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1. Introduction

Let S(n) denote the space of symmetric n× n matrices with entries in R and O(n)
the orthogonal group. Consider the action:

` : O(n)× S(n) −→ S(n)

(A,B) 7→ ABA−1 = ABA t

If Σ is the space of all real diagonal matrices and Sn the symmetric group on n
letters, then we have the following

1.1. Theorem.

(1) Σ meets every O(n)-orbit.
(2) If B ∈ Σ , then `(O(n), B) ∩ Σ, the intersection of the O(n)-orbit through

B with Σ, equals the Sn-orbit through B, where Sn acts on B ∈ Σ by
permuting the eigenvalues.

(3) Σ intersects each orbit orthogonally in terms of the inner product 〈A,B〉 =
tr(AB t) = tr(AB) on S(n).

(4) R [S(n)]
O(n)

, the space of all O(n)-invariant polynomials in S(n) is isomor-

phic to R [Σ]
Sn , the symmetric polynomials in Σ (by restriction).

(5) The space C∞ (S(n))
O(n)

of O(n)-invariant C∞-functions is isomorphic to

C∞ (Σ)
Sn , the space of all symmetric C∞-functions in Σ (again by restric-

tion), and these again are isomorphic to the C∞-functions in the elementary
symmetric polynomials.

(6) The space of all O(n)-invariant horizontal p-forms on S(n), that is the space
of all O(n)-invariant p-forms ω with the property iXω = 0 for all X ∈
TA(O(n).A), is isomorphic to the space of Sn-invariant p-forms on Σ:

Ω p
hor(S(n))O(n) ∼= Ωp(Σ)Sn

Proof. (1). Clear from linear algebra.

(2) The transformation of a symmetric matrix into normal form is unique except
for the order in which the eigenvalues appear.
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2 1. Introduction

(3) Take an A in Σ. For any X ∈ o(n), that is for any skew-symmetric X, let ζX
denote the corresponding fundamental vector field on S(n). Then we have

ζX(A) =
d

dt

∣∣∣∣
t=0

expe(tX)A expe(tX
t) =

= XAid+ idAX t = XA−AX.

Now the inner product with η ∈ TAΣ ∼= Σ computes to

〈ζX(A), η〉 = tr(ζX(A)η) = tr((XA−AX)η) =

= tr(XAη︸ ︷︷ ︸
=XηA

)− tr(AXη) = tr(XηA)− tr(XηA) = 0.

(4) If p ∈ R [S(n)]
O(n)

then clearly p̃ := p|Σ ∈ R [Σ]
Sn . To construct p from p̃ we

use the result from algebra, that R [Rn]
Sn is just the ring of all polynomials in the

elementary symmetric functions. So if we use the isomorphism:

A :=




a1 0 . . . 0
0 a2 . . .
...

...
. . .

0 0 . . . an


 7→ (a1, a2, . . . , an) =: a

to replace Rn by Σ, we find that each symmetric polynomial p̃ on Σ is of the form

p̃(A) = p̄(σ1(A), σ2(A), . . . , σn(A)),

it can be expressed as a polynimial p̄ in the elementary symmetric functions

σ1 = −x1 − x2 − · · · − xn

σ2 = x1x2 + x1x3 + . . .

. . .

σk = (−1)k
∑

j1<···<jk

xj1 . . . xjk

. . .

σn = (−1)nX1 . . . xn.

Let us consider the characteristic polynomial of the diagonal matrix X with eigen-
values x1, . . . , xn:

n∏

i=1

(t− xi) = tn + σ1.t
n−1 + · · ·+ σn−1.t+ σn

= det(t.Id−X)

=

n∑

i=0

(−1)n−iticn−i(X), where

ck(Y ) = tr(ΛkY : ΛkRn → ΛkRn)
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1. Introduction 3

is the k-th characteristic coefficient of a matrix A. So the σi extend to O(n)-
invariant polynomials ci on S(n). So we can now extend p̃ to a polynomial on S(n)
by

p̃(H) := p̄(c1(H), c2(H), . . . , cn(H)) for all H ∈ S(n),

and p̃ is an O(n)-invariant polynomial on S(n), and unique as such due to (1).

(5) Again we have that f ∈ C∞ (S(n))
O(n)

implies f̃ := f |Σ ∈ C∞ (Σ)
Sn . Finding

an inverse map f̃ 7→ f as above is possible due to the following theorem by Gerald
Schwarz (see chapter 3) :

Let G be a compact Lie group with a finite-dimensional representationG −→ GL(V ),

and ρ1, ρ2, . . . , ρk generators for the algebra R [V ]
G

of G-invariant polynomials on
V (this space is finitely generated as an algebra due to Hilbert, see chapter 2).

Then, for any smooth function h ∈ C∞ (V )
G

, there is a function h̄ ∈ C∞
(
Rk
)

such

that h(v) = h̄(ρ1(v), . . . , ρk(v)).

Now we can prove the assertion as in (4) above. Again we take the symmetric poly-

nomials σ1, . . . , σn as generators of R [Σ]
Sn . By Schwarz’ theorem f̃ ∈ C∞ (Σ)

Sn

can be written as a smooth function in σ1, . . . , σn. So we have an f̄ ∈ C∞ (Rn)
such that

f̃(A) = f̄(σ1(A), . . . σn(A)) for all A ∈ Σ

If we extend the σi onto S(n) as in (4), we can define

f(H) := f̄(c1(H), c2(H), . . . , cn(H)) for H ∈ S(n).

f is again a smooth function and the unique O(n)-invariant extension of f̃ .

(6) Consider σ = (σ1, . . . , σn) : Σ → Rn and put J(x) := det(dσ(x)). For each
α ∈ Sn we have

J.dx1 ∧ · · · ∧ dxn = dσ1 ∧ · · · ∧ dσn
= α∗dσ1 ∧ · · · ∧ dσn
= (J ◦ α).α∗dx1 ∧ · · · ∧ dxn

= (J ◦ α).det(α).dx1 ∧ · · · ∧ dxn

J ◦ α = det(α−1).J(7)

From this we see firstly that J is a homogeneous polynomial of degree

0 + 1 + · · ·+ (n− 1) = n(n−1)
2 =

(
n

2

)
.

The mapping σ is a local diffeomorphism on the open set U = Σ \ J−1(0), thus
dσ1, . . . , dσn is a coframe on U , i.e. a basis of the cotangent bundle everywhere on
U . Let (ij) be the transpositions in Sn, let H(ij) := {x ∈ Σ : xi − xj = 0} be
the reflection hyperplanes of the (ij). If x ∈ H(ij) then by (7) we have J(x) =
J((ij)x) = −J(x), so J(X) = 0. Thus J |H(ij) = 0, so the polynomial J is divisible

by the linear form xi − xj , for each i < j. By comparing degrees we see that

(8) J(x) = c.
∏

i<j

(xi − xj), where 0 6= c ∈ R.
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4 1. Introduction

By the same argument we see that:

(9) If g ∈ C∞(Σ) satisfies g ◦ α = det(α−1).g for all α ∈ Sn, then g = J.h for
h ∈ C∞(Σ)Sn .

(10) Claim (10): Let ω ∈ Ωp(Σ)Sn . Then we have

ω =
∑

j1<j2<···<jp

ωj1,...,jp dσj1 ∧ · · · ∧ dσjp

on Σ, for ωj1,...,jp ∈ C∞(Σ)Sn .

To prove claim (10) recall that dσ1, . . . , dσn is an Sn-invariant coframe on the
Sn-invariant open set U . Thus

ω|U =
∑

j1<j2<···<jp

gj1,...,jp︸ ︷︷ ︸
∈C∞(U)

dσj1 ∧ · · · ∧ dσjp

=
∑

j1<j2<···<jp

(
1
n

∑

α∈Sn

α∗gj1,...,jp

)

︸ ︷︷ ︸
hj1,...,jp∈C

∞(U)Sn

dσj1 ∧ · · · ∧ dσjp(11.)

Now choose I = {i1 < · · · < ip} ⊆ {1, . . . , n} and let Ī = {1, . . . , n} \ I = {ip+1 <
· · · < in}. Then we have for a sign ε = ±1

ω|U ∧ dσip+1
∧ · · · ∧ dσin︸ ︷︷ ︸
dσĪ

= ε.hI .dσ1 ∧ · · · ∧ dσn

= ε.hI .J.dx
1 ∧ · · · ∧ dxn.

On the whole of Σ we have

ω ∧ dσĪ = ε.kI .dx
1 ∧ · · · ∧ dxn

for suitable kI ∈ C∞(Σ). By comparing the two expression on U we see from (7)
that kI ◦α = det(α−1).kI since U is dense in Σ. So from (9) we may conclude that
kI = J.ωI for ωI ∈ C∞(Σ)Sn , but then hI = ωI |U and ω =

∑
I ωI dσ

I as asserted
in claim (10).

Now we may finish the proof. By the theorem of G. Schwartz there exist fI ∈
C∞(Rn) with ωI = fI(σ1, . . . , σn). Recall now the characteristic coefficients ci ∈
R[S(n)] from the proof of (4) which satisfy ci|Σ = σi. If we put now

ω̃ :=
∑

i1<···<ip

fi1,...,ip(c1, . . . , cn) dci1 ∧ · · · ∧ dcip ∈ Ωphor(S(n))O(n)

then the pullback of ω̃ to Σ equals ω. ¤
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2. Polynomial Invariant Theory

2.1. Theorem of Hilbert and Nagata. Let G be a Lie group with a finite-
dimensional representation G −→ GL(V ) and let one of the following conditions be
fulfilled:

(1) G is semisimple and has only a finite number of connected components
(2) V and 〈G.f〉

R
are completely reducible for all f ∈ R [V ] (see Nagata’s

lemma)

Then R [V ]
G

is finitely generated as an algebra, or equivalently, there is a finite set

of polynomials ρ1, . . . , ρk ∈ R [V ]
G

, such that the map ρ := (ρ1, . . . , ρk) : V −→ Rk

induces a surjection

R
[
Rk
]

��
ρ∗

R [V ]
G
.

Remark. The first condition is stronger than the second since for a connected,
semisimple Lie group, or for one with a finite number of connected components,
every finite dimensional representation is completely reducible. To prove the the-
orem we will only need to know complete reducibility for the finite dimensional
representations V and 〈G.f〉

R
though (as stated in (2)).

2.2. Lemma. Let A = ⊕i≥0Ai be a connected graded R-algebra (that is A0 = R).
If A+ := ⊕i>0Ai is finitely generated as an A-module, then A is finitely generated
as an R-algebra.

Proof. Let a1, . . . , an ∈ A+ be generators of A+ as an A-module. Since they can
be chosen homogeneous, we assume ai ∈ Adi

for positive integers di.
Claim: The ai generate A as an R-algebra: A = R[a1, . . . , an]

We will show by induction that Ai ⊆ R [a1, . . . , an] for all i. For i = 0 the assertion
is clearly true, since A0 = R. Now suppose Ai ⊆ R [a1, . . . , an] for all i < N . Then
we have to show that

AN ⊆ R [a1, . . . , an]

as well. Take any a ∈ AN . Then a can be expressed as

a =
∑

i,j

cijai cij ∈ Aj
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6 2. Polynomial invariant theory

Since a is homogeneous of degree N we can discard all cijai with total degree

j + di 6= N from the righthand side of the equation. If we set ciN−di
=: ci we get

a =
∑

i

ciai

In this equation all terms are homogeneous of degreeN . In particular, any occurring
ai have degree di ≤ N . Consider first the ai of degree di = N . The corresponding ci

then automatically lie in A0 = R, so ciai ∈ R [a1, . . . , an]. To handle the remaining
ai we use the induction hypothesis. Since ai and ci are of degree < N , they are
both contained in R [a1, . . . , an]. Therefore, ciai lies in R [a1, . . . , an] as well. So
a =

∑
ciai ∈ R [a1, . . . , an], which completes the proof. ¤

Remark. If we apply this lemma for A = R [V ]
G

we see that to prove 2.1 we

only have to show that R [V ]
G
+, the algebra of all invariant polynomials of strictly

positive degree, is finitely generated as a module over R [V ]
G

. The first step in this
direction will be to prove the weaker statement:

B := R [V ].R [V ]
G
+ is finitely generated as an ideal.

It is a consequence of a well known theorem by Hilbert:

2.3. Theorem. (Hilbert’s ideal basis theorem) If A is a commutative Noetherian
ring, then the polynomial ring A [x] is Noetherian as well.

A ring is Noetherian if every strictly ascending sequence of left ideals I0 ⊂ I1 ⊂
I2 ⊂ . . . is finite, or equivalently, if every left ideal is finitely generated. If we choose
A = R, the theorem states that R [x] is again Noetherian. Now consider A = R [x],
then R [x] [y] = R [x, y] is Noetherian, and so on. By induction, we see that R [V ] is
Noetherian. Therefore, any left ideal in R [V ], in particular B, is finitely generated.

Proof of 2.3. Take any ideal I ⊆ A [x] and denote by Ai the set of leading
coefficients of all i-th degree polynomials in I. Then Ai is an ideal in A, and we
have a sequence of ideals

A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ A.

Since A is Noetherian, this sequence stabilizes after a certain index r, i.e. Ar =
Ar+1 = · · · . Let {ai1, . . . , aini

} be a set of generators for Ai (i = 1, . . . , r), and pij
a polynomial of degree i in I with leading coefficient aij .
Claim: These polynomials generate I.

Let P = 〈pij〉A[x] ⊆ A [x] be the ideal generated by the pij . P clearly contains all
constants in I (A0 ⊆ I). Let us show by induction that it contains all polynomials
in I of degree d > 0 as well. Take any polynomial p of degree d. We distinguish
between two cases.
(1) Suppose d ≤ r. Then we can find coefficients c1, . . . , cnd

∈ A such that

p̃ := p− c1pd1 − c2pd2 − . . .− cnd
pdnd
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2. Polynomial invariant theory 7

has degree < d.
(2) Suppose d > r. Then the leading coefficients of xd−rpr1, . . . , x

d−rprnr
∈ I

generate Ad. So we can find coefficients c1, . . . , cnr
∈ A such that

p̃ := p− c1xd−rpr1 − c2xd−rpr2 − . . .− cnr
xd−rprnr

has degree < d.

In both cases we have p ∈ p̃ + P and deg p̃ < d. Therefore by the induction
hypothesis p̃, and with it p, lies in P. ¤

To prove theorem 2.1 it remains only to show the following

2.4. Lemma. Let G be a Lie group acting on V such that the same conditions as

in Hilbert and Nagata’s theorem are satisfied. Then for f1, . . . , fk ∈ R [V ]
G

:

R [V ]
G ∩ 〈f1, . . . , fk〉R[V ] = 〈f1, . . . , fk〉R[V ]G

where the brackets denote the generated ideal (module) in the specified space.

2.5. Remark. In our case, if we take fi = ρi ∈ R [V ]
G
+ to be the finite system of

generators of B as an ideal in R [V ], we get:

R [V ]
G
+ = R [V ]

G ∩B = 〈ρ1, . . . , ρk〉R[V ]G

That is, the ρi generate R [V ]
G
+ as a R [V ]

G
-module. With lemma 2.2, Hilbert and

Nagata’s theorem follows immediately.

2.6. Remark. The inclusion (⊇) in lemma 2.4 is trivial. If G is compact, then
the opposite inclusion

R [V ]
G ∩ 〈f1, . . . , fk〉R[V ] ⊆ 〈f1, . . . , fk〉R[V ]G

is easily seen as well. Take any f ∈ R [V ]
G∩〈f1, . . . , fk〉R[V ] . Then f can be written

as

f =
∑

pifi pi ∈ R [V ].

Since G is compact, we can integrate both sides over G using the Haar measure dg
to get

f(x) =

∫

G

f(g.x)dg =
∑

i

∫

G

pi(g.x)fi(g.x)dg =
∑

i

(

∫

G

pi(g.x)dg)

︸ ︷︷ ︸
=:p∗i (x)

fi(x).

The p∗i are G-invariant polynomials, therefore f is in 〈f1, . . . , fk〉R[V ]G .

To show the lemma in its general form we will need to find a replacement for the
integral. This is done in the central
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8 2. Polynomial invariant theory

2.7. Lemma [26]. Under the same conditions as theorem 2.1, to any f ∈ R [V ]

there is an f∗ ∈ R [V ]
G ∩ 〈G.f〉

R
such that

f − f∗ ∈ 〈Gf −Gf〉
R
.

Proof. Take f ∈ R [V ]. Clearly, f is contained in Mf := 〈G.f〉
R

, where f∗ is
supposed to lie as well. Mf is a finite dimensional subspace of R [V ] since it is
contained in

Mf ⊆
⊕

i≤deg f

R [V ]i.

In addition we have that

〈G.f −G.f〉
R

=: Nf ⊆Mf

is an invariant subspace. So we can restrict all our considerations to the finite
dimensional G-space Mf which is completely reducible by our assumption.

If f ∈ Nf , then we can set f∗ = 0 and are done. Suppose f /∈ Nf . Then the f∗ we
are looking for must also lie in Mf \Nf . From the identity

g.f = f + (g.f − f)︸ ︷︷ ︸
∈Nf

for all g ∈ G

it follows that

Mf = Nf ⊕ R.f.

In particular, Nf has codimension 1 in Mf .

Since we require of f∗ to be G-invariant, R.f∗ will be a one dimensional G-invariant
subspace of Mf (not contained in Nf ). As we just saw, Nf has codimension 1 in
Mf , therefore R.f∗ will be a complementary subspace to Nf .

If we now write Mf as the direct sum

Mf = Nf ⊕ P,

where P is the invariant subspace complementary to Nf guaranteed by the complete
irreducibility of Mf , then P is a good place to look for f∗.

Now P ∼= Mf/Nf as a G-module, so let us take a look at the action of G on
Mf/Nf . Every element of Mf/Nf has a representative in R.f , so we need only
consider elements of the form λf +Nf (λ ∈ R). For arbitrary g ∈ G we have:

g.(λf +Nf ) = λg.f +Nf = λf + (λg.f − λf)︸ ︷︷ ︸
∈Nf

+Nf = λf +Nf .

So G acts trivially on Mf/Nf and therefore on P . This is good news, since now
every f ′ ∈ P is G-invariant and we only have to project f onto P (along Nf ) to

get the desired f∗ ∈ R [V ]
G ∩Mf . ¤
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2. Polynomial invariant theory 9

Proof of lemma 2.4. Recall that for arbitrary f1, . . . , fn we have to show

R [V ]
G ∩ 〈f1, . . . , fn〉R[V ] ⊆ 〈f1, . . . , fn〉R[V ]G .

We will do so by induction on n. For n = 0 the assertion is trivial.

Suppose the lemma is valid for n = r − 1. Consider f1, . . . , fr ∈ R [V ]
G

and

f ∈ R [V ]
G ∩ 〈f1, . . . , fr〉R[V ] . Then

f =

r∑

i=1

pifi pi ∈ R [V ].

By Nagata’s lemma 2.7, we can approximate pi up to 〈G.pi −G.pi〉R by a p∗i ∈
R [V ]

G
. So for some finite subset F ⊂ G×G we have

pi = p∗i +
∑

s,t∈F

λis,t(s.pi − t.pi) λis,t ∈ R.

Therefore we have

f −
r∑

i=1

p∗i fi =
r∑

i=1

∑

s,t∈F

λis,t(s.pi − t.pi)fi ∈ R [V ]
G
.

It remains to show that the righthand side of this equation lies in 〈f1, . . . , fr〉R[V ]G .

Notice that by the G-invariance of f :

r∑

i=1

(spi − tpi)fi = 0.

For all s, t ∈ G. Therefore

r−1∑

i=1

(s.pi − t.pi)fi = (t.pr − s.pr)fr.

Now we can use the induction hypothesis on

r∑

i=1

∑

s,t∈F

λis,t(s.pi − t.pi)fi =

=

r−1∑

i=1

∑

s,t∈F

(λis,t − λrs,t)(s.pi − t.pi)fi ∈ R [V ]
G ∩ 〈f1, . . . , fr−1〉R[V ]

to complete the proof. ¤

2.8. Remark. With lemma 2.4, Hilbert and Nagata’s theorem is proved as well.
So in the setting of 2.1 we now have an exact sequence

0 −→ ker ρ∗ −→ R
[
Rk
] ρ∗−→ R [V ]

G −→ 0

where ker ρ∗ = {R ∈ R
[
Rk
]

: R(ρ1, . . . , ρk) = 0} is just the finitely generated ideal
consisting of all relations between the ρi.

Since the action of G respects the grading of R [V ] = ⊕kR [V ]k it induces an action
on the space of all power series, R [[V ]] = Π∞

k=1R [V ]k, and we have the following
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10 2. Polynomial invariant theory

2.9. Theorem. Let G −→ GL(V ) be a representation and ρ1, . . . , ρk a system

of generators for the algebra R [V ]
G

. Then the map ρ := (ρ1, . . . , ρk) : V −→ Rk

induces a surjection

R
[[

Rk
]] ρ∗−→ R [[V ]]

G
.

Proof. Write the formal power series f ∈ R [[V ]]
G

as the sum of its homogeneous
parts.

f(x) = f0 + f1(x) + f2(x) + . . .

Then to each fi(x) ∈ R [V ]
G
i there is a gi(y) ∈ R

[
Rk
]

such that

fi(x) = gi(ρ1(x), . . . , ρk(x)).

Before we can set
g(y) = g0 + g1(y) + g2(y) + . . .

to finish the proof, we have to check whether this expression is finite in each degree.
This is the case, since the lowest degree λi that can appear in gi goes to infinity
with i:

Write explicitly gi =
∑

|α |≤iAi,αy
α and take an Ai,α 6= 0. Then deg fi = i =

α1d1 + . . . αkdk where di = deg ρi and

λi = inf{|α | : i =
∑

αjdj} → ∞ (i→∞) ¤

The following corollary is an immediate consequence.

2.10. Corollary. If G is a Lie group with a finite dimensional representation
G −→ GL(V ), then under the same conditions as Hilbert and Nagata’s theorem

there is a finite set of polynomials ρ1, . . . , ρk ∈ R [V ]
G

such that the map ρ :=
(ρ1, . . . , ρk) : V −→ Rk induces a surjection

R[[Rk]]
ρ∗−→ R[[V ]]G. ¤
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11

3. C∞-Invariant Theory of Compact Lie Groups

If G is a Lie group acting smoothly on a manifold M , then the orbit space M/G
is not generally again a smooth manifold. Yet, it still has a functional structure
induced by the smooth structure on M simply by calling a function f : M/G −→ R

smooth iff f ◦ π : M −→ R is smooth (where π : M −→ M/G is the quotient map).
That is, the functional structure on M/G is determined completely by the smooth
G-invariant functions on M . For compact Lie groups, the space of all G-invariant
C∞-functions on Rn is characterized in the theorem of Gerald Schwarz (1975),
which we already used in 1.1(4). In this chapter we will present the proof as found
in [34], Chap. IV. In the following, let G always denote a compact Lie group,
` : G −→ GL(V ) a representation on V = Rn. Let ρ1, . . . , ρk ∈ R[V ]G denote a
finite system of generators for the algebra R[V ]G, and let ρ denote the polynomial
mapping:

ρ := (ρ1, . . . , ρk) : V −→ Rk.

3.1. Definition. A mapping between two topological spaces f : X −→ Y is called
proper, if K ⊆ Y compact implies f−1(K) ⊆ X is compact.

3.2. Lemma. Let G be a compact Lie group. Then we have

(1) ρ is proper.
(2) ρ separates the orbits of G.
(3) There is a map ρ′ : V/G −→ Rk such that the following diagram commutes,

V �
ρ

��
π

Rk

V/G

�
�
� ���

ρ′

and ρ′ is a homeomorphism onto its image.

Proof.

(1) Let r(x) = |x |2 = 〈x, x〉, where 〈 . , . 〉 is an invariant inner product on V .

Then r ∈ R [V ]
G

. By Hilbert’s theorem there is a polynomial p ∈ R
[
Rk
]

such that r(x) = p(ρ(x)). If (xn) ∈ V is an unbounded sequence, then
r(xn) is unbounded. Therefore p(ρ(xn)) is unbounded, and, since p is a
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12 3. Invariant theory of compact Lie groups

polynomial, ρ(xn) is also unbounded. With this insight we can conclude
that any compact and hence bounded set in Rk must have a bounded inverse
image. By continuity of ρ, it must be closed as well. So the inverse image
of a compact set under ρ is again compact, that is, ρ is proper.

(2) Choose two different orbits G.x 6= G.y (x, y ∈ V ) and consider the map:

f : G.x ∪G.y −→ R f(v) :=

{
0 for v ∈ G.x
1 for v ∈ G.y

Both orbits are closed, so f is continuous. Furthermore, both orbits and
with them their union are compact, since G is compact. Therefore, by the
Weierstrass approximation theorem, there is a polynomial p ∈ R[V ] such
that

‖ p− f ‖G.x∪G.y = sup{| p(z)− f(z) | : z ∈ G.x ∪G.y} < 1

10

Now we can average p over the group using the Haar measure dg on G to
get a G-invariant function.

q(v) :=

∫

G

p(g.v)dg

Note that since the action of G is linear, q is again a polynomial. Now let
us check that q approximates f equally well. For v ∈ G.x ∪G.y, we have

∣∣∣∣
∫

G

f(g.v)dg

︸ ︷︷ ︸
=f(v)

−
∫

G

p(g.v)dg

∣∣∣∣ ≤
∫

G

| f(g.v)− p(g.v) |dg ≤ 1

10

∫

G

dg

︸ ︷︷ ︸
=1

Recalling how f was defined, we get

| q(v) | ≤ 1

10
for v ∈ G.x

| 1− q(v) | ≤ 1

10
for v ∈ G.y.

Therefore q(G.x) 6= q(G.y), and since q can be expressed in the Hilbert
generators, we can conclude that ρ(G.x) 6= ρ(G.y).

(3) Clearly, ρ′ is well defined. By (2) ρ′ is injective and, with the quotient topol-
ogy on V/G, continuous. So on every compact subset of V/G we know that
ρ′ is a homeomorphism onto its image. Now take any diverging sequence in
V/G. It is the image under π of some equally diverging sequence in V . If
this sequence has an unbounded subsequence, then by (1), its image under
ρ is unbounded as well, in particular divergent. If the diverging sequence
in V (therefore its image under π, our starting sequence) is bounded, then
it is contained in a compact subset of V , our starting sequence is contained
in a compact subset of V/G, and here ρ′ is a homeomorphism. Thereby, its
image under ρ′ is divergent as well. So we have shown that a sequence in
V/G is convergent iff its image under ρ′ in Rk is convergent and, with that,
that ρ′ is a homeomorphism onto its image. ¤
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3. Invariant theory of compact Lie groups 13

3.3. Remark.

(1) If f : V −→ R is in C0(V )G, then f factors over π to a continuous map

f̃ : V/G −→ R. By 3.2(3) there is a continuous map f̄ : ρ(V ) −→ R given by

f̄ = f̃ ◦ ρ′−1
. It has the property f = f̄ ◦ ρ. Since ρ(V ) is closed, f̄ extends

to a continuous function f̄ ∈ C0(Rk) (Tietze-Urysohn). So for continuous
functions we have the assertion that

ρ∗ : C0(Rk) −→ C0(V )G is surjective.

(2) ρ(V ) is a real semi algebraic variety, that is it is described by a finite number
of polynomial equations and inequalities. In the complex case, the image of
an algebraic variety under a polynomial map is again an algebraic variety,
meaning it is described by polynomial equations only. In the real case this
is already disproved by the simple polynomial map: x 7→ x2.

3.4. Before we turn to Schwarz’ theorem, let us state here the extension theorem
of Whitney as found in [46], pp. 68–78. For K ⊆ Rn compact and m ∈ N, assign
to each multi-index k = (k1, . . . , kn) ∈ Nn0 with | k | = | k1 | + · · · + | kn | ≤ m a
continuous function F k on K. Then the family of functions (F k)| k |≤m is called an
m-jet on K. The space of all m-jets on K endowed with the norm

|F |Km := sup
x∈K,| k |≤m

∣∣F k(x)
∣∣

shall be denoted by Jm(K). There is a natural map

Jm : Cm(Rn) −→ Jm(K) : f 7→ (
∂| k |f

∂xk

∣∣∣∣
K

)| k |≤m.

By Whitney’s first extension theorem its image is the subspace of all Whitney jets
defined as follows. For each a ∈ K there is a map Tma : Jm(K) −→ R [Rn] given (in
multi-index notation) by

Tma F (x) =
∑

| k |≤m

(x− a)k

k!
F k(a)

which assigns to each m-jet its would-be Taylor polynomial of degree m. With it
we can define as the remainder term (an m-jet again):

Rma F := F − Jm(Tma F ).

If F is the set of partial derivatives restricted to K of some Cm-function then in
particular

(W) (Rma F )k(y) = o(| a− y |m−| k |
) for a, y ∈ K, | k | ≤ m and | a− y | → 0

holds by Taylor’s theorem. We will call (W) the Whitney condition, and any m-jet
on K which satisfies (W) Whitney jet of order m on K. The space of all Whitney
jets again forms a vector space and we endow it with the norm:

‖F ‖Km = |F |Km + sup{
∣∣ (Rmx F )k(y)

∣∣

|x− y |m−| k |
: x, y ∈ K, x 6= y, | k | ≤ m}

The space of all Whitney jets with the above norm is a Banach space and will be
denoted by Em(K).

Draft from March 21, 2005 Peter W. Michor,



14 3. Invariant theory of compact Lie groups

Whitney’s Extension Theorem for Em(K). For K ⊂ Rn compact, there is a
continuous linear map

W : Em(K) −→ Cm(Rn)

such that for all Whitney jets F ∈ Em(K) and for all x ∈ K
DkW (F )(x) = F k(x) | k | ≤ m

holds and the restriction of W (F ) on Rn \K is smooth.

If we define J∞(K) (resp. E∞(K)) as the projective limit of the spaces Jm(K)
(Em(K)) we can extend the above theorem to the following

Whitney’s Extension Theorem for E∞(K). For K ⊂ Rn compact, there is a
linear map

W∞ : E∞(K) −→ C∞ (Rn)

such that for all Whitney jets F ∈ E∞(K) and for all x ∈ K
DkW∞(F )(x) = F k(x) for all k ∈ Nn0

holds.

3.5. Remark. In general, the norm ‖ . ‖Km generates a finer topology on Em(K)

than | . |Km, yet there is a case when we can show that they are equal. If K is
connected with respect to rectifiable curves and the Euclidean distance on K is
equivalent to the geodesic distance (such a K is called 1-regular), then the two
norms coincide. This is shown roughly as follows.
By definition

|F |Km ≤ ‖F ‖
K
m = |F |Km + sup{

∣∣ (Rmx F )k(y)
∣∣

|x− y |m−| k |
}.

So if we approximate sup{ | (R
m
x F )k(y) |

| x−y |m−| k | } by C.|F |Km, then we are done. For a fixed

x ∈ K let us denote
g := Dk(W (F )− Tmx F ).

Then g is in Cm−| k |(Rn) and flat of order m − | k | − 1 at x. On K, g coincides
with (Rmx F )k. Now, by a somewhat generalized mean value theorem, we have for
any rectifiable curve σ connecting x with y:

| g(y)− g(x) | ≤ √n|σ | sup{
∣∣Djg(ξ)

∣∣ : ξ ∈ σ, | j | = 1}
Since Dkg(x) = 0 for all | k | < m− | k | we can iterate this inequality m− | k | − 1
times, to get

| g(y) | ≤ nm−| k |
2 |σ |m−| k |

sup{
∣∣Djg(ξ)

∣∣ : ξ ∈ σ, | j | = m− | k |}
Furthermore, we can replace |σ | by the geodesic distance δ(x, y), which is the
infimum over all |σ |, σ as chosen above. Now, if we choose x, y in K and substitute
back for g, then the above inequality implies:
∣∣ (Rmx F )k(y)

∣∣ ≤

≤ nm−| k |
2 δ(x, y)m−| k | sup{

∣∣F j(ξ)− F j(x)
∣∣ : ξ ∈ K, | j | = m} ≤

≤ 2n
m−| k |

2 δ(x, y)m−| k ||F |Km
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3. Invariant theory of compact Lie groups 15

Since δ(x, y) ≤ c|x− y | for all x, y ∈ K, this gives us an approximation

sup{
∣∣ (Rmx F )k(y)

∣∣

|x− y |m−| k |
} ≤ C|F |Km

which completes our proof.

So, for a 1-regular K, we have that for every m ∈ N, Em(K) carries the “usual”
topology of uniform convergence in each “derivative”. In this case the assertion
that the operator W of the first Whitney extension theorem is continuous implies
that a sequence of functions in W (Em(K)) ⊆ Cm(Rk) which converges uniformly
in all derivatives on K does so on every other compact set as well.

If the | . |Km-topology coincides with the usual topology on Em(K) for all m as in
the above case, then the topology on the projective limit

Ẽ∞(K) := proj
m→∞

(Em(K), | . |Km)

coincides with the usual topology on E∞(K) as well. So the topology on E∞(K) is

generated by the family of seminorms {| . |Km : m ∈ N0}. Although there is a natural
inclusion i : E∞(K) ↪→ Em(K), the restriction i∗W of W : Em(K) −→ Cm(Rn) does
not coincide with W∞. If it did, then W∞ would have to be continuous as well,
which is generally not the case.

There is one more result we will need. It is a direct consequence of Whitney’s
extension theorem if we take K = {x} (then E∞(K) ∼= R∞), but was discovered
and proved independently and much earlier (1898) by Emile Borel.

Theorem of E. Borel. To any formal power series p ∈ R [[Rn]] and x ∈ Rn there
is a smooth function f ∈ C∞ (Rn) with formal Taylor development p at x. ¤

Here we can see directly that the extension operator W∞ is not continuous, because
if it were, it would give an embedding of R∞ into C∞ (K) (where K ⊂ Rn is any
compact set containing x). But this is impossible, since R∞ has no continuous
norm.

3.6. Theorem. Multidimensional Faa di Bruno formula. Let f ∈ C∞(Rk),
let g = (g1, . . . , gk) ∈ C∞(Rn,Rk). Then for a multiindex γ ∈ Nn the partial
derivative ∂γ(f ◦ g)(x) of the composition is given by the following formula, where
we use multiindex-notation heavily.

∂γ(f ◦ g)(x) =

=
∑

β∈Nk

(∂βf)(g(x))
∑

λ=(λiα)∈N
k×(N

n\0)
P

α λiα=βi
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα ∏

i,α>0

(∂αgi(x))λiα

=
∑

λ=(λiα)∈N
k×(N

n\0)
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα (
∂

P

α λαf
)

(g(x))
∏

i,α>0

(∂αgi(x))λiα
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16 3. Invariant theory of compact Lie groups

Proof. The proof of this goes roughly as follows. The infinite Taylor development
of the composition is the composition of the Taylor developments,

j∞(f ◦ g)(x) = j∞f(g(x)) ◦ jg(x),

j∞f(y)(z) =
∑

β∈Rk

1

β!
∂βf(y)zβ

=
∑

β∈Rk

1

β1! . . . βk!
∂βf(y)zβ1

1 . . . zβk

k

So we write down the Taylor series and compose them, using multinomial theorems,
and compute then one of the coefficients. The formula above comes up. ¤

3.7. Theorem of Schwarz. ( [38])
Let G be a compact Lie group, ` : G −→ O(V ) a finite-dimensional representation,

and ρ1, ρ2, . . . , ρk generators for the algebra R [V ]
G

of G-invariant polynomials on
V (this space is finitely generated as an algebra due to Hilbert; see chapter 2). If
ρ := (ρ1, . . . , ρk) : V −→ Rk, then

ρ∗ : C∞
(
Rk
)
−→ C∞ (V )

G
is surjective.

The actual proof of Gerald Schwarz’ theorem will take us the rest of this section.
But let us just begin now with some remarks and make some simplifications.

(1) For the action of G = {±1} on R1 the result is due to Whitney [47].
(2) If G = Sn acting on Rn by the standard representation it was shown by

G.Glaeser [15]

(3) It is easy to see that ρ∗C∞
(
Rk
)

is dense in C∞ (V )
G

in the compact
C∞-topology. Therefore, Schwarz’ theorem is equivalent to the assertion:

ρ∗C∞
(
Rk
)

is closed in C∞ (V )
G

. If ρ1, . . . , ρk can be chosen algebraically
independent, then this follows from a theorem by Glaeser (see [15]).

(4) To start out with, notice that the Hilbert polynomials can be chosen homo-
geneous and of positive degree: Since the action of G is linear, the degree
of a polynomial p ∈ R [V ] is invariant under G. Therefore, if we split
each Hilbert polynomial up into its homogeneous parts, we get a new set
of Hilbert polynomials. Let us denote these by ρi and the corresponding
degrees by di > 0.

3.8. Corollary. Under the same conditions as 3.7:

ρ∗ : C∞
0 (Rk) −→ C∞

0 (V )G is surjective,

where C∞
0 denotes the space of all germs at 0 of C∞.

Proof. C∞ (V )
G [ ]0−−→ C∞

0 (V )G is surjective, since for any f ∈ C∞
0 (V )G there is

a representative f ′ ∈ C∞ (V ), and with it f ′′ :=
∫
G
`(g)∗f ′dg ∈ C∞ (V )

G
also

represents f . By Schwarz’ theorem, f ′′ = h ◦ ρ for some h ∈ C∞
(
Rk
)
. ¤
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3. Invariant theory of compact Lie groups 17

3.9. Corollary. Under the same conditions as 3.7, also for spaces of smooth
functions with compact supports we have:

ρ∗ : C∞
c (Rk) −→ C∞

c (V )G is surjective.

Proof. For f ∈ C∞
C (V )G by 3.7 there is an f̃ ∈ C∞

(
Rk
)

such that f = ρ∗f̃ = f̃ ◦ρ.

Since f = f̃ ◦ ρ has compact support it vanishes outside some large compact ball
B ⊂ V . Then ρ(B) is contained in some larger ball B1 ⊂ Rk. Take h ∈ C∞

c (Rk)

with h|B1 = 1. Then (h ◦ ρ)|B = 1 and thus (h.f̃) ◦ rh = f̃ ◦ ρ = f . ¤

3.10. Lemma. It suffices to prove theorem 3.7 for representations with zero as
the only fixed point.

Proof. Decompose V into the subspace of all fixed points and its orthogonal com-
plement:

V = Fix(G)︸ ︷︷ ︸
=:U

⊕Fix(G)⊥︸ ︷︷ ︸
=:W

Then W is an invariant subspace with only the one fixed point: 0. Let σ1, . . . , σn be

generators of R[W ]G such that σ∗ : C∞ (Rn) −→ C∞ (W )
G

is surjective. Consider
the following diagram, where ⊗̂ denotes projective tensor product. Note, that in
this case it coincides with the injective tensor product, since C∞(V ) is a nuclear
Fréchet space. From this it follows that the horizontal maps on the bottom and on
the top are homeomorphisms.

C∞(U)⊗̂C∞(Rn)

�
C∞(U)⊗̂σ∗

�
∼= C∞(U × Rn)

�

C∞(U)⊗̂C∞(W )G �� C∞ (U ×W )
G

C∞(U)⊗̂C∞(W )

�

C∞(U)⊗̂
∫
G
`(g)∗dg

�
∼= C∞(U ×W )

�

∫
G

ˇ̀(g)∗dg

Starting from the bottom, notice that C∞(U)⊗̂
∫
G
`(g)∗dg and

∫
G

ˇ̀(g)∗dg are sur-
jective. Therefore, the horizontal map in the center is surjective. By our assump-
tion, C∞(U)⊗̂σ∗ is also surjective, so we can conclude that the map on the top
right is surjective as well. But this map is just ρ∗ for ρ := (idU , σ), and we are
done. ¤

3.11. We shall use the following notation: For a manifold M and a closed subman-
ifold K ⊆M let

C∞(M ;K) := {f ∈ C∞(M) : f is flat along K}.
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18 3. Invariant theory of compact Lie groups

Lemma. For the proof of theorem 3.7 it suffices to show that

C∞(V ; 0)G
ρ∗←− C∞(Rk; 0) is surjective.

Proof. Consider the following diagram:

0 −−−−→ C∞ (Rn; 0)
G i−−−−→ C∞ (Rn)

G t−−−−→ R [[V ]]
G −−−−→ 0

ρ∗
x ρ∗

x ρ∗
x

0 −−−−→ C∞
(
Rk; 0

)
−−−−→ C∞

(
Rk
) T−−−−→ R

[[
Rk
]]
−−−−→ 0

The right ρ∗ is surjective by corollary 2.10. The map T on the lower righthand
side assigns to each function its formal Taylor series at zero. It is surjective by
the theorem of E. Borel. The same goes for the map t above it. Just take any

smooth function f ∈ C∞ (Rn) with a given formal Taylor series in R [[V ]]
G

and

integrate it over G. The resulting function lies in C∞ (Rn)
G

and has the same
formal Taylor development since this was G-invariant to begin with. Clearly, the

space C∞ (Rn; 0)
G

embedded in C∞ (Rn)
G

is just the kernel of t. So the top
sequence is exact. The same goes for the bottom sequence. Now suppose we knew
that the left ρ∗ is surjective as well, then we could conclude that the ρ∗ in the

middle is surjective by the following diagram chase. Take any f ∈ C∞ (Rn)
G

and
consider t(f). Then there is a power series p ∈ R

[[
Rk
]]

with ρ∗(p) = t(f) and a

smooth function g ∈ C∞
(
Rk
)

with T (g) = p. Now f − ρ∗g ∈ Ker t = Im i, and
by the surjectivity of the ρ∗ on the lefthand side of the diagram, we can find an
h ∈ C∞

(
Rk
)

such that ρ∗h = f − ρ∗g. So f = ρ∗(g + h) and the central ρ∗ is
surjective as well. ¤

The proof will involve transforming everything into polar coordinates, so let us
start with the following lemma.

3.12. Lemma. Let ϕ : [0,∞) × Sn−1 −→ Rn be the polar coordinate transforma-
tion ϕ(t, x) = tx. Then

C∞([0,∞)× Sn−1)
ϕ∗

←− C∞(Rn)

satisfies

(1) ϕ∗ is injective.
(2) ϕ∗(C∞(Rn; 0)) = C∞([0,∞)× Sn−1; 0× Sn−1).

Proof. (1) is clear since ϕ is surjective. Let us go on to (2). Here it is easy to see
the inclusion

ϕ∗(C∞(Rn; 0)) ⊆ C∞([0,∞)× Sn−1; 0× Sn−1).

If f : Rn −→ R is smooth and flat at zero, then ϕ∗(f) = f ◦ ϕ is smooth and flat
at ϕ−1(0) = 0× Sn−1. Now let us show the converse. On (0,∞)× Sn−1, ϕ has an
inverse ϕ−1 : Rn\{0} −→ (0,∞)×Sn−1 given by ϕ−1(x) = (|x |, 1

| x |x). Take a chart
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3. Invariant theory of compact Lie groups 19

(Ui, ui) of Sn−1 and define ϕ−1
i = (idR, ui) ◦ ϕ−1. Then we can find Cα, Aα > 0

such that ∣∣ ∂αϕ−1
i (x)

∣∣ ≤ Cα|x |−Aα .

Choose f ∈ C∞
(
[0,∞)× Sn−1; {0} × Sn−1

)
, then since f is flat along {0} × Sn−1

we have

∂αf(t, u−1
i (x)) ≤ B(α,N)tN ∀N,∀α ∈ Nn.

All together this gives us via the Faa di Bruno formula 3.6

|∂γ(f ◦ ϕ−1
i )(x)| =

=

∣∣∣∣
∑

(λiα)∈N
k×(N

n\0)
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα (
∂

P

α λαf
)

(ϕ−1
i (x))

∏

i,α>0

(∂α(ϕ−1
i )(x))λiα

∣∣∣∣

≤ C(γ,N)|x |N

for |x | ≤ 1. Therefore f ◦ ϕ−1 can be extended at 0 to f ∈ C∞ (Rn; {0}). ¤

3.13. Now let us extend the result of this lemma somewhat. If G is a compact Lie
group acting orthogonally on Rn, then G acts on Sn−1 and trivially on R, so it acts
on R× Sn−1. Consider the Z2-action on R× Sn−1 given by

Ā : (t, θ) −→ (−t,−θ)

It clearly commutes with the G-action, so we get a Z2 × G-action on R × Sn−1.
Now consider

φ : R× Sn−1 −→ Rn φ(t, θ) := t.θ .

Then φ is Z2×G-equivariant if we let Z2 act trivially on Rn. Therefore, it induces
a homomorphism:

φ∗ : C∞ (Rn)
Z2×G −→ C∞

(
R× Sn−1

)Z2×G
,

and we have the following

Lemma.

(1) φ∗ is injective.

(2) C∞
(
R× Sn−1; {0} × Sn−1

)Z2
= φ∗C∞ (Rn; {0})

C∞
(
R× Sn−1; {0} × Sn−1

)Z2×G
= φ∗C∞ (Rn; {0})G

Remark. By (1) it is sufficient to prove 3.7 in polar coordinates. That is, we only

have to show that φ∗C∞ (Rn; {0})G = φ∗ρ∗C∞
(
Rk; {0}

)
. The first step in this

direction is taken in (2).

Proof.

(1) As in 3.12(1) it is sufficient to note that φ is surjective.
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20 3. Invariant theory of compact Lie groups

(2) If we define ψ : R × Sn−1 −→ [0,∞) × Sn−1 : (t, θ) 7→ sgn t.(t, θ) =
(|t|, sgn(t).θ), then we have φ = ϕ ◦ ψ, where ϕ is the polar coordinate
transformation as in 3.12. Therefore:

φ∗(C∞ (Rn; 0)) = ψ∗ ◦ ϕ∗(C∞ (Rn; {0}))
= ψ∗(C∞

(
[0,∞)× Sn−1; {0} × Sn−1

)
) by 3.12

Now take any f ∈ C∞
(
[0,∞)× Sn−1; {0} × Sn−1

)
. Since ψ |[0,∞)×Sn−1

and ψ |(−∞,0]×Sn−1 are diffeomorphisms onto [0,∞)×Sn−1, ψ∗f is smooth

on (−∞, 0]×Sn−1 as well as on [0,∞)×Sn−1. Since f is flat at {0}×Sn−1,
ψ∗f is smooth altogether. Furthermore, ψ∗(f) is Z2-invariant, since ψ is
Z2-invariant. So we have

ψ∗C∞
(
[0,∞)× Sn−1; {0} × Sn−1

)
⊆ C∞

(
R× Sn−1; {0} × Sn−1

)Z2

The opposite inclusion is clear, since any f ∈ C∞
(
R× Sn−1; {0} × Sn−1

)Z2

is the image under ψ∗ of its restriction to [0,∞)× Sn−1.

The assertion with added G-invariance follows easily from this. That f :=
φ∗f̃ is G-invariant with f̃ is clear, since φ is G-equivariant. Now if f is
G-invariant, then for all g ∈ G we have f̃(g.φ(x)) = f̃(φ(x)), so by the

surjectivity of φ we can conclude that f̃ is G-invariant as well. ¤

3.14. The next step, roughly, is to translate the Z2-action Ā as well as the polar
coordinate transformation to the image of R × Sn−1 under id × ρ. This is done
in the following two diagrams, where r : Rn −→ R stands for the polynomial map
x 7→ |x |2.

R× Sn−1

�
R× ρ

�Ā R× Sn−1

�
R× ρ

R× ρ(Sn−1) �A R× ρ(Sn−1)

R× Sn−1

�
R× ρ

�
φ

Rn

�
r × ρ

R× ρ(Sn−1) �B R× ρ(Rn)

Recall that the ρi were chosen homogeneous of degree di. With this, A and B are
given by:

A(t, y) := (−t, (−1)d1y1, . . . , (−1)dkyk)

B(t, y) := (t2, td1y1, . . . , t
dkyk)

With this definition, we can let A and B have domain R × Rk. The choice of
(t, y) 7→ t2 for the first component of B lets B retain the Z2-invariance under the
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3. Invariant theory of compact Lie groups 21

Z2-action given by A. Indeed, B ◦A = B:

B ◦A(t, y) = B(−t, (−1)d1y1, . . . , (−1)dkyk) =

=
(
(−t)2, (−t)d1(−1)d1y1, . . . , (−t)dk(−1)dkyk

)
=

= (t2, td1y1, . . . , t
dkyk) = B(t, y)

Now we can state the following

Lemma. The map B as defined above induces a mapping B∗ on C∞
(
R× Rk; 0

)

into C∞
(
R× Rk; 0× Rk

)Z2
such that

C∞
(
R× Rk; 0

)
�B∗

�
�
� ����

C∞
(
R× Rk; 0× Rk

)Z2

�
restr

C∞
(
R× Rk; 0× Rk

)Z2
∣∣∣
R×ρ(Sn−1)

The map restr ◦B∗ : C∞
(
R× Rk; 0

)
−→ C∞

(
R× Rk; 0× Rk

)Z2

∣∣∣
R×ρ(Sn−1)

is sur-

jective.

Proof. The inclusion B∗C∞
(
R× Rk; 0

)
⊆ C∞

(
R× Rk; 0× Rk

)Z2
is clear since,

first of all, B maps 0 × Rk to 0, so if f is flat at 0, then B∗f is flat at 0 × Rk.
Secondly, B∗f is Z2-invariant, since B is Z2-invariant.

For the surjectivity, choose any h ∈ C∞
(
R× Rk; 0× Rk

)Z2
. Then we need to find

an H ∈ C∞
(
R× Rk; 0

)
such that B∗H|

R×ρ(Sn−1) = h|
R×ρ(Sn−1). Formally, that

would give us

H(t, y) = h(t
1
2 , t−

d1
2 y1, . . . , t

−
d1
2 y1).

For t > 0, this is well defined. With the Z2-symmetry, we know how to define h̄ for
t < 0 as well. To handle the case t = 0 we will need Whitney’s extension theorem.

Let ∆ be a k-dimensional cube in Rk with center 0 which contains ρ(Sn−1). Con-
sider K := [−1, 1]×∆ ⊆ R× Rk and set L := B(K) ⊂ R× Rk. More precisely, L
is a compact subset of [0,∞)× Rk. Now define on [0,∞)× Rk ⊃ L the function

Hε(t, y1, . . . , yk) := h
(

(t+ ε)
1
2 , (t+ ε)−

d1
2 y1, . . . , (t+ ε)−

dk
2 yk

)
.

Hε is smooth on [0,∞)× Rk ⊃ L, so J∞Hε ∈ J∞(L) is a Whitney jet on L. Now
we will have to study the behavior of Hε for ε→ 0. Our strategy will be as follows:

(1) Show that L is 1-regular. Referring back to 3.5, the topology on E∞(L) is

then generated by the family of seminorms {| . |Lm : m ∈ N0}.
(2) Show that J∞Hε is a Cauchy sequence for ε→ 0 in terms of the family of

seminorms {| . |Lm : m ∈ N0}.
(3) Since E∞(L) is complete, (1) and (2) together imply that J∞Hε converges

to some Whitney ∞-jetH = (Hα)α∈N
k+1
0

on L. In this situation, Whitney’s

extension theorem implies that H0 is the restriction onto L of some smooth
function we will again call H ∈ C∞

(
R× Rk

)
.

(4) Show that H is flat at zero and after some slight modifications satisfies
B∗H = h on R× ρ(Sn−1) to finish the proof.
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22 3. Invariant theory of compact Lie groups

Let us now go ahead and show (1).

Let distL(l, l′) denote the shortest length of any rectifiable curve in L joining l with
l′. Then we will show that

dist(l, l′) ≤ distL(l, l′) ≤ 2 dist(l, l′)

The lefthand side of this inequality is clear. To show the righthand side let l = (t, y)
and l′ = (t′, y′) and suppose without loss of generality that t′ ≤ t. Recall once more
how L was defined (L = B(K) where K = [−1, 1]×4). Consider the line segments
[(t, y), (t, y′)] and [(t, y′), (t′, y′)]. Both are contained in L:

To see this, take any (s, y′) ∈ [(t, y′), (t′, y′)], that is t′ ≤ s ≤ t. Then

(s, y′) = B(
√
s, s−

d1
2 y′1, . . . , s

−
dk
2 y′k)

Since (t′, y′) ∈ L, we have (t′
−

d1
2 y′1, . . . , t

′−
dk
2 y′k) ∈ 4. With t′ ≤ s, that is t′

−
dk
2 ≥

s−
dk
2 , this implies that (s−

d1
2 y′1, . . . , s

−
dk
2 y′k) lies in 4 as well. That

√
s ∈ [−1, 1]

is clear from (t, y) ∈ L. In particular, we now have that (t, y′) lies in L. Therefore,
by the linearity of B in the second variable, the first line segment [(t, y), (t, y′)] is
also contained in L.

Since the line segments [l, (t, y′)] and [(t, y′), l′] are the sides of a right triangle with
hypotenuse [l, l′], this immediately implies

distL(l, l′) ≤ dist(l, (t, y′)) + dist((t, y′), l′) ≤ 2 dist(l, l′)

and (1) is proved.

Now let us turn to (2). Write Hε as composition Hε = h ◦ βε where the map
βε : R+ × Rk −→ R+ × Rk is given by

βε : (t, y1, . . . , yk) 7→ ((t+ ε)
1
2 , (t+ ε)−

d1
2 y1, . . . , (t+ ε)−

dk
2 yk).

By definition, every (t, y) ∈ L is image under B of some (τ, z) ∈ K = [0, 1] × 4.
That is:

(t, y) = (τ2, τd1z1, . . . , τ
dkzk)

which makes

βε(t, y) =

(
(τ2 + ε)

1
2 ,

τd1

(τ2 + ε)
d1
2

z1, . . . ,
τdk

(τ2 + ε)
dk
2

zk

)
.

From this formula we see that for ε → 0 there is a compact subset P of R × Rk

such that βε(L) lies in P for all ε.

Now to h. Since h is flat at 0×Rk we have that for all compact P ⊆ R×Rk, α ∈ Nn

and N > 0 there is a constant C = C(P, α,N) such that

| ∂αh(t, y) | ≤ C(P, α,N)tN ∀(t, y) ∈ P
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Now we have all we need to approximate sup
(t,y)∈L

|∂γ(Hε(t, y)−Hµ(t, y))|. If we

choose P as described above we may apply Faa di Bruno’s formula 3.6 and we see
that for (t, y) ∈ L

|∂γ(h ◦ βε(t, y)− h ◦ βµ(t, y))| ≤

≤
∑

λ=(λiα)∈N
k×(N

n\0)
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα
∣∣∣∣
(
∂

P

α λαh
)

(βε(t, y))
∏

α>0

(∂αβε(t, y))λα−

−
(
∂

P

α λαh
)

(βµ(t, y))
∏

α>0

(∂αβµ(t, y))λα

∣∣∣∣ ≤

≤
∑

(λiα)∈N
k×(N

n\0)
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα

C(P,
∑
α λα, N)·

·
∣∣∣∣(t+ ε)

N
2

∏

α>0

(∂αβε(t, y))λα − (t+ µ)
N
2

∏

α>0

(∂αβµ(t, y))λα

∣∣∣∣.

At this point we must distinguish between two cases.
(t ≥ δ > 0) In this case we choose Cη := Cη,2 so that by the above considerations
we have

|∂γ(Hε(t, y)−Hµ(t, y))| ≤

≤
∑

(λiα)∈N
k×(N

n\0)
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα

C(P,
∑
α λα, 2)δ·

·
∣∣∣∣
∏

α>0

(∂αβε(t, y))λα −
∏

α>0

(∂αβµ(t, y))λα

∣∣∣∣.

Since | ∂αβε(t, y)− ∂αβµ(t, y) | → 0 for λ, µ→ 0 we may conclude that the expres-
sion |∂γ(Hε(t, y)−Hµ(t, y))| goes to zero with ε and µ uniformly in (t, y) ∈ L∩{t ≥
δ}
(δ ≥ t ≥ 0) In this case we have

| ∂γ(Hλ(t, y)−Hµ(t, y)) | ≤

≤
∑

(λiα)∈N
k×(N

n\0)
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα

C(
∑
α λα, N)·

·
∣∣∣∣(t+ ε)

N
2

∏

α>0

(∂αβε(t, y))λα − (t+ µ)
N
2

∏

α>0

(∂αβµ(t, y))λα

∣∣∣∣.

Recalling how βε was defined, we see that the sums on the righthand side are
basically polynomials in (t + ε)−1 (resp. (t + µ)−1) and y. So we only need to
choose N sufficiently large to have the above term converge to zero uniformly in
(t, y) for ε, µ→ 0.

Draft from March 21, 2005 Peter W. Michor,



24 3. Invariant theory of compact Lie groups

This completes the proof that J∞Hε is a Cauchy sequence with regard to the

seminorms | . |Lm. By (3) it has a limit in the space of Whitney jets on L which we
extend to a smooth function H ∈ C∞

(
R× Rk

)
using Whitney’s extension theorem.

We now turn to (4).

On L, ∂γH is the limit of ∂γHε for ε→ 0. Since 0 ∈ L, it suffices to show

∂γHε(0)→ 0 for all γ ∈ Nk+1

to imply that H is flat at 0. This is seen as in (2) above: By setting (t, y) = 0 in

| ∂γ(h ◦ βε)(t, y) | ≤

(t+ ε)
N
2

∑

(λiα)∈N
k×(N

n\0)
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα

C(P,
∑
α λα, N) ·

∣∣∣∣
∏
α>0(∂αβε(t, y))λα

∣∣∣∣.

we get

| ∂γHε(0) | ≤

≤ εN
2

∑

(λiα)∈N
k×(N

n\0)
P

iα λiαα=γ

γ!

λ!

∏

α∈N
n

α>0

(
1

α!

)P

i λiα

C(P,
∑
α λα, N)

∣∣∣∣
∏
α>0(∂αβε(0))λα

∣∣∣∣.

Again, the righthand sum is a polynomial in ε−1, and if N is chosen large enough,
we see that the whole expression converges to zero with ε→ 0.

Next and final point of the proof is to check inhowfar B∗ maps H to h. On L\{0},
βε converges to β0 : L\{0} −→ (0, 1]×4. So restricted to L\{0}, we have H = h◦β0.
By definition of β0,

B∗H = B∗(h ◦ β0) = h on (0, 1]×4.

Therefore, by continuity, B∗H = h on [0, 1]×4; in particular

B∗H |[0,1]×ρ(Sn−1) = h |[0,1]×ρ(Sn−1) .

Since h as well as B∗H are A-invariant, their values on A([0, 1] × ρ(Sn−1)) =
[−1, 0] × ρ(Sn−1) are uniquely determined by their restriction to [0, 1] × ρ(Sn−1).
So we even have

B∗H |[−1,1]×ρ(Sn−1) = h |[−1,1]×ρ(Sn−1) .

Since B is a diffeomorphism on (1,∞)×ρ(Sn−1) as well as on (−∞,−1)×ρ(Sn−1)
we can change H outside of B([−1, 1]× ρ(Sn−1)) to

H =





h ◦B|−1
(1,∞)×ρ(Sn−1) on B((1,∞)× ρ(Sn−1))

H on B([−1, 1]× ρ(Sn−1))

h ◦B|−1
(−∞,−1)×ρ(Sn−1) on B((−∞,−1)× ρ(Sn−1))

This H is in C∞
(
R× Rk; 0

)
, and it has the desired property:

B∗H |
R×ρ(Sn−1) = h |

R×ρ(Sn−1) . ¤
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3.15. The main part of the proof of Schwarz’ theorem will be carried out by induc-
tion. To be able to state the induction hypothesis, we make the following definition:

For two compact Lie groups G and G′ we will call G < G′ if

(a) dimG < dimG′ or

(b) if dimG = dimG′, then G has less connected components than G′.

We will continue the proof of 3.7 under the following two hypotheses:

I (Induction hypothesis) The compact Lie group G is such that theorem 3.7 is
valid for all compact Lie groups G′ < G (and each orthogonal representation
of G′).

II The orthogonal representation has 0 as only fixed point (see 3.10).

The next step will be to prove the

Key lemma. Under the hypotheses I and II:

ρ∗C∞
(
Rk \ {0}

)
= C∞ (V \ {0})G .

In particular: (ρ|Sn−1)
∗
C∞

(
Rk
)

= C∞
(
Sn−1

)G
.

Before we get involved in a complicated proof, let us draw some conclusions from
this.

3.16. Corollary. Under the hypotheses I and II we have

(id× ρ |Sn−1)
∗
C∞(R× Rk; {0} × Rk) = C∞(R× Sn−1; {0} × Sn−1)G

(a)

(id× ρ |Sn−1)
∗
C∞(R× Rk; {0} × Rk)Z2 = C∞(R× Sn−1; {0} × Sn−1)Z2×G

(b)

where the Z2-action on R× Rk is given by A and on R× Sn−1 by Ā.

Remark. 3.16(b) is the missing link between 3.13(2) and 3.14. Together the three
lemmas give the equation

φ∗C∞(Rn; 0)G = C∞(R× Sn−1; {0} × Sn−1)Z2×G by 3.13(2)

= (id× ρ |Sn−1)
∗
C∞(R× Rk; {0} × Rk)Z2 by (b)

= (id× ρ |Sn−1)
∗
B∗C∞(R× Rk; {0}) by 3.14.

This is already a big step forward in the proof of Schwarz’ theorem.

Proof of the Corollary. In (a) as well as in (b) the inclusion “⊆” is clear. So
let us just concern ourselves with the surjectivity of (id× ρ |Sn−1)

∗
in each case.

(a) is a consequence of the identity

C∞(R× Rk; {0} × Rk) ∼= C∞(Rk, C∞(R; {0})) ∼= C∞(Rk)⊗̂C∞(R; {0})
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and the resulting commutative diagram

C∞(R; 0)⊗̂C∞(Rk)

��
id⊗̂(ρ|Sn−1)∗

�
∼= C∞(R× Rk; 0× Rk)

�
(id× ρ|Sn−1)∗

C∞(R; 0)⊗̂C∞(Sn−1)G �� C∞(R× Sn−1; 0× Sn−1)G

C∞(R; 0)⊗̂C∞(Sn−1)

�

�

id⊗̂
∫
G

�
∼= C∞(R× Sn−1; 0× Sn−1)

�

� ∫
G

Here, the map on the upper lefthand side, id ⊗̂(ρ|Sn−1)∗, is surjective by 3.15. The
surjectivity of the maps on the bottom is clear and implies that the horizontal map
in the middle is also surjective. From this we can deduce that (id × ρ|Sn−1)∗ on
the upper righthand side is surjective as well. This proves (a).

(b) is now a consequence of (a). To any ϕ ∈ C∞(R × Sn−1; {0} × Sn−1)Z2×G

assertion (a) supplies a ψ ∈ C∞(R × Rk; 0 × Rk) which is mapped to ϕ under
(id× ρ |Sn−1)

∗
. It remains to make ψ Z2-invariant. On R× ρ(Sn−1) ψ is automat-

ically Z2-invariant:

(id× ρ |Sn−1)
∗

(ψ ◦A) = ψ ◦A ◦ (id× ρ |Sn−1) =

= ψ ◦ (id× ρ |Sn−1) ◦ Ā = ϕ ◦ Ā = ϕ = (id× ρ |Sn−1)
∗
ψ

Since A maps R+×Rk onto R−×Rk and ψ is flat at {0}×Rk, we can change ψ on
R− × Rk to make it Z2-invariant everywhere. This way we retain its smoothness,
its flatness at {0} × Rk and since ψ isn’t changed on R × ρ(Sn−1) we also retain
ϕ = (id× ρ |Sn−1)

∗
ψ. ¤

Notation. In the following we will sometimes write R [x] for R [Rn] where (x =
(x1, . . . , xn)) stands for the variable. The linear subspace of homogeneous polyno-
mials of degree i will be denoted by R [x]i, so that we have

R [V ] =
⊕

i≥1

R [x]i

R [[V ]] =
∏

i≥1

R [x]i

Furthermore, we will abbreviate the ideal of all polynomials with no constant term
by ⊕

i>1

R [x]i =: R [x]+

3.17. Definition. We will call a system of generators {σ1, . . . , σm} of an algebra
minimal, if there is no nontrivial polynomial relation of the type

σj = P (σ1, . . . , σj−1, σj+1, . . . , σk).
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Remark. If an algebra is finitely generated, then it automatically possesses a
minimal system of generators. We only have to take an arbitrary finite set of
generators and recursively drop any elements which can be expressed as polynomials
in the others.

Proof of 3.15. Let us get an idea of how this proof will work before we go into
the technical lemmas it requires.

Choose an arbitrary ψ ∈ C∞(Rn \ {0})G and take p ∈ Rn \ {0}. By hypothesis II,
p is not fixed under G. Therefore Gp < G and Schwarz’ theorem is satisfied for any
representation of Gp by the induction hypothesis. In particular, take a slice S at p
small enough not to meet 0 (this also implies 0 /∈ G.S). S is contained in an affine
subspace p + L(Rq) ⊆ Rn, where L is a linear embedding L : Rq ↪→ Rn. The slice

action gives a representation of Gp on Rq. Restrict p+L to L−1(S − p) =: S̃ ⊆ Rq

(open) to get the map λ̃ : S̃
∼=−→ S. We then have λ̃∗(ψ |S) ∈ C∞(S̃)Gp . Consider

a minimal system of generators σ1, . . . , σs of R [Rq]
Gp , then by Schwarz’ theorem

there is an α ∈ C∞(Rs) such that

λ̃∗ψ(t) = α(σ1(t), . . . , σs(t)) for all t ∈ S̃

(since λ̃∗ψ can be extended to a Gp-invariant function on Rk). Now we require the
following

Lemma 3.20. In the above situation (where here it is important that {σi} be a
minimal system of generators), denote by σ̄i (resp. µ̄i) the germ of σi (resp. µi :=
ρi ◦ (p + L)) at 0. Then there are germs of smooth functions B̄i ∈ C∞

0 (Rk) such
that

σ̄j = B̄j(µ̄1, . . . , µ̄k).

Let us first finish the proof of 3.15 assuming the lemma and then return to it. Recall
that on S̃ we were able to express ψ ◦ λ̃ in the Hilbert generators σ1, . . . , σs.

ψ ◦ λ̃ = α(σ1, . . . , σs)

In a sufficiently small neighborhood U0 of 0 we can now replace σi by Bi ◦µ, where
Bi is a suitable representative of the germ B̄i and has domain Vp = µ(U0) (notice
that µ(U0) = ρ(p+ L(U0)) = ρ(G.(p+ L(U0))) is open since ρ is open by 3.2(3)).

ψ ◦ λ̃ |U0
= α ◦ (B1 ◦ µ |U0

, . . . , Bk ◦ µ |U0
).

Since λ̃ is a diffeomorphism and µ |S̃ = ρ |S ◦ λ̃, we can drop the λ̃ on each side.

With Ũp := λ̃(U0) this gives us:

ψ |Ũp
= α ◦ (B1 ◦ ρ |Ũp

, . . . , Bk ◦ ρ |Ũp
)

Since both sides are G-invariant, we can extend the above equation to the tubular
neighborhood Up := G.Ũp of p. To simplify the formula, we set

C∞(Vp) 3 ϕp : x 7→ α(B1(x), . . . , Bk(x)).
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So we get:

(*) ψ |Up
= ρ∗ϕp |Up

In this way we can assign to each p ∈ Rn \{0} neighborhoods Up 3 p and Vp 3 ρ(p)
as well as a map ϕp ∈ C∞(Vp) with the above property. Let us consider a partition
of unity (hp) of ρ(Rn) \ {0} which corresponds to the covering Vp. Then we can
define

ϕ :=
∑

hpϕp ∈ C∞(Rk \ {0}).

Now ρ∗hp is a G-invariant partition of unity on Rn \ {0}. It corresponds to the
covering (Up) since ρ(Up) = Vp and ρ separates the orbits by 3.2(2). So with (*)
we get

ρ∗ϕ = ρ∗(
∑

hpϕp) =
∑

(ρ∗hp)(ρ
∗ϕp) =

∑
(ρ∗hp)ψ |Up

= ψ ¤

Before we can prove the key lemma’s key lemma (3.20) we need two supporting
lemmas:

3.18. Lemma. Let σ1, . . . , σk be a system of homogeneous generators of R [x]
G

.
Then the following two conditions are equivalent:

(1) {σ1, . . . , σk} is a minimal system; that is there is no nontrivial polynomial
relation of the type

ρj = P (ρ1, . . . , ρj−1, ρj+1, . . . , ρk)

(2) ρ1, . . . , ρk are an R-basis of R [x]
G
+ /(R [x]

G
+)2.

Proof.

(⇑) Suppose there is a nontrivial relation. It can be written as

ρj =
∑

i6=j

λiρi +
∑

µαρ
α

where the second summation is taken over all multi-indices α ∈ Nk with
|α | ≥ 2 and αj = 0. This immediately implies

ρj ≡
∑

i6=j

λiρi mod (R [x]
G
+)2.

So the ρj are linearly dependent mod (R [x]
G
+)2.

(⇓) Since the ρi generate R [x]
G

, they automatically generate R [x]
G
+ /(R [x]

G
+)2

as a vector space. So if we suppose (2) false, then there is a nontrivial
relation ∑

λiρi ≡ 0 mod (R [x]
G
+)2.

Order the ρi by degree: i < j ⇒ di ≤ dj . Now let i0 be the smallest i for
which λi 6= 0. Then we can express ρi0 as follows

ρi0 =
∑

i0<j

µjρj +
∑

|α |≥2

ναρ
α.
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This equality still holds if we drop all terms of degree 6= di0 , and both sides
remain the same. After doing so, we see that ρi0 does not appear on the
righthand side of the equation. Because if it did, then it would be in a term
ναρ

α with αi0 6= 0 in the sum on the far right and this term would have
degree > di0 . So we have a nontrivial polynomial relation between the ρi
and a contradiction to (1). ¤

3.19. Lemma [15]. Consider U ⊆ Rn, V ⊆ Rm open, f : U −→ V smooth and
f∗ : C∞(V ) → C∞(U) with the compact C∞-topology on both spaces. Then for

each ϕ ∈ f∗C∞ (V ) and for all a ∈ U there is a ψ ∈ C∞ (V ) such that

T∞
a ϕ = T∞

f(a)ψ ◦ T∞
a f,

where T∞
a ϕ ∈ R [[x− a]] denotes the formal Taylor series of ϕ at a and by the

composition on the right we mean the insertion of T∞
a f ∈ R [[x− a]] for y in

T∞
f(a)ψ ∈ R [[y − f(a)]].

Proof. The assertion of the lemma is equivalent to the statement

T∞
a (f∗C∞ (V )) = T∞

a (f∗C∞ (V )),

since T∞
a (f∗C∞ (V )) is simply the set of all jets which can be written as a com-

position like in the lemma. Due to the fact that T∞
a is continuous, we have the

inclusions:

T∞
a (f∗C∞ (V )) ⊆ T∞

a (f∗C∞ (V )) ⊆ T∞
a (f∗C∞ (V )).

Therefore, it is sufficient to show that T∞
a ◦ f∗ has a closed image. Since C∞ (V )

is a reflexive Fréchet space, we can show instead that the dual map (T∞
a ◦ f∗)′ has

a closed image.

(T∞
a )′ : R [[x− a]]

′ −→ C∞ (V )
′

R [[x− a]]
′

is the space of all distributions with support a. Let
∑
λβδ

(β)
a be such a

distribution, and take any α ∈ C∞ (V ). Then

〈
α, (T∞

a ◦ f∗)′
∑

λβδ
(β)
a

〉
=
〈

(T∞
a ◦ f∗)(α),

∑
λβδ

(β)
a

〉
=

=
∑

β

λβ(α ◦ f)(β)(a) =
∑

γ

µγ∂
γα(f(a)) =

〈
α,
∑

µγδ
(γ)
f(a)

〉
.

So the image of R [[x− a]]
′

under (T∞
a ◦ f∗)′ is contained in the space of all distri-

butions concentrated at f(a) which is isomorphic to a countable sum of R with the
finest locally convex topology. But in this topology, every linear subspace is closed
(since every quotient mapping is continuous), so (T∞

a ◦ f∗)′(R [[x− a]]
′
) is closed

as well. ¤

Now let us state again
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30 3. Invariant theory of compact Lie groups

3.20. Lemma. Consider λ : S̃
λ̃−→ S ↪→ G.S as in the proof of 3.15, and define

µ := ρ |G.S ◦ λ : S̃ −→ Rk. The σi form a minimal system of generators for R
[
Rk
]

and we denote the germ of σi (resp. µi) by σ̄i (resp. µ̄i). Then there are germs of
smooth functions B̄i ∈ C∞

0 (Rk) such that

σ̄j = B̄j(µ̄1, . . . , µ̄k).

Proof of lemma 3.20. Since µ is a Gp-invariant polynomial (or the restriction of
one), we can express µi in the Hilbert generators as follows:

(*) µi = µi(0) +Ai(σ1, . . . , σs) Ai ∈ R [Rs]

So our goal is to find a local inverse for A. With the help of Glaeser’s lemma 3.19
let us now try to construct a formal power series inverse. λ induces an isomorphism
by which

C∞(S̃)Gp = λ∗C∞(G.S)G.

Without loss of generality let us now assume S was chosen compact. Then G.S is
compact as well and we can apply the Weierstrass approximation theorem to get

C∞(G.S)G = R [x] |G.S
G

= ρ |∗G.SR [t] = ρ |∗G.SC∞(Rk).

If we use the fact that λ∗ is a homeomorphism, the two equations taken together
yield

C∞(S̃)Gp = λ∗(ρ|G.S)∗C∞(Rk) = λ∗(ρ|G.S)∗C∞(Rk) = µ∗C∞(Rk).

So we have that σi ∈ C∞(S̃)Gp is “almost” some smooth function of µ. Now we

can use Glaeser’s lemma. Take σi and 0 ∈ S̃. Then there is a smooth function
ψi ∈ C∞(Rk) such that

T∞
0 σi = T∞

µ(0)ψi ◦ T∞
0 µ.

Since both σi and µ are polynomials, we can disregard the T∞
0 . T∞

µ(0)ψi is a power

series in (t− µ(0)). If we take ϕi ∈ R [t] to be the power series in t with the same
coefficients, then the above formula turns into

(**) σi = ϕi(µ− µ(0)).

Since σi is homogeneous of degree > 0, ϕi has no constant term. So we can write
it as

ϕi = Li + higher order terms Li ∈ R [t]1

In particular, if we insert (*) into (**) this implies

(***) σi − Li(A1(σ), . . . , Ak(σ)) ∈ (R [t]
Gp

+ )2.

Since the σi were chosen to be a minimal system of generators, lemma 3.18 implies

that the σi + (R [t]
Gp

+ )2 form a basis of R [t]
Gp

+ /(R [t]
Gp

+ )2. Therefore we have a well
defined algebra isomorphism:

R [t]
Gp

+ /(R [t]
Gp

+ )2
∼=−→ A := R [z1, . . . , zs]+/

〈
z2
〉

σi + (R [t]
Gp

+ )2 7→ [zi]
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Now (***) translated to A gives

Li(A1(z), . . . , Ak(z)) = zi +O(z2) in R [z]

Therefore
DL(0) ◦DA(0) = IdRk ,

and by the inverse function theorem A has a local inverse. So, locally, we can solve
the equation (*) in terms of σi, which proves the lemma. ¤

This completes the proof of the key lemma. So far, we have shown (see remark
3.16) that under the hypotheses I and II

φ∗C∞(Rn; {0})G = (id× ρ |Sn−1)
∗
B∗C∞(R× Rk; {0})

holds. We have been able to pull out ρ, but the polar coordinate transformation
is now encoded in B. We must now pull the B∗ out in front of the (id× ρ |Sn−1)

∗

where it will appear again as φ∗ and then get rid of the excess dimension.

Recall that B was defined to satisfy the diagram:

R× Sn−1 �
φ

�
id× (ρ |Sn−1)

Rn

�
(r, ρ)

R× Rk �B R× Rk

where r denoted the polynomial map r(x) = |x |2 on Rn. Thus B ◦ (id×ρ |Sn−1) =
(r, ρ) ◦ φ. And therefore

φ∗C∞(Rn; {0})G = (id× ρ |Sn−1)
∗
B∗C∞(R× Rk; {0}) =

= φ∗ ◦ (r, ρ)∗C∞(R× Rk; {0}).

Since φ∗ was injective, we can now discard it to get

C∞(Rn; {0})G = (r, ρ)∗C∞(R× Rk; {0}).

That takes care of B as well as φ, so let us now tackle r.

r is an O(n)-invariant polynomial, in particular it is G-invariant. Therefore by
Hilbert:

r = ψ ◦ ρ for some ψ in C∞(Rk).

So (r, ρ) = (ψ, id) ◦ ρ and we get

C∞(Rn; {0})G = ρ∗ ◦ (ψ, id)∗C∞(R× Rk; {0}).

Now we are just one easy lemma away from the desired result

C∞(Rn; {0})G = ρ∗C∞(Rk; {0})

under hypotheses I and II. That is.
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32 3. Invariant theory of compact Lie groups

3.21. Lemma.
(ψ, id)∗C∞(R× Rk; {0}) = C∞(Rk; {0})

Proof. Taking a closer look at (ψ, id), we see that it is a composition of maps

(ψ, id) : Rk
∼=−→
g

Graphψ
i
↪→ R× Rk

where i is the embedding of the closed submanifold Graphψ into R×Rk. Therefore

(ψ, id)∗C∞(R× Rk; {0}) = g∗i∗C∞(R× Rk; {0}).

Since 0 = r(0) = ψ ◦ ρ(0) = ψ(0), we see that g(0) = 0. So we also have

C∞(Rk; {0}) = g∗C∞(Graphψ; {0}).

Therefore it remains to prove that

i∗C∞(R× Rk; {0}) = C∞(Graphψ; {0}).

Now take an arbitrary f ∈ C∞(Graphψ; {0}). There is a smooth extension f̃ of f
on R × Rk but it need not be flat at zero. So consider a submanifold chart (ξ, U)
of Graphψ around 0 and define

fU : U
ξ−→ R× Rk

pr2−−→ Rk
(ψ,id)−−−−→ Graphψ

f−→ R.

Then fU is a smooth extension of f on U and is flat at zero. Now f̃ and fU patched
together with a suitable partition of unity give a function f̄ ∈ C∞(R×Rk; 0) such
that i∗f̄ = f . ¤

End of the Proof of 3.7. Recall from lemma 3.10 that it is sufficient to prove the
theorem of Schwarz, assuming hypothesis II. We will now carry out induction over
G. For G = {}id, 3.7 holds trivially. Now for any compact Lie group G satisfying
hypothesis II we showed above that under the induction hypothesis (I)

ρ∗C∞(Rk; {0}) = C∞(Rn; {0})G.

From this, together with our considerations from the beginning of the proof (3.11),
we see that Schwarz’ theorem is valid for G. ¤

There is one more Corollary to be gained from all of this. Notice that up to now
we have not shown

(*) ρ∗C∞(Rk; {0}) = C∞(Rn; {0})G

in general. Although we worked on this throughout the proof of 3.7, we were
only able to show it under the hypotheses I and II. Now that Schwarz’ theorem is
proved, the hypothesis I is automatically satisfied so we can disregard it. But we
have to look more deeply into the proof to be able to see whether (*) is satisfied
for representations of compact Lie groups with more than one fixed point. It turns
out that it is.
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3.22. Corollary. Let G be a compact Lie group with an orthogonal representation
on Rn and ρ = (ρ1, . . . , ρk) the corresponding Hilbert generators, homogeneous and
of positive degree. Then

ρ∗C∞(Rk; {0}) = C∞(Rn; {0})G.

Proof. Schwarz’ theorem implies that

(ρ |Sn−1)
∗
C∞(Rk) = C∞(Sn−1)G.

By backtracing we see that before we knew theorem 3.7 this was a consequence
of the key lemma 3.15 which was based on the two hypotheses. In fact, it was
the only assertion of 3.15 that was needed to prove the corollary 3.16. So we now
know that 3.16 does not require the hypotheses after all. But the remainder of the
proof for ρ∗C∞(Rk; {0}) = C∞(Rn; {0})G did not use 3.15 at all, it only used 3.16.
Therefore, it is independent of the hypotheses as well. ¤

Further results in this direction were obtained by Luna who, among other things,
generalized the theorem of Schwarz to reductive Lie groups losing only the property
of the Hilbert generators separating the orbits (see [20]).

Luna’s Theorem (1976). Consider a representation of a reductive Lie group G
on Km ( where K = C,R ), and let σ = (σ1, . . . , σn) : Km −→ Kn, where σ1, . . . , σn
generate the algebra K [Km]

G
. Then the following assertions hold:

(1) K = C⇒ σ∗ : H(Cn) −→ H(Cm)G is surjective.
(2) K = R⇒ σ∗ : Cω(Rn) −→ Cω(Rm)G is surjective.
(3) K = R implies that

σ∗ : C∞(Rn) −→
{
f ∈ C∞(Rm)G : f is constant on σ−1(y) for all y ∈ Rn

}

is surjective.
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4. Transformation Groups

4.1. Definition. Let G be a Lie group, M a C∞-manifold. A smooth map
` : G ×M −→ M (we will write `g(x), `x(g) as well as g.x for `(g, x)), defines a
smooth action of G on M if it satisfies

(1) e.x = x, for all x ∈M where e ∈ G is the unit element.
(2) (g1 · g2).x = g1.(g2.x), for all g1, g2 ∈ G, x ∈M .

We will also say G acts on M , M is a G-manifold or M is a smooth G-space.

4.2. Definition.

(1) For x ∈M the set G.x = {g.x : g ∈ G} is called the G-orbit through x.
(2) A G-action on M is called transitive if the whole of M is one G-orbit.
(3) A G-action on M is called effective if the homorphism G → Diff(M) into

the diffeomorphism group is injective: If g.x = x for all x ∈M then g = e.
(4) A G-action on M is called free if `x : G → M is injective for each x ∈ M :

g.x = x for one x ∈M already implies g = e.
(5) A G-action on M is called infinitesimally free if Te(`

x) : g → TxM is
injective for each x ∈M .

(6) A G-action on M is called infinitesimally transitive if Te(`
x) : g→ TxM

is surjective for each x ∈M .
(7) A G-action on M is called linear if M is a vector space and the action

defines a representation.
(8) A G-action on M is called affine if M is an affine space, and every `g :

M −→M is an affine map.
(9) A G-action on M is called orthogonal if (M,γ) is a Euclidean vector space

and `g ∈ O(M,γ) for all g ∈ G. (Then {`g : g ∈ G} ⊆ O(M,γ) is auto-
matically a subgroup).

(10) A G-action on M is called isometric if (M,γ) is a Riemannian manifold
and `g is an isometry for all g ∈ G.

(11) A G-action on M is called symplectic if (M,ω) is a symplectic manifold
and `g is a symplectomorphism for all g ∈ G (i.e. ` ∗g preserves ω ).

(12) A G-action on M is called a principal fiber bundle action if it is free
and if the projection onto the orbit space π : M → M/G is a principal
fiber bundle. This means that that M/G is a smooth manifold, and π is a
submersion. By ther implicit function theorem there exit then local sections,
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and the inverse function theorem the mapping τ : M ×M/GM → G which
satisfies x = τ(x, y).y for x and y in the same orbit, is smooth. This is a
central notion of differential geometry.

4.3. Definition. If M is a G-manifold, then M/G, the space of all G-orbits
endowed with the quotient topology, is called the orbit space.

4.4. Examples.

(1) The standard action of O(n) on Rn is orthogonal. The orbits are the con-
centric spheres around the fixed point 0 and 0 itself. The orbit space is
Rn/O(n) ∼= [0,∞).

(2) Every Lie group acts on itself by conjugation: conj : G×G −→ G is defined
by (g, h) 7→ conjg(h) := g.h.g−1 and is a smooth action of the Lie group on
itself.

(3) The adjoint action Ad : G −→ GL(g) of the Lie group G on its Lie algebra
g is defined as the derivative of conj (interpreted as a map G −→ Aut(G))

Ad(g) : X 7→ d

dt

∣∣∣∣
t=0

g. expG(tX).g−1 = Te(conjg) : g −→ g

It is clearly linear. If G is compact, then it is orthogonal with respect to
the negative Cartan-Killing form,

−B : g× g −→ R : (X,Y ) 7→ − tr(ad(X) ◦ ad(Y )),

which in this case defines an inner product on g.
(4) In particular, the orthogonal group acts orthogonally on o(n), the Lie al-

gebra of all antisymmetric n × n-matrices. Not a special case of (3) is the
O(n)-action on S(n) defined in chapter 1. Yet it is also orthogonal: Let
A ∈ O(n) act on G,H ∈ S(n) then

tr
(
AHA−1(AGA−1) t

)
= tr(AHA−1(A−1) tG tA t) =

tr(AHA−1AG tA−1) = tr(AHG tA−1) = tr(HG t)

(5) SU(n) acts unitarily on the hermitian n×n matrices by conjugation (anal-
ogous to (4)).

4.5. Definition.
Let M be a G-manifold, then the closed subgroup Gx = {g ∈ G : g.x = x} of G is
called the isotropy subgroup of x.

Remark. The map i : G/Gx −→ M defined by i : g.Gx 7→ g.x ∈ M is a G-
equivariant initial immersion with image G.x. [19], Theorem 5.14

G �`x

��
p

M

G/Gx

�
�

� ���

i

If G is compact, then clearly i is an embedding.
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4.6. Lemma. Let M be a G-manifold and x, y ∈M , then

(1) Ggx = g.Gx.g
−1

(2) G.x ∩G.y 6= ∅ ⇒ G.x = G.y
(3) Tx(G.x) = Te(`

x).g

Proof.

(1) a ∈ Ggx ⇔ ag.x = g.x⇔ g−1ag.x = x ⇐⇒ g−1ag ∈ Gx ⇔ a ∈ g Gxg−1.

(2) z ∈ G.x ∩ G.y ⇒ z = g1.x = g2.y ⇒ x = g−1
1 g2y =: g.y, therefore G.x =

G.(g.y) = G.y.
(3) X ∈ Tx(G.x) ⇔ X = d

dt

∣∣
t=0

c(t) for some smooth curve c(t) = gt.x ∈ G.x
with g0 = e. So we have X = d

dt

∣∣
t=0

`x(gt) ∈ Te(`x).g. ¤

4.7. Conjugacy Classes. The closed subgroups of G can be partitioned into
equivalence classes by the following relation:

H ∼ H ′ :⇐⇒ ∃ g ∈ G for which H = gH ′g−1

The equivalence class of H is denoted by (H).
First consequence: ( with lemma 4.6(1) ) The conjugacy class of an isotropy sub-
group is invariant under the action of G : (Gx) = (Ggx). Therefore we can assign
to each orbit G.x the conjugacy class (Gx). We will call (Gx) the isotropy type
of the orbit through x, and two orbits are said to be of the same type, if they have
the same isotropy type.

If G is compact, we can define a partial ordering on the conjugacy classes simply
by transferring the usual partial ordering “⊆” on the subgroups to the classes:

(H) ≤ (H ′) :⇐⇒ ∃ K ∈ (H),K ′ ∈ (H ′) : K ⊆ K ′

This is equivalent to a shorter definition:

(H) ≤ (H ′) :⇐⇒ ∃ g ∈ G : H ⊂ gH ′g−1

If G is not compact this relation may not be antisymmetric. For compact G the
antisymmetry of this relation is a consequence of the following

4.8. Lemma [5], 1.9. Let G be a compact Lie group, H a closed subgroup of G,
then

gHg−1 ⊆ H =⇒ gHg−1 = H

Proof. By iteration, gHg−1 ⊆ H implies gnHg−n ⊆ H for all n ∈ N. Now let us
study the set A := {gn : n ∈ N0}. We will show that g−1 is contained in its closure.

Suppose first that e is an accumulation point of Ā. Then for any neighborhood U
of e there is a gn ∈ U where n > 0. This implies gn−1 ∈ g−1U ∩ A. Since the sets
g−1U form a neighborhood basis of g−1, we see that g−1 is an accumulation point
of A as well. That is, g−1 ∈ Ā.

Now suppose that e is discrete in Ā. Then since G is compact, A is finite. Therefore
gn = e for some n > 0, and gn−1 = g−1 ∈ A.

Since conj : G×G −→ G is continuous and H is closed, we have

conj(Ā,H) ⊆ H.
In particular, g−1Hg ⊆ H which together with our premise implies that gHg−1 =
H. ¤
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4.9. Definition. Let M and N be G-manifolds. A smooth map f : M −→ N is
called equivariant, if it satisfies f(g.x) = g.f(x) for all x in M and g in G.

4.10. Definition. Let M be a G-manifold. The orbit G.x is called principal
orbit, if there is an invariant open neighborhood U of x in M and for all y ∈ U an
equivariant map f : G.x −→ G.y.

Remark.

(1) The equivariant map f : G.x −→ G.y of the definition is automatically
surjective :
Let f(x) =: a.y. For an arbitrary z = g.y ∈ G.y this gives us
z = g.y = ga−1a.y = ga−1f(x) = f(ga−1.x).

(2) The existence of f in the above definition is equivalent to the condition :
Gx ⊆ aGya−1 for some a ∈ G:
(⇒) g ∈ Gx ⇒ g.x = x ⇒ g.f(x) = f(g.x) = f(x) and for f(x) =: a.y
this implies ga.y = a.y ⇒ g ∈ Gay = aGya

−1(by 4.6(1)).
(⇐) Define f : G.x −→ G.y explicitly by f(g.x) := ga.y. Then we have
to check that, if g1.x = g2.x i.e. g := g−1

2 g1 ∈ Gx, then g1a.y = g2a.y or
g ∈ Gay = aGya

−1. This is guaranteed by our assumption.
(3) We call x ∈M a regular point if G.x is a principal orbit. Otherwise, x is

called singular. The subset of all regular (singular) points in M is denoted
by Mreg ( Msing ).

4.11. Definition. Let M be a G-manifold and x ∈ M then a subset S ⊆ M is
called a slice at x, if there is a G-invariant open neighborhood U of G.x and a
smooth equivariant retraction r : U −→ G.x such that S = r−1(x).

4.12. Proposition. If M is a G-manifold and S = r−1(x) a slice at x ∈M , where
r : U −→ G.x is the corresponding retraction, then

(1) x ∈ S and Gx.S ⊆ S
(2) g.S ∩ S 6= ∅ ⇒ g ∈ Gx
(3) G.S = {g.s : g ∈ G, s ∈ S} = U

Proof.

(1) x ∈ S is clear, since S = r−1(x) and r(x) = x. To show that Gx.S ⊆ S,
take an s ∈ S and g ∈ Gx. Then r(g.s) = g.r(s) = g.x = x, and therefore
g.s ∈ r−1(x) = S.

(2) g.S ∩ S 6= ∅ ⇒ g.s ∈ S for some s ∈ S ⇒ x = r(g.s) = g.r(s) = g.x ⇒ g ∈
Gx.

(3) (⊆) Since r is defined on U only, and U is G-invariant, G.S = G.r−1(x) ⊆
G.U = U .
(⊇) Consider y ∈ U with r(y) = g.x, then y = g.(g−1.y) and g−1.y ∈ S,
since r(g−1.y) = g−1.r(y) = g−1g.x = x so y ∈ G.S. ¤

4.13. Corollary. If M is a G-manifold and S a slice at x ∈M , then

(1) S is a Gx-manifold.
(2) Gs ⊆ Gx for all s ∈ S.
(3) If G.x is a principal orbit and Gx compact, then Gy = Gx for all y ∈ S if

the slice S at x is chosen small enough. In other words, all orbits near G.x
are principal as well.
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(4) If two Gx-orbits Gx.s1, Gx.s2 in S have the same orbit type as Gx-orbits in
S, then G.s1 and G.s2 have the same orbit type as G-orbits in M .

(5) S/Gx ∼= G.S/G is an open neighborhood of G.x in the orbit space M/G.

Proof.

(1) This is is clear from 4.12(1).
(2) g ∈ Gy ⇒ g.y = y ∈ S ⇒ g ∈ Gx by 4.12(2).
(3) By (2) we have Gy ⊆ Gx, so Gy is compact as well. Because G.x is principal

it follows that for y ∈ S close to x, Gx is conjugate to a subgroup of
Gy, Gy ⊆ Gx ⊆ g.Gyg

−1. Since Gy is compact, Gy ⊆ g.Gyg
−1 implies

Gy = g.Gyg
−1 by 4.8. Therefore Gy = Gx, and G.y is also a principal

orbit.
(4) For any s ∈ S it holds that (Gx)s = Gs, since (Gx)s ⊆ Gs, and, conversely,

by (2), Gs ⊆ Gx, therefore Gs ⊆ (Gx)s. So (Gx)s1 = g(Gx)s2g
−1 implies

Gs1 = gGs2g
−1 and the G-orbits have the same orbit type.

(5) The isomorphism S/Gx ∼= G.S/G is given by the map Gx.s 7→ G.s (it is an
injection by 4.12(2)). Since G.S = U is an open G-invariant neighborhood
of G.x in M (4.12(3)), we have G.S/G is an open neighborhood of G.x in
M/G. ¤

4.14. Remark. The converse to 4.13(4) is generally false. If the twoG-orbitsG.s1,
G.s2 are of the same type, then the isotropy groups Gs1 and Gs2 are conjugate
in G. They need not be conjugate in Gx. For example, consider the compact
Lie group G := (S1 × S1)sZ2 with multiplication ”◦” defined as follows. Let
ϕ1, ϕ2, ψ1, ψ2 ∈ S1 and α, β ∈ Z2. Take on S1 × S1 the usual multiplication by
components, and as Z2-action:

i :0̄ 7→ i0 := idS1×S1

1̄ 7→ (i1 : (ϕ1, ϕ2) 7→ (ϕ2, ϕ1)).

Then

(ϕ1, ϕ2, α) ◦ (ψ1, ψ2, β) := ((ϕ1, ϕ2).iα(ψ1, ψ2), α+ β)

shall give the multiplication on (S1 × S1)sZ2.
Now we let G act on M := V tW where V = W = R2 × R2. For any element in
M we will indicate its connected component by the index (x, y)V or (x, y)W . The
action shall be the following

(ϕ1, ϕ2, 0̄).(x, y)V := (ϕ1.x, ϕ2.y)V

(ϕ1, ϕ2, 1̄).(x, y)V := (ϕ1.y, ϕ2.x)W

The action on W is simply given by interchanging the V ’s and W ’s in the above
formulae. This really defines an action as can be verified directly, for example,

(ϕ1, ϕ2, 1̄).((ψ1, ψ2, 1̄).(x, y)V ) = (ϕ1, ϕ2, 1̄).(ψ1.y, ψ2.x)W

= (ϕ1ψ2.x, ϕ2ψ1.y)V = (ϕ1ψ2, ϕ2ψ1, 0̄)(x, y)V

= ((ϕ1, ϕ2, 1̄) ◦ (ψ1, ψ2, 1̄)).(x, y)V .
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Denote by H the abelian subgroup S1 × S1 × {0̄}. H is the isotropy subgroup of
(0, 0)V , and V is a slice at (0, 0)V . Now consider s1 := (0, v1)V and s2 := (v2, 0)V ,
both not equal to zero. Then let

H1 := Gs1 = S1 × {id} × {0̄}
H2 := Gs2 = {id} × S1 × {0̄}

H1 and H2 are conjugate in G by c = (id, id, 1̄):

H1 ◦ c 3 (ϕ, id, 0̄) ◦ c = (ϕ, id, 1̄) = c ◦ (id, ϕ, 0̄) ∈ c ◦H2

Yet they are clearly not conjugate in H since H is abelian. So H.s1 and H.s2 have
different orbit types in H while G.s1 and G.s2 are of the same G-orbit type.

4.15. Proposition. Let M be a G-manifold and S a slice at x, then there is a
G-equivariant diffeomorphism of the associated bundle G [S] onto G.S,

f : G [S] = G×Gx
S −→ G.S

which maps the zero section G×Gx
{x} onto G.x.

Proof. Since `(gh, h−1.s) = g.s = `(g, s) for all h ∈ Gx, there is an f : G[S] −→
G.S such that the diagram below commutes.

G× S �`

��
q

G.S

G×Gx
S

�
�

�
���

f

f is smooth because f ◦ q = ` is smooth and q is a submersion. It is equivariant
since ` and q are equivariant. Also, f maps the zero section G ×Gx

{x} onto G.x.
It remains to show that f is a diffeomorphism. f is bijective, since with 4.12(2)

g1.s1 = g2.s2 ⇐⇒ s1 = g−1
1 g2.s2 ⇐⇒

g1 = g2h
−1 and s1 = h.s2 for h = g−1

1 g2 ∈ Gx

and this is equivalent to
q(g1, s1) = q(g2, s2).

To see that f is a diffeomorphism let us prove that the rank of f equals the dimen-
sion of M . First of all, note that

Rank(`g) = dim(g.S) = dimS

and Rank(`x) = dim(G.x)

Since S = r−1(x) and r : G.S −→ G.x is a submersion (r |G.x = id) it follows that
dim(G.x) = codimS. Therefore,

Rank(f) = Rank(`) = Rank(`g) + Rank(`x) =

dimS + dim(G.x) = dimS + codimS = dimM.
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¤

4.16. Remark. The converse also holds. If f̄ : G×Gx
S −→ G.S is a G-equivariant

diffeomorphism, then for some ḡ ∈ G, s̄ ∈ S, f̄ [ḡ, s̄] = x. So f [g, s] := f̄ [gḡ, s] defines
a G-equivariant diffeomorphism with the additional property that x = f [e, s̄].

G×Gx
S

f−−−−→ G.S

pr1

y r

y

G/Gx
i−−−−→ G.x

If we define r := i ◦ pr1 ◦ f−1 : G.S −→ G.x, then r is again a smooth G-equivariant
map, and it is a retraction onto G.x since

x
f−1

−−→ [e, s̄]
pr1−−→ e.Gx

i−→ e.x.

Furthermore, r−1(x) = S making S a slice.
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5. Proper Actions

In this section we describe and characterize “proper” actions of Lie groups. We will
see that the following definition is tailored to generalize compact Lie group actions
while retaining many of their nice properties.

5.1. Definition. A smooth action ` : G×M −→M is called proper if it satisfies
one of the following three equivalent conditions:

(1) (`, id) : G×M −→M ×M , (g, x) 7→ (g.x, x), is a proper mapping
(2) gn.xn → y and xn → x in M , for some gn ∈ G and xn, x, y ∈ M , implies

that these gn have a convergent subsequence in G.
(3) K and L compact in M implies that {g ∈ G : g.K ∩ L 6= ∅} is compact as

well.

Proof.
(1)⇒ (2) is a direct consequence of the definitions.
(2) ⇒ (3): Let gn be a sequence in {g ∈ G : g.K ∩ L 6= ∅} and xn ∈ K such
that gn.xn ∈ L. Since K is compact, we can choose a convergent subsequence
xnk
→ x ∈ K of xn. Since L is compact we can do the same for gnk

.xnk
there. Now

(2) tells us that in such a case gn must have a convergent subsequence, therefore
{g ∈ G : g.K ∩ L 6= ∅} is compact.
(3) ⇒ (1): Let R be a compact subset of M × M . Then L := pr1(R) and
K := pr2(R) are compact, and (`, id)−1(R) ⊆ {g ∈ G : g.K ∩ L 6= ∅} ×K. By (3),
{g ∈ G : g.K ∩ L 6= ∅} is compact. Therefore (`, id)−1(R) is compact, and (`, id) is
proper. ¤

5.2. Remark. If G is compact, then every G-action is proper. If ` : G×M −→M is
a proper action and G is not compact, then for any unbounded H ⊆ G and x ∈M
the set H.x is unbounded in M . Furthermore, all isotropy groups are compact
(most easily seen from 5.1(3) by setting K = L = {x}).

5.3. Lemma. A continuous, proper map f : X −→ Y between two topological
spaces is closed.

Proof. Consider a closed subset A ⊆ X, and take a point y in the closure of f(A).
Let f(an) ∈ f(A) converge to y (an ∈ A). Then the f(an) are contained in a
bounded subset B ⊆ f(A). Therefore an ⊆ f−1(B) ∩ A which is now, since f is
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proper, a bounded subset of A. Consequently, (an) has a convergent subsequence
with limit a ∈ A, and by continuity of f , it gives a convergent subsequence of f(an)
with limit f(a) ∈ f(A). Since f(an) converges to y, we have y = f(a) ∈ f(A). ¤

5.4. Proposition. The orbits of a proper action ` : G × M −→ M are closed
submanifolds.

Proof. By the preceding lemma, (`, id) is closed. Therefore (`, id)(G, x) = G.x ×
{x}, and with it G.x is closed. Next let us show that `x : G −→ G.x is an open
mapping.

Since `x is G-equivariant, we only have to show for a neighborhood U of e that
`x(U) = U.x is a neighborhood of x. Let us assume the contrary: there is a sequence
gn.x ∈ G.x − U.x which converges to x. Then by 5.1(2), gn has a convergent
subsequence with limit g ∈ Gx. On the other hand, since gn.x /∈ U.x = U.Gx.x
we have gn /∈ U.Gx, and, since U.Gx is open, we have g /∈ U.Gx as well. This
contradicts g ∈ Gx.

Now we see that the orbits of a proper action are closed submanifolds.

G �`x
�
�
� ���
p

G.x

G/Gx

�
�

� ���

i

As the integral manifold of fundamental vector fields, G.x is an initial submanifold,
and i is an injective immersion [19], Theorem 5.14. Since i◦p = `x is open, i is open
as well. Therefore it is a homeomorphism, and G.x is an embedded submanifold of
M . ¤

5.5. Lemma. Let (M,γ) be a Riemannian manifold and ` : G ×M −→ M an
effective isometric action (i.e. g.x = x for all x ∈ M ⇒ g = e), such that `(G) ⊆
Isom(M,γ) is closed in the compact open topology. Then ` is proper.

Proof. Let gn ∈ G and xn, x, y ∈ M such that gn.xn → y and xn → x then we
have to show that gn has a convergent subsequence which is the same as proving
that {gn : n ∈ N} is relatively compact, since `(G) ⊆ Isom(M,γ) is closed.

Let us choose a compact neighborhood K of x in M . Then, since the gn act isomet-
rically, we can find a compact neighborhood L ⊆ M of y such that

⋃∞
n=1 gn.K is

contained in L. So {gn} is bounded. Furthermore, the set of all gn is equicontinuous
as subset of Isom(M). Therefore, by the theorem of Ascoli-Arzela, {gn : n ∈ N} is
relatively compact. ¤

5.6. Theorem (Existence of Slices). [31], 1961
Let M be a G-space, and x ∈ M a point with compact isotropy group Gx. If for
all open neighborhoods W of Gx in G there is a neighborhood V of x in M such
that {g ∈ G : g.V ∩ V 6= ∅} ⊆W , then there exists a slice at x.

Proof. Let γ̃ be any Riemann metric on M . Since Gx is compact, we can get a
Gx-invariant metric by integrating over the Haar-measure for the action of Gx.

γx(X,Y ) :=

∫

Gx

(`∗aγ̃)(X,Y )da =

∫

Gx

γ̃(T`aX,T`aY )da
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Now if we choose ε > 0 small enough for expγx : TxM ⊇ B 0x
(ε) −→ M to be a

diffeomorphism onto its image, we can define:

S̃ := expγx
(
Tx(G.x)⊥ ∩B 0x

(ε)
)
⊆M.

S̃ is a submanifold of M and the first step towards obtaining a real slice. Let us
show that S̃ is Gx-invariant. Since Gx leaves γ unchanged and Tx(G.x) is invariant
under Tx`g (for g ∈ Gx), Tx`g is an isometry and leaves Tx(G.x)⊥∩B 0x

(ε) invariant.
Therefore:

Tx(G.x)⊥ ∩B 0x
(ε)

Tx`g−−−−→ Tx(G.x)⊥ ∩B 0x
(ε)

yexpγ
x

yexpγ
x

S̃
`g−−−−→ S̃

What is not necessarily true for S̃ is that any g ∈ G which maps some s ∈ S̃ back
into S̃ is automatically in Gx. This property is necessary for a slice, and we will
now try to attain it for a Gx-invariant subset S ⊆ S̃. At this point, the condition
that for every open neighborhood W of Gx in G, there is a neighborhood V of x in
M such that {g ∈ G : g.V ∩ V 6= ∅} ⊆ W comes in. The idea is to find a suitable

W and corresponding V such that V ∩ S̃ has the desired property.

First we must construct a W fitting our purposes. Choose an open neighborhood
U ⊆ G/Gx of e.Gx such that there is a smooth section χ : U −→ G of π : G −→ G/Gx
with χ(e.Gx) = e. And let U and possibly S̃ be small enough for us to get an
embedding

f : U × S̃ −→M : (u, s) 7→ χ(u).s.

Our neighborhood of Gx will be W := π−1(U). Now by our assumption, there is a
neighborhood V of x in M such that {g ∈ G : g.V ∩ V 6= ∅} ⊆W .

Next we will prove that V can be chosen Gx-invariant. Suppose we can choose an
open neighborhood W̃ of Gx in G such that Gx.W̃ ⊆W (we will prove this below).

Then let V ′ be the neighborhood of x in M satisfying {g ∈ G : g.V ′∩V ′ 6= ∅} ⊆ W̃ .
Now V := Gx.V

′ has the desired property, since:

{g ∈ G : g.Gx.V
′ ∩Gx.V ′ 6= ∅} =

⋃

g1,g2∈Gx

{g ∈ G : g.g1.V
′ ∩ g2.V ′ 6= ∅} =

⋃

g1,g2∈Gx

{g ∈ G : g−1
2 gg1.V

′ ∩ V ′ 6= ∅} =
⋃

g1,g2∈Gx

g2{g ∈ G : g.V ′ ∩ V ′ 6= ∅}g−1
1 =

Gx.{g ∈ G : g.V ′ ∩ V ′ 6= ∅}.Gx ⊆ Gx.W̃ .Gx ⊆W.Gx ⊆W

To complete the above argumentation, we have left to prove the
Claim: To any open neighborhood W of Gx in G there is an open neighborhood
W̃ of Gx such that Gx.W̃ ⊆W .
Proof: The proof relies on the compactness of Gx. Choose for all (a, b) ∈ Gx ×
Gx neighborhoods Aa,b of a and Ba,b of b, such that Aa,b.Ba,b ⊆ W . This is
possible by continuity, since Gx.Gx = Gx. {Ba,b : b ∈ Gx} is an open covering of

Gx. Then since Gx is compact, there is a finite subcovering
⋃N
j=1Ba,bj

:= Ba ⊇ Gx.

Since Aa,bj
.Ba,bj

⊆ W we must choose Aa :=
⋂N
j=1Aa,bj

, to get Aa.Ba ⊆ W .
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Now since Aa is a neighborhood of a in Gx, the Aa cover Gx again. Consider a
finite subcovering A :=

⋃n
j=1Aaj

⊇ Gx, and as before define B :=
⋂n
j=1Baj

, so

that A.B ⊆ W . In particular, this gives us Gx.B ⊆ W , so W̃ := B is an open
neighborhood of Gx with the desired property.

We have found a Gx-invariant neighborhood V of x, with {g ∈ G : gV ∩ V 6= ∅}
contained inW . Now we define S := S̃∩V and hope for the best. S is an open subset
of S̃, and it is again invariant under Gx. Let us check whether we have the converse:
{g ∈ G : g.S∩S 6= ∅} ⊆ Gx. If g.s1 = s2 for some s1, s2 ∈ S, then g ∈W = π−1(U)
by the above effort. Therefore π(g) ∈ U . Choose h = g−1χ(π(g)) ∈ Gx. Then

f(π(g), h−1s1) = χ(π(g))h−1s1 = g.s1 = s2 = f(π(e), s2).

Since f is a diffeomorphism onto its image, we have shown that π(g) = π(e), that
is g ∈ Gx.

Now, it is easy to see that F : G ×Gx
S −→ G.S : [g, s] 7→ g.s is well defined,

G-equivariant and smooth. We have the diagram

G× S �`
�
�
� ����
q

G.S

G×Gx
S

�
�

�
���

F

To finish the proof, we have to show that F is a diffeomorphism (4.16). F is injective
because:

F [g, s] = F [g′, s′]⇒ g.s = g′.s′ ⇒ g−1g′.s′ = s

⇒ g−1g′ ∈ Gx ⇒ [g, s] = [g, g−1g′.s′] = [g′, s′]

Next, we notice that `(W,S) = W.S = f(U, S) is open in M since f : U× S̃ −→M is
an embedding with an open image. Consequently, G.S = `(G,W.S) is open, since
` is open, and F is a diffeomorphism. ¤

5.7. Theorem. If M is a proper G-manifold, then for all x ∈ M the conditions
of the previous theorem are satisfied, so each x has slices.

Proof. We have already shown that Gx is compact (5.2(2)). Now for every neigh-
borhood U of Gx in G, for every x ∈M , it remains to find a neighborhood V of x
in M such that

{g ∈ G : g.V ∩ V 6= ∅} ⊆ U.

Claim: U contains an open neighborhood Ũ with GxŨ = Ũ ( so we will be able to
assume GxU = U without loss of generality ).

In the proof of theorem 5.6 we showed the existence of a neighborhood B of Gx such
that Gx.B ⊆ U , using only the compactness of Gx. So Ũ := Gx.B =

⋃
g∈Gx

g.B is
again an open neighborhood of Gx, and it has the desired properties.

Now we can suppose U = Gx.U . Next, we have to construct an open neighborhood
V ⊆ M of x, such that {g ∈ G : g.V ∩ V 6= ∅} ⊆ U . This is the same as saying
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(G − U).V ∩ V should be empty. So we have to look for V in the complement of
(G− U).x.

First we have to check that M−((G−U).x) really contains an open neighborhood of
x. Upon closer inspection, we see that M−((G−U).x) is open altogether, or rather
that (G−U).x is closed. This is because (G−U).x×{x} = (`, id)((G−U)×{x})
is the image of a closed set under (`, id) which is a closed mapping by lemma 5.3.

Now let us choose a compact neighborhood W of x in M − ((G − U).x). Then
since G acts properly, it follows that {g ∈ G : g.W ∩ W 6= ∅} is compact, in
particular K := {g ∈ G− U : g.W ∩W 6= ∅} is compact. But what we need is for
{g ∈ G − U : g.V ∩ V 6= ∅} to be empty. An x-neighborhood V contained in W
fulfills this, if K.V ⊆M −W . Let us find such a neighborhood.

Our choice of W guarantees K.x ⊆ M −W . But M −W is open, therefore for
each k ∈ K we can choose a neighborhood Qk of k in G and Vk of x in W , such
that Qk.Vk ⊆ M − W . The neighborhoods Qk cover K, and we can choose a
finite subcovering

⋃m
j=1Qj . Then V :=

⋂m
j=1 Vj has the desired property : K.V ⊆

M −W . ¤

5.8. Lemma. Let M be a proper G-manifold , V a linear G-space and f : M −→ V
smooth with compact support, then

f̃ : x 7→
∫

G

g−1f(g.x)dµr(g)

is a G-equivariant C∞-map with f̃(x) = 0 for x /∈ G. supp f (where dµr stands for
the right Haar measure on G).

Proof. Since G acts properly, {g ∈ G : g.x ∈ supp f} is compact. Therefore the

map g 7→ g−1f(g.x) has compact support, and f̃ is well defined. To see that f̃
is smooth, let x0 be in M , and U a compact neighborhood of x0. Then the set
{g ∈ G : g.U ∩ supp f 6= ∅} is compact. Therefore, f̃ restricted to U is smooth, in

particular f̃ is smooth in x0. f̃ is G-equivariant, since

f̃(h.x) =

∫

G

g−1f(gh.x)dµr(g) =

=

∫

G

h(gh)−1f(gh.x)dµr(g) = h.

∫

G

g−1f(g.x)dµr(g) = hf̃(x).

Furthermore, x /∈ G. supp f ⇒ f(g.x) = 0 for all g ∈ G⇒ f̃(x) = 0. ¤

5.9. Corollary. If M is a proper G-manifold, then M/G is completely regular.

Proof. Choose F ⊆ M/G closed and x̄0 = π(x0) /∈ F . Now let U be a compact
neighborhood of x0 in M fulfilling U ∩ π−1(F ) = ∅, and f ∈ C∞ (M, [0,∞)) with
support in U such that f(x0) > 0. If we take the trivial representation of G on

R, then from lemma 5.8 it follows that f̃ : x 7→
∫
G
f(g.x)dµr(g) defines a smooth

G-invariant function. Furthermore, f̃(x0) > 0. Since supp f̃ ⊆ G. supp f ⊆ G.U ,

we have supp f̃ ∩ π−1(F ) = ∅. Because f̃ ∈ C∞ (M, [0,∞))
G

, f factors over π to a
map f̄ ∈ C0(M/G, [0,∞)), with f̄(x̄0) > 0 and f̄

∣∣
F

= 0. ¤
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5.10. Theorem. IfM is a properG-manifold, then there is aG-invariant Riemann
metric on M .

Proof. By 5.7 there is a slice Sx at x for all x ∈ M . If π : M −→ M/G is the
quotient map, then we will show the existence of a sequence xn ∈ M such that
π(Sxn

) is a locally finite covering of M/G. To do so, notice first that M/G is
locally compact (in particular Hausdorff), σ-compact and therefore normal.

Since M/G is σ-compact and Hausdorff, there is a countable locally finite covering
by compact sets Ci. Each Ci, in turn, is covered by {π(Sx) : x ∈ π−1(Ci)}. Since
Ci is compact, there is a finite subcovering, and these taken all together give the
desired covering of M/G.

Let us now construct a neighborhood Kn of xn in Sxn
(=: Sn) such that Kn has

compact closure in Sn and {π(Kn)} is still a covering.

Take a Ci from above. If {π(Sj) : j ∈ F ⊂ N, finite} covers Ci, then consider the
complement of

⋃
j∈F\{l} π(Sj) in Ci. This is a compact set contained in Ci with

open neighborhood π(Sl), so it has a relatively compact neighborhood Rl with
R̄l ⊂ π(Sl), since M/G is normal. Kl := π−1(Rl) ∩ Sl is relatively compact due to
the compactness of Gxl

: Ki is a subset of Si, so 4.13(5) states that Ri ∼= Ki/Gxi
,

so R̄i ∼= K̄i/Gxi
and with R̄i, K̄i must be compact, since Gxi

is compact.

If we choose fn ∈ C∞ (M, [0,∞)) with fn |Kn
> 0 and supp(fn) ⊆ G.Sn compact,

then

f̄n(x) :=

∫

G

fn(g.x)dµr(g) ∈ C∞ (M, [0,∞))
G

is positive on G.Kn and has supp(f̄n) ⊆ G.Sn. The action of the compact group
Gxn

on TM |Sn
is fiber linear, so there is a Gx-invariant Riemann metric γ(n) on

the vector bundle TM |Sn
by integration. To get a Riemann metric on TM |G.Sn

invariant under the whole group G, consider the following diagram.

G× TM |Sxn

�T2`

��
q

TM |G.Sxn

�

G×Gxn
TM |Sxn

�
�

� ���

T̃2`

�

G×Gxn
Sxn

�
∼= G.Sxn

T2` : (g,Xs) 7→ Ts`g.Xs factors over q to a map T̃2`. This map is injective, since
if T2`(g,Xs) = T2`(g

′, Xs′), then on the one side `(g.s) = `(g′.s′) so g−1g′.s′ =
s and g−1g′ ∈ Gx. On the other side, Ts`g.Xs = Ts′`g′ .Xs′ . So (g′, Xs′) =(
g(g−1g′), Ts′`g′−1 Ts`g.Xs

)
. And, therefore, q(g′, Xs′) = q(g,Xs).

The Riemann metric γ(n) induces a G-invariant vector bundle metric on G ×
TM |Sn

−→ G× Sn by

γn(g,Xs, Ys) := γ(n)(Xs, Ys).

It is also invariant under the Gx-action h.(g,Xs) = (gh−1, T `h.Xs) and, therefore,
induces a Riemann metric γ̃n on G×Gx

TM |Sn
. This metric is again G-invariant,
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since the actions of G and Gx commute. Now (T̃2`)∗γ̃n =: γ̄n is a G-invariant
Riemann metric on TM |G.Sn

, and

γ :=
∞∑

n=1

f̄n(x)γ̄n

is a G-invariant Riemann metric on M . ¤

Remark. By a theorem of Mostow (1957), if G is a compact Lie group, then any
G-manifold M with a finite number of orbit types can be embedded into some
(higher dimensional) vector space V in such a way that the action of G on M can
be extended to a linear action on V (see [5], pp.110–112). A more recent result is
the following theorem found in [31].

5.11. Theorem. [31]
Let G be a matrix group, that is a Lie group with a faithful finite dimensional
representation, and let M be a G-space with only a finite number of orbit types.
Then there is a G-equivariant embedding f : M −→ V into a linear G-space V.
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6. Riemannian G-manifolds

6.1. Preliminaries. Let (M,γ) be a Riemannian G-manifold. If ϕ : M −→ M is
an isometric diffeomorphism, then

(1) ϕ(expMx (tX)) = expMϕ(x)(tTxϕ.X). This is due to the fact that isometries

map geodesics to geodesics, and the starting vector of the geodesic t 7→
ϕ(expMx (t.X)) is Txϕ.X.

(2) If ϕ(x) = x, then, in the chart (Ux, (expMx )−1), ϕ is a linear isometry
(where Ux is neighborhood of x so small, that (expMx )−1 : Ux −→ TxM is a
diffeomorphism onto a neighborhood of 0 in TxM) :

ϕ̄(X) := (expMx )−1 ◦ ϕ ◦ expMx (X) = (expMx )−1 expMx (Txϕ.X) = Txϕ.X

(3) Fix(ϕ) = {x ∈M : ϕ(x) = x} is a totally geodesic submanifold of M :
If we choose X ∈ Tx Fix(ϕ), then, since Txϕ.X = X and by (1), we have

ϕ(expMx (tX)) = expMx (Txϕ.tX) = expMx (tX).

So the geodesic through x with starting vector X stays in Fix(ϕ).
(4) If H is a set of isometries, then Fix(H) = {x ∈M : ϕ(x) = x for all ϕ ∈ H}

is also a totally geodesic submanifold in M .

6.2. Definition. Let M be a proper Riemannian G-manifold, x ∈M . The normal

bundle to the orbit G.x is defined as

Nor(G.x) := T (G.x)⊥

Let Norε(G.x) = {X ∈ Nor(G.x) : |X | < ε}, and choose r > 0 small enough
for expx : TxM ⊇ Br(0x) −→ M to be a diffeomorphism onto its image and for
expx(Br(0x)) ∩ G.x to have only one component. Then, since the action of G is
isometric, exp defines a diffeomorphism from Norr/2(G.x) onto an open neighbor-

hood of G.x, so exp
(
Norr/2(G.x)

)
=: Ur/2(G.x) is a tubular neighborhood of G.x.

We define the normal slice at x by

Sx := expx
(
Norr/2(G.x)

)
x
.
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6.3. Lemma. Under these conditions we have

(1) Sg.x = g.Sx.
(2) Sx is a slice at x.

Proof.

(1) Since G acts isometrically and by 6.1(1) :

Sg.x = expg.x
(
Tx`g

(
Norr/2(G.x)

)
x

)
= `g expx

(
Norr/2(G.x)

)
x

= g.Sx

(2) r : G.Sx −→ G.x : expg.xX 7→ g.x defines a smooth equivariant retraction
(note that Sx and Sy are disjoint if x 6= y). ¤

6.4. Definition. LetM be aG-manifold and x ∈M , then there is a representation
of the isotropy group Gx

Gx −→ GL(TxM) : g 7→ Tx`g

called isotropy representation. If M is a Riemannian G-manifold, then the
isotropy representation is orthogonal, and Tx(G.x) is an invariant subspace under
Gx. So Tx(G.x)⊥ is also invariant, and

Gx −→ O(Norx(G.x)) : g 7→ Tx`g

is called the slice representation.

6.5. Example. Let M = G be a compact Lie group with a biinvariant metric.
Then G×G acts on G by (g1, g2).g := g1gg

−1
2 , making G a Riemannian (G×G)-

space. The isotropy group of e is (G × G)e = {(g, g) : g ∈ G}, and the isotropy
representation coincides with the adjoint representation of G ∼= (G × G)e on g =
Te(G).

6.6. Example. Let G/K be a semisimple symmetric space (G compact) and
g = k + p the corresponding orthogonal decomposition of the Lie algebra g with
regard to the negative Cartan-Killing form −B. Then Te(G/K) ∼= g/k ∼= p, and the
isotropy subgroup ofG at e isK. The isotropy representation is Ad⊥K,G : K −→ O(p).
The slices are points since the action is transitive.

6.7. Lemma. Let M be a proper Riemannian G-manifold, x ∈ M . Then the
following three statements are equivalent:

(1) x is a regular point.
(2) The slice representation at x is trivial.
(3) Gy = Gx for all y ∈ Sx for a sufficiently small slice Sx.

Proof. Clearly, (2)⇐⇒ (3). To see (3) =⇒ (1), let Sx be a small slice at x. Then
U := G.S is an open neighborhood of G.x in M , and for all g.s ∈ U we have
Gg.s = gGsg

−1 = gGxg
−1. Therefore G.x is a principal orbit. The converse is true

by 4.13(3), since Gx is compact. ¤
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6.8. Definition. Let M be a Riemannian G-manifold and G.x some orbit, then
a smooth section u of the normal bundle Nor(G.x) is called equivariant normal
field, if

Ty(`g).u(y) = u(g.y) for all y ∈ G.x, g ∈ G.

6.9. Corollary. Let M be a proper Riemannian G-manifold and x a regular point.
If X ∈ Norx(G.x), then X̂(g.x) := Tx(`g).X is a well defined equivariant normal
field along G.x in M .

Proof. If g.x = h.x then h−1g ∈ Gx ⇒ Tx
(
`h−1g

)
.X = X, since the slice rep-

resentation is trivial by (2) above. Now by the chain rule: Tx(`g).X = Tx(`h).X.

Therefore X̂ is a well defined, smooth section of Nor(G.x). It is equivariant by
definition. ¤

6.10. Corollary. Let M be a Riemannian G-manifold, G.x a principal orbit, and
(u1, . . . , un) an orthonormal basis of Norx(G.x). By corollary 6.9, each ui defines
an equivariant normal field ûi. So (û1, . . . , ûn) is a global equivariant orthonormal
frame field for Nor(G.x), and Nor(G.x) is a trivial bundle. ¤

This follows also from the tubular neighborhood description G.Sx ∼= G ×Gx
Sx,

where Sx is a normal slice at x with trivial Gx-action, see 6.7.

6.11. Definition. Let (M,γ) be a Riemannian manifold and ∇M its Levi-Civita
covariant derivative. If P is a submanifold of M and ∇P the induced covariant
derivative on P , then the second fundamental form S ∈ C∞

(
S2T ∗P ⊗Nor(P )

)

is given by the so called Gauss equation:

∇MX Y = ∇PXY + S(X,Y ) for X,Y ∈ X(P )

In other words, S(X,Y ) is the part of the covariant derivative in M orthogonal to
P .

6.12. Definition. Let (M,γ) be a Riemannian G-manifold and u an equivariant
normal field along an orbit P := G.x0. Then Xx ∈ TxP defines a linear form on
TxP by

Yx 7→ γ(S(Xx, Yx), u(x)).

Therefore, there is a vector Su(x)(Xx) ∈ TxP such that

γ |TP (Su(x)(Xx), Yx) = γ(S(Xx, Yx), u(x))

This assignment defines a linear map Su(x) : TxP −→ TxP called the shape op-
erator of P in the normal direction u(x). For hypersurfaces it is also known as
the Weingarten endomorphism. Its eigenvalues are called the main curvatures of P
along u.

6.13. Lemma. Let u be an equivariant normal field along an orbit P := G.x0,
then

(1) Su(g.x) = Tx(`g).Su(x).Tg.x(`g−1)
(2) The main curvatures of P along u are all constant.
(3) {expM (u(x)) : x ∈ P = G.x0} is another G-orbit.
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Proof.

(1) Since γ is G-invariant and S is G-equivariant:

γ
(
Su(g.x) (Xg.x) , Yg.x

)
= γ (S (Xg.x, Yg.x) , u(g.x)) =

= γ
(
T`gS

(
T`g−1Xg.x, T `g−1Yg.x

)
, T `g(u(x))

)
=

= γ
(
S
(
T`g−1Xg.x, T `g−1Yg.x

)
, u(x)

)
=

= γ
(
Su(x) ◦ T`g−1(Xg.x), T `g−1Yg.x

)
= γ

(
T`g ◦ Su(x) ◦ T`g−1(Xg.x), Yg.x

)

(2) By (1) Su(g.x) results from Su(x) by a linear coordinate transformation,
which does not affect the eigenvalues.

(3) {expM (u(x)) : x ∈ P = G.x0} = G. expM (u(x0)), since

g. expM (u(x0)) = expM (T`g.u(x0)) = expM (u(g.x0)).

¤

6.14. Example. Let Nn(c) be the simply connected space form with constant
sectional curvature c, that is

Nn(c) = Sn, sphere with radius
1

c
if c > 0

= Rn if c = 0

= Hn, hyperbolic sphere with radius
1

|c| if c < 0.

Let G be a closed subgroup of Isom(Nn(c)). If P is a G-orbit, then so is the subset
{exp(u(x)) : x ∈ P} for any equivariant normal field u along P . For instance

(1) If G = SO(n) ⊂ Isom(Rn), then the G-orbits are the spheres with center 0.
A radial vector field with constant length on each sphere, u(x) := f(|x|).x,
defines an equivariant normal field on each orbit. Clearly its flow carries
orbits back into orbits.

(2) Another example is the subgroup

G = {f : x 7→ x+ λv : λ ∈ R, v ∈ 〈v1, v2, . . . , vm〉}
of Isom(Rn) consisting only of affine translations in certain fixed directions.
Here the orbits of G are then parallel planes of dimension m. An equi-
variant normal field on an orbit is a constant vector field orthogonal to
v1, v2, . . . , vm.

6.15. Theorem. Let M be a proper G-manifold, then the set of all regular points
Mreg is open and dense in M . In particular, there is always a principal orbit type.

Proof. Suppose x ∈Mreg. By 5.7 there is a slice S at x, and by 4.13(3) S can be
chosen small enough for all orbits through S to be principal as well. Therefore G.S
is an open neighborhood of x in Mreg (open by 4.12(3)).

To see that Mreg is dense, let U ⊆ M be open, x ∈ U , and S a slice at x. Now
choose a y ∈ G.S ∩ U for which Gy has the minimal dimension and the smallest
number of connected components for this dimension in all of G.S ∩U . Let Sy be a
slice at y, then G.Sy ∩ G.S ∩ U is open, and for any z ∈ G.Sy ∩ G.S ∩ U we have
z ∈ g.Sy = Sg.y, so Gz ⊆ Gg.y = gGyg

−1. By choice of y, this implies Gz = gGyg
−1

for all z ∈ G.Sy ∩G.S ∩ U , and G.y is a principal orbit. ¤
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6.16. Theorem. Let M be a proper G-manifold and x ∈ M . Then there is a
G-invariant neighborhood U of x in which only finitely many orbit types occur.

Proof. By theorem 5.10 there is a G-invariant Riemann metric on M . Let S be
the normal slice at x. Then S is again a Riemannian manifold, and the compact
group Gx acts isometrically on S. In 4.13(4) we saw that, if Gx.s1 and Gx.s2 have
the same orbit type in S, then G.s1 and G.s2 have the same orbit type in M . So
the number of G-orbit types in G.S can be no more, than the number of Gx-orbit
types in S. Therefore it is sufficient to consider the case where G is a compact Lie
group. Let us now prove the assertion under this added assumption. We carry out
induction on the dimension of M .

For n = 0 there is nothing to prove. Suppose the assertion is proved for dimM < n.
Again, it will do to find a slice S at x with only a finite number of Gx-orbit
types. If dimS < dimM , this follows from the induction hypothesis. Now suppose
dimS = n. S is equivariantly diffeomorphic to an open ball in TxM under the slice
representation (by exp). Since the slice representation is orthogonal, it restricts to
a Gx-action on the sphere Sn−1. By the induction hypothesis, locally, Sn−1 has
only finitely many Gx-orbit types. Since Sn−1 is compact, it has only finitely many
orbit types globally. The orbit types are the same on all spheres r.Sn−1 (r > 0),
since x 7→ 1

rx is G-equivariant. Therefore, S has only finitely many orbit types:

those of Sn−1 and the 0-orbit. ¤

6.17. Theorem. If M is a proper G-manifold then the set Msing/G of all singular
G-orbits does not locally disconnect the orbit space M/G (that is to every point
in M/G the connected neighborhoods remain connected even after removal of all
singular orbits).

Proof. As in the previous theorem, we will reduce the statement to an assertion
about the slice representation. By theorem 5.10, there is a G-invariant Riemann
metric on M . Let S be the normal slice at x. Then S is again a Riemannian
manifold, and the compact group Gx acts isometrically on S. A principal Gx-orbit
is the restriction of a principal G-orbit, since Gx.s is principal means that all orbits
in a sufficiently small neighborhood of Gx.s have the same orbit type as Gx.s (6.7).
Therefore, by 4.13(4), the corresponding orbits in G.U are also of the same type,
and G.s is principal as well. So there are “fewer” singular G-orbits in G.S than
there are singular Gx-orbits in S. Now cover M with tubular neighborhoods like
G.Sx, and recall that G.Sx/G ∼= Sx/Gx by 4.13(5). This together with the above
argument shows us that it will suffice to prove the statement for the slice action.
Furthermore, like in the proof of theorem 6.18, we can restrict our considerations
to the slice representation. So we have reduced the statement to the following:

If V is a real, n-dimensional vector space and G a compact Lie group acting on V ,
then the set Vsing/G of all singular G-orbits does not locally disconnect the orbit
space V/G (that is to every point in V/G the connected neighborhoods remain
connected even after removal of all singular orbits).

We will prove this by induction on the dimension n of V . For n = 1, that is V = R,
the only nontrivial choice for G is O(1) ∼= Z2. In this case, R/G = [0,∞) and
Rsing/G = {0}. Clearly, {0} does not locally disconnect [0,∞), and we can proceed
to the general case.
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Suppose the assertion is proved for all dimensions smaller than n. Now for G ⊆
O(n) we consider the induced action on the invariant submanifold Sn−1. For any
x ∈ Sn−1 we can apply the induction hypothesis to the slice representation Gx −→
O(NorxG.x). This implies for the Gx-action on Sx, that Sx/Gx ∼= G.Sx/G is not
locally disconnected by its singular points. As above, we can again cover Sn−1

with tubular neighborhoods like G.Sx, and we see that all of Sn−1/G is not locally
disconnected by its singular orbits. Now we need to verify that the orbit space
of th unit ball Dn is not locally disconnected by its singular orbits. Since scalar
multiplication is a G-equivariant diffeomorphism, the singular orbits in V (not
including {0}) project radially onto singular orbits in Sn−1. So if we view the
ball Dn as cone over Sn−1 and denote the cone construction by coneSn−1, then
Dn

sing = coneSn−1
sing . Furthermore, we have a homeomorphism

coneSn−1/G −→ cone(Sn−1/G) : G.[x, t] 7→ [G.x, t]

since G preserves the “radius” t. Therefore

Dn/G = (coneSn−1)/G ∼= cone(Sn−1/G)

and Dn
sing/G = coneSn−1

sing /G
∼= cone

(
Sn−1

sing /G
)
.

Since Sn−1
sing /G does not locally disconnect Sn−1/G, we also see that

cone
(
Sn−1

sing /G
)
∼= Dn

sing/G

does not locally disconnect cone(Sn−1/G) ∼= Dn/G. ¤

6.18. Corollary. Let M be a connected proper G-manifold, then

(1) M/G is connected.
(2) M has precisely one principal orbit type.

Proof.

(1) Since M is connected and the quotient map π : M −→ M/G is continuous,
its image M/G is connected as well.

(2) By the last theorem we have that M/G−Msing/G = Mreg/G is connected.
On the other hand by 6.7, the orbits of a certain principal orbit type form an
open subset of M/G, in particular of Mreg/G. Therefore if there were more
than one principal orbit type, these orbit types would partition Mreg/G
into disjoint nonempty open subsets contradicting the fact that Mreg/G is
connected. ¤

6.19. Corollary. LetM be a connected, properG-manifold of dimension n and let
k be the least number of connected components of all isotropy groups of dimension
m := inf{dimGx|x ∈M}. Then the following two assertions are equivalent:

(1) G.x0 is a principal orbit.
(2) The isotropy group Gx0

has dimension m and k connected components.
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If furthermore G is connected and simply connected, these conditions are again
equivalent to

(3) The orbit G.x0 has dimension n−m and for the order of the fundamental
group we have: |π1(G.x0)| = k.

Proof. Recall that we proved the existence of a principal orbit in 6.15 just by
taking a Gx0

as described above. The other direction of the proof follows from the
above corollary. Since there is only one principal orbit type, this must be it.

If moreover G is connected and simply connection we look at the fibration Gx0
→

G → G/Gx0
= G.x0 and at the following portion of its long exact homotopy

sequence
0 = π1(G)→ π1(G.x0)→ π0(Gx0

)→ π0(G) = 0

from which we see that |π1(G.x0)| = k if and only if the isotropy group Gx0
has k

connected components. ¤

6.20. Theorem. [37] Let π : G→ O(V ) be an orthogonal, real, finite-dimensional
representation of a compact Lie group G. Let ρ1, . . . , ρk ∈ R[V ]G be homogeneous
generators for the algebra R[V ]G of invariant polynomials on V . For v ∈ V , let
Norv(G.v) := Tv(G.v)⊥ be the normal space to the orbit at v, and let Norv(G.v)Gv

be the subspace of those vectors which are invariant under the isotropy group Gv.

Then grad ρ1(v), . . . , grad ρk(v) span Norv(G.v)Gv as a real vector space.

Proof. Clearly each grad ρi(v) ∈ Norv(G.v)Gv . In the following we will identify G
with its image π(G) ⊆ O(V ). Its Lie algebra is then a subalgebra of o(V ) and can
be realized as a Lie algebra consisting of skew-symmetric matrices. Let v ∈ V , and
let Sv be the normal slice at v which is chosen so small that the projection of the
tubular neighborhood (see 4.15) pG.v : G.Sv → G.v from the diagram

G× Sv q−−−−→ G×Gv
Sv

π−−−−→ G.Sv

p

y pG.v

y

G/Gv
π−−−−→
∼=

G.v

has the property, that for any w ∈ G.Sv the point pG.v(w) ∈ G.v is the unique
point in the orbit G.v which minimizes the distance between w and the orbit G.v.

Choose n ∈ Norv(G.v)Gv so small that x := v + n ∈ Sv. So pG.v(x) = v. For the
isotropy groups we haveGx ⊆ Gv by 4.13.(2). But we have alsoGv ⊆ Gv∩Gn ⊆ Gx,
so that Gv = Gx. Let Sx be the normal slice at x which we choose also so small
that pG.x : G.Sx → G.x has the same minimizing property as pG.v above, but so
large that v ∈ G.Sx (choose n smaller if necessary). We also have pG.x(v) = x since
for the Euclidean distance in V we have

|v − x| = min
g∈G
|g.v − x| since v = pG.v(x)

= min
g∈G
|h.g.v − h.x| for all h ∈ G

= min
g∈G
|v − g−1.x| by choosing h = g−1.
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For w ∈ G.Sx we consider the local, smooth, G-invariant function

dist(w,G.x)2 = dist(w, pG.x(w))2 = 〈w − pG.x(w), w − pG.x(w)〉
= 〈w,w〉+ 〈pG.x(w), pG.x(w)〉 − 2〈w, pG.x(w)〉
= 〈w,w〉+ 〈x, x〉 − 2〈w, pG.x(w)〉.

Its derivative with respect to w is

(1) d(dist( , G.x)2)(w)y = 2〈w, y〉 − 2〈y, pG.x(w)〉 − 2〈w, dpG.x(w)y〉.

We shall show below that

(2) 〈v, dpG.x(v)y〉 = 0 for all y ∈ V,

so that the derivative at v is given by

(3) d(dist( , G.x)2)(v)y = 2〈v, y〉 − 2〈y, pG.x(v)〉 = 2〈v − x, y〉 = −2〈n, y〉.

Now choose a smooth Gx-invariant function f : Sx → R with compact support
which equals 1 in an open ball around x and extend it smoothly (see the diagram
above, but for Sx) to G.Sx and then to the whole of V . We assume that f is
still equal to 1 in a neighborhood of v. Then g = f.dist( , G.x)2 is a smooth G-
invariant function on V which coincides with dist( , G.x)2 near v. By the theorem
of Schwarz (3.7) there is a smooth function h ∈ C∞(Rk,R) such that g = h ◦ ρ,
where ρ = (ρ1, . . . , ρk) : V → Rk. Then we have finally by (3)

−2n = grad(dist( , G.x)2)(v) = grad g(v) =

= grad(h ◦ ρ)(v) =
k∑

i=1

∂h

∂yi
(ρ(v)) grad ρi(v),

which proves the result.

It remains to check equation (2). Since TvV = Tv(G.v) ⊕ Norv(G.v) the normal
space Norx(G.x) = ker dpG.x(v) is still transversal to Tv(G.v) if n is small enough;
so it remains to show that 〈v, dpG.x(v).X.v〉 = 0 for each X ∈ g. Since x = pG.x(v)
we have |v−x|2 = ming∈G |v−g.x|2, and thus the derivative of g 7→ 〈v−g.x, v−g.x〉
at e vanishes: for all X ∈ g we have

(4) 0 = 2〈−X.x, v − x〉 = 2〈X.x, x〉 − 2〈X.x, v〉 = 0− 2〈X.x, v〉,

since the action of X on V is skew symmetric. Now we consider the equation
pG.x(g.v) = g.pG.x(v) and differentiate it with respect to g at e ∈ G in the direction
X ∈ g to obtain in turn

dpG.x(v).X.v = X.pG.x(v) = X.x,

〈v, dpG.x(v).X.v〉 = 〈v,X.x〉 = 0, by (4). ¤
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6.21. Lemma. Let π : G → O(V ) be an orthogonal representation. Let ω ∈
Ωphor(V )G be an invariant differential form on V which is horizontal in the sense
that iwωx = 0 if w is tangent to the orbit G.x. Let v ∈ V and let w ∈ TvV be

orthogonal to the space Norv(G.v)G
0
v of those orthogonal vectors which are invariant

under the connected component G0
v of the isotropy group Gv.

Then iwωv = 0.

Proof. We consider the orthogonal decomposition

TvV = Tv(G.v)⊕W ⊕Norv(G.v)G
0
v .

We may assume that w ∈W since iuωv = 0 for u ∈ Tv(G.v).

We claim that each w ∈W is a linear combination of elements of the form X.u for
u ∈W and X ∈ gv := ker(dπ( )v). Since G0

v is compact, the representation space
W has no fixed point other than zero and is completely reducible under G0

v and
thus also under its Lie algebra gv, and we may treat each irreducible component
separately, or assume that W is irreducible. Then gv(W ) is an invariant subspace
which is not 0. So it agrees with W , and the claim follows.

So we may assume that w = X.u for u ∈W . But then

(v + 1
nu,X.u = nX.(v + 1

nu)) ∈ Tv+ 1
n
u(G.(v + 1

nu))

satisfies iX.uωv+u/n = 0 by horizontality and thus we have

iwωv = iX.uωv = lim
n
iX.uωv+u/n = 0. ¤
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7. Riemannian Submersions

7.1. Definitions. Let p : E −→ B be a submersion of smooth manifolds, that is
Tp : TE −→ TB surjective. Then

V = V (p) = V (E) := Ker(Tp)

is called the vertical subbundle of E. If E is a Riemannian manifold with metric
γ, then we can go on to define the horizontal subbundle of E.

Hor = Hor(p) = Hor(E) = Hor(E, γ) := V (p)⊥

If both (E, γE) and (B, γB) are Riemannian manifolds, then we will call p a Rie-
mannian submersion, if

Txp : Hor(p) −→ Tp(x)B

is an isometric isomorphism for all x ∈ E.

Some Simple Examples. For any two Riemannian manifolds M,N , the projec-
tion pr1 : M ×N −→M is a Riemannian submersion. Here Riemann metric on the
product M ×N is given by: γM×N (X,Y ) := γM (XM , YM ) + γN (XN , YN ) (where
we use T (M ×N) ∼= TM ⊕ TN to decompose X,Y ∈ T (M × N)). In particular,
Rm+n −→ Rm with the usual metric, or pr2 : Sn × R+ −→ R+ are Riemannian
submersions.

7.2. G-manifold with single orbit type as fiber bundle. Let (M,γ) be a
proper Riemannian G-manifold and suppose that M has only one orbit type, (H).
We then want to study the quotient map π : M −→M/G. Let us first consider the
orbit space M/G. Choose x ∈M and let Sx denote the normal slice at x. Then by
4.13(2) we have Gy ⊆ Gx for all y ∈ Sx. Since Gy must additionally be conjugate
to Gx and both are compact, they must be the same (by 4.8). So Gx = Gy and
therefore Gx acts trivially on Sx (this can also be seen as a special case of 6.7).
From 4.13(5) it follows that π(Sx) ∼= Sx/Gx = Sx, and with 4.15 we have that
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G.Sx is isomorphic to G/Gx × Sx. Therefore, for any x ∈ M ,
(
π(Sx), exp−1

x |Sx

)

can serve as a chart for M/G.

M

�
π

Sx
�

�
π

M/G π(Sx)� Sx/Gx

To make an atlas out of these charts, we have to check whether they are compatible
— which is obvious. By 5.9M/G is Hausdorff, and therefore it is a smooth manifold.

Now let us study the smooth submersion π : M −→ M/G. We want to find a
Riemannian metric on M/G which will make π a Riemannian submersion.

Claim. For Xx, Yx ∈ Horx(π) = Norx(G.x), the following inner product is well
defined.

γ̄π(x)(TπXx, TπYx) := γx(Xx, Yx)

Proof. Choose X ′
gx, Y

′
gx ∈ Horgx(π) such that Tπ.X ′

gx = Tπ.Xx and Tπ.Y ′
gx =

Tπ.Yx. Then we see that X ′
gx = T (`g)Xx by the following argumentation: Clearly

Tπ
(
X ′
gx − T (`g).Xx

)
= 0, so the difference X ′

gx − T (`g).Xx is vertical. On the
other hand, X ′

gx is horizontal, and so is T (`g).Xx:
`g leaves G.x invariant, consequently, T`g maps vertical vectors to vertical vectors
and since it is an isometry, it also maps horizontal vectors to horizontal vectors.
Therefore X ′

gx − T (`g).Xx is horizontal as well as vertical and must be zero.
Now we can conclude, that

γgx
(
X ′
gx, Y

′
gx

)
= γgx(T (`g)Xx, T (`g)Yx) = γx(Xx, Yx). ¤

So we have found a Riemannian metric γ̄ on M/G which makes π a Riemannian
submersion.

Let us finally try to understand in which sense π : M → M/G is an associated
bundle. Let x ∈ M be such that Gx = H. By 6.1.(4) the set Fix(H) = {x ∈
M : g.x = x for all g ∈ H} is a geodesically complete submanifold of M . It is
NG(H)-invariant, and the restriction π : Fix(H) → M/G is a smooth submersion
since for each y ∈ Fix(H) the slice Sy is also contained in Fix(H). The fiber of
π : Fix(H) → M/G is a free NG(H)/H-orbit: if π(x) = π(y) and Gx = H = Gy
then g ∈ NG(H). So π : Fix(H) → M/G is a principal NG(H)/H-bundle, and M
is the associated bundle with fiber G/H as follows:

Fix(H)×G/H �
�
�
�
�
���

(x, [g]) 7→ g.x

�

Fix(H)×NG(H)/H G/H �∼=

�

M

�

M/G M/G.
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7.3. Another fiber bundle construction. Let M again be a proper Riemannian
G-manifold with only one orbit type. Then we can “partition” M into the totally
geodesic submanifolds Fix(gHg−1) := {x ∈ M : ghg−1.x = x for all h ∈ H} where
H = Gx0

(x0 ∈M arbitrary) is fixed and g varies. This is not a proper partitioning
in the sense that if g 6= e commutes with H, for instance, then Fix(gHg−1) =
Fix(eHe−1). We want to find out just which g give the same sets Fix(gHg−1).

Claim.

Fix(gHg−1) = Fix
(
g′Hg′

−1
)

⇐⇒ gN(H) = g′N(H)

where N(H) denotes the normalizer of H in G.

Proof. First let us show the following identity:

N(H) = {g ∈ G : g Fix(H) ⊆ Fix(H)}

(⊆) Let n ∈ N(H) and y ∈ Fix(H). Then n.y is H-invariant:

hn.y = nn−1hn.y = n(n−1hn).y = n.y

(⊇) g Fix(H) ⊆ Fix(H) implies that hg.y = g.y, or equivalently g−1hg.y = y,
for any y ∈ Fix(H) and h ∈ H. Recall at this point, that H = Gx0

for some x0 ∈ M . Therefore, we have g−1hg.x0 = x0 and consequently
g−1hg ∈ Gx0

= H.

Using this characterization for N(H) and the identity

g′{g ∈ G : g Fix(H) ⊆ Fix(H)} = {g ∈ G : g Fix(H) ⊆ g′ Fix(H)},

we can convert the righthand side of our equality, gN(H) = g′N(H), to the follow-
ing:

{a ∈ G : aFix(H) ⊆ g.Fix(H)} = {a ∈ G : aFix(H) ⊆ g′.Fix(H)}.

In particular, this is the case if

g.Fix(H) = g′.Fix(H).

In fact, let us show that the two equations are equivalent. Suppose indirectly that
g.y /∈ g′.Fix(H) for some y ∈ Fix(H). Then a = g has the property a.Fix(H) 6⊆
g′.Fix(H), so {a ∈ G : aFix(H) ⊆ g.Fix(H)} 6= {a ∈ G : aFix(H) ⊆ g′.Fix(H)}.
So far we have shown that gN(H) = g′N(H) ⇔ g.Fix(H) = g′.Fix(H). To
complete the proof it only remains to check whether

Fix(gHg−1) = g Fix(H).
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This is easily done (as well as plausible, since it resembles strongly the “dual”
notion Ggx = gGxg

−1)

y ∈ Fix(gHg−1) ⇐⇒ ghg−1.y = y for all h ∈ H
⇐⇒ hg−1.y = g−1y for all h ∈ H
⇐⇒ g−1.y ∈ Fix(H)

⇐⇒ y ∈ g Fix(H) ¤

Claim. The map π̄ : M −→ G/N(H) defined by Fix(gHg−1) 3 x 7→ g.N(H) is a
fiber bundle with typical fiber Fix(H).

Proof. To prove this, let us consider the following diagram.

G× Fix(H)

��
q

�` M

π̃G×N(H) Fix(H)

�
�
�
�
�
�
� ���

˜̀

��

G/N(H)

Here we use the restricted action ` : N(H) × Fix(H) −→ Fix(H) to associate to
the principal bundle G −→ G/N(H) the bundle G[Fix(H), `] = G ×N(H) Fix(H).

It remains to show that ˜̀ is a diffeomorphism, since then π̃ has the desired fiber
bundle structure.

˜̀ is smooth, since ˜̀◦ q = ` is smooth and q is a submersion. Now let us show that
˜̀ is bijective.
(1) ˜̀ is surjective: Since H is the only orbit type, for every x ∈ M there is a
g ∈ G, such that Gx = gHg−1, which implies x ∈ Fix(gHg−1) = g Fix(H) ⊆
`(G × Fix(H)). So ` is surjective and, by the commutativity of the diagram, so is
˜̀.
(2) ˜̀ is injective: Suppose `(a, x) = a.x = b.y = `(b, y), for some a, b ∈ G, x, y ∈
Fix(H). Then b−1a.x = y ∈ FixH implies hb−1a.x = y = b−1a.x which im-
plies again (b−1a)−1hb−1a.x = x. Since there is only one orbit type and all
isotropy groups are compact, we know that x ∈ FixH ⇒ H = Gx (by 4.8). So
(b−1a)−1hb−1a is again in H, and b−1a ∈ N(H). In this case, q(a, x) = [a, x] =
[bb−1a, x] = [b, b−1a.x] = [b, y] = q(b, y).

˜̀−1 is smooth, since ` is a submersion. So ˜̀ is a diffeomorphism and π̄ a fiber
bundle with typical fiber Fix(H). ¤

7.4. Construction for more than one orbit type. Let (H) be one particular
orbit type (H = Gx). To reduce the case at hand to the previous one, we must
partition the points in M into sets with common orbit type:

M(H) := {x ∈M : (Gx) = (H)}
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Claim. For a proper Riemannian G-manifold, the space M(H) as defined above is
a smooth G-invariant submanifold.

Proof. M(H) is of course G-invariant as a collection of orbits of a certain type.
We only have to prove that it is a smooth submanifold. Take any x in M(H)(then,
without loss of generality, H = Gx), and let Sx be a slice at x. Consider the tubular
neighborhood G.S ∼= G×H Sx (4.15). Then the orbits of type (H) in G.S are just
those orbits that meet Sx in SHx (where SHx shall denote the fixed point set of H
in Sx). Or, equivalently, (G×H Sx)(H) = G×H SHx :

(⊆) [g, s] ∈ (G ×H Sx)(H) ⇒ g.s ∈ G.S(H) ⇒ gHg−1 = Gs ⊆ H ⇒ Gs = H ⇒
s ∈ SHx ⇒ [g, s] ∈ G×H SHx

(⊇) [g, s] ∈ G ×H SHx ⇒ s ∈ SHx ⇒ H ⊆ Gs, but since s ∈ Sx we have
Gs ⊆ Gx = H by 4.13(2), therefore Gs = H and [g, s] ∈ (G×H Sx)(H)

Now, let Sx = expx(Norr(G.x)) be the normal slice at x. That is, r is chosen so
small that expx is a diffeomorphism on Norr(G.x) =: V . Notice, that V is not only
diffeomorphic to Sx, but G-equivariantly so, if we let G act on Norx(G.x) via the
slice representation. Since the slice action is orthogonal, in particular linear, the
set of points fixed by the action of H is a linear subspace of Norx(G.x) and its
intersection with V , a “linear” submanifold. Therefore SHx is also a submanifold of
Sx. Now consider the diagram

G× SHx �`�
�
� ����
p

M

G×H SHx

i

The map i is well defined, injective and smooth, since p is a submersion and ` is
smooth. Furthermore, p is open, and so is `. Just consider any open set of the
form U ×W in G× SHx . Then `(U ×W ) is the union of all sets `u(W ) for u ∈ U .
Since `u is a diffeomorphism, each one of these is open, so `(U ×W ) is open as
well. Therefore, i must be open, and so i is an embedding and G.SH ∼= G×H SHx
an embedded submanifold of M . ¤

Let (H) be one particular orbit type (H = Gx), then Fix(H) is again a closed,
totally geodesic submanifold of M (see 6.1(3)).

Claim. Fix∗(H) := {x ∈M : Gx = H} is an open submanifold of Fix(H).

Remark. For one orbit type, x ∈ Fix(H) implied H = Gx, and thus Fix∗(H) =
Fix(H). For more than one orbit type Fix(H) is not necessarily contained in M(H).
Therefore, it is necessary to study Fix∗(H) = Fix(H) ∩M(H).

Proof. In 7.3 we saw that N(H) is the largest subgroup of G acting on Fix(H). It
induces a proper N(H)/H-action on Fix(H). Now, Fix∗(H) is the set of all points
in Fix(H) with trivial isotropy group with respect to this action. So by 6.19 it is
simply the set of all regular points. Therefore, by 6.15, Fix∗(H) is an open, dense
submanifold of Fix(H). ¤

Now, M(H) can be turned into a fiber bundle over G/N(H) with typical fiber
Fix∗(H) just as before (Fix∗(H) is really the fixed point space of H in M(H)). And,
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on the other hand, M(H) is a fiber bundle over M(H)/G with typical fiber G/H.
The partition of M into submanifolds M(H) and that of M/G into the different
orbit types is locally finite by 6.16. So M and M/G are in a sense stratified, and
π : M −→M/G is a stratified Riemannian submersion (see also [13]).

7.5. Definition. Let p : E −→ B be a Riemannian submersion.
A vector field ξ ∈ X(E) is called vertical, if ξ(x) ∈ Vx(p) for all x (i.e. if Tp ξ(x) =
0).
ξ ∈ X(E) is called horizontal, if ξ(x) ∈ Horx(p) for all x, that is, if ξ(x) ⊥
Vx(p) for all x.
ξ ∈ X(E) is called projectable, if there is an η ∈ X(B), such that Tp.ξ = η ◦ p
ξ ∈ X(E) is called basic, if it is horizontal and projectable.

Remark. The orthogonal projection φ : TE −→ V (E) with respect to the Riemann
metric is a (generalized) connection on the bundle (E, p) and defines a local parallel
transport over each curve in B (denoted by Ptφ(c, .)) as well as the horizontal lift:

C : TB ×
B
E −→ TE : (Xb, e) 7→ Ye, where Ye ∈ Hore(p) with Tep.Ye = Xb

This map also gives us an isomorphism C∗ : X(B) −→ Xbasic between the vector
fields on B and the basic vector fields.

7.6. Lemma. Consider a Riemannian submersion p : (E, γE) −→ (B, γB) with
connection φ : TE −→ V (p), and c : [0, 1] −→ B, a geodesic. Let Lba(c) denote the
arc length of c from c(a) to c(b) in B. Then:

(1) Lt0(c) = Lt0Pt
φ(c, ., u), where u ∈ Ec(0) is the starting point of the parallel

transport.
(2) Ptφ(c, ., u) ⊥ Ec(t) for all t

(3) If c is a geodesic of minimal length in B, then we have L1
0(Ptφ(c, ., u)) =

dist
(
Ec(0), Ec(1)

)
.

(4) t 7→ Ptφ(c, t, u) is a geodesic in E (again for any geodesic c in B).

Proof.

(1) Since
d

ds
Ptφ(c, s, u) is a horizontal vector and by the property of p as Rie-

mannian submersion, we have

Lt0Pt
φ(c, ., u) =

∫ t

0

γE

(
d

ds
Ptφ(c, s, u),

d

ds
P tφ(c, s.u)

) 1
2

ds

=

∫ t

0

γB(c′(s), c′(s))
1
2 ds = Lt0(c).

(2) This is due to our choice of φ as orthogonal projection onto the vertical
bundle in terms of the given metric on E. By this choice, the parallel
transport is the unique horizontal curve covering c, so it is orthogonal to
each fiber Ec(t) it meets.

(3) Consider a (piecewise) smooth curve e : [0, 1] −→ E from Ec(0) to Ec(1), then
p ◦ e is a (piecewise) smooth curve from c(0) to c(1). Since c is a minimal
geodesic, we have L1

0c ≤ L1
0(p ◦ e). Furthermore, we can decompose the
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vectors tangent to e into horizontal and vertical components and use the
fact that Tp is an isometry on horizontal vectors to show: L1

0e ≥ L1
0(p ◦ e)

(in more detail: e′(t) = h(t) + v(t) ∈ HE ⊕E V E, and since p is a Rie-
mannian submersion γB(Tp.h(t), Tp.h(t)) = γE(h(t), h(t)) and Tp.v(t) = 0.
Therefore |Tp.e′(t) | = |Tp.h(t) | = |h(t) | ≤ |h(t) + v(t) | = | e′(t) |, and
L1

0p ◦ e ≤ L1
0e.) Now with (1) we can conclude: L1

0Pt
φ(c, ., u) = L1

0c ≤
L1

0e for all (piecewise) smooth curves e from Ec(0) to Ec(1). Therefore,

L1
0(Ptφ(c, ., u)) = dist

(
Ec(0), Ec(1)

)
.

(4) This is a consequence of (3) and the observation that every curve which
minimizes length locally is a geodesic. ¤

7.7. Corollary. Consider a Riemannian submersion p : E −→ B, and let c :
[0, 1]→ E be a geodesic in E with the property c′(t0) ⊥ Ep(c(t0)) for some t0. Then
c′(t) ⊥ Ep(c(t)) for all t ∈ [0, 1].

Proof. Consider the curve d : t 7→ expBp(c(t0))(tTc(t0)p.c
′(t0)). It is a geodesic

in B and therefore lifts to a geodesic e(t) = Ptφ(d, t − t0, c(t0)) in E (by 7.6(4)).
Furthermore e(t0) = c(t0) and e′(t0) = C(Tc(t0)p.c

′(t0), c(t0)) = c′(t0) since c′(t0) ⊥
Ep(c(t0)) is horizontal. But geodesics are uniquely determined by their starting point
and starting vector. Therefore e = c, and e is orthogonal to each fiber it meets by
7.6(2). ¤

7.8. Corollary. Let p : E −→ B be a Riemannian submersion

(1) If Hor(E) is integrable, then every leaf is totally geodesic.
(2) If Hor(E) is integrable and S is a leaf, then pS : S −→ B is a local isometry.

Proof. (1) follows from corollary 7.7, while (2) is just a direct consequence of the
definitions. ¤

7.9. Remark. If p : E −→ B is a Riemannian submersion, then Hor(E)|Eb
=

Nor(Eb) for all b ∈ B and p defines a global parallelism as follows. A section
ṽ ∈ C∞(Nor(Eb)) is called p-parallel, if Tep.ṽ(e) = v ∈ TbB is the same point for
all e ∈ Eb. There is also a second parallelism. It is given by the induced covariant
derivative: A section ṽ ∈ C∞(Nor(Eb)) is called parallel if ∇Norṽ = 0. The p-
parallelism is always flat and with trivial holonomy which is not generally true for
∇Nor. Yet we will see later on that if Hor(E) is integrable then the two parallelisms
coincide.

7.10. Remark. Let M be a connected Riemannian G-manifold and (H) the
principal orbit type, then we saw in 7.4 that π : M(H) −→M(H)/G is a Riemannian
submersion. Now we can prove:

Claim. ξ ∈ C∞(Nor(G.x))
(
x ∈Mreg = M(H)

)
is π-parallel iff ξ is G-equivariant.

(⇐= ) ξ(g.x) = Tx`g.ξ(x) implies Tg.xπ.ξ(g.x) = Tg.xπ ◦ Tx`g.ξ(x) = Txπ.ξ(x) for
all g ∈ G. Therefore ξ is π-parallel.

( =⇒ ) ξ(g.x) and Tx`gξ(x) are both in Norg.x(G.x), and since ξ is π-parallel we
have:
Tg.xπ.ξ(g.x) = Txπ.ξ(x) = Tg.xπ ◦ Tx`g.ξ(x). So ξ(g.x) and Tx`g.ξ(x) both
have the same image under Tg.xπ. Because Tg.xπ restricted to Norg.x(G.x)
is an isomorphism, ξ(g.x) = Tx`g.ξ(x). ¤

Draft from March 21, 2005 Peter W. Michor,



64 7. Riemannian submersions

7.11. Definition. A Riemannian submersion p : E −→ B is called integrable, if
Hor(E) = (KerTp)⊥ is an integrable distribution.

7.12. Local Theory of Riemannian Submersions. Let p : (E, γE) −→ (B, γB)
be a Riemannian submersion. Choose for an open neighborhood U in E an or-
thonormal frame field

s = (s1, . . . , sn+k) ∈ C∞(TE|U)n+k

in such a way that s1, . . . , sn are vertical and sn+1, . . . , sn+k are basic. That way,
if we “project” sn+1, . . . , sn+k onto TB|p(U) we get another orthonormal frame
field, s̄ = (s̄n+1, . . . , s̄n+k) ∈ C∞(TB|p(U))k, since p, as Riemannian submersion,
is isometric on horizontal vectors.

In the following,
∑

will always refer to the sum over all indices occurring twice
unless otherwise specified. Furthermore, we adopt the following index convention.
The listed indices will always run in the domain indicated:

1 ≤ i, j, k ≤ n
n+ 1 ≤ α, β, γ ≤ n+ k

1 ≤ A,B,C ≤ n+ k

In this spirit, the orthogonal coframe corresponding to s is defined by the relation

σA(sB) = δAB

We will write its components in the form of a column vector and in general adhere
to the conventions of linear algebra so that, wherever possible, we can use matrix
multiplication to avoid having to write down indices.

σ =




σ1

...
σn+k


 ∈ Ω1(U)n+k

Analogously, we have the orthonormal coframe σ̄α ∈ Ω1(p(U)) on p(U) ⊆ B, with

σ̄α(s̄β) = δαβ .

It is related to σα by p∗σ̄α = σα. In terms of these, the Riemannian metrics γE
and γB take on the form

γE |U =
∑

A

σA ⊗ σA

γB |p(U) =
∑

α

σ̄α ⊗ σ̄α.

Now let ∇ denote the Levi-Civita covariant derivative on (E, γE)

∇ : X(E)× X(E) −→ X(E), (X,Y ) 7→ ∇XY.
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In terms of the frame field we will write the covariant derivative as

∇sA =
∑

B

sBω
B
A , ωBA ∈ Ω1(U).

If we view ω as the matrix of 1-forms (ωBA ), then the above equation can be written
in terms of matrix multiplication:

∇s = s.ω

We get the following relation for ω.

0 = dγE(sA, sB) = γE(∇sA, sB) + γE(sA,∇sB) =

γE(
∑

sCω
C
A , sB) + γE(sA,

∑
sCω

C
B) = ωBA + ωAB

Therefore ω(X) is a real skewsymmetric matrix for all X ∈ X(U), and we have

ω ∈ Ω1(U, so(n+ k)).

An arbitrary vector field X on U can be written as X =
∑
siu

i where ui ∈
C∞(U,R) can be regarded as the components of a column-vector-valued function
u so that we can write X = s.u. Its covariant derivative can be calculated directly
using the derivation property.

∇(s.u) = ∇s.u+ s.du = s.ω.u+ s.du

Now let us calculate the curvature tensor in this setting.

R(X,Y )Z = ([∇X ,∇Y ]−∇[X,Y ])Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Let R(X,Y )s denote the row of vector fields R(X,Y )sA. Then we can go on to
calculate:

R(X,Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s =

= ∇X(s.ω(Y ))−∇Y (s.ω(X))− s.ω ([X,Y ]) =

= (∇Xs).ω(Y ) + s.X.ω(Y )− (∇Y s).ω(X)− s.Y.ω(X)− s.ω ([X,Y ]) =

= s.ω(X).ω(Y )− s.ω(Y ).ω(X) + s. (X.ω(Y )− Y.ω(X)− ω ([X,Y ])) =

= s.ω ∧ ω(X,Y ) + s.dω(X,Y ) = s.(dω + ω ∧ ω)(X,Y )

The notation ω ∧ ω stands for (
∑
ωAC ∧ ωCB)AB , which has the form of a standard

matrix multiplication, only with the usual product on the components replaced by
the exterior product. This leads to the definition Ω := dω+ω ∧ω = dω+ 1

2 [ω, ω]∧.

Like with ω, the orthonormality of s implies Ωj
i = −Ωij , so Ω2(U, so(n + k)). The

second Bianchi identity follows directly:

(2. Bianchi identity) dΩ + ω ∧ Ω− Ω ∧ ω = dΩ + [ω,Ω]∧ = 0
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Using the property that the Levi-Civita connection is free of torsion, we can derive
the so-called structure equation on ω. It determines the Levi-Civita connection
completely.

0 = Tor(X,Y ) = ∇X(s.σ(Y ))−∇Y (s.σ(X))− s.σ ([X,Y ]) =

= s.ω(X).σ(Y ) + s.X(σ(Y ))− s.ω(Y )σ(X)− s.Y (σ(X))− s.σ ([X,Y ]) =

= s.(ω(X).σ(Y )− ω(Y ).σ(X)) + s.(X(σ(Y ))− Y (σ(X))− σ ([X,Y ])) =

= s.(ω ∧ σ(X,Y )) + s.dσ(X,Y ) = s.(ω ∧ σ + dσ)(X,Y )

“structure equation”

ω ∧ σ + dσ = 0

or
∑

B

ωAB ∧ σB + dσA = 0

As a direct consequence, the first Bianchi identity takes on the following form.

(1. Bianchi identity) Ω ∧ σ = 0

If we pull back the structure equation dσ̄ + ω̄ ∧ σ̄ = 0 from B to E, we can derive
some relations between the components ωαA of ω:

0 = p∗
(
dσ̄α +

∑
ω̄αβ ∧ σ̄β

)
=

= dp∗σ̄α +
∑(

p∗ω̄αβ
)
∧
(
p∗σ̄β

)
= dσα +

∑(
p∗ω̄αβ

)
∧ σβ

Together with the α-component of the structure equation on E, dσα+
∑
ωαβ ∧σβ +∑

ωαi ∧ σi = 0, this gives us:

(*)
∑(

p∗ω̄αβ
)
∧ σβ =

∑
ωαβ ∧ σβ +

∑
ωαi ∧ σi

The lefthand side of this equation contains no σi ∧ σα- or σi ∧ σj-terms. Let us
write out ωαβ and ωαi in this basis.

ωαβ = −ωβα =:
∑

qαβγσ
γ +

∑
bαβiσ

i

ωαi = −ωiα =:
∑

aαiβσ
β +

∑
rαijσ

j

This gives us for the righthand side of (*)

∑
qαβγσ

γ ∧ σβ +
∑

bαβiσ
i ∧ σβ +

∑
aαiβσ

β ∧ σi +
∑

rαijσ
j ∧ σi =

∑
qαβγσ

γ ∧ σβ +
∑(

bαβi − aαiβ
)
σi ∧ σβ +

1

2

∑(
rαij − rαji

)
σj ∧ σi

So we have found

aαiβ = bαβi

rαij = rαji,

Draft from March 21, 2005 Peter W. Michor,



7. Riemannian submersions 67

or, in other words,

ωαi (sβ) = ωαβ (si)

ωαi (sj) = ωαj (si)

That is: ωαi (sA) = ωαA(si), and this just means that the horizontal part of [sA, si]
is 0, or [sA, si] is always vertical:

0 =
∑

sαω
α
i (sA)−

∑
sαω

α
A(si) = (∇sA

si −∇si
sA)

hor
=
(
[sA],si

)hor
.

Now we will calculate the second fundamental form S : XEb×Eb
XEb −→ Xhor(E|Eb)

of Eb := p−1(b) in E. Let ∇̃ denote the Levi-Civita covariant derivative on Eb
corresponding to the induced metric i∗g (where i : Eb ↪→ E is the inclusion). Since
every vector field on Eb can be extended to a vertical vector field on E (do it in
charts, patch it up with a partition of unity and then compose with the connection
φ to make it vertical), we can determine ∇ for vector fields defined only on Eb by
extending them onto E. We will denote the restriction of ∇ onto Eb again by ∇.
It can easily be checked that this definition is independent of the extension chosen.
Now the second fundamental form is defined as:

S(Xver, Y ver) := ∇XverY ver − ∇̃XverY ver

If we express ∇̃ in terms of ∇, we get

S(Xver, Y ver) = ∇XverY ver − (∇XverY ver)
ver

= (∇XverY ver)
hor

Expressed in the local frame, it is:

(∇XverY ver)
hor

=
(
∇Xver(

∑
siσ

i(Y ver))
)hor

=

=
(∑

(∇Xversi)σ
i (Y ver) +

∑
sid(σi(Y ver)).Xver

)hor

=

= (
∑

sAω
A
i (Xver)σi(Y ver))hor + 0 =

∑
sαω

α
i (Xver)σi(Y ver) =

=
∑

rαijsα ⊗ σj ⊗ σi (Xver, Y ver)

So ∑
sασ

α(S) =
∑

rαij sα ⊗ σj ⊗ σi.
S is a symmetric tensor field as indeed the second fundamental form must always
be. But in our special case we have already shown that rαij = rαji and thereby proved
this result directly.

Similarly to the covariant derivative on the vertical bundle, which was obtained by
taking the vertical part of the covariant derivative ∇XverY ver of two vertical vector
fields, we can define a covariant derivative on the the normal bundle Nor(Eb) −→ Eb
by taking the horizontal part of the covariant derivative ∇XverY hor of a horizontal
vector field along a vertical vector field:

∇Nor : X(Eb)× C∞(Nor(Eb)) −→ C∞(Nor(Eb))

∇Nor
XverY hor :=

(
∇XverY hor

)hor
.
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In our frame field:

∇Nor
XverY hor =

(
∇Xver

(∑
sβσ

β(Y hor)
))hor

=

=
(∑

(∇Xversβ)σβ(Y hor)
)hor

+
∑

sβdσ
β(Y hor).Xver =

=
∑

sαω
α
β (Xver)σβ(Y hor) +

∑
sβdσ

β(Y hor).Xver =

=
∑

bαβisα ⊗ σi ⊗ σβ(Xver, Y hor) +
∑

sα ⊗ dσβ(Y hor)(Xver)

or
∇NorY hor =

∑(
bαβiσ

β(Y hor)σi + dσα(Y hor)
)
⊗ sα.

Like ∇ itself, ∇Nor is not a tensor field. Yet in the decomposition

∇XY =
(
∇Xver+Xhor(Y ver + Y hor)

)ver + hor

we can find two more tensor fields (besides S), the so called fundamental (or O’Neill-
) tensor fields. (see [28])

X,Y ∈ X(E)

T (X,Y ) := (∇XverY ver)
hor

+
(
∇XverY hor

)ver

A(X,Y ) :=
(
∇XhorY hor

)ver
+ (∇XhorY ver)

hor

In fact each of of these four summands which make up A and T are tensor fields
by themselves - the first one restricting to S on Eb. Why they are combined to two
tensors in just this way we will see once we have expressed them in our local frame.
At the same time, we will see that they really are tensor fields.

A(X,Y ) =
(
∇Xhor

(∑
sασ

α(Y )
))ver

+
(
∇Xhor(

∑
siσ

i(Y ))
)hor

=

=
∑

siω
i
α(Xhor)σα(Y ) + 0 +

∑
sαω

α
i (Xhor)σi(Y ) + 0 =

=
∑

si
(
−aαiβ

)
σβ(X)σα(Y ) +

∑
sαa

α
iβσ

β(X)σi(Y ) =

=
(∑

aαiβ
(
σβ ⊗ σi ⊗ sα − σβ ⊗ σα ⊗ si

)
(X,Y )

)

Analogously:

T =
∑

rαij
(
σj ⊗ σi ⊗ sα − σi ⊗ σα ⊗ si

)

If Hor(E) is integrable, then every leaf L is totally geodesic by 7.8(1), and the sα|L
are a local orthonormal frame field on L. L being totally geodesic is equivalent
to its second fundamental form vanishing. Now, in the same way we found S, the
second fundamental form of L is

SL(Xhor, Y hor) :=
(
∇XhorY hor

)ver

So it is a necessary condition for the integrability of Hor(E) that SL = 0, that is

0 = SL (sα, sβ) = (∇sα
sβ)

ver
=

=
∑

siω
i
β(sα) =

∑
si

(
−aβiγ

)
σγ(sα).
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This is equivalent to the condition

aαiβ = 0 for all α
iβ

or
A = 0.

Let us now prove the converse: If A vanishes, then the horizontal distribution on
E is integrable. In this case, we have 0 = A (sα, sβ) = (∇sα

sβ)
ver

+ 0, as well as

0 = A (sβ , sα) =
(
∇sβ

sα
)ver

+ 0. Therefore, [sα],sβ
= ∇sα

sβ −∇sβ
sα is horizontal,

and the horizontal distribution is integrable.

7.13. Theorem. Let p : E −→ B be a Riemannian submersion, then the following
conditions are equivalent.

(1) p is integrable (that is Hor(p) is integrable).
(2) Every p-parallel normal field along Eb is ∇Nor-parallel.
(3) The O’Neill tensor A is zero.

Proof. We already saw (1)⇐⇒ (3) above.

(3) =⇒ (2) Take sα for a p-parallel normal field X along Eb. A = 0 implies A(sα, si) =

0 + (∇sα
si)

hor
= 0. Recall that, as we showed above, [si, sα] is vertical.

Therefore,

∇Nor
si

sα = (∇si
sα)

hor
=
(
[si, sα] +∇sα

si
)hor

= 0

Since for any e ∈ Eb, Tep|Norb(Eb)
is an isometric isomorphism, a p-parallel

normal field X along Eb is determined completely by the equation X(e) =∑
Xα(e)sα(e). Therefore it is always a linear combination of the sα with

constant coefficients and we are done.
(2) =⇒ (3) By (2) ∇Nor

si
sα = (∇si

sα)
hor

= 0. Therefore, as above, we have that(
[si, sα] +∇sα

si
)hor

= 0 + (∇sα
si)

hor
= A(sα, si) = 0. Thus σβA(sα, si) =

aβαi = 0, so A vanishes completely. ¤
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In this chapter, let (M,γ) always denote a connected, complete Riemannian G-
manifold, and assume that the action of G on M is effective and isometric.

8.1. Lemma. Consider X ∈ g, the Lie algebra of G, ζX , the associated funda-
mental vector field to X, and c, a geodesic in M . Then γ(c′(t), ζX(c(t))) is constant
in t.

Proof. Let ∇ be the Levi-Civita covariant derivative on M . Then

∂t.γ(c′(t), ζX(c(t))) = γ (∇∂t
c′(t), ζX(c(t))) + γ (c′(t),∇∂t

(ζX ◦ c)) .

Since c is a geodesic, ∇∂t
c′(t) = 0, and so is the entire first summand. So it remains

to show that γ (c′(t),∇∂t
(ζX ◦ c)) vanishes as well.

Let s1, . . . , sn be a local orthonormal frame field on an open neighborhood U of
c(t), and σ1, . . . , σn the orthonormal coframe. Then γ =

∑
σi ⊗ σi. Let us use the

notation

ζX |U =:
∑

siX
i

∇ζX |U =:
∑

Xj
i sj ⊗ σi.

Then we have
∇∂t

(ζX ◦ c) =
∑

Xj
i (c(t))sj(c(t))σ

i(c′(t)).

So

γ (c′(t),∇∂t
(ζX ◦ c)) =

∑
σj(c′(t))σj (∇∂t

(ζX ◦ c)) =

=
∑

Xj
i (c(t))σj(c′(t))σi(c′(t)).

If we now show that Xj
i +Xi

j = 0, then γ (c′(t),∇∂t
(ζX ◦ c)) will be zero, and the

proof will be complete. Since the action of G is isometric, ζX is a Killing vector
field; that is LζX

γ = 0. So we have

∑
LζX

σi ⊗ σi +
∑

σi ⊗ LζX
σi = 0.
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Now we must try to express LζX
σi in terms of Xj

i . For this, recall the structure
equation: dσk +

∑
ωkj ∧ σj = 0. Now we have

LζX
σi = iζX

dσi + d
(
iζX

σi
)

= −iζX
(
∑

ωij ∧ σj) + d(σi(ζX)) =

= −iζX

∑
ωij ∧ σj + dXi =

∑
ωij .X

j −
∑

ωij(ζX)σj + dXi.

Since

∇ζX |U = ∇(
∑

sjX
j) =

∑
si.ω

i
j .X

j +
∑

si ⊗ dXi =
∑

Xi
jsi ⊗ σj ,

we can replace
∑
ωij .X

j by
∑
Xi
jσ
j − dXi. Therefore,

LζX
σi =

∑
(Xi

jσ
j − ωij(ζX)σj) =

∑
(Xi

j − ωij(ζX))σj

Now, let us insert this into 0 = LζX
γ:

0 =
∑
LζX

σi ⊗ σi +
∑

σi ⊗ LζX
σi =

=
∑

(Xi
j − ωij(ζX))σj ⊗ σi +

∑
(Xi

j − ωij(ζX))σi ⊗ σj =

=
∑

(Xi
j +Xj

i )σj ⊗ σi −
∑

(ωij(ζX) + ωji (ζX))σj ⊗ σi =

=
∑

(Xi
j +Xj

i )σj ⊗ σi − 0

since ω(Y ) is skew symmetric. This implies X i
j +Xj

i = 0, and we are done. ¤

8.2. Definition. For any x in Mreg we define:

E(x) := expγx(Norx(G.x)) ⊆M
Ereg(x) := E(x) ∩Mreg

In a neighborhood of x, E(x) is a manifold; globally, it can intersect itself.

8.3. Lemma. Let x ∈Mreg then

(1) g.E(x) = E(g.x) , g.Ereg(x) = Ereg(g.x).
(2) For Xx ∈ Nor(G.x) the geodesic c : t 7→ exp(t.Xx) is orthogonal to every

orbit it meets.
(3) If G is compact, then E(x) meets every orbit in M .

Proof.

(1) This is a direct consequence of 6.1(1): g. expx(t.X) = expg.x(t.Tx`g.X).
(2) By choice of starting vector Xx, the geodesic c is orthogonal to the orbit

G.x, which it meets at t = 0. Therefore it intersects every orbit it meets
orthogonally, by Lemma 8.1.

(3) For arbitrary x, y ∈ M , we will prove that E(x) intersects G.y. Since G
is compact, by continuity of `y : G −→ M the orbit G.y is compact as
well. Therefore we can choose g ∈ G in such a way, that dist(x,G.y) =
dist(x, g.y). Let c(t) := expx(t.Xx) be a minimal geodesic connecting
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x = c(0) with g.y = c(1). We now have to show, that Xx ∈ Norx(G.x):
Take a point p = c(t) on the geodesic very close to g.y—close enough so
that expp is a diffeomorphism into a neighborhood Up of p containing g.y
(it shall have domain V ⊆ TpM). In this situation the lemma of Gauss
states, that all geodesics through p are orthogonal to the “geodesic spheres”:
expp

(
k.Sm−1

)
(where Sm−1 := {Xp ∈ TpM : γ(Xp, Xp) = 1}, and k > 0 is

small enough for k.Sm−1 ⊆ V to hold). From this it can be concluded that
c is orthogonal to G.y : Take the smallest geodesic sphere around p touching
G.y. By the minimality of c, c must leave the geodesic sphere at a touching
point, and by Gauss’ lemma, it must leave at a right angle to the geodesic
sphere. Clearly, the touching point is just g.y = c(1), and there c also meets
G.y at a right angle. By (2), c encloses a right angle with every other orbit
it meets as well. In particular, c starts orthogonally to G.x. Therefore, Xx

is in Norx(G.x), and g.y = c(1) ∈ E(x). ¤

8.4. Remark. Let x ∈ M be a regular point and Sx the normal slice at x. If Sx
is orthogonal to every orbit it meets, then so are all g.Sx (g ∈ G arbitrary). So
the submanifolds g.Sx can be considered as leaves of the horizontal foliation (local
solutions of the horizontal distribution—which has constant rank in a neighborhood
of a regular point), and the Riemannian submersion π : Mreg −→ Mreg/G is inte-
grable. Since this is not always the case (the horizontal distribution is not generally
integrable), it must also be false, in general, that the normal slice is orthogonal to
every orbit it meets. But it does always meet orbits transversally.

Example. Consider the isometric action of the circle group S1 on C× C (as real
vector spaces) defined by eit.(z1, z2) :=

(
eit.z1, e

it.z2
)
. Then p = (0, 1) is a regular

point: Gp = {1}. The subspace Norp(S
1.p) of TpC × C takes on the following

form: Norp(S
1.p) = 〈(1, 0), (i, 0), (0, 1)〉

R
= C × R. Therefore, we get: E(0, 1) =

{(u, 1+r) : u ∈ C, r ∈ R}. In particular, y = (1, 1) ∈ E(0, 1), but S1.y = {
(
eit, eit

)
:

t ∈ R} is not orthogonal to E(0, 1). Its tangent space, Ty(S1.y) = 〈(i, i)〉
R

, is not
orthogonal to C× R.

8.5. Definition. A connected closed complete submanifold Σ ⊂ M is called a
section for the G-action if

(1) Σ meets every orbit, or equivalently: G.Σ = M .
(2) Where Σ meets an orbit, it meets it orthogonally.

The second condition can be replaced by the equivalent

(2’) x ∈ Σ⇒ TxΣ ⊆ Norx(G.x) or
(2”) x ∈ Σ, X ∈ g⇒ ζX(x) ⊥ TxΣ.

Remark. If Σ is a section, then so is g.Σ for all g in G. Since G.Σ = M , there is
a section through every point in M . We say “M admits sections”.

The notion of a section was introduced by Szenthe [42], [43], in slightly different
form by Palais and Terng in [32], [33]. The case of linear representations was con-
sidered by Bott and Samelson [4], Conlon [10], and then by Dadok [11] who called
representations admitting sections polar representations (see 8.20) and completely
classified all polar representations of connected Lie groups. Conlon [9] considered
Riemannian manifolds admitting flat sections. We follow here the notion of Palais
and Terng.
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8.6. Example. For the standard action of O(n) on Rn the orbits are spheres, and
every line through 0 is a section.

8.7. Example. If G is a compact, connected Lie group with biinvariant metric,
then conj : G×G −→ G, conjg(h) = ghg−1 is an isometric action on G. The orbits
are just the conjugacy classes of elements.

Proposition. Every maximal torus H of a compact connected Lie group G is a
section.

A torus is a product of circle groups or equivalently a compact connected abelian
Lie group; a maximal torus of a compact Lie group is a toral subgroup which is not
properly contained in any larger toral subgroup (cf. [5], chapter 6).)

Proof. (1) conj(G).H = G: This states that any g ∈ G can be found in some to
H conjugate subgroup, g ∈ aHa−1. This is equivalent to ga ∈ aH or gaH = aH.
So the conjecture now presents itself as a fixed point problem: does the map `g :
G/H −→ G/H : aH 7→ gaH have a fixed point. It is solved in the following way:

The fixed point theorem of Lefschetz (see [41], 11.6.2, p.297) says that

a smooth mapping f : M → M from a connected compact manifold to
itself has no fixed point if and only if

dimM∑

i=0

(−1)i Trace(Hi(f) : Hi(M)→ Hi(M)) = 0.

Since G is connected, `g is homotopic to the identity, so

dimG/H∑

i=0

(−1)i Trace(Hi(`g) : Hi(G/H)→ Hi(G/H)) =

=

dimG/H∑

i=0

(−1)i Trace(Hi(Id)) =

dimG/H∑

i=0

(−1)i dimHi(G/H) = χ(G/H),

the Euler characteristic of G/H. This is given by the following theorem ([30], Sec.
13, Theorem 2, p.217)

If G is a connected compact Lie group and H is a connected com-
pact subgroup then the Euler characteristic χ(G/H) ≥ 0. Moreover
χ(G/H) > 0 if and only if the rank of G equals the rank of H. In
case when χ(G/H) > 0 then χ(G/H) = |WG|/|WH |, the quotient of the
respective Weyl groups.

Since the Weyl group of a torus is trivial, in our case we have χ(G/H) = |WG| > 0,
and thus there exists a fixed point.
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(2”) h ∈ H,X ∈ g⇒ ζX(h) ⊥ ThH:
ζX(h) = d

dt

∣∣
t=0

exp(tX)h exp(−tX) = Teµ
h.X−Teµh.X. Now choose Y ∈ h. Then

we have Teµh.Y ∈ ThH, and

γh(Teµh.Y, Teµ
h.X − Teµh.X) = γe(Y,Ad(h).X −X) =

= γe(Y,Ad(h).X)− γe(Y,X) = γe(Ad(h).Y, Ad(h).X)− γe(Y,X) = 0

by the right, left and therefore Ad-invariance of γ and by the commutativity of
H. ¤

8.8. Example. Let G be a compact semisimple Lie group acting on its Lie algebra
by the adjoint action Ad : G × g −→ g. Then every Cartan subalgebra h of g is a
section.

Proof. Every element of a semisimple Lie algebra g is contained in a Cartan sub-
algebra, and any two Cartan subalgebras are conjugated by an element g ∈ G,
since G is compact. This is a consequence of 8.7 above, since the subgroup in G
corresponding to a Cartan subalgebra is a maximal torus. Thus every AdG-orbit
meets the Cartan subalgebra h. It meets orthogonally with respect to the Cartan
Killing form B: Let H1, H2 ∈ h and X ∈ g. Then d

dt |0 Ad(exp(tX)).H1 = ad(X)H1

is a typical vector tangent to the orbit through H1 ∈ h, and H2 is tangent to h.
Then

B(ad(X)H1, H2) = B([X,H1], H2) = B(X, [H1, H2]) = 0

since h is commutative. ¤

8.9. Example. In Theorem 1.1 we showed that for the O(n)-action on S(n) by
conjugation the space Σ of all diagonal matrices is a section.

8.10. Example. Similarly as in 8.9, when the SU(n) act on the Hermitian ma-
trices by conjugation, the (real) diagonal matrices turn out to be a section.

8.11. Definition. The principal horizontal distribution on a Riemannian

G-manifold M is the horizontal distribution on Mreg
π−→Mreg/G.

8.12. Theorem. If a connected, complete Riemannian G-manifold M has a sec-
tion Σ, then

(1) The principal horizontal distribution is integrable.
(2) Every connected component of Σreg is a leaf for the principal horizontal

distribution.
(3) If L is the leaf of Hor (Mreg) through x ∈ Mreg, then π|L : L −→ Mreg/G is

an isometric covering map.
(4) Σ is totally geodesic.
(5) Through every regular point x ∈ M there is a unique section: E(x) =

expγx(Norx(G.x))
(6) A G-equivariant normal field along a principal orbit is parallel in terms of

the induced covariant derivative ∇Nor.
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Proof.

(1) The submanifolds g.Σreg of Mreg are integral manifolds to the horizontal
distribution, since they are orthogonal to each orbit and by an argument of
dimension.

(2) clear.
(3) see 7.8(2).
(4) see 7.8(1).
(5) This is a consequence of (4). Namely, for x ∈ M choose g ∈ G such that

g.x ∈ Σ ∩ G.x, then g−1.Σ is a section through x. By (2) and (4) we have
E(x) ⊆ g−1.Σ. The converse can be seen as follows: Let y ∈ g−1.Σ and
choose a minimal geodesic from x to y. By the argument given in the proof
of 8.3.(3) this gedesic is orthogonal to the orbit through x and thus lies in
E(x). So y ∈ E(x).

(6) see 7.13 (1) ⇐⇒ (2) and recall that by remark 7.10 a normal field is
G-equivariant iff it is π-parallel, where π : M −→M/G is the orbit map. ¤

8.13. Remark. The converse of 8.12(1) is not true. Namely, an integral manifold
of Hor(Mreg) is not, in general, a section.

Example. Consider the Lie group G = S1 × {1}, and let it act on M := S1 × S1

by translation. Let ξ = (1, 0) denote the fundamental vector field of the action, and
choose any η ∈ Lie(S1 × S1) = R×R which generates a one-parameter subgroup c
which is dense in S1×S1 (irrational ascent). Now, endow S1×S1 with a Riemannian
metric making ξ and η an orthonormal frame field. Any section of M would then
have to be a coset of c, and therefore dense. This contradicts the assumption that
a section is a closed embedded submanifold.

8.14. Definition. A symmetric space is a complete, connected Riemannian
manifold M such that for each x ∈ M there is an isometry Sx (defined globally)
which locally around x takes on the form:

expx tX 7→ expx(−tX)

In particular, x is an isolated fixed point.

Remark. Equivalent to this definition is the following one: A symmetric space is
a quotient space M = G/H of a Lie group G with a subgroup H together with an
automorphism σ : G −→ G which satisfies two conditions

(1) σ ◦ σ = id
(2) (Gσ)o ⊆ H ⊆ Gσ := {g ∈ G : σ(g) = g}

An indication for this is that the first definition of a symmetric space implies that the
group of isometries must act transitively. For any x, y ∈M , take a geodesic joining
the two, then the reflection Sc at the central point between x and y on the geodesic
carries x into y. Now if we identify G := Isom(M) and let H := Gx0

for some point
x0 in M , then M = G/H, and σ can be defined as σ(g) := Sx0

◦ g ◦ Sx0
. It clearly

fulfills σ ◦σ = id. Let us check (2). Take any h ∈ H. Since Tx0
Sx0

= −IdTx0
M and

h.x0 = x0, we get Tx0
σ(h) = Tx0

h by the chain rule. This suffices to prove that
σ(h) = h (cf. [17], Lemma 4 p.254). So we have H ∈ Gσ. To see (Gσ)o ⊆ H, take
a one-parameter subgroup gt of Gσ with g0 = id. Then σ(gt) = gt implies that
Sx0
◦ gt = gt ◦ Sx0

. So Sx0
◦ gt(x0) = gt(x0), and since g0(x0) = x0 and x0 is an

isolated fixed point of Sx0
, gt(x0) = x0 for the other t as well, so gt ∈ H.
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8.15. Theorem. ( [18], Ch.XI, 4.3) If (G/H, σ) is a symmetric space, then the
totally geodesic connected submanifolds N of G/H through e ∈ G/H correspond
exactly to the linear subspaces TeN = m′ ⊆ m := TeG/H ∼= {X ∈ g : σ′(X) = −X}
which fulfill [[m′,m′],m′] ⊆ m′.

Remark. This implies that a locally totally geodesic submanifold of a simply con-
nected symmetric space can be extended uniquely to a complete, totally geodesic
submanifold. Here we mean by locally geodesic submanifold that a geodesic can
leave the submanifold only at its “boundary”. In other words, the second funda-
mental form must be zero.

8.16. Corollary. Let M = G/H be a simply connected, complete symmetric
space, K ⊆ G, a subgroup. Then the action of K on G/H admits sections iff
Hor(Mreg) is integrable. In particular, if the principal K-orbits have codimension
1, there are always sections.

8.17. Theorem. Consider any Riemannian G-manifold M . Then the following
statements are equivalent.

(1) Hor(Mreg) is integrable.
(2) Every G-equivariant normal field along a principal orbit is ∇Nor-parallel.
(3) For x ∈ Mreg, S the normal slice at x and X ∈ g and s ∈ S arbitrary,

ζX(s) ⊥ Ts(S).

Proof. The equivalence of (1) and (2) is a direct consequence of 7.13 and remark
7.10. Furthermore, suppose (1), then there is an integral submanifold H of the
horizontal distribution going through x. H is totally geodesic by 7.8(1), and so
S = expx(Norr(G.x)) is contained in H. Therefore, (3) holds: The fundamental
vector field ζX is tangent to the orbit G.s and with that perpendicular to the
horizontal distribution and to Ts(S). Now if we suppose (3), then S is an integral
submanifold of Hor(Mreg), and (1) holds. ¤

8.18. Remark. We already saw in 6.10 that NorG.x is a trivial bundle. Now we
even have a parallel global frame field. So the normal bundle to a regular orbit is
flat.

8.19. Corollary. Consider an orthogonal representation V of G, G −→ O(V ). Let
x ∈ V be any regular point and Σ the linear subspace of V that is orthogonal to
the orbit through x. Then the following statements are equivalent:

(1) V admits sections
(2) Σ is a section
(3) for all y ∈ Σ and X ∈ g, ζX(y) ⊥ Σ

Proof. (3) implies that the horizontal bundle is integrable (8.17). In this case 8.15
implies (1). (1)⇒ (2) is clear with 8.12(5). (2)⇒ (3) is trivial. ¤

8.20. Definition. An orthogonal representation of G is called polar represen-
tation if it admits sections.
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8.21. Corollary. Let π : G → O(V ) be a polar representation, and let v ∈ V be
a regular point. Then

Σ := {w ∈ V : ζg(w) ⊆ ζg(v)}
is the section through v, where ζg(w) := {ζX(w) : X ∈ g} ⊆ V .

Proof. Since ζg(v) = Tv(G.v) and by 8.19, a section through v is given by Σ′ :=
ζg(v)⊥. If z ∈ Σ′, then ζg(z) ⊆ (Σ′)⊥, which in our case implies that ζg(z) ⊆ ζg(v).
So z ∈ Σ.

Conversely, suppose z is a regular point in Σ. Consider the section Σ′′ = ζg(z)⊥

through z. Then, since ζg(z) ⊆ ζg(v), we also have that Σ′ = ζg(v)⊥ ⊆ ζg(z)⊥ =
Σ′′. Therefore Σ′ = Σ′′ and, in particular, z ∈ Σ′. ¤
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P. Polar representations

In this chapter we develop the theory of real orthogonal representations which admit
a section. These are called polar representations. We follow [11]. Let G ⊂ O(V )
be an orthogonal representation of a compact Lie group G on a finite dimensional
vector space V , with Lie algebra g ⊂ o(V ).

P.1. Lemma. For every v ∈ V the normal space Norv(G.v) = Tv(G.v)⊥ meets
every orbit.

Proof. Let w ∈ V and consider f : G → R, f(g) = 〈g.w, v〉. Let g0 be a crit-
ical point, e.g. a minimum on the compact group G, then 0 = df(g0).(X.g0) =
〈X.g0.w, v〉 = −〈g0.w,X.v〉 for all X ∈ g. Thus g0.w ∈ Norv(G.v). ¤

P.2. Lemma. For any regular v0 ∈ V the following assertions are equivalent:

(1) For any v ∈ Vreg there exists g ∈ G with g.Tv(G.v) = Tv0(G.v0).
(2) Norv0(G.v0) = Tv0(G.v0) is a section.

Proof. (1) ⇒ (2) Let A := {v ∈ Norv0(G.v0) : 〈g.v,Norv0(G.v0)〉 = 0}, a linear
subspace. If (2) does not hold then A ( Norv0(G.v0), and then dim(G.A) <
dim(V ). So there exists w ∈ Vreg \ G.A, and by lemma P.1 we may assume that
w ∈ Norv0 . By (1) there exists g ∈ G with k.Norw = Norv0 . This means Norg.w =
Norv0 , a contradiction to the definition of A.

(2) ⇒ (1) For any w ∈ Vreg there exists g ∈ G with g.w ∈ Norv0 . But then
g.Norw = Norg.w = Norv0 , so (1) holds. ¤

P.3. Theorem. If G ⊂ O(V ) is a polar representation then for any v ∈ V with
a section Σ ⊂ Norv, the isotropy representation Gv ⊂ Norv is also polar with the
same section Σ ⊂ Norv.

Conversely, if there exists some v ∈ V sucht that the isotropy representation Gv ⊂
Norv is polar with section Σ ⊂ Norv, then also G ⊂ O(V ) is polar with the same
section Σ ⊂ V .

Proof. (⇒) Let G ⊂ O(V ) be polar with section Σ, let v ∈ Σ and w ∈ Σreg =
Σ ∩ Vreg.
Claim. Then V = Σ⊕ gv.w ⊕ g.v is an orthogonal direct sum decomposition.
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Namely, we have 〈g.Σ,Σ〉 = 0 so that

〈gv.w, g.v〉 = 〈w, g. gv.v︸︷︷︸
0

〉 − 〈w, [gv, g]︸ ︷︷ ︸
⊂g

.v〉 = 0.

Since w is in Vreg we have the orthogonal direct sum V = Σ⊕g.w, so that dim(V ) =
dim(Σ) + dim(g)− dim(gw); and also we have (gv)w = gw. Thus we get

dim(Σ⊕ gv.w ⊕ g.v) = dim(Σ) + dim(gv)− dim((gv)w) + dim(g)− dim(gv)

= dim(Σ) + dim(gv)− dim(gw) + dim(g)− dim(gv)

= dim(V )

and the claim follows.

But then we see from the claim that Norv = Σ⊕ gv.w is an orthogonal decomposi-
tion, and that P.2.(1) holds, so that Gv ⊂ Norv is polar with section Σ.

Conversely, if Gv ⊂ Norv is polar with section Σ we get the orthogonal decompo-
sition Norv = Σ ⊕ gv.Σ for This implies 〈Σ, g.Σ〉 = 0. By lemma P.1 we have
G.Norv = V , by polarity we have Gv.Σ = Norv, thus finally G.Σ = V . So
G ⊂ O(V ) is polar. ¤

P.4. Theorem. Let G be connected and G ⊂ O(V = V1⊕V2) be a polar reducible
representation, which is decomposed as V = V1⊕ V2 as G-module. Then we have:

(1) Both G-modules V1 and V2 are polar, and any section Σ of V is of the form
Σ = Σ1 ⊕ Σ2 for sections Σi in Vi.

(2) Consider the connected subgroups

G1 := {g ∈ G : g|Σ2 = 0}o, G2 := {g ∈ G : g|Σ1 = 0}o.

Then G = G1.G2, and G1 × G2 acts on V = V1 ⊕ V2 componentwise by
(g1, g2)(v1+v2) = g1.v1+g2.v2, with the same orbits asG: G.v = (G1×G2).v
for any v.

Proof. Let v = v1 + v2 ∈ Σ ∩ Vreg ⊂ V = V1 ⊕ V2. Then V = Σ ⊕ g.v, thus vi =
si+Xi.v for si ∈ Σi and Xi ∈ g. But then si ∈ Σi∩Vi =: Σi and Vi = (Σ∩Vi)⊕g.vi
and the assertion (1) follows.

Moreover Norv1 = (g.v1)⊥ = Σ1⊕V2, and by theorem P.3 the action of Gv1 on this
space is polar with section Σ1 ⊕ Σ2. Thus we have gv1 = g2 := gΣ1

and gv1 acts
only on V2 and vanishes on V1 and we get V2 = Σ2 ⊕ gv1v2 = Σ2 ⊕ g.v2. Similarly
gv2 = g1 := gΣ2

and gv2 acts only on V1 and vanishes on V2, and V1 = Σ1⊕gv2v1 =
Σ1⊕g.v1. Thus g = g1 +g2 and consequently G = G1.G2 = G2.G1 by compactness
of Gi. For any g ∈ G we have g = g1.g2 = g′2.g

′
1 for gi, g

′
i ∈ Gi. For u = u1 + u2 ∈

V1 ⊕ V2 = V we then have g.(u1 + u2) = g1.g2.u1 + g′2.g
′
1.u2 = g1.u1 + g′2.u2, thus

G.u ⊆ (G1 × G2).u. Since both orbits have the same dimension, G.u is open in
(G1 ×G2).u; since all groups are compact and connected, the orbits coincide. ¤
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9. The Generalized Weyl Group of a Section

Consider a complete Riemannian G-manifold M which admits sections. For any
closed subset S of M we define the largest subgroup of G which induces an action
on S:

N(S) := {g ∈ G : `g(S) = S}
and the subgroup consisting of all g ∈ G which act trivially on S:

Z(S) := {g ∈ G : `g(s) = s, for all s ∈ S}.

Then, since S is closed, N(S) is closed, hence a Lie subgroup of G. Z(S) =
⋂
s∈S Gs

is closed as well and is a normal subgroup of N(S). Therefore, N(S)/Z(S) is a Lie
group, and it acts on S effectively.

If we take for S a section Σ, then the above constructed group is called the gener-
alized Weyl group of Σ and is denoted by

W (Σ) = N(Σ)/Z(Σ).

9.1. Remark. For any regular point x ∈ Σ, Gx acts trivially on the normal slice
Sx at x (by 6.7). Since Σ = expx Norx(G.x) by 8.12(5), Sx is an open subset of Σ,
and we see that Gx acts trivially on all of Σ. So we have Gx ⊆ Z(Σ). On the other
hand, Z(Σ) ⊆ Gx is obvious, therefore

Z(Σ) = Gx for x ∈ Σ ∩Mreg.

Now, since Z(Σ) is a normal subgroup of N(Σ), we have N(Σ) ⊆ N(Gx) where the
second N stands for the normalizer in G. So we have

W (Σ) ⊆ N(Gx)/Gx for x ∈ Σ ∩Mreg.

9.2. Proposition. Let M be a proper Riemannian G-manifold and Σ a section,
then the associated Weyl group W (Σ) is discrete. If Σ′ is a different section, then
there is an isomorphism W (Σ) −→W (Σ′) induced by an inner automorphism of G.
It is uniquely determined up to an inner automorphism of W (Σ).

Proof. Take a regular point x ∈ Σ and consider the normal slice Sx. Then Sx ⊆ Σ
open. Therefore, any g in N(Σ) close to the identity element maps x back into Sx.
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By 4.12(2) g then lies in Gx = Z(Σ). So Z(Σ) is an open subset of N(Σ), and the
quotient W (Σ) is discrete.

If Σ′ is another section, then Σ′ = g.Σ where g ∈ G is uniquely determined up to
N(Σ). Clearly, conjg : G −→ G induces isomorphisms

conjg :N(Σ)
∼=−→ N(Σ′)

Z(Σ)
∼=−→ Z(Σ′)

and therefore it factors to an isomorphism W (Σ)
∼=−→W (Σ′). ¤

9.3. Example. Any finite group is a generalized Weyl group in the appropriate
setting. That is, to an arbitrary finite group W we will now construct a setting in
which it occurs as a Weyl group. Let G be a compact Lie group and H a closed
subgroup such that W ⊆ N(H)/H (this is always possible since any finite group can
be regarded as a subgroup of O(V ) =: G so we need only choose H = {e}). Next,
take a smooth manifold Σ on which W acts effectively. Consider the inverse image of
W under the quotient map π : N(H) −→ N(H)/H, K := π−1(W ). Then the action
of W induces a K-action on Σ as well. The smooth manifold M := G×K Σ has a
left G-action. Let −B denote the G-invariant Riemann metric on G induced by the
Cartan-Killing form on the semisimple part and any inner product on the center,
and let γΣ be a W -invariant Riemann metric on Σ. Then the Riemann metric
−B × γΣ on G × Σ induces a G-invariant Riemann metric on the quotient space
G×KΣ. With this, G×KΣ is a Riemannian G-manifold, and if q : G×Σ −→ G×KΣ
is the quotient map, then q({e} × Σ) ∼= Σ meets every G-orbit orthogonally. So it
is a section. The largest subgroup of G acting on Σ is K and the largest acting
trivially on Σ is H. Therefore, W (Σ) = K/H = W is the Weyl group associated
to the section Σ.

9.4. Theorem. Let M be a proper Riemannian G-manifold with sections. Then,
for any x ∈M , the slice representation Gx −→ O( Norx(G.x)) is a polar representa-
tion. If Σ is a section through x in M , then TxΣ is a section in Norx(G.x) for the
slice representation. Furthermore,

W (TxΣ) = W (Σ)x.

Proof. Clearly TxΣ ⊆ Norx(G.x). We begin by showing that it has the right
codimension. Take a ξ ∈ Norx(G.x) close to 0x, then (Gx)ξ = Gy for y = expγx ξ,
since expx is a Gx-equivariant diffeomorphism in a neighborhood of 0x. So Gx.ξ ∼=
Gx/(Gx)ξ = Gx/Gy. Let us now calculate the codimension of Gx.ξ in Norx(G.x):

dim Norx(G.x)− dimGx.ξ = dim Norx(G.x)− dimGx + dimGy =

= dim Norx(G.x) + dimG/Gx︸ ︷︷ ︸
=dimM

− (dimG− dimGy)︸ ︷︷ ︸
=dimG/Gy

= codimM G.y.

Since the regular points lie dense, we can choose ξ ∈ TxΣ regular by assuming that
y = expγx(X) is regular in Σ. Then y is regular as well and we get:

codimNorx(G.x)Gx.ξ = codimM G.y = dim Σ = dimTxΣ.

Draft from March 21, 2005 Peter W. Michor,



82 9. The generalized Weyl group of a section

So TxΣ is a linear subspace of NorxG.x with the right codimension for a section.
Therefore, if we show that TxΣ is orthogonal to each orbit it meets, then it is
already the entire orthogonal complement of a regular orbit, and by corollary 8.19
(3) =⇒ (2), we know that it meets every orbit.

Denote the G-action on M by ` : G −→ Isom(M). If ξ ∈ TxΣ is arbitrary, then it
remains to prove that for all η ∈ TxΣ and X ∈ gx:

γx

(
η, ζ

T` |Gx

X (ξ)
)

= 0.

To do this, choose a smooth one-parameter family η(t) ∈ Texp(tξ)Σ such that η(0) =
η and ∇∂t

η = 0. Since Σ is a section in M we know for each single t that

γexp(tξ)

(
ζ`X(expγ(tξ)), η(t)

)
= 0.

If we derive this equation we get

0 =
d

ds

∣∣∣∣
s=0

γ
(
ζ`X(expγ(sξ)), η(s)

)
= γ

(
∇∂s

ζ`X(expγ(sξ)), η(0)
)
.

So it remains to show that ∇∂s
ζ`X(expγ(sξ)) is the fundamental vector field of X

at ξ for the slice representation.

∇∂s
ζ`X(expγ(sξ)) = ∇ξζ`X = K ◦ Tζ`X .ξ =

= K ◦ T (∂t|0`expG(tX)).∂s|0 expγx(sξ))

= K.∂s|0.∂t|0`expG(tX)(expγx(sξ))

= K.κM .∂t|0.∂s|0`expG(tX)(expγx(sξ))

= K.κM .∂t|0.T (`expG(tX))(ξ)

Here, K denotes the connector and κM the canonical flip between the two structures
of TTM , and we use the identity K◦κ = K, which is a consequence of the symmetry
of the Levi-Civita connection. The argument of K in the last expression is vertical
already since X ∈ gx. Therefore we can replace K by the vertical projection and
get

∇∂s
ζ`X(expγ(sξ)) = vpr

d

dt

∣∣∣∣
t=0

Tx(`expG(tX)).ξ = ζ
T2` |Gx

X (ξ).

So ζ
T2` |Gx

X (ξ) intersects TxΣ orthogonally, and therefore TxΣ is a section.

Now consider NGx
(Tx(Σ)) = {g ∈ Gx : Tx(`g).TxΣ = TxΣ}. Clearly, NG(Σ)∩Gx ⊆

NGx
(Tx(Σ)). On the other hand, any g ∈ NGx

(Tx(Σ)) leaves Σ invariant as the
following argument shows.

For any regular y ∈ Σ we have Σ = expy Nor(G.y). Therefore x = expy η for
a suitable η ∈ TyΣ, and conversely, y can be written as y = expx ξ for ξ =

− d
dt

∣∣
t=1

expy tη ∈ TxΣ. Now g.y = g. expx ξ = expx Tx`g.ξ lies in Σ, since Tx`g.ξ
lies in TxΣ. So g maps all regular points in Σ back into Σ. Since these form a dense
subset and since `g is continuous, we get g ∈ NG(Σ).

We have now shown that

NGx
(TxΣ) = NG(Σ) ∩Gx.
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Analogous arguments used on ZGx
(TxΣ) give

ZGx
(TxΣ) = ZG(Σ),

and we see that

WGx
(TxΣ) = (N(Σ) ∩Gx)/Z(Σ) = W (Σ)x. ¤

9.5.. Corollary. Let M be a Riemannian G-manifold admitting sections and let
x ∈M . Then for any section Σ through x we have

Norx(G.x)G
0
x ⊆ TxΣ,

where G0
x is the connected component of the isotropy group Gx at x.

Proof. By theorem 9.4 the tangent space TxΣ is a section for the slice representa-
tion Gx → O(Norx(G.x)). Let ξ ∈ TxΣ be a regular vector for the slice represen-
tation. By corollary 8.21 we have TxΣ = {η ∈ Norx(G.x) : ζgx

(η) ⊂ ζgx
(ξ)}. Since

Norx(G.x)G
0
x consists of all η in Norx(G.x) with ζgx

(η) = 0, the result follows. ¤

9.6. Corollary. Let M be a proper Riemannian G-manifold with sections and
x ∈M . Then Gx acts transitively on the set of all sections through x.

Proof. Consider two arbitrary sections Σ1 and Σ2 through x and a normal slice
Sx at x. By theorem 9.4, TxΣ2 is a section for the slice representation. Since expx
can be restricted to a Gx-equivariant diffeomorphism onto Sx, Σ2 ∩ Sx is a section
for the Gx-action on Sx. Next, choose a regular point y ∈ Σ1 ∩ Sx. Its Gx-orbit
meets the section Σ2 ∩ Sx, that is we can find a g ∈ Gx such that g.y ∈ Σ2. Now
Σ2 and g.Σ1 are both sections containing the regular point g.y. Therefore they are
equal. ¤

9.7. Corollary. Let M be a proper G-manifold with sections, Σ a section of M
and x ∈ Σ. Then

G.x ∩ Σ = W (Σ).x

Proof. The inclusion (⊇) is clear. Now we have

y ∈ G.x ∩ Σ ⇐⇒ y = g.x ∈ Σ for some g ∈ G.

Take this g and consider the section Σ′ := g.Σ. Then Σ and Σ′ are both sections
through y, and by 9.6 there is a g′ ∈ Gy which carries Σ′ back into Σ. Now
g′g.Σ = Σ, that is g′g ∈ N(Σ), and g′g.x = g′.y = y. So y ∈ N(Σ).x = W (Σ).x. ¤

9.8. Corollary. If M is a proper G-manifold with section Σ, then the inclusion
of Σ into M induces a homeomorphism j between the orbit spaces.

Σ �i

��
πΣ

M

��
πM

Σ/W (Σ) �
j

M/G
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(but it does not necessarily preserve orbit types, see remark 4.14).

Proof. By the preceding corollary there is a one to one correspondence between
the G-orbits in M and the W (G)-orbits in Σ, so j is well defined and bijective.
Since j ◦ πΣ = πM ◦ i and πΣ is open, j is continuous.

Consider any open set U ⊆ Σ/W (Σ). We now have to show that

π−1
M j(U) = G.π−1

Σ (U)

is an open subset of M (since then j(U) is open and j−1 continuous). Take any
x ∈ π−1

M j(U). We assume x ∈ Σ (otherwise it can be replaced by a suitable g.x ∈ Σ).

So x ∈ π−1
Σ (U). Let Sx be a normal slice at x, then Σ ∩ Sx is a submanifold of

Sx of dimension dim Σ. In Sx, x has arbitrarily small Gx-invariant neighborhoods,
since the slice action is orthogonal and Sx G-equivariantly diffeomorphic to an open
ball in Norx(G.x). Let Vx be such an open neighborhood of x, small enough for
Vx ∩Σ to be contained in π−1

Σ (U). Vx is again a slice, therefore G.Vx is open in M

(4.12(3)). Now we have to check whether G.Vx is really a subset of π−1
M j(U). Using

corollary 9.6 we get

G.(Vx ∩ Σ) = G.Gx(Vx ∩ Σ) = G.(Vx ∩Gx.Σ) = G.Vx.

Therefore, G.Vx ⊆ G.π−1
Σ (U) = π−1

M j(U) where it is an open neighborhood of x. So

π−1
M j(U) is an open subset of M , j(U) is open in M/G, and j−1 is continuous. ¤

9.9. Corollary. Let M be a proper Riemannian G-manifold and Σ ⊆M a section
with Weyl group W . Then the inclusion i : Σ ↪→M induces an isomorphism

C0(M)G
i∗−→ C0(Σ)W .

Proof. By corollary 9.7 we see that every f ∈ C0(Σ)W has a unique G-equivariant

extension f̃ onto V . If we consider once more the diagram

Σ �i

��
πΣ

M

��
πM

Σ/W (Σ) �
j

M/G

we see that f factors over πΣ to a map f ′ ∈ C0(Σ/W (Σ)), and since j is a homeo-

morphism (9.8) we get for the G-invariant extension f̃ of f :

f̃ = f ′ ◦ j−1 ◦ πM ∈ C0(M)G. ¤

9.10. Theorem. [32], 4.12, or [44], theorem D. Let G → GL(V ) be a polar
representation of a compact Lie group G, with section Σ and generalized Weyl
group W = W (Σ).
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Then the algebra R[V ]G of G-invariant polynomials on V is isomorphic to the
algebra R[Σ]W of W -invariant polynomials on the section Σ, via the restriction
mapping f 7→ f |Σ.

9.11. Remark. This seemingly very algebraic theorem is actually a consequence of
the geometry of the orbits. This already becomes evident in the case of a first degree

homogeneous polynomial. To see that the G-invariant extension of p ∈ R [Σ]
W
1 to V

is again a polynomial (and again of first degree), we we must assume the following
convexity result of Terng.

Under the conditions of the theorem, for every regular orbit G.x the orthogonal
projection onto Σ, pr(G.x), is contained in the convex hull of G.x ∩ Σ (this is a
finite subset of Σ by 9.7 since G is compact and W (Σ) discrete).

Let us make this assumption. Denote by p̃ the unique G-invariant extension of p,
then clearly p̃ is homogeneous. Now, notice that for any orbit G.x, p is constant
on the convex hull of G.x∩Σ =: {g1.x, g2.x, . . . , gk.x}. Just take any s =

∑
λigi.x

with
∑
λi = 1, then

p(s) =
∑

λip(gi.x) = p(g1.x)
∑

λi = p(g1.x).

With this and with our assumption we can show that for regular points u, v ∈ M ,
p̃(u+ v) = p̃(u) + p̃(v). Suppose without loss of generality that u+ v ∈ Σ, then

p(u+ v) = p(pr(u) + pr(v)) = p(pr(u)) + p(pr(v))

At this point, the convexity theorem asserts that pr(u) and pr(v) can be written
as convex combinations of elements of G.u ∩ Σ, respectively G.v ∩ Σ. If we fix an
arbitrary gu (resp. gv) in G such that gu.u (resp. gv.v) lie in Σ, then by the above
argument we get

p(pr(u)) = p(gu.u) and p(pr(v)) = p(gv.v).

So we have
p(u+ v) = p(gu.u) + p(gv.v) = p̃(u) + p̃(v),

and p̃ is linear on Vreg. Since the regular points are a dense subset of V , and p̃ is
continuous by 9.9, p̃ is linear altogether.

A proof of the convexity theorem can be found in [45] or again in [33], pp. 168–
170. For a proof of theorem 9.10 we refer to [44]. In both sources the assertions
are shown for the more general case where the principal orbits are replaced by
isoparametric submanifolds (i.e. submanifolds of a space form with flat normal
bundle and whose principal curvatures along any parallel normal field are constant;
compare 6.13 and 8.18). To any isoparametric submanifold there is a singular
foliation which generalizes the orbit foliation of a polar action but retains many of
its fascinating properties (cf. [33]).

9.12. Remark. In connection with the example we studied in chapter 1, the
convexity theorem from above yields the following classical result of Schur [39],
1923:

Let M ⊆ S(n) be the subset of all matrices with fixed distinct eigenvalues a1, . . . , an
and pr : S(n) −→ Rn defined by

pr ((xij)) := (x11, x22, . . . , xnn)

then pr(M) is contained in the convex hull of Sn.a where a = (a1, . . . , an).
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9.13. Theorem. Let M be a proper Riemannian G-manifold with section Σ and
Weyl group W . Then the inclusion i : Σ ↪→M induces an isomorphism

C∞ (M)
G i∗−→ C∞ (Σ)

W (Σ)
.

Proof. Clearly f ∈ C∞ (M)
G

implies i∗f ∈ C∞(Σ)W . By 9.9 we know that every

f ∈ C∞ (Σ)
W

has a unique continuous G-invariant extension f̃ . We now have to

show that f̃ ∈ C∞ (M)
G

.

Let us take an x ∈ M and show that f̃ is smooth at x. Actually, we can assume
x ∈ Σ, because if f̃ is smooth at x then f̃ ◦ `g−1 is smooth at g.x, so f̃ is smooth
at g.x as well. Now let Sx denote a normal slice at x. Then we have

G.Sx �
�
� ���

G×Gx
Sx

I �
�
� ���f̃ ◦ I

G× Sx
q

f̃ |Sx
◦ pr2

G/Gx R

Since in the above diagram I is an isomorphism and q a submersion, it is sufficient
to show that f̃ |Sx

◦ pr2 or equivalently f̃ |Sx
is smooth at x. Let B ⊆ TxSx be a

ball around 0x such that B ∼= Sx and TxΣ ∩ B ∼= Σ ∩ Sx. Then, by theorem 9.4,
the Gx-action on Sx is basically a polar representation (up to diffeomorphism). So
it remains to show the following:
Claim: If Σ is a section of a polar representation Gx −→ O(V ) with Weyl group
Wx and f is a smooth Wx-invariant function on Σ, then f extends to a smooth
Gx-invariant function f̃ on V .

In order to show this, let ρ1, . . . , ρk be a system of homogeneous Hilbert generators

for R [Σ]
Wx . Then, by Schwarz’ theorem, there is an f ′ ∈ C∞

(
Rk
)

such that

f = f ′◦(ρ1, . . . , ρk). By theorem 9.10, each ρi extends to a polynomial ρ̃i ∈ R [V ]
Gx .

Therefore we get
f̃ := f ′ ◦ (ρ̃1, . . . , ρ̃k) : V −→ R

is a smooth Gx-invariant extension of f . ¤
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10. Basic Differential Forms

Our aim in this section is to show that pullback along the embedding Σ → M
induces an isomorphism Ωp

hor(M)G ∼= Ωp(Σ)W (Σ) for each p, where a differential
form ω on M is called horizontal if it kills each vector tangent to some orbit. For
each point x in M , the slice representation of the isotropy group Gx on the normal
space Tx(G.x)⊥ to the tangent space to the orbit through x is a polar representation.
The first step is to show that the result holds for polar representations. This is
done in theorem 10.6 for polar representations whose generalized Weyl group is
really a Coxeter group, is generated by reflections. Every polar representation of
a connected Lie group has this property. The method used there is inspired by
Solomon [40]. Then the general result is proved under the assumption that each
slice representation has a Coxeter group as a generalized Weyl group. This result
is from [24].

10.1. Basic differential forms. Let G be a Lie group with Lie algebra g, mul-
tiplication µ : G × G → G, and for g ∈ G let µg, µ

g : G → G denote the left and
right translation.

Let ` : G×M →M be a left action of the Lie group G on a smooth manifold M . We
consider the partial mappings `g : M → M for g ∈ G and `x : G → M for x ∈ M
and the fundamental vector field mapping ζ : g→ X(M) given by ζX(x) = Te(`

x)X.
Since ` is a left action, the negative −ζ is a Lie algebra homomorphism.

A differential form ϕ ∈ Ωp(M) is called G-invariant if (`g)
∗ϕ = ϕ for all g ∈ G and

horizontal if ϕ kills each vector tangent to a G-orbit: iζX
ϕ = 0 for all X ∈ g. We

denote by Ωphor(M)G the space of all horizontal G-invariant p-forms on M . They
are also called basic forms.

10.2. Lemma. Under the exterior differential Ωhor(M)G is a subcomplex of Ω(M).

Proof. If ϕ ∈ Ωhor(M)G then the exterior derivative dϕ is clearly G-invariant. For
X ∈ g we have

iζX
dϕ = iζX

dϕ+ diζX
ϕ = ÃLζX

ϕ = 0,

so dϕ is also horizontal. ¤
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10.3. Main Theorem. ([24] and [25]) Let M × G → M be a proper isometric
right action of a Lie group G on a smooth Riemannian manifold M , which admits
a section Σ.

Then the restriction of differential forms induces an isomorphism

Ωphor(M)G
∼=−→ Ωp(Σ)W (Σ)

between the space of horizontal G-invariant differential forms on M and the space
of all differential forms on Σ which are invariant under the action of the generalized
Weyl group W (Σ) of the section Σ.

The proof of this theorem will take up the rest of this section.

Proof of injectivity. Let i : Σ→ M be the embedding of the section. It clearly
induces a linear mapping i∗ : Ωphor(M)G → Ωp(Σ)W (Σ) which is injective by the
following argument: Let ω ∈ Ωp

hor(M)G with i∗ω = 0. For x ∈ Σ we have iXωx = 0
for X ∈ TxΣ since i∗ω = 0, and also for X ∈ Tx(G.x) since ω is horizontal. Let
x ∈ Σ∩Mreg be a regular point, then TxΣ = (Tx(G.x))⊥ and so ωx = 0. This holds
along the whole orbit through x since ω is G-invariant. Thus ω|Mreg = 0, and since
Mreg is dense in M , ω = 0.

So it remains to show that i∗ is surjective. This will be done in 10.10 below. ¤

10.4. Lemma. Let ` ∈ V ∗ be a linear functional on a finite dimensional vector
space V , and let f ∈ C∞(V,R) be a smooth function which vanishes on the kernel
of `, so that f |`−1(0) = 0. Then there is a unique smooth function g such that
f = `.g

Proof. Choose coordinates x1, . . . , xn on V with ` = x1. Then f(0, x2, . . . , xn) = 0

and we have f(x1, . . . , xn) =
∫ 1

0
∂1f(tx1, x2, . . . , xn)dt.x1 = g(x1, . . . , xn).x1. ¤

10.5. Question. Let G→ GL(V ) be a representation of a compact Lie group in
a finite dimensional vector space V . Let ρ = (ρ1, . . . , ρm) : V → Rm be the polyno-
mial mapping whose components ρi are a minimal set of homogeneous generators
for the algebra R[V ]G of invariant polynomials.

We consider the pullback homomorphism ρ∗ : Ωp(Rm) → Ωp(V ). Is it surjective
onto the space Ωphor(V )G of G-invariant horizontal smooth p-forms on V ?

See remark 10.7 for a class of representations where the answer is yes.

In general the answer is no. A counterexample is the following: Let the cyclic group
Zn = Z/nZ of order n, viewed as the group of n-th roots of unity, act on C = R2 by
complex multiplication. A generating system of polynomials consists of ρ1 = |z|2,
ρ2 = Re(zn), ρ3 = Im(zn). But then each dρi vanishes at 0 and there is no chance
to have the horizontal invariant volume form dx ∧ dy in ρ∗Ω(R3).

10.6. Theorem. ([24] and [25]) Let G → GL(V ) be a polar representation of a
compact Lie group G, with section Σ and generalized Weyl group W = W (Σ).

Then the pullback to Σ of differential forms induces an isomorphism

Ωphor(V )G
∼=−→ Ωp(Σ)W (Σ).
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According to Dadok [11], remark after proposition 6, for any polar representation
of a connected Lie group the generalized Weyl group W (Σ) is a reflection group.
This theorem is true for polynomial differential forms, and also for real analytic
differential forms, by essentially the same proof.

Proof. Let i : Σ → V be the embedding. It is proved in 10.3 that the restriction
i∗ : Ωphor(V )G → Ωp(Σ)W (G) is injective, so it remains to prove surjectivity.

Let us first suppose that W = W (Σ) is generated by reflections (a reflection group
or Coxeter group). Let ρ1, . . . , ρn be a minimal set of homogeneous generators of the
algebra R[Σ]W of W -invariant polynomials on Σ. Then this is a set of algebraically
independent polynomials, n = dim Σ, and their degrees d1, . . . , dn are uniquely
determined up to order. We even have (see [16])

(1) d1 . . . dn = |W |, the order of W ,
(2) d1 + · · ·+ dn = n+N , where N is the number of reflections in W ,
(3)

∏n
i=1(1 + (di − 1)t) = a0 + a1t + · · · + ant

n, where ai is the number of
elements in W whose fixed point set has dimension n− i.

Let us consider the mapping ρ = (ρ1, . . . , ρn) : Σ → Rn and its Jacobian J(x) =
det(dρ(x)). Let x1, . . . , xn be coordinate functions in Σ. Then for each σ ∈ W we
have

J.dx1 ∧ · · · ∧ dxn = dρ1 ∧ · · · ∧ dρn = σ∗(dρ1 ∧ · · · ∧ dρn)

= (J ◦ σ)σ∗(dx1 ∧ · · · ∧ dxn) = (J ◦ σ) det(σ)(dx1 ∧ · · · ∧ dxn),

J ◦ σ = det(σ−1)J.(4)

If J(x) 6= 0, then in a neighborhood of x the mapping ρ is a diffeomorphism by
the inverse function theorem, so that the 1-forms dρ1, . . . , dρn are a local coframe
there. Since the generators ρ1, . . . , ρn are algebraically independent over R, J 6= 0.
Since J is a polynomial of degree (d1 − 1) + · · · + (dn − 1) = N (see (2)), the set
U = Σ \ J−1(0) is open and dense in Σ, and dρ1, . . . , dρn form a coframe on U .

Now let (σα)α=1,...,N be the set of reflections in W , with reflection hyperplanes
Hα. Let `α ∈ Σ∗ be a linear functional with Hα = `−1(0). If x ∈ Hα we have
J(x) = det(σα)J(σα.x) = −J(x), so that J |Hα = 0 for each α, and by lemma 10.4
we have

(5) J = c.`1 . . . `N .

Since J is a polynomial of degree N , c must be a constant. Repeating the last
argument for an arbitrary function g and using (5), we get:

(6) If g ∈ C∞(Σ,R) satisfies g◦σ = det(σ−1)g for each σ ∈W , we have g = J.h
for h ∈ C∞(Σ,R)W .

(7) Claim. Let ω ∈ Ωp(Σ)W . Then we have

ω =
∑

j1<···<jp

ωj1...jpdρj1 ∧ · · · ∧ dρjp ,

where ωj1...jp ∈ C∞(Σ,R)W .
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Since dρ1, . . . , dρn form a coframe on the W -invariant dense open set U = {x :
J(x) 6= 0}, we have

ω|U =
∑

j1<···<jp

gj1...jpdρj1 |U ∧ · · · ∧ dρjp |U

for gj1...jp ∈ C∞(U,R). Since ω and all dρi are W -invariant, we may replace gj1...jp
by

1
|W |

∑

σ∈W

gj1...jp ◦ σ ∈ C∞(U,R)W ,

or assume without loss that gj1...jp ∈ C∞(U,R)W .

Let us choose now a form index i1 < · · · < ip with {ip+1 < · · · < in} = {1, . . . , n} \
{i1 < · · · < ip}. Then for some sign ε = ±1 we have

ω|U ∧ dρip+1
∧ · · · ∧ dρin = ε.gi1...ip .dρ1 ∧ · · · ∧ dρn

= ε.gi1...ip .J.dx
1 ∧ · · · ∧ dxn, and

ω ∧ dρip+1
∧ · · · ∧ dρin = ε.ki1...ipdx

1 ∧ · · · ∧ dxn(8)

for a function ki1...ip ∈ C∞(Σ,R). Thus

(9) ki1...ip |U = gi1...ip .J |U.

Since ω and each dρi is W -invariant, from (8) we get ki1...ip ◦ σ = det(σ−1)ki1...ip
for each σ ∈ W . But then by (6) we have ki1...ip = ωi1...ip .J for unique ωi1...ip ∈
C∞(Σ,R)W , and (9) then implies ωi1...ip |U = gi1...ip , so that the claim (7) follows
since U is dense.

Now we may finish the proof of the theorem in the case that W = W (Σ) is a
reflection group. Let i : Σ → V be the embedding. By theorem 9.10 the algebra
R[V ]G of G-invariant polynomials on V is isomorphic to the algebra R[Σ]W of W -
invariant polynomials on the section Σ, via the restriction mapping i∗. Choose
polynomials ρ̃1, . . . ρ̃n ∈ R[V ]G with ρ̃i ◦ i = ρi for all i. Put ρ̃ = (ρ̃1, . . . , ρ̃n) :
V → Rn. In the setting of claim (7), use the theorem 3.7 of G. Schwarz to find
hi1,...,ip ∈ C∞(Rn,R) with hi1,...,ip ◦ ρ = ωi1,...,ip and consider

ω̃ =
∑

j1<···<jp

(hj1...jp ◦ ρ̃)dρ̃j1 ∧ · · · ∧ dρ̃jp ,

which is in Ωphor(V )G and satifies i∗ω̃ = ω.

Thus the mapping i∗ : Ωphor(V )G → Ωphor(Σ)W is surjective in the case that W =
W (Σ) is a reflection group.

Now we treat the general case. Let G0 be the connected component of G. From
8.19.(3) one concludes:

A subspace Σ of V is a section for G if and only if it is a section for
G0. Thus ρ is a polar representation for G if and only if it is a polar
representation for G0.
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The generalized Weyl groups of Σ with respect to G and to G0 are related by

W (G0) = NG0
(Σ)/ZG0

(Σ) ⊂W (G) = NG(Σ)/ZG(Σ),

since ZG(Σ) ∩NG0
(Σ) = ZG0

(Σ).

Let ω ∈ Ωp(Σ)W (G) ⊂ Ωp(Σ)W (G0). Since G0 is connected the generalized Weyl
group W (G0) is generated by reflections (a Coxeter group) by [1], remark after
proposition 6. Thus by the first part of the proof

i∗ : Ωphor(V )G0
∼=−→ Ωp(Σ)W (G0)

is an isomorphism, and we get ϕ ∈ Ωp
hor(M)G0 with i∗ϕ = ω. Let us consider

ψ :=

∫

G

g∗ϕdg ∈ Ωphor(V )G,

where dg denotes Haar measure on G. In order to show that i∗ψ = ω it suffices to
check that i∗g∗ϕ = ω for each g ∈ G. Now g(Σ) is again a section of G, thus also
of G0. Since any two sections are related by an element of the group, there exists
h ∈ G0 such that hg(Σ) = Σ. Then hg ∈ NG(Σ) and we denote by [hg] the coset
in W (G), and we may compute as follows:

(i∗g∗ϕ)x = (g∗ϕ)x.Λ
pTi = ϕg(x).Λ

pTg.ΛpTi

= (h∗ϕ)g(x).Λ
pTg.ΛpTi, since ϕ ∈ Ωphor(M)G0

= ϕhg(x).Λ
pT (hg).ΛpTi = ϕi[hg](x).Λ

pTi.ΛpT ([hg])

= ϕi[hg](x).Λ
pTi.ΛpT ([hg]) = (i∗ϕ)[hg](x).Λ

pT ([hg])

= ω[hg](x).Λ
pT ([hg]) = [hg]∗ω = ω. ¤

10.7. Remark. The proof of theorem 10.6 shows that the answer to question 10.5
is yes for the representations treated in 10.6.

10.8. Corollary. Let ρ : G→ O(V, 〈 , 〉) be an orthogonal polar representation
of a compact Lie group G, with section Σ and generalized Weyl group W = W (Σ).
Let B ⊂ V be an open ball centered at 0.

Then the restriction of differential forms induces an isomorphism

Ωphor(B)G
∼=−→ Ωp(Σ ∩B)W (Σ).

Proof. Check the proof of 10.6 or use the following argument. Suppose that B =
{v ∈ V : |v| < 1} and consider a smooth diffeomorphism f : [0, 1) → [0,∞) with

f(t) = t near 0. Then g(v) := f(|v|)
|v| v is a G-equivariant diffeomorphism B → V

and by 10.6 we get:

Ωphor(B)G
(g−1)∗−−−−→ Ωphor(V )G

∼=−→ Ωp(Σ)W (Σ) g∗−→ Ωp(Σ ∩B)W (Σ). ¤
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10.9. Let us assume that we are in the situation of the main theorem 10.3, for the
rest of this section. For x ∈M let Sx be a (normal) slice and Gx the isotropy group,
which acts on the slice. Then G.Sx is open in M and G-equivariantly diffeomorphic
to the associated bundle G→ G/Gx via

G× Sx q−−−−→ G×Gx
Sx

∼=−−−−→ G.Sxy
yr

G/Gx
∼=−−−−→ G.x,

where r is the projection of a tubular neighborhood. Since q : G×Sx → G×Gx
Sx is

a principal Gx-bundle with principal right action (g, s).h = (gh, h−1.s), we have an
isomorphism q∗ : Ω(G×Gx

Sx)→ ΩGx−hor(G×Sx)Gx . Since q is also G-equivariant
for the left G-actions, the isomorphism q∗ maps the subalgebra Ωp

hor(G.Sx)G ∼=
Ωphor(G×Gx

Sx)G of Ω(G×Gx
Sx) to the subalgebra ΩpGx−hor(Sx)Gx of ΩGx−hor(G×

Sx)Gx . So we have proved:

Lemma. In this situation there is a canonical isomorphism

Ωphor(G.Sx)G
∼=−→ ΩpGx−hor(Sx)Gx

which is given by pullback along the embedding Sx → G.Sx.

10.10. Rest of the proof of theorem 10.6. Let us consider ω ∈ Ωp(Σ)W (Σ).
We want to construct a form ω̃ ∈ Ωp

hor(M)G with i∗ω̃ = ω. This will finish the
proof of theorem 10.6.

Choose x ∈ Σ and an open ball Bx with center 0 in TxM such that the Riemannian
exponential mapping expx : TxM → M is a diffeomorphism on Bx. We consider
now the compact isotropy group Gx and the slice representation ρx : Gx → O(Vx),
where Vx = Norx(G.x) = (Tx(G.x))⊥ ⊂ TxM is the normal space to the orbit. This
is a polar representation with section TxΣ, and its generalized Weyl group is given
by W (TxΣ) ∼= NG(Σ) ∩Gx/ZG(Σ) = W (Σ)x (see 9.4). Then expx : Bx ∩ Vx → Sx
is a diffeomorphism onto a slice and expx : Bx∩TxΣ→ Σx ⊂ Σ is a diffeomorphism
onto an open neighborhood Σx of x in the section Σ.

Let us now consider the pullback (exp |Bx ∩ TxΣ)∗ω ∈ Ωp(Bx ∩ TxΣ)W (TxΣ). By
corollary 10.8 there exists a unique form ϕx ∈ ΩpGx−hor(Bx ∩ Vx)Gx such that

i∗ϕx = (exp |Bx ∩ TxΣ)∗ω, where ix is the embedding. Then we have

((exp |Bx ∩ Vx)−1) ∗ ϕx ∈ ΩpGx−hor(Sx)Gx

and by lemma 10.9 this form corresponds uniquely to a differential form ωx ∈
Ωphor(G.Sx)G which satisfies (i|Σx)∗ωx = ω|Σx, since the exponential mapping com-
mutes with the respective restriction mappings. Now the intersection G.Sx ∩ Σ is
the disjoint union of all the open sets wj(Σx) where we pick one wj in each left
coset of the subgroup W (Σ)x in W (Σ). If we choose gj ∈ NG(Σ) projecting on wj
for all j, then

(i|wj(Σx))∗ωx = (`gj
◦ i|Σx ◦ w−1

j )∗ωx

= (w−1
j )∗(i|Σx)∗`∗gj

ωx

= (w−1
j )∗(i|Σx)∗ωx = (w−1

j )∗(ω|Σx) = ω|wj(Σx),
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so that (i|G.Sx ∩ Σ)∗ωx = ω|G.Sx ∩ Σ. We can do this for each point x ∈ Σ.

Using the method of 5.8 and 5.10 we may find a sequence of points (xn)n∈N in Σ
such that the π(Σxn

) form a locally finite open cover of the orbit space M/G ∼=
Σ/W (Σ), and a smooth partition of unity fn consisting of G-invariant functions
with supp(fn) ⊂ G.Sxn

. Then ω̃ :=
∑
n fnω

xn ∈ Ωphor(M)G has the required
property i∗ω̃ = ω. ¤
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11. Basic versus equivariant cohomology

11.1. Basic cohomology. For a Lie group G and a smooth G-manifold M , by
10.2 we may consider the basic cohomology Hp

G−basic(M) = Hp(Ω∗
hor(M)G, d).

11.2. Equivariant cohomology, Borel model. For a topological group and
a topological G-space the equivariant cohomology was defined as follows, see [3]:
Let EG → BG be the classifying G-bundle, and consider the associated bundle
EG ×G M with standard fiber the G-space M . Then the equivariant cohomology
is given by Hp(EG×GM ; R).

11.3. Equivariant cohomology, Cartan model. For a Lie group G and a
smooth G-manifold M we consider the space

(Skg∗ ⊗ Ωp(M))G

of all homogeneous polynomial mappings α : g→ Ωp(M) of degree k from the Lie
algebra g of G to the space of k-forms, which are G-equivariant: α(Ad(g−1)X) =
`∗gα(X) for all g ∈ G. The mapping

dg : AqG(M)→ Aq+1
G (M)

AqG(M) :=
⊕

2k+p=q

(Skg∗ ⊗ Ωp(M))G

(dgα)(X) := d(α(X))− iζX
α(X)

satisfies dg ◦ dg = 0 and the following result holds.

Theorem. Let G be a compact connected Lie group and let M be a smooth G-
manifold. Then

Hp(EG×GM ; R) = Hp(A∗
G(M), dg).

This result is stated in [1] together with some arguments, and it is attributed to
[6], [7] in chapter 7 of [2]. I was unable to find a satisfactory published proof.
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11.4.. Let M be a smooth G-manifold. Then the obvious embedding j(ω) = 1⊗ω
gives a mapping of graded differential algebras

j : Ωphor(M)G → (S0g∗ ⊗ Ωp(M))G →
⊕

k

(Skg∗ ⊗ Ωp−2k(M))G = ApG(M).

On the other hand evaluation at 0 ∈ g defines a homomorphism of graded differen-
tial algebras ev0 : A∗

G(M) → Ω∗(M)G, and ev0 ◦j is the embedding Ω∗
hor(M)G →

Ω∗(M)G. Thus we get canonical homomorphisms in cohomology

Hp(Ω∗
hor(M)G)

J∗

−−−−→ Hp(A∗
G(M), dg) −−−−→ Hp(Ω∗(M)G, d)

∥∥∥
∥∥∥

∥∥∥

Hp
G−basic(M) −−−−→ Hp

G(M) −−−−→ Hp(M)G.

If G is compact and connected we have Hp(M)G = Hp(M), by integration and
homotopy invariance.
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