersions.

These equations are not handable very well since taking the horizontal part
of a vector to Imm involves inverting an elliptic pseudo-differential operator, see
section 6.8. However, the formulation in the next section is much better.

6.11. Geodesic equation on shape space in terms of the momentum. The
geodesic equation in terms of the momentum has been derived in section 4.10 for a
general metric on shape space. Now it is specialized to Sobolev-type metrics using
the formula for the H-gradient from section 6.3.

As in section 6.5 the momentum GP (ft, ·) is identified with Pft ⊗ vol(g). By
definition, the momentum is horizontal if it annihilates all vertical vectors. This is
the case if and only if Pft is normal to f . Thus the splitting of the momentum in
horizontal and vertical parts is given by

Pft ⊗ vol(g) = (Pft)
⊥ ⊗ vol(g) + Tf.(Pft)

> ⊗ vol(g).

This is much simpler than the splitting of the velocity in horizontal and vertical
parts where a pseudo-differential operator has to be inverted, see section 6.8. Thus
the following version of the geodesic equation on shape space is the easiest to solve.

Theorem. The geodesic equation on shape space is equivalent to the set of equations
for a path of immersions f : p = Pft ⊗ vol(g), Pft = (Pft)

⊥,

(∇∂tp)hor =
1

2

(
Adj(∇P )(ft, ft)

⊥ − g(Pft, ft).Trg(S)
)
⊗ vol(g).

The equation for geodesics on Imm without the horizontality condition is

∇∂tp =
1

2

(
Adj(∇P )(ft, ft)

⊥ − 2Tf.g(Pft,∇ft)] − g(Pft, ft).Trg(S)
)
⊗ vol(g),

see section 6.5. It has been proven in section 4.9 that the vertical part of this
equation is satisfied automatically when the geodesic is horizontal. Nevertheless
this will be checked by hand because the proof is much simpler here than in the
general case.
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If ft is horizontal then by definition Pft is normal to f . Thus one has for any
X ∈ X(M) that

g
(
(∇∂tPft)>, X

)
= g(∇∂tPft, T f.X) = 0− g(Pft,∇∂tTf.X)

= −g(Pft,∇Xft) = −g
(
g(Pft,∇ft)], X).

Thus (
∇∂tp

)vert
=
(
(∇∂tPft)⊗ vol(g) + Pft ⊗D(f,ft)vol(g)

)vert

= Tf.(∇∂tPft)> ⊗ vol(g) + Tf.(Pft)
> ⊗D(f,ft)vol(g)

= −Tf.g(Pft,∇ft)] ⊗ vol(g) + 0,

which is exactly the vertical part of the geodesic equation.

7. Geodesic distance on shape space

It came as a big surprise when it was discovered in [19] that the Sobolev metric of
order zero induces vanishing geodesic distance on shape space Bi. It will be shown
that this problem can be overcome by using higher order Sobolev metrics. The
proof of this result is based on bounding the GP -length of a path from below by
its area swept out. The main result is in section 7.6. The same ideas are contained
in [4, section 2.4], [2, section 7] and [18, section 3].

7.1. Geodesic distance on shape space. Geodesic distance on Bi is given by

distBi

GP (F0, F1) = inf
F
LBi

GP (F ),

where the infimum is taken over all F : [0, 1]→ Bi with F (0) = F0 and F (1) = F1.

LBi

GP is the length of paths in Bi given by

LBi

GP (F ) =

∫ 1

0

√
GPF (Ft, Ft)dt for F : [0, 1]→ Bi.

Letting π : Imm→ Bi denote the projection, one has

LBi

GP (π ◦ f) = LImm
GP (f) =

∫ 1

0

√
GPf (ft, ft)dt

when f : [0, 1] → Imm is horizontal. In the following sections, conditions on the

metric GP ensuring that distBi

GP separates points in Bi will be developed.

7.2. Vanishing geodesic distance.

Theorem. The distance distBi

H0 induced by the Sobolev L2 metric of order zero
vanishes. Indeed it is possible to connect any two distinct shapes by a path of
arbitrarily short length.

This result was first established by Michor and Mumford for the case of planar
curves in [19]. A more general version can be found in [18], where the same result
is proven also on diffeomorphism groups.
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7.3. Area swept out. For a path of immersions f seen as a mapping f : [0, 1] ×
M → N one has

(area swept out by f) =

∫
[0,1]×M

vol(f(·, ·)∗g) =

∫ 1

0

∫
M

∥∥f⊥t ∥∥ vol(g)dt.

7.4. Area swept out bound.

Lemma. Let GP be a Sobolev type metric that is at least as strong as the H0-
metric, i.e. there is a constant C1 > 0 such that

‖h‖GP ≥ C1 ‖h‖H0 = C1

√∫
M

g(h, h)vol(g) for all h ∈ T Imm.

Then one has the area swept out bound for any path of immersions f :

C1 (area swept out by f) ≤ max
t

√
Vol
(
f(t)

)
.LImm
GP (f).

The proof is an adaptation of the one given in [2, section 7.3] for almost local
metrics.

Proof.

LImm
GP (f) =

∫ 1

0

‖ft‖GP dt ≥ C1

∫ 1

0

‖ft‖H0 dt

≥ C1

∫ 1

0

∥∥f⊥t ∥∥H0 dt = C1

∫ 1

0

(∫
M

∥∥f⊥t ∥∥2
vol(g)

) 1
2

dt

≥ C1

∫ 1

0

(∫
M

vol(g)
)− 1

2

∫
M

1.
∥∥f⊥t ∥∥ vol(g)dt

≥ C1 min
t

(∫
M

vol(g)
)− 1

2

∫
[0,1]×M

vol(f(·, ·)∗g)

= C1

(
max
t

∫
M

vol(g)
)− 1

2

(area swept out by f) �

7.5. Lipschitz continuity of
√

Vol.

Lemma. Let GP be a Sobolev type metric that is at least as strong as the H1-
metric, i.e. there is a constant C2 > 0 such that

‖h‖GP ≥ C2 ‖h‖H1 = C2

√∫
M

g
(
(1 + ∆)h, h

)
vol(g) for all h ∈ T Imm.

Then the mapping √
Vol : (Bi,distBi

GP )→ R≥0

is Lipschitz continuous, i.e. for all F0 and F1 in Bi one has:√
Vol(F1)−

√
Vol(F0) ≤ 1

2C2
distBi

GP (F0, F1).

For the case of planar curves, this has been proven in [20, section 4.7].
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Proof.

∂tVol =

∫
M

(
divg(f>t )− g

(
f⊥t ,Trg(S)

))
vol(g)

= 0 +

∫
M

g(ft,∇∗Tf)vol(g) =

∫
M

(g0
1 ⊗ g)(∇ft, T f)vol(g)

≤

√∫
M

‖∇ft‖2g01⊗g vol(g)

√∫
M

‖Tf‖2g01⊗g vol(g)

≤ ‖ft‖H1

√
Vol ≤ 1

C2
‖ft‖GP

√
Vol.

Thus

∂t
√

Vol(f) =
∂tVol(f)

2
√

Vol(f)
≤ 1

2C2
‖ft‖GP .

By integration one gets√
Vol(f1)−

√
Vol(f0) =

∫ 1

0

∂t
√

Vol(f)dt ≤
∫ 1

0

1

2C2
‖ft‖GP =

1

2C2
LImm
GP (f).

Now the infimum over all paths f : [0, 1]→ Imm with π(f(0)) = F0 and π(f(1)) =
F1 is taken. �

7.6. Non-vanishing geodesic distance. Using the estimates proven above and
the fact that the area swept out separates points at least on Be, one gets the
following result:

Theorem. The Sobolev type metric GP induces non-vanishing geodesic distance
on Be if it is stronger or as strong as the H1-metric, i.e. if there is a constant
C > 0 such that

‖h‖GP ≥ C ‖h‖H1 = C

√∫
M

g
(
(1 + ∆)h, h

)
vol(g) for all h ∈ T Imm.

Proof. By lemma 7.4 we have

C1 (area swept out by f) ≤ max
t

√
Vol
(
f(t)

)
.LImm
GP (f).

Now we use the Lipschitz continuity 7.5 of
√

Vol and that area swept out separates
points on Be. �

8. Sobolev metrics induced by the Laplace operator

The results on non-vanishing geodesic distance from the previous section lead us
to consider operators P that are induced by the Laplacian operator:

P = 1 +A∆p, P ∈ Γ
(
L(T Imm;T Imm)

)
for a constant A > 0. (See section 3.11 for the definition of the Laplacian that is
used in this work.) At every f ∈ Imm, Pf is a positive, selfadjoint and bijective
operator of order 2p acting on Tf Imm = Γ(f∗TN). Note that ∆ depends smoothly
on the immersion f via the pullback-metric f∗g, so that the same is true of P . P is
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invariant under the action of the reparametrization group Diff(M). It induces the
Sobolev metric

GPf (h, k) =

∫
M

g
(
Pf (h), k

)
vol(g) =

∫
M

g
((

1 +A(∆f∗g)p
)
h, k
)

vol(f∗g).

When A = 1 we write Hp := G1+∆p

.

In this section we will calculate explicitly for P = 1+A∆p the geodesic equation
and conserved momenta that have been deduced in section 6 for a general operator
P . The hardest part will be the partial integration needed for the adjoint of∇P . As
a result we will get explicit formulas that are ready to be implemented numerically.

8.1. Other choices for P . Other choices for P are the operator P = 1+A(∇∗)p∇p
corresponding to the metric

GPf (h, k) =

∫
M

(
g(h, k) +Ag(∇ph,∇pk)

)
vol(g),

and other operators that differ only in lower order terms. Since these operators all
have the same principal symbol, they induce equivalent metrics on each tangent
space Tf Imm. It would be interesting to know if the induced geodesic distances on
Bi are equivalent as well.

8.2. Adjoint of ∇P . To find a formula for the geodesic equation one has to cal-
culate the adjoint of ∇P , see section 6.4. The following calculations at the same
time show the existence of the adjoint. It has been shown in section 6.2 that the
invariance of the operator P with respect to reparametrizations determines the
tangential part of the adjoint:

Adj(∇P )(h, k)
)>

= gradg g(Ph, k)−
(
g(Ph,∇k) + g(∇h, Pk)

)]
.

It remains to calculate its normal part using the variational formulas from section 5.

In the following calculations there will be terms of the form Tr(g−1s1g
−1s2),

where s1, s2 are two-forms on M . When the two-forms are seen as mappings TM →
T ∗M , they can be composed with g−1 : T ∗M → TM . Thus the expression under
the trace is a mapping TM → TM to which the trace can be applied. When
one of the two-forms is vector valued, the same tensor components as before are
contracted. For example when h ∈ Γ(f∗TN) then s2 = ∇2h is a two-form on M
with values in f∗TN . Then in the expression Tr(g−1.s1.g

−1.s2) only TM and T ∗M
components are contracted, whereas the f∗TN component remains unaffected.

∫
M

g
(
m⊥,Adj(∇P )(h, k)

)
vol(g) =

∫
M

g
(
(∇m⊥P )h, k

)
vol(g)

= A

p−1∑
i=0

∫
M

g((∇m⊥∆)∆p−i−1h,∆ik)vol(g)

= A

p−1∑
i=0

∫
M

g
(

Tr
(
g−1.D(f,m⊥)g.g

−1∇2∆p−i−1h
)
,∆ik

)
vol(g)
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−A
p−1∑
i=0

∫
M

g
(
∇(
∇∗(D

(f,m⊥)
g)+ 1

2dTrg(D
(f,m⊥)

g)
)]∆p−i−1h,∆ik

)
vol(g)

+A

p−1∑
i=0

∫
M

g
(
∇∗Rg(m⊥, T f)∆p−i−1h,∆ik

)
vol(g)

−A
p−1∑
i=0

∫
M

g
(

Trg
(
Rg(m⊥, T f)∇∆p−i−1h

)
,∆ik

)
vol(g)

= A

p−1∑
i=0

∫
M

Tr
(
g−1.D(f,m⊥)g.g

−1g(∇2∆p−i−1h,∆ik)
)

vol(g)

−A
p−1∑
i=0

∫
M

(g0
1 ⊗ g)

(
∇∆p−i−1h, (∇∗D(f,m⊥)g)⊗∆ik

)
vol(g)

−A
p−1∑
i=0

∫
M

(g0
1 ⊗ g)

(
∇∆p−i−1h,

1

2
dTrg(D(f,m⊥)g)⊗∆ik

)
vol(g)

+A

p−1∑
i=0

∫
M

(g0
1 ⊗ g)

(
Rg(m⊥, T f)∆p−i−1h,∇∆ik

)
vol(g)

−A
p−1∑
i=0

∫
M

g
(

Trg
(
Rg(m⊥, T f)∇∆p−i−1h

)
,∆ik

)
vol(g)

Using the symmetry

g(Rg(X,Y )Z,U) = −g(Rg(Y,X)Z,U) = −g(Rg(Z,U)Y,X)

of the curvature tensor (see [17, 24.4.4]) yields:∫
M

g
(
m⊥,Adj(∇P )(h, k)

)
vol(g) =

= A

p−1∑
i=0

∫
M

g0
2

(
D(f,m⊥)g, g(∇2∆p−i−1h,∆ik)

)
vol(g)

−A
p−1∑
i=0

∫
M

g0
1

(
g(∇∆p−i−1h,∆ik),∇∗D(f,m⊥)g

)
vol(g)

−A
p−1∑
i=0

∫
M

g0
1

(
g(∇∆p−i−1h,∆ik),

1

2
∇Trg(D(f,m⊥)g)

)
vol(g)

+A

p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∆p−i−1h,∇∆ik)Tf

)
,m⊥

)
vol(g)

−A
p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∇∆p−i−1h,∆ik)Tf

)
,m⊥

)
vol(g)

= A

p−1∑
i=0

∫
M

g0
2

(
D(f,m⊥)g, g(∇2∆p−i−1h,∆ik)

)
vol(g)
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−A
p−1∑
i=0

∫
M

g0
2

(
∇g(∇∆p−i−1h,∆ik), D(f,m⊥)g

)
vol(g)

− A

2

p−1∑
i=0

∫
M

(
∇∗g(∇∆p−i−1h,∆ik)

)
Trg(D(f,m⊥)g)vol(g)

+A

p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∆p−i−1h,∇∆ik)Tf

)
,m⊥

)
vol(g)

−A
p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∇∆p−i−1h,∆ik)Tf

)
,m⊥

)
vol(g)

= A

p−1∑
i=0

∫
M

g0
2

(
D(f,m⊥)g, g(∇2∆p−i−1h,∆ik)

)
vol(g)

−A
p−1∑
i=0

∫
M

g0
2

(
g(∇2∆p−i−1h,∆ik), D(f,m⊥)g

)
vol(g)

−A
p−1∑
i=0

∫
M

g0
2

(
g(∇∆p−i−1h,∇∆ik), D(f,m⊥)g

)
vol(g)

− A

2

p−1∑
i=0

∫
M

(
∇∗g(∇∆p−i−1h,∆ik)

)
Trg(D(f,m⊥)g)vol(g)

+A

p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∆p−i−1h,∇∆ik)Tf

)
,m⊥

)
vol(g)

−A
p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∇∆p−i−1h,∆ik)Tf

)
,m⊥

)
vol(g)

= −A
p−1∑
i=0

∫
M

g0
2

(
D(f,m⊥)g, g(∇∆p−i−1h,∇∆ik)

)
vol(g)

− A

2

p−1∑
i=0

∫
M

(
∇∗g(∇∆p−i−1h,∆ik)

)
Trg(D(f,m⊥)g)vol(g)

+A

p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∆p−i−1h,∇∆ik)Tf

)
,m⊥

)
vol(g)

−A
p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∇∆p−i−1h,∆ik)Tf

)
,m⊥

)
vol(g)

= −A
p−1∑
i=0

∫
M

g0
2

(
− 2.g(m⊥, S), g(∇∆p−i−1h,∇∆ik)

)
vol(g)

− A

2

p−1∑
i=0

∫
M

(
∇∗g(∇∆p−i−1h,∆ik)

)
Trg

(
− 2.g(m⊥, S)

)
vol(g)
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+A

p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∆p−i−1h,∇∆ik)Tf

)
,m⊥

)
vol(g)

−A
p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∇∆p−i−1h,∆ik)Tf

)
,m⊥

)
vol(g)

=

∫
M

g
(
m⊥, 2A

p−1∑
i=0

Tr
(
g−1Sg−1g(∇∆p−i−1h,∇∆ik)

))
+

∫
M

g
(
m⊥, A

p−1∑
i=0

(
∇∗g(∇∆p−i−1h,∆ik)

)
Trg(S)

)
vol(g)

+A

p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∆p−i−1h,∇∆ik)Tf

)
,m⊥

)
vol(g)

−A
p−1∑
i=0

∫
M

g
(

Trg
(
Rg(∇∆p−i−1h,∆ik)Tf

)
,m⊥

)
vol(g).

From this, one can read off the normal part of the adjoint. Thus one gets:

Lemma. The adjoint of ∇P defined in section 6.2 for the operator P = 1 + A∆p

is

Adj(∇P )(h, k) = 2A

p−1∑
i=0

Tr
(
g−1Sg−1g(∇∆p−i−1h,∇∆ik)

)
+A

p−1∑
i=0

(
∇∗g(∇∆p−i−1h,∆ik)

)
Trg(S)

+A

p−1∑
i=0

Trg
(
Rg(∆p−i−1h,∇∆ik)Tf

)
−A

p−1∑
i=0

Trg
(
Rg(∇∆p−i−1h,∆ik)Tf

)
+ Tf.

[
gradg g(Ph, k)−

(
g(Ph,∇k) + g(∇h, Pk)

)]]
.

8.3. Geodesic equations and conserved momentum. The shortest and most
convenient formulation of the geodesic equation is in terms of the momentum p =
(1 +A∆p)ft ⊗ vol(g), see sections 6.5 and 6.11.
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Theorem. The geodesic equation on Imm(M,N) for the GP -metric with P =
1 +A∆p is given by:

p = (1 +A∆p)ft ⊗ vol(g),

∇∂tp =

(
A

p−1∑
i=0

Tr
(
g−1Sg−1g(∇(∆p−i−1ft),∇∆ift)

)
+
A

2

p−1∑
i=0

(
∇∗g(∇(∆p−i−1ft),∆

ift)
)
.Trg(S)

+ 2A

p−1∑
i=0

Trg
(
Rg(∆p−i−1ft,∇∆ift)Tf

)
− 1

2
g(Pft, ft) Trg(S)− Tf.g(Pft,∇ft)]

)
⊗ vol(g).

This equation is well-posed by theorem 6.6 since all conditions are satisfied. For
the special case of plane curves, this agrees with the geodesic equation calculated in
[20, section 4.2].

P = 1 + A∆p and consequently GP are invariant under the action of the
reparametrization group Diff(M). According to section 6.7 one gets:

Theorem. The momentum mapping for the action of Diff(M) on Imm(M,N)

g
((

(1 +A∆p)ft
)>)⊗ vol(g) ∈ Γ(T ∗M ⊗M vol(M))

is constant along any geodesic f in Imm(M,N).

The horizontal geodesic equation for a general metric on Imm has been derived
in section 4.10. In section 6.11 it has been shown that this equation takes a very
simple form. Now it is possible to write down this equation specifically for the
operator P = 1 +A∆p:

Theorem. The geodesic equation on shape space for the Sobolev-metric GP with
P = 1 +A∆p is equivalent to the set of equations

p = Pft ⊗ vol(g), Pft = (Pft)
⊥,

(∇∂tp)hor =

(
A

p−1∑
i=0

Tr
(
g−1Sg−1g(∇∆p−i−1ft,∇∆ift)

)
+
A

2

p−1∑
i=0

(
∇∗g(∇∆p−i−1ft,∆

ift)
)

Trg(S)

+ 2A

p−1∑
i=0

Trg
(
Rg(∆p−i−1ft,∇∆ift)Tf

)
− 1

2
g(Pft, ft).Trg(S)

)
⊗ vol(g),

where f is a path of immersions. For the special case of plane curves, this agrees
with the geodesic equation calculated in [20, section 4.6].
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9. Surfaces in n-space

This section is about the special case where the ambient space N is Rn. The flat-
ness of Rn leads to a simplification of the geodesic equation, and the Euclidean mo-
tion group acting on Rn induces additional conserved quantities. The vector space
structure of Rn allows to define a Fréchet metric. This metric will be compared to
Sobolev metrics. Finally in section 9.5 the space of concentric hyper-spheres in Rn
is briefly investigated.

9.1. Geodesic equation. The covariant derivative ∇g on Rn is but the usual
derivative. Therefore the covariant derivatives ∇∂tft and ∇∂tp in the geodesic
equation can be replaced by ftt and pt, respectively. (Note that Imm(M,Rn) is an
open subset of the Fréchet vector space C∞(M,Rn).) Also, the curvature terms
disappear because Rn is flat. Any of the formulations of the geodesic equation
presented so far can thus be adapted to the case N = Rn.

We want to show how the geodesic equation simplifies further under the addi-
tional assumptions that dim(M) = dim(N)−1 and that M is orientable. Then it is
possible define a unit vector field ν to M . The condition that ft is horizontal then
simplifies to Pft = a.ν for a ∈ C∞(M). The geodesic equation can then be written
as an equation for a. However, the equation is slightly simpler when it is written
as an equation for a.vol(g). In practise, vol(g) can be treated as a function on M
because one can identify vol(g) with its density with respect to du1 ∧ . . . ∧ dun−1,
where (u1, . . . , un−1) is a chart on M . Thus multiplication by vol(g) does not pose
a problem.

Theorem. The geodesic equation for a Sobolev-type metric GP on shape space
Bi(M,Rn) with dim(M) = n− 1 is equivalent to the set of equations

Pft = a.ν

∂t
(
a.vol(g)

)
=

1

2
g
(

Adj(∇P )(ft, ft), ν
)
− 1

2
g(Pft, ft)g

(
Trg(S), ν

)
,

where f is a path in Imm(M,Rn) and a is a time-dependent function on M .

Proof. Applying g(·, ν) to the geodesic equation 6.11 on shape space in terms of
the momentum one gets

∂t
(
a.vol(g)

)
= ∂t g

(
Pft ⊗ vol(g), ν

)
= g
(
∇∂t

(
Pft ⊗ vol(g)

)
, ν
)

+ g
(
Pft ⊗ vol(g),∇∂tν

)
=

1

2
g
(

Adj(∇P )(ft, ft), ν
)
− 1

2
g(Pft, ft)g

(
Trg(S), ν

)
+ 0. �

Let us spell this equation out in even more details for the H1-metric. This is the
case of interest for the numerical examples in section 11.
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Theorem. The geodesic equation on shape space Bi(M,Rn) for the Sobolev-metric
GP with P = 1 +A∆ is equivalent to the set of equations

Pft = a.ν

∂t
(
a.vol(g)

)
=
(
Ag0

2

(
s, g(∇ft,∇ft)

)
− Tr(L)

2

(
‖ft‖2g +A ‖∇ft‖2g01⊗g

))
vol(g),

where f is a path of immersions, a is a time-dependent function on M , s = g(S, ν) ∈
Γ(T 0

2M) is the shape operator, L = g−1s ∈ Γ(T 1
1M) is the Weingarten mapping,

and Tr(L) is the mean curvature.

Proof. The fastest way to get to this equation is to apply g(·, ν) to the geodesic
equation on Imm from section 8.3. This yields

∂t
(
a.vol(g)

)
=
(
ATr

(
g−1.s.g−1g(∇ft,∇ft)

)
+
A

2

(
∇∗g(∇ft, ft)

)
Tr(L)

− 1

2
g(Pft, ft).Tr(L)

)
vol(g)

=
(
Ag0

2

(
s, g(∇ft,∇ft)

)
− A

2
Trg

(
g(∇2ft, ft)

)
Tr(L)

− A

2
Trg

(
g(∇ft,∇ft)

)
Tr(L)− 1

2
g
(
(1 +A∆)ft, ft

)
Tr(L)

)
vol(g)

=
(
Ag0

2

(
s, g(∇ft,∇ft)

)
− A

2
Trg

(
g(∇ft,∇ft)

)
Tr(L)

− 1

2
g
(
ft, ft

)
.Tr(L)

)
vol(g).

Notice that the second order derivatives of ft have canceled out. �

9.2. Additional conserved momenta. If P is invariant under the action of the
Euclidean motion group RnoSO(n), then also the metric GP is in invariant under
this group action and one gets additional conserved quantities as described in [20,
section 2.5]:

Theorem. For an operator P that is invariant under the action of the Euclidean
motion group Rn o SO(n), the linear momentum∫

M

Pftvol(g) ∈ (Rn)∗

and the angular momentum

∀X ∈ so(n) :

∫
M

g(X.f, Pft)vol(g)

or equivalently

∫
M

(f ∧ Pft)vol(g) ∈
∧2Rn ∼= so(n)∗

are constant along any geodesic f in Imm(M,Rn). The operator P = 1 + A∆p

satisfies this property.
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9.3. Fréchet distance and Finsler metric. The Fréchet distance on shape space
Bi(M,Rn) is defined as

distBi
∞ (F0, F1) = inf

f0,f1
‖f0 − f1‖L∞ ,

where the infimum is taken over all f0, f1 with π(f0) = F0, π(f1) = F1. As before,
π denotes the projection π : Imm→ Bi. Fixing f0 and f1, one has

distBi
∞
(
π(f0), π(f1)

)
= inf

ϕ
‖f0 ◦ ϕ− f1‖L∞ ,

where the infimum is taken over all ϕ ∈ Diff(M). The Fréchet distance is related
to the Finsler metric

G∞ : T Imm(M,Rn)→ R, h 7→
∥∥h⊥∥∥

L∞
.

Lemma. The pathlength distance induced by the Finsler metric G∞ provides an
upper bound for the Fréchet distance:

distBi
∞ (F0, F1) ≤ distBi

G∞(F0, F1) = inf
f

∫ 1

0

‖ft‖G∞ dt,

where the infimum is taken over all paths

f : [0, 1]→ Imm(M,Rn) with π(f(0)) = F0, π(f(1)) = F1.

Proof. Since any path f can be reparametrized such that ft is normal to f , one has

inf
f

∫ 1

0

∥∥f⊥t ∥∥L∞ dt = inf
f

∫ 1

0

‖ft‖L∞ dt,

where the infimum is taken over the same class of paths f as described above.
Therefore

distBi
∞ (F0, F1) = inf

f
‖f(1)− f(0)‖L∞ = inf

f

∥∥∥∥∫ 1

0

ftdt

∥∥∥∥
L∞
≤ inf

f

∫ 1

0

‖ft‖L∞ dt

= inf
f

∫ 1

0

∥∥f⊥t ∥∥L∞ dt = distBi

G∞(F0, F1). �

It is claimed in [15, theorem 13] that d∞ = distG∞ . However, the proof given
there only works on the vector space C∞(M,Rn) and not on Bi(M,Rn). The reason
is that convex combinations of immersions are used in the proof, but that the space
of immersions is not convex.

9.4. Sobolev versus Fréchet distance. It is a desirable property of any distance
on shape space to be stronger than the Fréchet distance. Otherwise, singular points
of a shape could move arbitrarily far away without increasing the distance much.

As the following result shows, Sobolev metrics of low order do not have this
property. The authors believe that this property is true when the order of the
metric is high enough, but were not able to prove this.

Lemma. Let GP be a metric on Bi(M,Rn) that is weaker than or at least as weak

as a Sobolev Hp-metric with p < dim(M)
2 + 1, i.e.

‖h‖GP ≤ C ‖h‖Hp = C

√∫
M

g
(
(1 + ∆p)h, h

)
vol(g) for all h ∈ T Imm.
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Then the Fréchet distance can not be bounded by the GP -distance.

Proof. It is sufficient to prove the claim for P = 1+∆p. Let f0 be a fixed immersion
of M into Rn, and let f1 be a translation of f0 by a vector h of length `. It will be
shown that the Hp-distance between π(f0) and π(f1) is bounded by a constant 2L
that does not depend on `, where π denotes the projection of Imm onto Bi. Then
it follows that the Hp-distance can not be bounded from below by the Fréchet
distance, and this proves the claim.

For small r0, one calculates the Hp-length of the following path of immersions:
First scale f0 by a factor r0, then translate it by h, and then scale it again until
it has reached f1. The following calculation shows that under the assumption
p < m/2 + 1 the immersion f0 can be scaled down to zero in finite Hp-pathlength
L. Let r : [0, 1]→ [0, 1] be a function of time with r(0) = 1 and r(1) = 0.

LG
P

Imm

(
r.f0

)
=

∫ 1

0

√∫
M

g
(
rt.
(
1 + (∆(r.f0)∗g)p

)
(f0), rt.f0

)
vol
(
(r.f0)∗g

)
dt

=

∫ 1

0

√∫
M

r2
t .g
((

1 +
1

r2p
(∆f∗0 g)p

)
(f0), f0

)
rmvol

(
f∗0 g
)
dt

=

∫ 0

1

√∫
M

g
((

1 +
1

r2p
(∆f∗0 g)p

)
(f0), f0

)
rmvol

(
f∗0 g
)
dr =: L

The last integral converges if m−2p
2 < −1, which holds by assumption. Scaling

down to r0 > 0 needs even less effort. So one sees that the length of the shrinking
and growing part of the path is bounded by 2L.

The length of the translation is simply `
√
rm0 Vol(f0) = O(rm/2) since the Lapla-

cian of the constant vector field vanishes. Therefore

distG
P

Bi

(
π(f0), π(f1)

)
≤ distG

P

Imm(f0, f1) ≤ 2L. �

9.5. Concentric spheres. For a Sobolev type metric GP that is invariant under
the action of the SO(n) on Rn, the set of hyper-spheres in Rn with common center
0 is a totally geodesic subspace of Bi(S

n−1,Rn). The reason is that it is the fixed
point set of the group SO(n) acting on Bi isometrically. (One also needs uniqueness
of solutions to the geodesic equation to prove that the concentric spheres are totally
geodesic.) This section mainly deals with the case P = 1 + ∆p.

First we want to determine under what conditions the set of concentric spheres
is geodesically complete under the GP -metric.

Lemma. The space of concentric spheres is complete with respect to the GP metric
with P = 1 +A∆p iff p ≥ (n+ 1)/2.

Proof. The space is complete if and only if it is impossible to scale a sphere down
to zero or up to infinity in finite GP path-length. So let f be a path of concentric
spheres. It is uniquely described by its radius r. Its velocity is ft = rt.ν, where ν
designates the unit normal vector field. One has

g
(
g−1.S, ν

)
=: L = − 1

r IdTM , Tr(Lk) = (−1)k n−1
rk
, Vol = rn−1 nπn/2

Γ(n/2+1) .
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Keep in mind that r and rt are constant functions on the sphere, so that all deriva-
tives of them vanish. Therefore

∆ν = ∇∗(∇ν) = ∇∗(−Tf.L) = Trg
(
∇(Tf.L)

)
= Trg

(
∇(Tf).L

)
+ Trg

(
Tf.(∇L)

)
= Tr(L2).ν + Trg

(
Tf.∇(− 1

r IdTM )
)

=
n− 1

r2
.ν + 0

and

Pft = (1 +A∆p)(rt.ν) = rt.

(
1 +A

(n− 1)p

r2p

)
.ν.

From this it is clear that the path f is horizontal. Therefore its length as a path in
Bi is the same as its length as a path in Imm. One calculates its length as in the
proof of 9.4:

LG
P

Bi
(f) =

∫ 1

0

√
GPf (ft, ft)dt =

∫ 1

0

√∫
M

r2
t .

(
1 +A

(n− 1)p

r2p

)
vol(g)dt

=

∫ 1

0

|rt|

√(
1 +A

(n− 1)p

r2p

)
n.πn/2

Γ(n/2 + 1)
rn−1dt

=

√
n.πn/2

Γ(n/2 + 1)

∫ r1

r0

√(
1 +A

(n− 1)p

r2p

)
rn−1dr.

The integral diverges for r1 → ∞ since the integrand is greater than r(n−1)/2. It
diverges for r0 → 0 iff (n−1−2p)/2 ≤ −1, which is equivalent to p ≥ (n+1)/2. �

The geodesic equation within the space of concentric spheres reduces to an ODE
for the radius that can be read off the geodesic equation in section 8.3:

rtt = −r2
t

(n− 1

2r
− p.A.(n− 1)p

r
(
r2p +A(n− 1)p

)).
10. Diffeomorphism groups

For M = N the space Emb(M,M) equals the diffeomorphism group of M . An
operator P ∈ Γ

(
L(TEmb;TEmb)

)
that is invariant under reparametrizations in-

duces a right-invariant Riemannian metric on this space. Thus one gets the ge-
odesic equation for right-invariant Sobolev metrics on diffeomorphism groups and
well-posedness of this equation. To the authors knowledge, well-posedness has so
far only been shown for the special case M = S1 in [7] and for the special case of
Sobolev order one metrics in [10]. Theorem 6.6 establishes this result for arbitrary
compact M and Sobolev metrics of arbitrary order.

In the decomposition of a vector h ∈ TfEmb into its tangential and normal
components h = Tf.h>+h⊥, the normal part h⊥ vanishes. Also S = ∇Tf vanishes.
Thus the geodesic equation on Diff(M) in terms of the momentum p is given by
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(see 6.5) {
p = Pft ⊗ vol(g),

∇∂tp = −Tf.g(Pft,∇ft)] ⊗ vol(g).

Note that this equation is not right-trivialized, in contrast to the equation given in
[1, 18, 16], for example. The special case of theorem 6.6 now reads as follows:

Theorem. Let p ≥ 1 and k > dim(M)
2 + 1 and let P satisfy assumptions (1–3) of

6.6.

Then the initial value problem for the geodesic equation has unique local solutions
in the Sobolev manifold Diffk+2p of Hk+2p-diffeomorphisms. The solutions depend
smoothly on t and on the initial conditions f(0, . ) and ft(0, . ). The domain of
existence (in t) is uniform in k and thus this also holds in Diff(M).

Moreover, in each Sobolev completion Diffk+2p, the Riemannian exponential
mapping expP exists and is smooth on a neighborhood of the zero section in the
tangent bundle, and (π, expP ) is a diffeomorphism from a (smaller) neigbourhood

of the zero section to a neighborhood of the diagonal in Diffk+2p×Diffk+2p. All
these neighborhoods are uniform in k > dim(M)/2 + 1 and can be chosen Hk0+2p-
open, for k0 > dim(M)/2 + 1. Thus both properties of the exponential mapping
continue to hold in Diff(M).

11. Numerical results

It is of great interest for shape comparison to solve the boundary value problem
for geodesics in shape space. When the boundary value problem can be solved,
then any shape can be encoded as the initial momentum of a geodesic starting at
a fixed reference shape. Since the initial momenta all lie in the same vector space,
this also opens the way to statistics on shape space.

There are two approaches to solving the boundary value problem. In [2] the
first approach of minimizing horizontal path energy over the set of curves in Imm
connecting two fixed boundary shapes has been taken. This has been done for
several almost local metrics. For these metrics it is straightforward to calculate
the horizontal energy because the horizontal bundle equals the normal bundle.
However, in the case of Sobolev type metrics the horizontal energy involves the
inverse of a differential operator (see section 6.8), which makes this approach much
harder.

Figure 1. Geodesic where a bump is formed out a flat plane.
The initial momentum is a = sin(x) sin(y). Time increases linearly
from left to right. The final time is t = 5.
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0.8235

0.8240
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GP (ft, ft)

t

Figure 2. Conservation of the energy GP (ft, ft) along the geo-

desic in figure 1. The true value of GP (ft, ft) is π2

4(1+2A) ≈ 0.822467

for A = 1. The maximum time step used in blue and green is 0.1.
For purple and cyan it is 0.05. The number of grid points used in
blue and cyan is 100 times 100. For green and purple it is 200
times 200.

Figure 3. Letter A forming along a geodesic path. Time increases
linearly from left to right. The final time is t = 0.8. Top and
bottom row are different views of the same geodesic.

The second approach is the method of geodesic shooting. This method is based
on iteratively solving the initial value problem while suitably adapting the initial
conditions. The theoretical requirements of existence of solutions to the geodesic
equation and smooth dependence on initial conditions are met for Sobolev type
metrics, see section 6.6. This makes geodesic shooting a promising approach.
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Figure 4. Initial velocity ft(0, ·) and momentum a(0, ·) of the
geodesic in figure 3. Both are shown first from above, then from
the side.

Figure 5. A self-intersection forming along a geodesic. Time in-
creases linearly from left to right.

The first step towards this aim is to numerically solve the initial value problem
for geodesics, at least for the H1-metric and the case of surfaces in R3, and that is
what will be presented in this work.

The geodesic equation on shape space is equivalent to the horizontal geodesic
equation on the space of immersions. For the case of surfaces in R3, it takes the
form given in section 9.1. This equation can be conveniently set up using the
DifferentialGeometry package incorporated in the computer algebra system Maple
as demonstrated in figure 6. (The equations that have actually been solved were

simplified by multiplying intermediate terms with suitable powers of
√

vol(g), but
for the sake of clearness this has not been included in the Maple code in figure 6.)

Unfortunately, Maple (as of version 14) is not able to solve PDEs with more than
one space variable numerically. Thus the equations were translated into Mathemat-
ica. The PDE was solved using the method of lines. Spatial discretization was done
using an equidistant grid, and spatial derivatives were replaced by finite differences.
The time-derivative ft appears implicitly in the equation Pf (ft) = a.ν, and this
remains so when the operator Pf is replaced by finite differences.

The solver that has been used is the Implicit Differential-Algebraic (IDA) solver
that is part of the SUNDIALS suite and is integrated into Mathematica. IDA
uses backward differentiation of order 1 to 5 with variable step widths. Order 5 is
standard and has also been used here. At each time step, the new value of ft is
computed using some previous values of f , and then the new value of f is calculated
from the equation Pf (ft) = a.ν. The dependence on f in this equation is of course
highly nonlinear. A Newton method is used to solve it. This operation is quite
costly and has to be done at every step, which is a main disadvantage of backward
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1 with(DifferentialGeometry);with(Tensor);with(Tools);

DGsetup([u,v],[x,y,z],E);

3 f := evalDG(f1(t,u,v)*D_x+f2(t,u,v)*D_y+f3(t,u,v)*D_z);

G := evalDG(dx &t dx + dy &t dy + dz &t dz);

5 Gamma_vrt := 0 &mult Connection(dx &t D_x &t du);

Tf := CovariantDerivative(f,Gamma_vrt);

7 g:=ContractIndices(G &t Tf &t Tf,[[1,3],[2,5]]);

g_inv:=InverseMetric(g);

9 Gamma_bas:=Christoffel(g);

det:=Hook([D_u,D_u],g)*Hook([D_v,D_v],g)-Hook([D_u,D_v],g)^2;

11 ft := evalDG(diff(f1(t,u,v),t)*D_x+diff(f2(t,u,v),t)*D_y

+diff(f3(t,u,v),t)*D_z);

13 ft := convert(ft,DGtensor);

S := CovariantDerivative(Tf,Gamma_vrt,Gamma_bas);

15 cross:=evalDG((dy &w dz) &t D_x + (dz &w dx) &t D_y + (dx &w dy) &t D_z);

N:=Hook([ContractIndices(Tf &t D_u,[[2,3]]),

17 ContractIndices(Tf &t D_v,[[2,3]])],cross);

nu:=convert(N/sqrt(Hook([N,N],G)),DGvector);

19 s := ContractIndices(G &t S &t nu, [[1,3],[2,6]]);

L := ContractIndices(g_inv &t s,[[2,3]]);

21 Gftft := ContractIndices(G &t ft &t ft,[[1,3],[2,4]]);

Cft := CovariantDerivative(ft,Gamma_vrt);

23 CCft := CovariantDerivative(Cft,Gamma_vrt,Gamma_bas);

Dft := ContractIndices(-g_inv &t CCft,[[1,4],[2,5]]);

25 Pft := evalDG(ft+A*Dft);

GCftCft := ContractIndices(Cft &t Cft &t G,[[1,5],[3,6]]);

27 gGCftCft := ContractIndices(g_inv &t GCftCft,[[2,3]]);

TrLgGCftCft := ContractIndices(L &t gGCftCft,[[1,4],[2,3]]);

29 TrgGCftCft := ContractIndices(gGCftCft,[[1,2]]);

TrL := ContractIndices(L,[[1,2]]);

31 # b(t,u,v) := a(t,u,v)*sqrt(det);

eq1 := ContractIndices(Pft &t dx,[[1,2]])*sqrt(det) =

33 b(t,u,v)*ContractIndices(nu &t dx,[[1,2]]);

eq2 := ContractIndices(Pft &t dy,[[1,2]])*sqrt(det) =

35 b(t,u,v)*ContractIndices(nu &t dy,[[1,2]]);

eq3 := ContractIndices(Pft &t dz,[[1,2]])*sqrt(det) =

37 b(t,u,v)*ContractIndices(nu &t dz,[[1,2]]);

eq4 := diff(b(t,u,v),t) =

39 (A*TrLgGCftCft - TrL/2*(Gftft+A*TrgGCftCft))*sqrt(det);

Figure 6. Maple source code to set up the geodesic equation.

differentiation algorithms. Explicit methods are probably much better adapted to
the problem. The implementation of an explicit solver is ongoing common work of
the authors with Martins Bruveris and Colin Cotter.

In the examples that follow, f at time zero is a square [0, π] × [0, π] flatly em-
bedded in R3. This is a manifold with boundary, but it can be seen as a part of
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a bigger closed manifold. Zero boundary conditions are used for both f and a.
It remains to specify an initial condition for a. As a first example, let us assume
that a at time zero equals sin(x) sin(y), where x, y are the Euclidean coordinates
on the square. The resulting geodesic is depicted in figure 1. In the absence of a
closed-form solution of the geodesic equation, one way to check if the solution is
correct is to see if the energy GP (ft, ft) is conserved. Figure 2 shows this for the
geodesic from figure 1 with various space and time discretizations.

A more complicated example of a geodesic is shown in figure 3 and 4. There, the
initial velocity was chosen to be a smoothened version of a black and white picture
of the letter A. The initial momentum was computed from it using a discrete Fourier
transform.

Finally, it is shown in figure 5 that self-intersections of the surface can occur.
This is not due to a numerical error but part of the theory, and can be an advantage
or a disadvantage depending on the application.

References
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