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Introduction

In many procedures in science, engineering, imaging and medicine it is neces-
sary to distinguish between different geometric shapes. Therefore it is of great
importance to equip the space of all shapes with a significant metric. Many
different representations of shapes have been developed and there are various
different types of metrics on shape spaces, these include:

• Inner metrics on shape space of unparametrized immersions. These met-
rics are induced from metrics on parametrized immersions. See for exam-
ple [37, 6, 7, 8].

• Outer metrics on various shape spaces (embedded surfaces, images, land-
marks, measures and currents) that the diffeomorphism group of the am-
bient space is acting on. See for example [5, 9, 38, 14, 31, 24, 21, 37].

• Metamorphosis metrics. See for example [46, 23].

• The Wasserstein metric or Monge-Kantorovic metric on shape space of
probability measures. See for example [2, 3, 11, 10].

• The Weil-Peterson metric on shape space of planar curves. See for example
[42, 43, 28].

• Current metrics. See for example [47, 16, 17].

• (Pseudo) Metrics based on elastic deformations. See for example [19].

More references can be found in the survey papers [1, 4, 12, 29, 39, 48].

In this work we will represent shapes as submanifolds of a connected Rieman-
nian manifold N which are diffeomorphic to a connected and compact manifold
M . The space of all these shapes will be denoted Be = Be(M,N) and viewed
as the quotient

Be = Be(M,N) = Emb(M,N)/Diff(M)

of the open subset Emb(M,N) ⊂ C∞(M,N) of smooth embeddings of M in N ,
modulo the group of smooth diffeomorphisms of M (see section 1.2.11 for more
details). It is natural to consider all possible immersions as well as embeddings,
and thus introduce the larger space

Bi = Bi(M,N) = Imm(M,N)/Diff(M)

ix
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as the quotient of the space of C∞ immersions by the group of diffeomor-
phisms of M (which is, however, no longer a manifold, but an orbifold, see
section 1.2.11):

Emb(M,N) �
� //

��

Imm(M,N)

��
Be(M,N)

� � // Bi(M,N)

Furthermore we will focus on the class of inner metrics. These are metrics
that are induced by metrics on the manifold of immersions. We call these metrics
inner, since they are defined intrinsically to the base manifold M .

The simplest and most natural Riemannian metric on the manifold of im-
mersions is the L2-metric, which is given by:

G0
f (h, k) =

∫
M

ḡ(h, k) vol(g),

where h, k ∈ Tf Imm(M,N) are tangent vectors at the immersion f , ḡ denotes
a fixed metric on the ambient space N and g = f∗ḡ denotes the pullback metric
on M . Unfortunately this metric induces vanishing geodesic distance on shape
space. By vanishing geodesic distance we mean that any two points in shape
space can be joined by a path of arbitrarily short length. This was first dis-
covered by Michor and Mumford for the case of plane curves (see [36]). In [35]
they proved that the vanishing geodesic distance phenomenon for the L2-metric
occurs also in the shape space Imm(M,N)/Diff(M), where S1 is replaced by a
compact manifold M and Euclidean R2 is replaced by a Riemannian manifold
N . This was the starting point of the quest for suitable (stronger) inner metrics
on shape space.

One approach to strengthen the metric is to incorporate a differential oper-
ator into the definition of the metric, yielding metrics of the form:

GPf (h, k) =

∫
M

ḡ(Pfh, k) vol(g),

where P is an equivariant differential opperator depending smoothly on the
immersion. These metrics are called Immersion-Sobolev metrics.

The interesting special case P = ∆ and N = R2 has been studied in [45, 55]
and in [54] where an isometry to an infinite dimensional Grassmannian with
the Fubini-Study metric was described. Also in the case of plane curves metrics
induced by the differential operators P = ∆ and P = ∆2 have been treated
in [30], where estimates on the geodesic distance are proven and the metric
completion of the space of curves is characterized. In [7] Immersion-Sobolev
metrics have been generalized to shape space of arbitrary dimension, see also
[22].

Another approach to strengthen the metric, and the approach studied in this
thesis, is by adding weights into the definition of the metric. This yields metrics
of the form

GΦ
f (h, k) =

∫
M

Φ(f).ḡ(h, k) vol(g),
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where Φ is some positve, real-valued and Diff(M) invariant function depending
smoothly on the immersions and possibly on x ∈ M . These metrics are called
almost local metrics. For the case of plane curves Michor and Mumford intro-
duced almost local metrics weighted by curvature (see [36, 37]). An important
special case of almost local metrics is the class of conformal metrics, i.e. metrics
of the form:

GΦ
f (h, k) = Φ(f).

∫
M

ḡ(h, k) vol(g),

where Φ is again some positve, real-valued and Diff(M) invariant function de-
pending smoothly on the immersions but not on the point x ∈M . For the case
of plane curves these metrics have been introduced in [41] and in [51, 52, 53].
In this thesis the investigation of almost local metrics from [37] is taken up, and
they are generalized to the shape space Bi(M,N) = Imm(M,N)/Diff(M) of
surfaces of type M in N .

The contents of this thesis

Chapter 1 recalls concepts from differential geometry of surfaces in a form that
is suitable for our needs. The general formalism that we shall use to compute
geodesic equations and conserved quantities is explained. In the last part the
derivatives of the metric, the volume form, the second fundamental form and
some other curvature terms with respect to the immersion f and second deriva-
tives for both tangent vectors horizontal are calculated.

In chapter 2 and 3 we compute the geodesic equation for almost local metrics
both on the manifold of immersions and on shape space. For a flat ambient space
N the sectional curvature is computed (see section 3.3). We derive conditions
to ensure that the induced geodesic distance on shape space is positive (section
2.4) and for a flat ambient space N = Rn we compare the almost local metrics
to the Fréchet Metric (section 3.6). For special choices of the weight function
Φ all previously derived formulas are presented. These are the following (see
section 3.4):

1. The G0-metric or L2-metric, where Φ = 1. For this metric the geodesic
distance on Bi vanishes (as shown in section 2.4.5). Sectional curvature
is non-negative and has a simple expression.

2. The GA-metric, where Φ = 1 +ATr(L)2. For the situation of plane curve
this metric was treated in great detail in [36].

3. The GB-metric, where Φ = 1 +B det(L)2.

4. Conformal metrics, where Φ = Φ(Vol). For curves these were investigated
in [41, 51, 52, 53]. The full formula for sectional curvature is given only
in the case that Φ(Vol) = Vol.

5. A scale invariant almost local metric with Φ = Vol
1+n
1−n +ATr(L)2

Vol .
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In Chapter 4 we study all previously defined metrics in some numerical
experiments and discuss the differences in their behaviour. The experiments
include:

1. Geodesics of concentric spheres.

2. Geodesics between a sphere and a translation of the sphere.

3. Geodesics between a shape and a deformation of the shape.



Chapter 1

Notations and background
material

1.1 Differential geometry of surfaces and nota-
tion

In this section we will present and develop the differential geometric tools that
are needed to deal with immersed surfaces. The most important point is a
rigorous treatment of the covariant derivative and related concepts.

This section is based on [7, section 2]. We use the notation of [34]. Some
of the definitions can also be found in [25]. A similar exposition in the same
notation is [6]. This section has been written in collaboration with Philipp
Harms and is up to slight modifications the same as chapter one of his PhD
thesis [22].

1.1.1 Basic assumptions and convention

Assumption. We always assume that M and N are connected manifolds of
dimension

1 ≤ dim(M) = m < n = dim(N)

without boundary. Furthermore we will assume that M is compact.

We will work with immersions of M into N , i.e. smooth functions M → N
with injective tangent mapping at every point. We denote the set of all such
immersions by Imm(M,N). It is clear that only the case dim(M) ≤ dim(N) is
of interest since otherwise Imm(M,N) would be empty. Immersions or paths
of immersions are usually denoted by f . Vector fields on Imm(M,N) or vector
fields along f will be called h, k,m, for example. Subscripts like ft denote
differentiation with respect to the indicated variable, so ft = ∂tf = ∂f/∂t, but
subscripts are also used to indicate the foot point of a tensor field.

1



2 CHAPTER 1. NOTATIONS AND BACKGROUND MATERIAL

1.1.2 Tensor bundles and tensor fields

We will deal with the tensor bundles

T rsM

��

T rsM ⊗ f∗TN

��
M M

Here T rsM denotes the bundle of ( rs )-tensors on M , i.e.

T rsM =

r⊗
TM ⊗

s⊗
T ∗M,

and f∗TN is the pullback of the bundle TN via f , see [34, section 17.5]. A
tensor field is a section of a tensor bundle. Generally, when E is a bundle, the
space of its sections will be denoted by Γ(E).

To clarify the notation that will be used later, some examples of tensor
bundles and tensor fields are given now.

• SkT ∗M = Lksym(TM ;R) is the bundle of symmetric ( 0
k )-tensors,

• ΛkT ∗M = Lkalt(TM ;R) is the bundle of alternating ( 0
k )-tensors,

• Ωr(M) = Γ(ΛrT ∗M) is the space of differential forms,

• X(M) = Γ(TM) is the space of vector fields, and

• Γ(f∗TN) ∼=
{
h ∈ C∞(M,TN) : πN ◦ h = f

}
is the space of vector fields

along f .

1.1.3 Metric on tensor spaces

Let ḡ ∈ Γ(S2
>0T

∗N) denote a fixed Riemannian metric on N . The metric
induced on M by f ∈ Imm(M,N) is the pullback metric

g = f∗ḡ ∈ Γ(S2
>0T

∗M), g(X,Y ) = (f∗ḡ)(X,Y ) = ḡ(Tf.X, Tf.Y ),

where X,Y are vector fields on M . The dependence of g on the immersion f
should be kept in mind. Let

[ = ǧ : TM → T ∗M and ] = ǧ−1 : T ∗M → TM.

g can be extended to the cotangent bundle T ∗M = T 0
1M by setting

g−1(α, β) = g0
1(α, β) = α(β])

for α, β ∈ T ∗M . The product metric

grs =

r⊗
g ⊗

s⊗
g−1

extends g to all tensor spaces T rsM , and grs⊗ ḡ yields a metric on T rsM⊗f∗TN .



1.1. DIFFERENTIAL GEOMETRY OF SURFACES AND NOTATION 3

1.1.4 Traces

The trace contracts pairs of vectors and co-vectors in a tensor product:

Tr : T ∗M ⊗ TM = L(TM, TM)→M × R

A special case of this is the operator iX inserting a vector X into a co-vector or
into a covariant factor of a tensor product. The inverse of the metric g can be
used to define a trace

Trg : T ∗M ⊗ T ∗M →M × R

contracting pairs of co-vecors. Note that Trg depends on the metric whereas Tr
does not. The following lemma will be useful in many calculations:

Lemma.

g0
2(B,C) = Tr(g−1Bg−1C) for B,C ∈ T 0

2M if B or C is symmetric.

(In the expression under the trace, B and C are seen maps TM → T ∗M .)

Proof. Express everything in a local coordinate system u1, . . . um of M .

g0
2(B,C) = g0

2

(∑
ik

Bikdu
i ⊗ duk,

∑
jl

Cjldu
j ⊗ dul

)
=
∑
ijkl

gijBikg
klCjl =

∑
ijkl

gjiBikg
klClj = Tr(g−1Bg−1C)

Note that we have used only the symmetry of C.

1.1.5 Volume density

Let Vol(M) be the density bundle over M , see [34, section 10.2]. The volume
density on M induced by f ∈ Imm(M,N) is

vol(g) = vol(f∗ḡ) ∈ Γ
(

Vol(M)
)
.

The volume of the immersion is given by

Vol(f) =

∫
M

vol(f∗ḡ) =

∫
M

vol(g).

The integral is well-defined since M is compact. If M is oriented we may identify
the volume density with a differential form.

1.1.6 Metric on tensor fields

A metric on a space of tensor fields is defined by integrating the appropriate
metric on the tensor space with respect to the volume density:

g̃rs(B,C) =

∫
M

grs
(
B(x), C(x)

)
vol(g)(x)



4 CHAPTER 1. NOTATIONS AND BACKGROUND MATERIAL

for B,C ∈ Γ(T rsM), and

g̃rs ⊗ ḡ(B,C) =

∫
M

grs ⊗ ḡ
(
B(x), C(x)

)
vol(g)(x)

for B,C ∈ Γ(T rsM ⊗ f∗TN), f ∈ Imm(M,N). The integrals are well defined
since M is compact.

1.1.7 Covariant derivative

We will use covariant derivatives on vector bundles as explained in [34, sections
19.12, 22.9]. Let ∇g,∇ḡ be the Levi-Civita covariant derivatives on (M, g) and
(N, ḡ), respectively. For any manifold Q and vector field X on Q, one has

∇gX : C∞(Q,TM)→ C∞(Q,TM), h 7→ ∇gXh
∇ḡX : C∞(Q,TN)→ C∞(Q,TN), h 7→ ∇ḡXh.

Usually we will simply write ∇ for all covariant derivatives. It should be kept
in mind that ∇g depends on the metric g = f∗ḡ and therefore also on the
immersion f . The following properties hold [34, section 22.9]:

1. ∇X respects base points, i.e. π ◦ ∇Xh = π ◦ h, where π is the projection
of the tangent space onto the base manifold.

2. ∇Xh is C∞-linear in X. So for a tangent vector Xx ∈ TxQ, ∇Xxh makes
sense and equals (∇Xh)(x).

3. ∇Xh is R-linear in h.

4. ∇X(a.h) = da(X).h + a.∇Xh for a ∈ C∞(Q), the derivation property of
∇X .

5. For any manifold Q̃ and smooth mapping q : Q̃ → Q and Yy ∈ TyQ̃ one
has ∇Tq.Yyh = ∇Yy (h ◦ q). If Y ∈ X(Q1) and X ∈ X(Q) are q-related,
then ∇Y (h ◦ q) = (∇Xh) ◦ q.

The two covariant derivatives ∇gX and ∇ḡX can be combined to yield a covari-
ant derivative ∇X acting on C∞(Q,T rsM ⊗ TN) by additionally requiring the
following properties [34, section 22.12]:

6. ∇X respects the spaces C∞(Q,T rsM ⊗ TN).

7. ∇X(h ⊗ k) = (∇Xh) ⊗ k + A ⊗ (∇Xk), a derivation with respect to the
tensor product.

8. ∇X commutes with any kind of contraction (see [34, section 8.18]). A
special case of this is

∇X
(
α(Y )

)
= (∇Xα)(Y ) + α(∇XY ) for α⊗ Y : N → T 1

1M.

Property (1) is important because it implies that ∇X respects spaces of sections
of bundles. For example, for Q = M and f ∈ C∞(M,N), one gets

∇X : Γ(T rsM ⊗ f∗TN)→ Γ(T rsM ⊗ f∗TN).



1.1. DIFFERENTIAL GEOMETRY OF SURFACES AND NOTATION 5

1.1.8 Swapping covariant derivatives

We will make repeated use of some formulas allowing to swap covariant deriva-
tives. Let f be an immersion, h a vector field along f and X,Y vector fields on
M . Since ∇ is torsion-free, one has [34, section 22.10]

(1) ∇XTf.Y −∇Y Tf.X − Tf.[X,Y ] = Tor(Tf.X, Tf.Y ) = 0.

Furthermore one has [34, section 24.5]

(2) ∇X∇Y h−∇Y∇Xh−∇[X,Y ]h = Rḡ ◦ (Tf.X, Tf.Y )h,

where Rḡ ∈ Ω2
(
N ;L(TN, TN)

)
is the Riemann curvature tensor of (N, ḡ).

These formulas also hold when f : R ×M → N is a path of immersions,
h : R×M → TN is a vector field along f and the vector fields are vector fields
on R × M . A case of special importance is when one of the vector fields is
(∂t, 0M ) and the other (0R, Y ), where Y is a vector field on M . Since the Lie
bracket of these vector fields vanishes, (1) and (2) yield

(3) ∇(∂t,0M )Tf.(0R, Y )−∇(0R,Y )Tf.(∂t, 0M ) = 0

and

(4) ∇(∂t,0M )∇(0R,Y )h−∇(0R,Y )∇(∂t,0M )h = Rḡ
(
Tf.(∂t, 0M ), Tf.(0R, Y )

)
h.

1.1.9 Second and higher covariant derivatives

When the covariant derivative is seen as a mapping

∇ : Γ(T rsM)→ Γ(T rs+1M) or ∇ : Γ(T rsM ⊗ f∗TN)→ Γ(T rs+1M ⊗ f∗TN),

then the second covariant derivative is simply ∇∇ = ∇2. Since the covariant
derivative commutes with contractions, ∇2 can be expressed as

∇2
X,Y := ιY ιX∇2 = ιY∇X∇ = ∇X∇Y −∇∇XY for X,Y ∈ X(M).

Higher covariant derivates are defined as ∇k, k ≥ 0.

1.1.10 The adjoint of the covariant derivative

The covariant derivative

∇ : Γ(T rsM)→ Γ(T rs+1M)

admits an adjoint
∇∗ : Γ(T rs+1M)→ Γ(T rsM)

with respect to the metric g̃, i.e.:

g̃rs+1(∇B,C) = g̃rs(B,∇∗C).
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In the same way, ∇∗ can be defined when ∇ is acting on Γ(T rsM ⊗ f∗TN). In
either case it is given by

∇∗B = −Trg(∇B),

where the trace is contracting the first two tensor slots of ∇B. We prove this
formula now.

Proof. The result holds for decomposable tensor fields β⊗B ∈ Γ(T rs+1M) since

g̃rs

(
∇∗(β ⊗B), C

)
= g̃rs+1

(
β ⊗B,∇C

)
= g̃rs

(
B,∇β]C

)
=

∫
M

Lβ]grs(B,C) vol(g)−
∫
M

grs(∇β]B,C) vol(g)

=

∫
M

−grs(B,C)Lβ] vol(g)−
∫
M

grs
(

Trg(β ⊗∇B), C
)

vol(g)

= g̃rs

(
− div(β])B − Trg(β ⊗∇B), C

)
= g̃rs

(
− div(β])B + Trg((∇β)⊗B)− Trg(∇(β ⊗B)), C

)
= g̃rs

(
− div(β])B + Trg(∇β)B − Trg(∇(β ⊗B)), C

)
= g̃rs

(
0− Trg(∇(β ⊗B)), C

)
Here we have used that ∇Xg = 0, that ∇X commutes with any kind of con-
traction and acts as a derivation on tensor products [34, section 22.12] and that
div(X) = Tr(∇X) for all vector fields X [34, section 25.12]. To prove the result
for β ⊗B ∈ Γ(T rs+1M ⊗ f∗TN) one simply has to replace grs by grs ⊗ ḡ.

1.1.11 Laplacian

The definition of the Laplacian used in this work is the Bochner-Laplacian. It
can act on all tensor fields B and is defined as

∆B = ∇∗∇B = −Trg(∇2B).

1.1.12 Normal bundle

The normal bundle Nor(f) of an immersion f is a sub-bundle of f∗TN whose
fibers consist of all vectors that are orthogonal to the image of f :

Nor(f)x =
{
Y ∈ Tf(x)N : ∀X ∈ TxM : ḡ(Y, Tf.X) = 0

}
.

Any vector field h along f can be decomposed uniquely into parts tangential
and normal to f as

h = Tf.h> + h⊥,

where h> is a vector field on M and h⊥ is a section of the normal bundle Nor(f).
In co-dimension one (i.e. dimM = n − 1) and when f is orientable, then the
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unit normal field ν of f can be defined. It is a section of the normal bundle in
one of the above forms with constant ḡ-length one which is chosen such that(

ν(x), Txf.X1, Txf.X2, . . . Txf.Xn−1

)
is a positive oriented basis in Tf(x)N if X1, . . . , Xn−1 is a positive oriented basis
in TxM . In this notation the decomposition of a vector field h along f reads as

h = Tf.h> + a.ν.

The two parts are defined by the relations

a = ḡ(h, ν) ∈ C∞(M)

h> ∈ X(M), such that g(h>, X) = ḡ(h, Tf(t, ·).X) for all X ∈ X(M).

1.1.13 Second fundamental form and Weingarten map-
ping

Let X and Y be vector fields on M . Then the covariant derivative ∇XTf.Y
splits into tangential and a normal parts as

∇XTf.Y = Tf.(∇XTf.Y )> + (∇XTf.Y )⊥ = Tf.∇XY + S(X,Y ).

S is the second fundamental form of f . It is a symmetric bilinear form with
values in the normal bundle of f . When Tf is seen as a section of T ∗M⊗f∗TN
one has S = ∇Tf since

S(X,Y ) = ∇XTf.Y − Tf.∇XY = (∇Tf)(X,Y ).

Taking the trace of S yields the vector valued mean curvature

Trg(S) ∈ Γ
(
Nor(f)

)
.

In codimension one, one can define the scalar second fundamental form s as

s(X,Y ) = ḡ
(
S(X,Y ), ν

)
.

Moreover, there is the Weingarten mapping or shape operator L = g−1s. It is
a g-symmetric bundle mapping defined by

s(X,Y ) = g(LX, Y ).

The eigenvalues of L are called principal curvatures and the eigenvectors prin-
cipal curvature directions. Tr(L) = Trg(s) is the scalar mean curvature and for
surfaces in R3 the Gauß-curvature is given by det(L). The covariant derivative
∇Xν of the normal vector is related to L by the Weingarten equation

∇Xν = −Tf.L.X.
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1.1.14 Directional derivatives of functions

We will use the following ways to denote directional derivatives of functions, in
particular in infinite dimensions. Given a function F (x, y) for instance, we will
write:

D(x,h)F as shorthand for ∂t|0F (x+ th, y).

Here (x, h) in the subscript denotes the tangent vector with foot point x and
direction h. If F takes values in some linear space, we will identify this linear
space and its tangent space.

1.2 Shape space

Briefly said, by a shape we mean an unparametrized surface. We use the term
surface regardless of whether it has dimension two or not. This section is about
the infinite dimensional space of all shapes: First we give an overview of the
differential calculus that is used. Then we describe some spaces of parametrized
and unparametrized surfaces and how to define Riemannian metrics on them.

Assumption. We recall the most important assumptions made in section 1.1.1:
Let M and N be connected manifolds of dimension 1 ≤ dim(M) = m < n =
dim(N) without boundary, where M is compact in addition.

This section is common work with Philipp Harms and can be also found in
his PhD thesis [22, chapter 2].

1.2.1 Convenient calculus

The differential calculus used in this work is convenient calculus [27]. The
overview of convenient calculus presented here is taken from [33, Appendix A].
Convenient calculus is a generalization of differential calculus beyond Banach
and Fréchet spaces. For this work, the most important property of convenient
calculus is that the exponential law holds without any restriction:

C∞(E × F,G) ∼= C∞
(
E,C∞(F,G)

)
for convenient vector spaces E,F,G and a natural convenient vector space struc-
ture on C∞(F,G). As a consequence variational calculus simply works: For
example, a smooth curve in C∞(M,N) can equivalently be seen as a smooth
mapping M × R → N . The main difficulty is that the composition of linear
mappings stops to be jointly continuous at the level of Banach spaces, for any
compatible topology.

Let E be a locally convex vector space. A curve c : R → E is called smooth
or C∞ if all derivatives exist and are continuous - this is a concept without
problems. Let C∞(R, E) be the space of smooth functions. It can be shown
that C∞(R, E) does not depend on the locally convex topology of E, but only
on its associated bornology (system of bounded sets).



1.2. SHAPE SPACE 9

E is said to be a convenient vector space if one of the following equivalent
conditions is satisfied (called c∞-completeness):

1. For any c ∈ C∞(R, E) the (Riemann-) integral
∫ 1

0
c(t)dt exists in E.

2. A curve c : R→ E is smooth if and only if λ ◦ c is smooth for all λ ∈ E′,
where E′ is the dual consisting of all continuous linear functionals on E.

3. Any Mackey-Cauchy-sequence (i. e. tnm(xn−xm)→ 0 for some tnm →∞
in R) converges in E. This is visibly a weak completeness requirement.

The final topology with respect to all smooth curves is called the c∞-topology
on E, which then is denoted by c∞E. For Fréchet spaces it coincides with the
given locally convex topology, but on the space D of test functions with compact
support on R it is strictly finer.

Let E and F be locally convex vector spaces, and let U ⊂ E be c∞-open.
A mapping f : U → F is called smooth or C∞, if f ◦ c ∈ C∞(R, F ) for all
c ∈ C∞(R, U). The notion of smooth mappings carries over to mappings be-
tween convenient manifolds, which are manifolds modelled on c∞-open subsets
of convenient vector spaces.

Theorem. The main properties of smooth calculus are the following.

1. For mappings on Fréchet spaces this notion of smoothness coincides with
all other reasonable definitions. Even on R2 this is non-trivial.

2. Multilinear mappings are smooth if and only if they are bounded.

3. If f : E ⊇ U → F is smooth then the derivative df : U×E → F is smooth,
and also df : U → L(E,F ) is smooth where L(E,F ) denotes the space of
all bounded linear mappings with the topology of uniform convergence on
bounded subsets.

4. The chain rule holds.

5. The space C∞(U,F ) is again a convenient vector space where the structure
is given by the obvious injection

C∞(U,F )→
∏

c∈C∞(R,U)

C∞(R, F )→
∏

c∈C∞(R,U),λ∈F ′
C∞(R,R).

6. The exponential law holds:

C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

is a linear diffeomorphism of convenient vector spaces. Note that this is
the main assumption of variational calculus.

7. A linear mapping f : E → C∞(V,G) is smooth (bounded) if and only if

E
f−→ C∞(V,G)

evv−→ G is smooth for each v ∈ V . This is called the
smooth uniform boundedness theorem and it is quite applicable.

Proofs of these statements can be found in [27].
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1.2.2 Manifolds of immersions and embeddings

What we sloppily called a parametrized surface will now be turned into a rig-
orous definition. Mathematically, parametrized surfaces will be modeled as im-
mersions or embeddings of one manifold into another. We call immersions and
embeddings parametrized since a change in their parametrization (i.e. applying
a diffeomorphism on the domain of the function) results in a different object.
We will deal with the following sets of functions:

(1) Emb(M,N) ⊂ Immf (M,N) ⊂ Imm(M,N) ⊂ C∞(M,N).

C∞(M,N) is the set of smooth functions from M to N . Imm(M,N) is the set
of all immersions of M into N , i.e. all functions f ∈ C∞(M,N) such that Txf
is injective for all x ∈ M . Immf (M,N) is the set of all free immersions. An
immersion f is called free if the diffeomorphism group of M acts freely on it,
i.e. f ◦ϕ = f implies ϕ = IdM for all ϕ ∈ Diff(M). Emb(M,N) is the set of all
embeddings of M into N , i.e. all immersions f that are a homeomorphism onto
their image.

The following lemma from [15, 1.3 and 1.4] gives sufficient conditions for an
immersion to be free. In particular it implies that every embedding is free.

Lemma. If ϕ ∈ Diff(M) has a fixed point and if f ◦ϕ = f for some immersion
f , then ϕ = IdM .

If for an immersion f there is a point x ∈ f(M) with only one preimage
then f is free.

Since M is compact by assumption it follows that C∞(M,N) is a Fréchet
manifold [27, section 42.3]. All inclusions in (1) are inclusions of open subsets:
Imm(M,N) is open in C∞(M,N) since the condition that the differential is
injective at every point is an open condition on the one-jet of f [32, section 5.1].
Immf (M,N) is open in Imm(M,N) by [15, theorem 1.5]. Emb(M,N) is open
in Immf (M,N) by [27, theorem 44.1]. Therefore all function spaces in (1) are
Fréchet manifolds as well.

When it is clear that M and N are the domain and target of the mappings,
the abbreviations Emb, Immf , Imm will be used. In most cases, immersions will
be used since this is the most general setting. Working with free immersions
instead of immersions makes a difference in section 1.2.11, and working with
embeddings instead of immersions makes a difference in section 2.4.5. The
tangent and cotangent space to Imm are treated in the next section.

1.2.3 Bundles of multilinear maps over immersions

Consider the following natural bundles of k-multilinear mappings:

Lk(T Imm;R)

��

Lk(T Imm;T Imm)

��
Imm Imm
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These bundles are isomorphic to the bundles

L

(⊗̂k
T Imm;R

)

��

L

(⊗̂k
T Imm;T Imm

)

��
Imm Imm

where
⊗̂

denotes the c∞-completed bornological tensor product of locally con-
vex vector spaces [27, section 5.7, section 4.29]. Note that L(T Imm;T Imm)
is not isomorphic to T ∗ Imm ⊗̂ T Imm since the latter bundle corresponds to
multilinear mappings with finite rank.

It is worth to write down more explicitly what some of these bundles of
multilinear mappings are. The tangent space to Imm is given by

Tf Imm = C∞f (M,TN) :=
{
h ∈ C∞(M,TN) : πN ◦ h = f

}
,

T Imm = C∞Imm(M,TN) :=
{
h ∈ C∞(M,TN) : πN ◦ h ∈ Imm

}
.

Thus Tf Imm is the space of vector fields along the immersion f . Now the
cotangent space to Imm will be described. The symbol ⊗̂C∞(M) means that the
tensor product is taken over the algebra C∞(M).

T ∗f Imm = L(Tf Imm;R) = C∞f (M,TN)′ = C∞(M)′ ⊗̂C∞(M)C
∞
f (M,T ∗N)

T ∗ Imm = L(T Imm;R) = C∞(M)′ ⊗̂C∞(M)C
∞
Imm(M,T ∗N)

The bundle L2
sym(T Imm;R) is of interest for the definition of a Riemannian

metric on Imm. (The subscripts sym and alt indicate symmetric and alternat-
ing multilinear maps, respectively.) Letting ⊗S denotes the symmetric tensor
product and ⊗̂S the c∞-completed bornological symmetric tensor product, one
has

L2
sym(Tf Imm;R) = (Tf Imm ⊗̂S Tf Imm)′ =

(
C∞f (M,TN) ⊗̂S C∞f (M,TN)

)′
=
(
C∞f (M,TN ⊗S TN)

)′
= C∞(M)′ ⊗̂C∞(M)C

∞
f (M,T ∗N ⊗S T ∗N)

L2
sym(T Imm;R) = C∞(M)′ ⊗̂C∞(M)C

∞
Imm(M,T ∗N ⊗S T ∗N)

1.2.4 The diffeomorphism group

This result is taken from [27, section 43.1] with slight simplifications due to the
compactness of M .

Theorem. For a smooth compact manifold M the group Diff(M) of all smooth
diffeomorphisms of M is an open submanifold of C∞(M,M). Composition and
inversion are smooth. The Lie algebra of the smooth infinite dimensional Lie
group Diff(M) is the convenient vector space X(M) of all smooth vector fields
on M , equipped with the negative of the usual Lie bracket. Diff(M) is a regular
Lie group in the sense that the right evolution

evolr : C∞
(
R,X(M)

)
→ Diff(M)
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as defined in [27, section 38.4] exists and is smooth. The exponential mapping

exp : X(M)→ Diff(M)

is the flow mapping to time 1, and it is smooth.

The diffeomorphism group Diff(M) acts smoothly on C∞(M,N) and its
subspaces Imm, Immf and Emb by composition from the right. The action is
given by the mapping

Imm(M,N)×Diff(M)→ Imm(M,N), (f, ϕ) 7→ r(f, ϕ) = rϕ(f) = f ◦ ϕ.

The tangent prolongation of this group action is given by the mapping

T Imm(M,N)×Diff(M)→ T Imm(M,N), (h, ϕ) 7→ Trϕ(h) = h ◦ ϕ.

1.2.5 Riemannian metrics on immersions

A Riemannian metric G on Imm is a section of the bundle

L2
sym(T Imm;R)

such that at every f ∈ Imm, Gf is a symmetric positive definite bilinear mapping

Gf : Tf Imm×Tf Imm→ R.

Each metric is weak in the sense that Gf , seen as a mapping

Gf : Tf Imm→ T ∗f Imm

is injective. (But it can never be surjective.)

Assumption. We will always assume that the metric G is compatible with the
action of Diff(M) on Imm(M,N) in the sense that the group action is given by
isometries.

This means that G = (rϕ)∗G for all ϕ ∈ Diff(M), where rϕ denotes the right
action of ϕ on Imm that was described in section 1.2.4. This condition can be
spelled out in more details using the definition of rϕ as follows:

Gf (h, k) =
(
(rϕ)∗G

)
(h, k) = Grϕ(f)

(
Trϕ(h), T rϕ(k)

)
= Gf◦ϕ(h ◦ ϕ, k ◦ ϕ).

1.2.6 Covariant derivative ∇ḡ on immersions

The covariant derivative ∇ḡ defined in section 1.1.7 induces a covariant deriva-
tive over immersions as follows. Let Q be a smooth manifold. Then we identify

h ∈ C∞
(
Q,T Imm(M,N)

)
and X ∈ X(Q)

with

h∧ ∈ C∞(Q×M,TN) and (X, 0M ) ∈ X(Q×M).
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As described in section 1.1.7 one has the covariant derivative

∇ḡ(X,0M )h
∧ ∈ C∞

(
Q×M,TN).

Thus one can define

∇Xh =
(
∇ḡ(X,0M )h

∧
)∨
∈ C∞

(
Q,T Imm(M,N)

)
.

This covariant derivative is torsion-free by section 1.1.8, formula (1). It respects
the metric ḡ but in general does not respect G.

It is helpful to point out some special cases of how this construction can be
used. The case Q = R will be important to formulate the geodesic equation.
The expression that we will be interested in is ∇∂tft, which is well-defined when
f : R→ Imm is a path of immersions and ft : R→ T Imm is its velocity.

Another case of interest is Q = Imm. Let h, k,m ∈ X(Imm). Then the
covariant derivative ∇mh is well-defined and tensorial in m. Requiring ∇m to
respect the grading of the spaces of multilinear maps, to act as a derivation on
products and to commute with compositions of multilinear maps, one obtains
as in section 1.1.7 a covariant derivative ∇m acting on all mappings into the
natural bundles of multilinear mappings over Imm. In particular, ∇mP and
∇mG are well-defined for

P ∈ Γ
(
L(T Imm;T Imm)

)
, G ∈ Γ

(
L2

sym(T Imm;R)
)

by the usual formulas

(∇mP )(h) = ∇m
(
P (h)

)
− P (∇mh),

(∇mG)(h, k) = ∇m
(
G(h, k))−G(∇mh, k)−G(h,∇mk).

1.2.7 Metric gradients

The metric gradients H,K ∈ Γ
(
L2(T Imm;T Imm)

)
are uniquely defined by the

equation

(∇mG)(h, k) = G
(
K(h,m), k

)
= G

(
m,H(h, k)

)
,

where h, k,m are vector fields on Imm and the covariant derivative of the metric
tensor G is defined as in the previous section. (This is a generalization of the
definition used in [37] that allows for a curved ambient space N 6= Rn.)

Existence of H,K has to proven case by case for each metric G, usually by
partial integration. We will prove the existence of H,K for various almost local
metrics in section 2.2 and in section 3.1.

Assumption. Nevertheless we will assume for now that the metric gradients
H,K exist.
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1.2.8 Geodesic equation on immersions

Theorem. Given H,K as defined in the previous section and ∇ as defined in
section 1.2.6, the geodesic equation reads as

∇∂tft =
1

2
Hf (ft, ft)−Kf (ft, ft),

This is the same result as in [37, section 2.4], but in a more general setting.

Proof. Let f : (−ε, ε)× [0, 1]×M → N be a one-parameter family of curves of
immersions with fixed endpoints. The variational parameter will be denoted by
s ∈ (−ε, ε) and the time-parameter by t ∈ [0, 1]. In the following calculation,
let Gf denote G composed with f , i.e.

Gf : R→ Imm→ L2
sym(T Imm;R).

Remember that the covariant derivative on Imm that has been introduced in
section 1.2.6 is torsion-free so that one has

∇∂tfs −∇∂sft = Tf.[∂t, ∂s] + Tor(ft, fs) = 0.

Thus the first variation of the energy of the curves is

∂s
1

2

∫ 1

0

Gf (ft, ft)dt =
1

2

∫ 1

0

(∇∂sGf )(ft, ft) +

∫ 1

0

Gf (∇∂sft, ft)dt

=
1

2

∫ 1

0

(∇fsG)(ft, ft) +

∫ 1

0

Gf (∇∂tfs, ft)dt

=
1

2

∫ 1

0

(∇fsG)(ft, ft)dt+

∫ 1

0

∂t Gf (fs, ft)dt

−
∫ 1

0

(∇ftG)(fs, ft)dt−
∫ 1

0

Gf (fs,∇∂tft)dt

=

∫ 1

0

G
(
fs,

1

2
H(ft, ft) + 0−K(ft, ft)−∇∂tft

)
dt.

If f(0, ·, ·) is energy-minimizing, then one has at s = 0 that

1

2
H(ft, ft)−K(ft, ft)−∇∂tft = 0.

1.2.9 Geodesic equation for the momentum on immer-
sions

In the previous section we have derived the geodesic equation for the velocity ft.
In many applications it is more convenient to formulate the geodesic equation
as an equation for the momentum G(ft, ·) ∈ T ∗f Imm. G(ft, ·) is an element of
the smooth cotangent bundle, also called smooth dual, which is given by

G(T Imm) :=
∐

f∈Imm

{Gf (h, ·) : h ∈ Tf Imm} ⊂ T ∗ Imm .
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It is strictly smaller than T ∗ Imm since at every f ∈ Imm the metric Gf :
Tf Imm → T ∗f Imm is injective but not surjective. It is called smooth since it
does not contain distributional sections of f∗TN , whereas T ∗f Imm does.

Theorem. The geodesic equation for the momentum p ∈ T ∗ Imm is given by p = G(ft, ·)

∇∂tp =
1

2
Gf
(
H(ft, ft), ·

)
where H is the metric gradient defined in section 1.2.7 and ∇ is the covariant
derivative action on mappings into T ∗ Imm as defined in section 1.2.6.

Proof. Let Gf denote G composed with the path f : R→ Imm, i.e.

Gf : R→ Imm→ L2
sym(T Imm;R).

Then one has

∇∂tp = ∇∂t
(
Gf (ft, ·)

)
= (∇∂tGf )(ft, ·) +Gf (∇∂tft, ·)

= (∇ftG)(ft, ·) +Gf

(1

2
H(ft, ft)−K(ft, ft), ·

)
= Gf

(
K(ft, ft), ·

)
+Gf

(1

2
H(ft, ft)−K(ft, ft), ·

)
This equation is equivalent to Hamilton’s equation restricted to the smooth

cotangent bundle: {
p = G(ft, ·)
pt = (gradω E)(p).

Here ω denotes the restriction of the canonical symplectic form on T ∗ Imm to
the smooth cotangent bundle and E is the Hamiltonian

E : G(T Imm)→ R, E(p) = G−1(p, p)

which is only defined on the smooth cotangent bundle.

1.2.10 Conserved momenta

We will describe how a group acting on Imm by isometries defines a momentum
mapping that is conserved along geodesics in Imm. This section is very similar
to [6, section 4]. A more detailed treatment and proofs can be found in [37].

Let us consider an infinite dimensional regular Lie group with Lie algebra
g and a right action g 7→ rg of this group on Imm. Let Imm be endowed with
a Riemannian metric G. The basic assumption (assumption 1.2.5) is that the
action is by isometries:

G = (rg)∗G, i.e. Gf (h, k) = Grg(f)

(
Tf (rg)h, Tf (rg)k

)
.

Denote by X(Imm) the set of vector fields on Imm. Then we can specify the
group action by the fundamental vector field mapping ζ : g → X(Imm), which
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will be a bounded Lie algebra homomorphism. The fundamental vector field
ζX , X ∈ g is the infinitesimal action in the sense:

ζX(f) = ∂t|0rexp(tX)(f).

The key to the Hamiltonian approach is to write the infinitesimal action as a
Hamiltonian vector field, i.e. as the ω-gradient of some function. This function
will be called the momentum map. ω is a two-form on T Imm,

ω ∈ Γ
(
L2

alt(TT Imm;R)
)

that is obtained as the pullback of the canonical symplectic form on T ∗ Imm via
the metric

G : T Imm→ T ∗ Imm .

The ω-gradient is defined by the relation

gradω f ∈ X(T Imm), ω(gradω f, ·) = df,

where f is a smooth function on T Imm. Not all functions have an ω-gradient
because

ω : TT Imm→ T ∗T Imm

is injective, but not surjective. We will denote the set of functions that have a
smooth ω-gradient by

C∞ω (T Imm,R) ⊂ C∞(T Imm,R).

We define the momentum map as

j : g→ C∞(T Imm,R), jX(hf ) = Gf
(
ζX(f), hf

)
and verify that it has the desired properties: Assuming that the metric gradients
H,K exist (assumption 1.2.7), one can prove that

jX ∈ C∞ω (T Imm,R) and gradω(jX) = ζX .

Thus the momentum map fits into the following commutative diagram of Lie
algebras:

H0(T Imm)
i // C∞ω (T Imm,R)

gradω // X(T Imm, ω)
ω // H1(T Imm)

g

j

hh

ζT Imm

OO

Here X(T Imm, ω) is the space of vector fields on T Imm whose flow leaves ω
fixed. All arrows in this diagram are homomorphism of Lie algebras. The
sequence at the top is exact when it is extended by zeros on the left and right
end.

By Emmy Noether’s theorem, the momentum mapping is constant along any
geodesic f : R→ Imm. Thus for any X ∈ g we have that

jX(ft) = Gf
(
ζX(f), ft

)
is constant in t.

We will now consider several group actions on Imm and calculate the corre-
sponding conserved momenta.
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• Consider the smooth right action of the group Diff(M) on Imm(M,N)
given by composition from the right:

f 7→ f ◦ ϕ for ϕ ∈ Diff(M).

This action is isometric by assumption, see section 1.2.5. For X ∈ X(M)
the fundamental vector field is given by

ζX(f) = ∂t|0(f ◦ FlXt ) = Tf ◦X

where FlXt denotes the flow of X. The reparametrization momentum, for
any vector field X on M is thus Gf (Tf ◦X,hf ). Assuming that the metric
is reparametrization invariant, it follows that along any geodesic f(t, ·),
the expression Gf (Tf ◦X, ft) is constant for all X.

For a flat ambient space N = Rn we can consider in addition the following group
actions:

• The left action of the Euclidean motion group RnoSO(n) on Imm(M,Rn)
given by

f 7→ A+Bf for (A,B) ∈ Rn × SO(n).

The fundamental vector field mapping is

ζ(A,X)(f) = A+Xf for (A,X) ∈ Rn × so(n).

The linear momentum is thus Gf (A, h), A ∈ Rn and if the metric is trans-
lation invariant, Gf (A, ft) will be constant along geodesics for every A ∈
Rn. The angular momentum is similarly Gf (X.f, h), X ∈ so(n) and if
the metric is rotation invariant, then Gf (X.f, ft) will be constant along
geodesics for each X ∈ so(n).

• The action of the scaling group of R given by f 7→ erf , with fundamental
vector field ζa(f) = a.f . If the metric is scale invariant, then the scaling
momentum Gf (f, ft) will be constant along geodesics.

1.2.11 Shape space

Diff(M) acts smoothly on C∞(M,N) and its subsets Imm, Immf and Emb by
composition from the right. Shape space is defined as the orbit space with
respect to this action. That means that in shape space, two mappings that
differ only in their parametrization will be regarded the same.

Theorem. Let M be compact and of dimension ≤ n. Then Immf (M,N) is
the total space of a smooth principal fiber bundle with structure group Diff(M),
whose base manifold is a Hausdorf smooth Fréchet manifold denoted by

Bi,f (M,N) = Immf (M,N)/Diff(M).

The same result holds for the open subset Emb(M,N) ⊂ Immf (M,N). The
corresponding base space is denoted by

Be(M,N) = Emb(M,N)/Diff(M).
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However, the space

Bi(M,N) = Imm(M,N)/Diff(M)

is not a smooth manifold, but has singularities of orbifold type: Locally, it looks
like a finite dimensional orbifold times an infinite dimensional Fréchet space.

The proofs for free and non-free immersions can be found in [15] and the
one for embeddings in [27, section 44.1].

As with immersions and embeddings, we will sometimes write Bi,f , Bi, Be
when it is clear that M and N are the domain and target of the mappings.

1.2.12 Riemannian submersions and geodesics

The concept of a Riemannian submersion will allow us to induce a Riemannian
metric on shape space. We will now explain in general terms what a Riemannian
submersion is and how horizontal geodesics in the top space correspond nicely
to geodesics in the quotient space. The definitions and results of this section
are taken from [34, section 26].

Let π : E → B be a submersion of smooth manifolds, that is, Tπ : TE → TB
is surjective. Then

V = V (π) := ker(Tπ) ⊂ TE

is called the vertical subbundle. If E carries a Riemannian metric G, then we
can go on to define the horizontal subbundle as the G-orthogonal complement
of V :

Hor = Hor(π,G) := V (π)⊥ ⊂ TE.

Now any vector X ∈ TE can be decomposed uniquely in vertical and horizontal
components as

X = Xver +Xhor.

This definition extends to the cotangent bundle as follows: An element of T ∗E
is called horizontal when it annihilates all vertical vectors, and vertical when it
annihilates all horizontal vectors.

In the setting described so far, the mapping

Txπ|Horx : Horx → Tπ(x)B

is an isomorphism of vector spaces for all x ∈ E. If both (E,GE) and (B,GB)
are Riemannian manifolds and if this mapping is an isometry for all x ∈ E, then
we will call π a Riemannian submersion.

Theorem. Consider a Riemannian submersion π : E → B, and let c : [0, 1]→
E be a geodesic in E.

1. If c′(t) is horizontal at one t, then it is horizontal at all t.

2. If c′(t) is horizontal then π ◦ c is a geodesic in B.
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3. If every curve in B can be lifted to a horizontal curve in E, then there
is a one-to-one correspondence between curves in B and horizontal curves
in E. This implies that instead of solving the geodesic equation on B one
can equivalently solve the equation for horizontal geodesics in E.

See [34, section 26] for the proof.

1.2.13 Riemannian metrics on shape space

Now the previous chapter is applied to the submersion π : Imm→ Bi:

Theorem. Given a Diff(M)-invariant Riemannian metric on Imm, there is a
unique Riemannian metric on the quotient space Bi such that the quotient map
π : Imm→ Bi is a Riemannian submersion.

One also gets a description of the tangent space to shape space: When
f ∈ Imm, then Tπ(f)Bi is isometric to the horizontal bundle at f . The hor-
izontal bundle depends on the definition of the metric. For the almost local
metrics, it consists of vector fields along f that are everywhere normal to f , see
section 2.3.1.

Assumption. In the following we will always assue that a Diff(M)-invariant
Riemannian metric on the manifold of immersions is given, and that shape space
is endowed with the unique Riemannian metric turning the projection into a
Riemannian submersion.

1.2.14 Geodesic equation on shape space

We will apply theorem 1.2.12 to the Riemannian submersion π : Imm→ Bi.

Theorem. Assuming that every curve in Bi can be lifted to a horizontal curve
in Imm, the geodesic equation on shape space is equivalent to

(1)


ft = fhor

t ∈ Hor

(∇∂tft)hor =
(1

2
H(ft, ft)−K(ft, ft)

)hor

,

where f is a horizontal curve in Imm, where H,K are the metric gradients
defined in section 1.2.7 and where ∇ is the covariant derivative defined in sec-
tion 1.2.6.

Proof. Theorem 1.2.12 states that the geodesic equation on shape space is equiv-
alent to the horizontal geodesic equation on Imm which is given by

(2)

 ft = fhor
t

∇∂tft =
1

2
Hf (ft, ft)−Kf (ft, ft)
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Clearly (2) implies (1). To prove the converse it remains to show that

(∇∂tft)vert =
(1

2
H(ft, ft)−K(ft, ft)

)vert

.

As the following proof shows, this is a consequence of the conservation of the
momentum along f and of the invariance of the metric under Diff(M).

Recall the infinitesimal action of Diff(M) on Imm(M,N). For any X ∈
X(M) it is given by the fundamental vector field

ζX ∈ X(Imm), ζX(f) = ∂s|0r
(
f, exp(sX)

)
= ∂s|0

(
f ◦ FlXt

)
= Tf.X.

Here r is the right action of Diff(M) on Imm(M,N) defined in section 1.2.4.
When f : R → Imm is a curve of immersions, one obtains a two-parameter
family of immersions

g : R× R→ Imm, g(s, t) = r
(
f(t), exp(sX)

)
that satisfies

∇∂tTg.∂s = ∇∂sTg.∂t + Tg.[∂t, ∂s] + Tor(Tg.∂t, T g.∂s)

= ∇∂sT
(
rexp(sX)

)
ft + 0 + 0

since ∇ is torsion-free. This implies

∇∂tζX(f) = ∇∂tTg.∂s|0 = ∇∂s|0T
(
rexp(sX)

)
ft.

ζX(f) is vertical and ft is horizontal by assumption. Thus the momentum
mapping Gf

(
ζX(f), ft

)
is constant and equals zero. Its derivative is

0 = ∂t

(
Gf
(
ζX(f), ft

))
= (∇∂tGf )

(
ζX(f), ft

)
+Gf

(
∇∂tζX(f), ft

)
+Gf

(
ζX(f),∇∂tft

)
= (∇ftG)

(
ζX(f), ft

)
+Gf

(
∇∂s|0T

(
rexp(sX)

)
ft, ft

)
+Gf

(
ζX(f),∇∂tft

)
= Gf

(
Kf (ft, ft) +∇∂tft, ζX(f)

)
+ Grexp(sX)f

(
∇∂sT

(
rexp(sX)

)
ft, T

(
rexp(sX)

)
ft

)∣∣∣
s=0

= Gf
(
Kf (ft, ft) +∇∂tft, ζX(f)

)
+

1

2
∂s|0

(
Grexp(s.X)f

(
T
(
rexp(sX)

)
ft, T

(
rexp(s.X)

)
ft

))
− 1

2

(
∇∂sGrexp(sX)f

)(
T
(
rexp(sX)

)
ft, T

(
rexp(sX)

)
ft

)∣∣∣
s=0

= Gf
(
Kf (ft, ft) +∇∂tft, ζX(f)

)
+

1

2
∂s|0

(
Gf (ft, ft)

)
− 1

2

(
∇ζX(f)G

)
(ft, ft)

= Gf

(
Kf (ft, ft) +∇∂tft + 0− 1

2
Hf (ft, ft), ζX(f)

)
Any vertical tangent vector to f is of the form ζX(f) for some X ∈ X(M).
Therefore

0 =
(
∇∂tft −

1

2
Hf (ft, ft) +Kf (ft, ft)

)vert

.
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It will be shown in section 2.3.1 that curves in Bi can be lifted to horizontal
curves in Imm for the class of almost local metrics. Thus all assumptions and
conclusions of the theorem hold.

1.2.15 Geodesic equation on shape space in terms of the
momentum

As in the previous section we apply theorem 1.2.12 to the Riemannian submer-
sion π : Imm→ Bi. This yields:

Theorem. Assuming that every curve in Bi can be lifted to a horizontal curve
in Imm, the geodesic equation for the momentum on shape space is equivalent
to  p = G(ft, ·) ∈ Hor(

∇∂tG(ft, ·)
)hor

=
1

2
G
(
H(ft, ft), ·)hor,

Here f is a curve in Imm, H is the metric gradient defined in section 1.2.7, and
∇ is the covariant derivative defined in section 1.2.6. f is horizontal because p
is horizontal.

The proof of this theorem is a consequence of the previous section and of
section 1.2.9.

1.2.16 Inner versus outer metrics

There are two similar yet different approaches on how to define a Riemannian
metric on shape space.

The metrics on shape space presented in this work are induced by metrics on
Imm(M,N). One might call them inner metrics since they are defined intrin-
sically to M . Intuitively, these metrics can be seen as describing a deformable
material that the shape itself is made of.

In contrast to these metrics, there are also metrics that are induced from
metrics on Diff(N) by the same construction of Riemannian submersions. (The
widely used LDDMM algorithm is based on such a metric.) The differential
operator governing these metrics is defined on all of N , even outside of the shape.
When the shape is deformed, the surrounding ambient space is deformed with
it. Intuitively, such metrics can be seen as describing some deformable material
that the ambient space is made of. Therefore one might call them outer metrics.

The following diagram illustrates both approaches. Metrics are defined on
one of the top spaces and induced on the corresponding space below by the
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construction of Riemannian submersions.

Diff(N)

��
Emb(M,N)

��

� � // Imm(M,N)

��
Be(M,N) �

� // Bi(M,N)

1.3 Formulas for first variations

Recall that many operators like

g = f∗ḡ, S = Sf , vol(g), ∇ = ∇g, ∆ = ∆g, . . .

implicitly depend on the immersion f . We want to calculate their derivative
with respect to f , which we call the first variation. We will use this formulas
to calculate the metric gradients that are needed for the geodesic equation.

This section is based on [6, 8], with modifications due to possibly curved
ambient space N and higher codimension n−m. Some of the formulas can also
be found in [7, 13, 35, 49]. Some of the variation formulas are equal to [22,
section 3].

1.3.1 Paths of immersions

All of the concepts introduced in section 1.1 can be recast for a path of immer-
sions instead of a fixed immersion. This allows to study variations immersions.
So let f : R → Imm(M,N) be a path of immersions. By convenient calculus
[27], f can equivalently be seen as f : R × M → N such that f(t, ·) is an
immersion for each t. We can replace bundles over M by bundles over R×M :

pr∗2 T
r
sM

��

pr∗2 T
r
sM ⊗ f∗TN

��

Nor(f)

��
R×M R×M R×M

Here pr2 denotes the projection pr2 : R ×M → M . The covariant derivative
∇Zh is now defined for vector fields Z on R ×M and sections h of the above
bundles. The vector fields (∂t, 0M ) and (0R, X), where X is a vector field on
M , are of special importance. Let

inst : M → R×M, x 7→ (t, x).

Then by [34, 22.9.6] one has for vector fields X,Y on M

∇XTf(t, ·).Y = ∇XT (f ◦ inst) ◦ Y = ∇XTf ◦ T inst ◦Y
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= ∇XTf ◦ (0R, Y ) ◦ inst = ∇T inst ◦XTf ◦ (0R, Y )

=
(
∇(0R,X)Tf ◦ (0R, Y )

)
◦ inst .

This shows that one can recover the static situation at t by using vector fields
on R×M with vanishing R-component and evaluating at t.

1.3.2 Setting for first variations

In all of this chapter, let f be an immersion and ft ∈ Tf Imm a tangent vector
to f . The reason for calling the tangent vector ft is that in calculations it will
often be the derivative of a curve of immersions through f . Using the same
symbol f for the fixed immersion and for the path of immersions through it,
one has in fact that

D(f,ft)F = ∂tF (f(t)).

For the sake of brevity we will write ∂t instead of (∂t, 0M ) and X instead of
(0R, X), where X is a vector field on M .

1.3.3 Tangential variation of equivariant tensor fields

Let the smooth mapping F : Imm(M,N)→ Γ(T rsM) take values in some space
of tensor fields over M , or more generally in any natural bundle over M , see
[26].

Lemma. If F is equivariant with respect to pullbacks by diffeomorphisms of M ,
i.e.

F (f) = (ϕ∗F )(f) = ϕ∗
(
F
(
(ϕ−1)∗f

))
for all ϕ ∈ Diff(M) and f ∈ Imm(M,N), then the tangential variation of F is
its Lie-derivative:

D(f,Tf.f>t )F = ∂t|0F
(
f ◦ Flf

>
t
t

)
= ∂t|0F

(
(Fl

f>t
t )∗f

)
= ∂t|0

(
Fl

f>t
t

)∗(
F (f)

)
= Lf>t

(
F (f)

)
.

This allows us to calculate the tangential variation of the pullback metric
and the volume density, because these tensor fields are natural with respect to
pullbacks by diffeomorphisms.

1.3.4 Variation of the metric

Lemma. The differential of the pullback metric{
Imm → Γ(S2

>0T
∗M),

f 7→ g = f∗ḡ

is given by

D(f,ft)g = 2 Sym ḡ(∇ft, T f) = −2ḡ(f⊥t , S) + 2 Sym∇(f>t )[
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= −2ḡ(f⊥t , S) + Lf>t g.

In codimension one this formula specializes to

D(f,ft)g = −2ḡ(ft, ν).s+ Lf>t (g).

Here Sym denotes the symmetric part of the tensor field C of type ( 0
2 ) given

by (
Sym(C)

)
(X,Y ) :=

1

2

(
C(X,Y ) + C(Y,X)

)
.

Proof. Let f : R × M → N be a path of immersions. Swapping covariant
derivatives as in section 1.1.8 formula (3) one gets

∂t
(
g(X,Y )

)
= ∂t

(
ḡ(Tf.X, Tf.Y )

)
= ḡ(∇∂tTf.X, Tf.Y ) + ḡ(Tf.X,∇∂tTf.Y )

= ḡ(∇Xft, T f.Y ) + ḡ(Tf.X,∇Y ft) =
(
2 Sym ḡ(∇ft, T f)

)
(X,Y ).

Splitting ft into its normal and tangential part yields

2 Sym ḡ(∇ft, T f) = 2 Sym ḡ(∇f⊥t +∇Tf.f>t , T f)

= −2 Sym ḡ(f⊥t ,∇Tf) + 2 Sym g(∇f>t , ·)
= −2ḡ(f⊥t , S) + 2 Sym∇(f>t )[.

Finally the relation

D(f,Tf.f>t )g = 2 Sym∇(f>t )[ = Lf>t g

follows either from the equivariance of g with respect to pullbacks by diffeomor-
phisms (see 1.3.3) or directly from

(LXg)(Y,Z) = LX
(
g(Y,Z)

)
− g(LXY,Z)− g(Y,LXZ)

= ∇X
(
g(Y,Z)

)
− g(∇XY −∇YX,Z)− g(Y,∇XZ −∇ZX)

= g(∇YX,Z) + g(Y,∇ZX) = (∇YX)[(Z) + (∇ZX)[(Y )

= (∇YX[)(Z) + (∇ZX[)(Y ) = 2 Sym
(
∇(X[)

)
(Y,Z).

1.3.5 Variation of the inverse of the metric

Lemma. The differential of the inverse of the pullback metric{
Imm → Γ(L(T ∗M,TM)),
f 7→ g−1 = (f∗ḡ)−1

is given by

D(f,ft)g
−1 = D(f,ft)(f

∗ḡ)−1 = 2ḡ(f⊥t , g
−1Sg−1) + Lf>t (g−1)

In codimension one this formula specializes to

D(f,ft)g
−1 = −2ḡ(ft, ν).L.g−1 + Lf>t (g−1).

Proof.

∂tg
−1 = −g−1(∂tg)g−1 = −g−1

(
− 2ḡ(f⊥t , S) + Lf>t g

)
g−1

= 2g−1ḡ(f⊥t , S)g−1 − g−1(Lf>t g)g−1 = 2ḡ(f⊥t , g
−1Sg−1) + Lf>t (g−1)
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1.3.6 Variation of the volume density

Lemma. The differential of the volume density{
Imm → Vol(M),
f 7→ vol(g) = vol(f∗ḡ)

is given by

D(f,ft) vol(g) = Trg
(
ḡ(∇ft, T f)

)
vol(g) =

(
divg(f>t )− ḡ

(
f⊥t ,Trg(S)

))
vol(g).

In codimension one this formula reads as

D(f,ft) vol(g) =
(

divg(f>t )− ḡ(f⊥t , ν).Tr(L)
)

vol(g).

Proof. Let g(t) ∈ Γ(S2
>0T

∗M) be any curve of Riemannian metrics. Then

∂t vol(g) =
1

2
Tr(g−1.∂tg) vol(g).

This follows from the formula for vol(g) in a local oriented chart (u1, . . . un) on
M :

∂t vol(g) = ∂t

√
det((gij)ij) du

1 ∧ · · · ∧ dun−1

=
1

2
√

det((gij)ij)
Tr(adj(g)∂tg) du1 ∧ · · · ∧ dun−1

=
1

2
√

det((gij)ij)
Tr(det((gij)ij)g

−1∂tg) du1 ∧ · · · ∧ dun−1

=
1

2
Tr(g−1.∂tg) vol(g)

Now we can set g = f∗ḡ and plug in the formula

∂tg = ∂t(f
∗ḡ) = 2 Sym ḡ(∇ft, T f)

from 1.3.4. This immediately proves the first formula:

∂t vol(g) =
1

2
Tr
(
g−1.2 Sym ḡ(∇ft, Tf)

)
= Trg

(
ḡ(∇ft, T f)

)
.

Expanding this further yields the second formula:

∂t vol(g) = Trg
(
∇ḡ(ft, Tf)− ḡ(ft,∇Tf)

)
= Trg

(
∇ḡ(ft, Tf)− ḡ(ft, S)

)
= −∇∗ḡ(ft, T f)− ḡ

(
ft,Trg(S)

)
= −∇∗

(
(f>t )[

)
− ḡ
(
f⊥t ,Trg(S)

)
= div(f>t )− ḡ

(
f⊥t ,Trg(S)

)
.

Here we have used

∇Tf = S and div(f>t ) = Tr(∇f>t ) = Trg
(
(∇f>t )[

)
= −∇∗

(
(f>t )[

)
.

Note that by 1.3.3, the formula for the tangential variation would have followed
also from the equivariance of the volume form with respect to pullbacks by
diffeomorphisms.
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1.3.7 Variation of the volume

Lemma. The differential of the total Volume{
Imm → R,
f 7→ Vol(f) =

∫
M

vol(f∗ḡ)

is given by

D(f,ft) Vol(f) = D(f,ft)

∫
M

vol(g) = −
∫
M

ḡ
(
f⊥t ,Trg(S)

)
vol(g).

In codimension one this formula reads as

D(f,ft) vol(g) = −
∫
M

ḡ(f⊥t , ν).Tr(L) vol(g).

Proof. This follows from 1.3.6. The integral over the divergence term vanishes
by the Theorem of Stokes.

1.3.8 Variation of the vector valued second fundamental
form

Lemma. The differential of the vector valued second fundamental form{
Imm → Γ(S2T ∗M ⊗Nor(f)),
f 7→ S

is given by

D(f,ft)S = ∇2ft +Rḡ(ft, T f)Tf = ∇2f⊥t +Rḡ(f⊥t , T f)Tf + Lf>t (S).

Recall that ∇2 stands for the bilinear mapping (X,Y ) 7→ ∇2
X,Y defined in

1.1.9.

Proof. By definition S(X,Y ) = ∇X(Tf.Y )− Tf.∇XY . Therefore

∂tS
f (X,Y ) = ∇∂t∇X(Tf.Y )−∇∂tTf.∇XY

= ∇X∇Y Tf.∂t +Rḡ(Tf∂t, TfX)TfY −∇∇XY Tf.∂t
= ∇X∇Y ft −∇∇XY ft +Rḡ(ft, TfX)TfY

= ∇2ft +Rḡ(ft, Tf)Tf,

where we interchanged covariant derivatives as in 1.1.8.(3) and 1.1.8.(4). By
1.3.3, the formula for the tangential variation follows from the equivariance of
the second fundamental form with respect to pullbacks by diffeomorphisms:

Sf◦Φ(X,Y ) = ∇ḡ
(
T (f ◦ Φ).Y

)
− T (f ◦ Φ)∇(f◦Φ)∗ḡ

X Y

= ∇ḡX
(
Tf.TΦ.Y

)
− Tf.TΦ.∇(f◦Φ)∗ḡ

X Y
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= ∇ḡX
(
Tf.Φ∗Y ◦ Φ

)
− Tf(∇f

∗ḡ
Φ∗X

Φ∗Y ) ◦ Φ

= ∇ḡTΦ.X

(
Tf.Φ∗Y

)
− Tf(∇f

∗ḡ
Φ∗X

Φ∗Y ) ◦ Φ

=
(
∇ḡΦ∗XTf.Φ∗Y

)
◦ Φ− Tf(∇f

∗ḡ
Φ∗X

Φ∗Y ) ◦ Φ = Sf (Φ∗X,Φ∗Y ) ◦ Φ

In the above calculations we used property (5) from section 1.1.7 and the nat-
urality of the covariant derivative.

1.3.9 Variation of the scalar valued second fundamental
form (codimension one)

Lemma. The differential of the scalar second fundamental form{
Imm → Γ(S2T ∗M),
f 7→ sf

is given by

D(f,ft)s = ḡ(∇2ft, ν) + ḡ(Rḡ(ft, Tf)Tf, ν)

= ∇2ḡ(ft, ν)− ḡ(ft, ν).g ◦ (L⊗ L) + Lf>t .s+ ḡ(Rḡ(f⊥t , T f)Tf, ν)

Proof. By definition s(X,Y ) = ḡ
(
S(X,Y ), ν

)
= ḡ

(
∇X(Tf.Y ), ν

)
. Using the

formula for the first variation of the vector valued second fundamental form
(1.3.8) yields

∂ts(X,Y ) = ḡ
(
∂tS(X,Y ), ν

)
+ ḡ
(
S(X,Y ), ∂tν

)
= ḡ
(
∇2
X,Y ft, ν

)
+ ḡ
(
Rḡ(ft, T fX)TfY, ν

)
+ 0

= ḡ
(
∇2
X,Y f

⊥
t +Rḡ(f⊥t , T fX)TfY + Lf>t S(X,Y ), ν

)
,

where the term ḡ
(
S(X,Y ), ∂tν

)
vanishes since ∂tν is tangential (see 1.3.14). To

get the second formula we calculate:

∂ts(X,Y ) = ḡ
(
∇2
X,Y

(
ḡ(ft, ν).ν

)
, ν
)

+ ḡ
(
Lf>t (s(X,Y ).ν), ν

)
+ ḡ
(
Rḡ(ft, T fX)TfY, ν

)
= ∇2

X,Y ḡ(ft, ν) + 0 + ḡ(ft, ν).ḡ
(
∇2
X,Y ν, ν

)
+ Lf>t s(X,Y ) + 0

+ ḡ
(
Rḡ(ft, T fX)TfY, ν

)
= ∇2

X,Y ḡ(ft, ν)− ḡ(ft, ν).ḡ
(
∇Xν,∇Y ν

)
+ 0 + Lf>t s(X,Y )

+ ḡ
(
Rḡ(ft, T fX)TfY, ν

)
= ∇2

X,Y ḡ(ft, ν)− ḡ(ft, ν).g
(
LX,LY

)
+ 0 + Lf>t s(X,Y )

+ ḡ
(
Rḡ(ft, T fX)TfY, ν

)
.

1.3.10 Variation of the vector valued mean curvature

Lemma. The differential of the vector valued mean curvature{
Imm → Γ(Nor(f)),
f 7→ Trg(S)
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is given by

D(f,ft) Trg(S) = Tr
(
2ḡ(f⊥t , g

−1.S.g−1).S
)
−∆(f⊥t )

+ Trg(Rḡ(f⊥t , T f)Tf) + Lf>t Trg(S)

Proof.

∂t Trg(S) = ∂t Tr(g−1.S) = Tr
(
(∂tg

−1).S
)

+ Tr
(
g−1.∂tS

)
= Tr

(
2ḡ(f⊥t , g

−1Sg−1).S
)

+ Tr
(
Lf>t (g−1).S

)
+ Tr

(
g−1.∇2f⊥t

)
+ Tr

(
g−1Rḡ(f⊥t , T f)Tf

)
+ Tr

(
g−1.(Lf>t S)

)
= Tr

(
2ḡ(f⊥t , g

−1Sg−1).S
)

+ Lf>t Tr
(
g−1.S

)
− Tr

(
g−1.(Lf>t S)

)
−∆f⊥t + Tr

(
g−1Rḡ(f⊥t , Tf)Tf

)
+ Tr

(
g−1.(Lf>t S)

)
= Tr

(
2ḡ(f⊥t , g

−1.S.g−1).S
)
−∆(f⊥t )

+ Tr
(
g−1Rḡ(f⊥t , T f)Tf

)
+ Lf>t Trg(S)

Note that by 1.3.3, the formula for the tangential variation would have followed
also from the equivariance of the vector valued mean curvature with respect to
pullbacks by diffeomorphisms.

1.3.11 Variation of the scalar Weingarten map (codimen-
sion one)

Lemma. The differential of the scalar Weingarten map{
Imm → Γ(End(TM)),
f 7→ Lf

is given by

D(f,ft)L = g−1.∇2
(
ḡ(ft, ν)

)
+ ḡ(ft, ν)L2 + g−1.ḡ

(
Rḡ(f⊥t , T f)Tf

)
+ Lf>t (L).

Proof. From L = g−1.s follows

∂tL = g−1.∂ts+ ∂t(g
−1).s

= g−1.
(
∇2(ḡ(ft, ν))− ḡ(ft, ν)g.L2 + ḡ

(
Rḡ(f⊥t , T f)Tf

)
+ Lf>t (s)

)
+
(

2ḡ(ft, ν)Lg−1 + Lf>t (g−1)
)
.s

= g−1.∇2
(
ḡ(ft, ν)

)
+ ḡ(ft, ν).L2 + g−1.ḡ

(
Rḡ(f⊥t , T f)Tf

)
+ Lf>t (L).

1.3.12 Variation of the scalar mean curvature (codimen-
sion one)

Lemma. The differential of the scalar mean curvature{
Imm → C∞(M),
f 7→ Tr(Lf )
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is given by

D(f,ft) Tr(L) = −∆
(
ḡ(ft, ν)

)
+ ḡ(ft, ν).Tr

(
L2
)

+ Trg
(
ḡ
(
Rḡ(f⊥t , T f)Tf

))
+ d
(

Tr(L)
)
(f>t ).

Proof. This statement follows from the linearity of the trace operator and from
the previous equation for D(f,ft)L.

1.3.13 Variation of the Gaußcurvature (codimension one)

Lemma. The differential of the Gaußcurvature{
Imm → C∞(M),
f 7→ det(L)

is given by

D(f,ft) det(L) = Tr(L).det(L).ḡ(ft, ν) + Trg
(
g.C(L).∇2

(
ḡ(ft, ν)

))
+ Trg

(
g.C(L).ḡ

(
Rḡ(f⊥t , T f)Tf

))
+ ddet(L)(f>t )

where C(L) is the classical adjoint of L uniquely determined by

C(L).L = L.C(L) = det(L).I.

Proof. For the normal part we have

∂t det(L) = Tr
(

C(L).∂tL
)

= Tr
(

C(L).
(
g−1∇2

(
ḡ(ft, ν)

)
+ ḡ(ft, ν).L2 + g−1.ḡ(Rḡ(∂t, T f)Tf)

))
= Tr

(
C(L).g−1.∇2ḡ(ft, ν) + ḡ(ft, ν).det(L).L

)
+ C(L)g−1.ḡ(Rḡ(∂t, T f)Tf)

))
= Tr(L).det(L).ḡ(ft, ν) + Trg

(
g.C(L).∇2

(
ḡ(ft, ν)

))
+ Trg

(
g.C(L).ḡ

(
Rḡ(f⊥t , Tf)Tf

))
For the tangential part, we use the observation of section 1.3.3.

1.3.14 Variation of the normal vector field (codimension
one)

Lemma. The normal vector field is a smooth map ν : R×M → TN . Therefore,
as explained in section 1.1.7, we can take its covariant derivative along vector
fields on R×M . Identifying ∂t with the vector field (∂t, 0M ) on R×M , we get

∇∂tν = −Tf.
(
Lf>t + gradg

(
ḡ(ft, ν)

))
.
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Proof. ∇∂tν is tangential because ḡ(∇∂tν, ν) = 1
2∂tḡ(ν, ν) = 0. Therefore one

can write ∇∂tν = Tf.(∇∂tν)>. Then for all X ∈ X(M) we have

g((∇∂tν)>, X) = ḡ
(
∇∂tν, Tf.X

)
= 0− ḡ

(
ν,∇∂tTf.X

)
= −ḡ(ν,∇XTf.∂t),

where in the last step we swapped X and ∂t as in section 1.1.8 formula (3).
Splitting into normal and tangential parts yield:

g((∇∂tν)>, X) = −ḡ(ν,∇Xft) = −ḡ
(
ν,∇X(Tf.f>t + ḡ(ft, ν).ν)

)
= −ḡ

(
ν,∇X(Tf.f>t + ḡ(ft, ν).ν)

)
= −s(X, f>t )−∇X

(
ḡ(ft, ν)

)
− 0

= −g
(
Lf>t + gradg ḡ(ft, ν), X

)

1.3.15 Variation of the covariant derivative

In this section, let ∇ = ∇g = ∇f∗ḡ be the Levi-Civita covariant derivative
acting on vector fields on M . Since any two covariant derivatives on M differ
by a tensor field, the first variation of ∇f∗ḡ is tensorial. It is given by the tensor
field D(f,ft)∇f

∗ḡ ∈ Γ(T 1
2M).

The tensor field D(f,ft)∇f
∗ḡ is determined by the following relation holding

for vector fields X,Y, Z on M :

g
(
(D(f,ft)∇)(X,Y ), Z

)
=

1

2
(∇D(f,ft)g)

(
X⊗Y ⊗Z+Y ⊗X⊗Z−Z⊗X⊗Y

)
Proof. The defining formula for the covariant derivative is

g(∇XY,Z) =
1

2

[
Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ])
]
.

Taking the derivative D(f,ft) yields

(D(f,ft)g)(∇XY, Z) + g
(
(D(f,ft)∇)(X,Y ), Z

)
=

1

2

[
X
(
(D(f,ft)g)(Y,Z)

)
+ Y

(
(D(f,ft)g)(Z,X)

)
− Z

(
(D(f,ft)g)(X,Y )

)
− (D(f,ft)g)(X, [Y,Z]) + (D(f,ft)g)(Y, [Z,X]) + (D(f,ft)g)(Z, [X,Y ])

]
.

Then the result follows by replacing all Lie brackets in the above formula by
covariant derivatives using [X,Y ] = ∇XY −∇YX and by expanding all terms
of the form X

(
(D(f,ftg)(Y, Z)

)
using

X
(
(D(f,ft)g)(Y,Z)

)
=

(∇XD(f,ft)g)(Y,Z) + (D(f,ft)g)(∇XY,Z) + (D(f,ft)g)(Y,∇XZ).
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1.4 Formulas for second variations

In section 3.3 we will calculate the second derivative of the metric G in a chart.
Therefore we will need second variation formulas of the volume form, the pull-
back metric and the mean curvature.

This section is taken from [6].

1.4.1 Setting for second variations

All formulas for second derivatives will be used in section 3.3.2, where we work
in codimension one and with flat ambient space N = Rn, i.e. Rḡ(X,Y )Z = 0.
There we consider a curve of immersions

f(t, x) = expf0(x)(t.a(x).νf0(x)) = f0(x) + t.a(x).νf0(x),

for a fixed immersion f0. This curve of immersions has the property that at
t = 0 its first derivative and the covariant derivative of the first derivative are
both horizontal, i.e.,

(1) f |t=0 = f0, ∂t|0f = a.νf0 , and ∇∂tTf.∂t|t=0 = 0.

Assumption. In all calculations of second variations we will assume that we
have codimension one, a flat ambient space N and that the above properties
hold.

1.4.2 Second variation of the metric

Lemma. The second derivative of the pullback metric{
Imm → Γ(S2

>0T
∗M),

f 7→ g = f∗ḡ

along a curve of immersions f satisfying property (1) from section 1.4.1 is given
by

∂2
t |0f∗ḡ = 2(da⊗ da) + 2a2g0 ◦ (Lf0 ⊗ Lf0).

Proof. Since ∇∂tTf.∂t|0 = 0, we have

∂2
t |0g(X,Y ) = ∂2

t |0ḡ(Tf.X, Tf.Y )

= ∂t|0ḡ(∇∂tTf.X, Tf.Y ) + ∂t|0ḡ(Tf.X,∇∂tTf.Y )

= 2ḡ(∇∂tTf.X|0,∇∂tTf.Y |0) + 0 + 0 = 2ḡ(∇XTf.∂t,∇Y Tf.∂t)

Using Tf.∂t = a.νf0 we get

∂2
t |0(g(X,Y )) = 2da(X).da(Y ) + 2a2ḡ(∇Xνf0 ,∇Y νf0)

= 2(da⊗ da)(X,Y ) + 2a2.g0(Lf0X,Lf0Y )
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1.4.3 Second variation of the inverse metric

Lemma. The second derivative of the inverse of the pullback metric{
Imm → Γ(L(T ∗M,TM)),
f 7→ g−1 = (f∗ḡ)−1

along a curve of immersions f satisfying property (1) from section 1.4.1 is given
by

∂2
t |0(f∗ḡ)−1 = 6a2(Lf0)2.g−1

0 − 2g−1
0 (da⊗ da)g−1

0 .

Proof. We look at g = f∗ḡ as a bundle map from TM to T ∗M . Then

∂2
t |0(g−1) = ∂t|0

(
− g−1.∂tg.g

−1
)

= 2g−1
0 .∂t|0g.g−1

0 .∂t|0g.g−1
0 − g−1

0 .∂2
t |0g.g−1

0

= 2(−2aLf0)2.g−1
0 − g−1

0 .
(
2(da⊗ da) + 2a2g0 ◦ (Lf0 ⊗ Lf0)

)
.g−1

0

= 8a2(Lf0)2.g−1
0 − 2g−1

0 (da⊗ da)g−1
0 − 2a2(Lf0)2.g−1

0

1.4.4 Second variation of the volume form

Lemma. The second derivative of the volume form{
Imm → Ωn−1(M),
f 7→ vol(g) = vol(f∗ḡ)

along a curve of immersions f satisfying property (1) from section 1.4.1 is given
by

∂2
t |0 vol(g) =

[
a2 Tr(Lf0)2 − a2 Tr

(
(Lf0)2

)
+ ‖da‖2g−1

]
vol(g0),

Proof. In section 1.3.6 we showed that for any curve of Riemannian metrics
g(t) ∈ Γ(S2

>0T
∗M), we have

∂t vol(g) =
1

2
Tr
(
g−1.∂tg

)
vol(g).

Therefore

∂2
t vol(g) = ∂t

1

2
Tr
(
g−1.∂tg

)
vol(g) =

1

2
Tr
(
∂t(g

−1).∂tg
)

vol(g)

+
1

2
Tr
(
g−1.∂2

t g
)

vol(g) +
1

2
Tr
(
g−1.∂tg

)
∂t vol(g)

Evaluating at t = 0 and setting g(t) = f∗ḡ we get

∂2
t |0 vol(g) =

1

2
Tr
(
(2aLf0g−1

0 ).(−2a.sf0)
)

vol(g0)

+
1

2
Tr
(
g−1

0 .2(da⊗ da)
)

vol(g0)

+
1

2
Tr
(
g−1

0 .2a2g0.(L
f0)2

)
vol(g0)

+
1

2
Tr
(
g−1

0 .(−2a.sf0)
)
(−Tr(Lf0).a) vol(g0)

=
[
a2 Tr(Lf0)2 − a2 Tr

(
(Lf0)2

)
+ ‖da‖2g−1

]
vol(g0)
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1.4.5 Second variation of the second fundamental form

The second derivative of the second fundamental form{
Imm → Γ(S2T ∗M),
f 7→ sf

along a curve of immersions f satisfying Property (1.4.1.1) is given by

∂2
t |0s = 2(da⊗ da)

(
Id⊗Lf0 + Lf0 ⊗ Id

)
− ‖da‖2g−1

0
.sf0

+ 2.a(∇gradg0 (a)s
f0).

Proof. From section 1.3.10 we have

∂ts(X,Y ) = ḡ(∇2

X,Y Tf.∂t, ν) = ḡ(∇2

X,Y ft, ν).

Using ∇∂tft = 0 we get

∂2
t s(X,Y ) = ḡ(∇2

X,Y ft,∇∂tν) + ḡ(∇∂t∇X∇Y ft −∇∂t∇∇XY ft, ν)

= ḡ(∇2

X,Y ft,∇∂tν) + 0− ḡ(∇∇XY∇∂tft +∇[∂t,∇XY ]ft, ν)

= ḡ(∇2

X,Y ft,∇∂tν) + 0− ḡ(∇[∂t,∇XY ]ft, ν)

= ḡ(∇2

X,Y ft,∇∂tν)− ḡ(∇(D(f,ft)
∇)(X,Y )ft, ν)

In the last step we used

[∂t,∇f
∗ḡ
X Y ] = [(∂t, 0M ), (0R,∇f

∗ḡ
X Y )]

=
(
0R, (D(f,ft)∇)(X,Y )

)
= (D(f,ft)∇)(X,Y ).

Evaluating at t = 0 yields:

∂2
t |0s(X,Y ) =

= ḡ(∇2

X,Y (a.νf0),−Tf0. gradg0 a)− ḡ(∇(D
(f0,a.ν

f0 )
∇)(X,Y )(a.ν

f0), νf0)

= 0 + ḡ(da(X).∇Y νf0 + da(Y ).∇Xνf0 ,−Tf0. gradg0 a)

+ ḡ(a.∇2

X,Y (νf0),−Tf0. gradg0 a)− da
(
(D(f0,a.νf0 )∇)(X,Y )

)
+ 0.

We will treat the three terms separately. The first one gives, using ∇Zν =
−Tf.L.Z:

ḡ(da(X).∇Y νf0 + da(Y ).∇Xνf0 ,−Tf0. gradg0 a) =

= g0(da(X)Lf0Y + da(Y )Lf0X, gradg0 a)

= da(X).da(Lf0Y ) + da(Y ).da(Lf0X).

For the second term we get:

ḡ(a.∇2

X,Y (νf0),−Tf0. gradg0 a) = −aḡ(∇X∇Y νf0 −∇∇XY νf0 , Tf0. gradg0 a)

= −aḡ(−∇X(Tf0L
f0Y ) + Tf0L

f0∇XY, Tf0. gradg0 a)
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= −aḡ(−(∇Tf0)(X,Lf0Y )− Tf0∇X(Lf0Y ) + Tf0L
f0∇XY, Tf0. gradg0 a)

= 0 + aḡ(Tf0(∇XLf0)(Y ), Tf0. gradg0 a) = ag0

(
(∇XLf0)(Y ), gradg0 a

)
= a∇X

(
g0(Lf0Y, gradg0 a)

)
− ag0(Lf0∇XY, gradg0 a)

− ag0(Lf0Y,∇X gradg0 a)

= a∇X
(
sf0(Y, gradg0 a)

)
− asf0(∇XY, gradg0 a)− asf0(Y,∇X gradg0 a)

= a(∇Xs)(Y, gradg0 a)

∇2

X,Y ν is symmetric in X,Y because the ambient space Rn is flat. Therefore
the last formula and the symmetry of s imply that

a(∇Xs)(Y, gradg0 a) = a(∇Y s)(X, gradg0 a) = a(∇gradg0 as)(X,Y ).

The third term yields, using formula 1.3.15:

− g0

(
(D(f,a.νf0 )∇)(X,Y ), gradg0(a)

)
=

= −1

2
(∇(−2a.sf0))(X,Y, gradg0(a))− 1

2
(∇(−2a.sf0))(Y,X, gradg0(a))

+
1

2
(∇(−2a.sf0))(gradg0(a), X, Y )

= da(X).sf0(Y, gradg0(a)) + a.(∇Xsf0)(Y, gradg0(a))

+ da(Y ).sf0(X, gradg0(a)) + a.(∇Y sf0)(X, gradg0(a))

− da(gradg0(a)).sf0(X,Y )− a.(∇gradg0 (a)s
f0)(X,Y )

= da(X).da(Lf0Y ) + da(Y ).da(Lf0X)

− ‖da‖2g−1 .s
f0(X,Y ) + a.(∇gradg0 (a)s

f0)(X,Y ).

1.4.6 Second variation of the mean curvature

The second derivative of the mean curvature{
Imm → C∞(M),
f 7→ Tr(Lf )

along a curve of immersions f satisfying Property (1.4.1.1) is given by

∂2
t |0 Tr(L) = 2a2 Tr

(
(Lf0)3

)
+ 4aTr

(
Lf0g−1

0 .∇2a
)

+ 2 Tr(g−1(da⊗ da)Lf0)

− ‖da‖2g−1
0

Tr(Lf0) + 2aTrg0
(
∇gradg0 as

f0
)

Proof. From Tr(L) = Tr(g−1.s) we get

∂2
t Tr(L) = Tr

(
∂2
t (g−1).s

)
+ 2 Tr

(
∂t(g

−1).∂ts
)

+ Tr
(
g−1.∂2

t s
)

Evaluating at t = 0 we get

∂2
t |0 Tr(L) = Tr

(
6a2(Lf0)2.g−1

0 .sf0
)

+ Tr
(
− 2g−1

0 .(da⊗ da).g−1
0 .sf0

)
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+ 2 Tr
(
2aLf0g−1

0 .∇2a
)

+ 2 Tr
(
2aLf0g−1

0 .(−ag0(Lf0)2)
)

+ 2.Tr
(
g−1

0 .((da⊗ da ◦ Lf0) + (da ◦ Lf0 ⊗ da)
)

− ‖da‖2g−1
0

Tr(Lf0) + 2aTrg0
(
∇gradg0 as

f0
)

= 2a2 Tr
(
(Lf0)3

)
− 2 Tr

(
g−1

0 .(da⊗ da).Lf0
)

+ 4aTr
(
Lf0g−1

0 .∇2a
)

+ 4 Tr
(
g−1

0 .(da⊗ da).(Lf0)
)

− ‖da‖2g−1
0

Tr(Lf0) + 2aTrg0
(
∇gradg0 as

f0
)
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Chapter 2

Surfaces

2.1 Almost local metrics

The G0 metric is the simplest metric on Imm(M,N). It is given by the following
formula:

G0
f (h, k) =

∫
M

ḡ(h, k) vol(g).

This metric is well studied, see for example [35]. Unfortunately it induces van-
ishing geodesic distance on shape space, see [35, 36] or section 2.4.5. There are
different ways to strengthen the metric. In [7] we incorporated a differential op-
erator in the definition of the metric, whereas in this work we will study metrics
of the form

GΦ
f (h, k) =

∫
M

Φ(f).ḡ(h(x), k(x)) vol(g)(x),

where Φ is a Diff(M)-invariant function depending on the immersion f and
possibly on x. These metrics are called almost local metrics. This definition
includes as an important special case conformal versions of the G0 metric, i.e.
metrics of the form

GΦ
f (h, k) = Φ(f)

∫
M

ḡ(h, k). vol(g),

where Φ is again some Diff(M)-invariant function depending on the immersion
f but not on x. Conformal metrics have been studied in [41, 30].

Assumption. In this chapter we will consider functions Φ depending on the
volume and the mean curvature, i.e.

Φ = Φ
(

Vol, ‖Trg(S)(x)‖2ḡ
)
.

We will calculate the geodesic equation on both, Imm and Bi. In section 2.4
we will state some conditions for Φ ensuring that the induced geodesic distance
on shape space is non-vanishing.

37
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For this class of weight functions, some work has already been done by [37]
for the special case of immersions of the unit circle in the plane. The special
case of hypersurfaces in n-space has been studied in [6], see also chapter 3.

2.2 The geodesic equation on the manifold of
immersions

We use the method of section 1.2.8 and section 1.2.9 to calculate the geodesic
equation. So we need to compute the metric gradients. The calculation at the
same time shows the existence of the gradients. For vector fields m,h, k on Imm
one has

(∇ḡmGΦ)(h, k) = D(f,m)

∫
M

Φ.ḡ(h, k) vol(g)−
∫
M

Φ.ḡ
(
∇ḡmh, k

)
vol(g)

−
∫
M

Φ.ḡ(h,∇ḡmk) vol(g)

=

∫
M

(D(f,m)Φ)ḡ(h, k) vol(g) +

∫
M

Φḡ
(
∇ḡmh, k

)
vol(g)

+

∫
M

Φḡ(h,∇ḡmk) vol(g) +

∫
M

Φḡ(h, k)D(f,m) vol(g)

−
∫
M

Φḡ
(
∇ḡmh, k

)
vol(g)−

∫
M

Φḡ(h,∇ḡmk) vol(g)

=

∫
M

(D(f,m)Φ)ḡ(h, k) vol(g) +

∫
M

Φḡ(h, k)D(f,m) vol(g)

=

∫
M

(∂1Φ).(D(f,m) Vol).ḡ(h, k) vol(g)

+

∫
M

(∂2Φ).D(f,m) ‖Trg(S)‖2ḡ .ḡ(h, k) vol(g)

+

∫
M

Φ.ḡ(h, k).(D(f,m) vol(g)).

To read off the K-gradient of the metric, we write this expression as

∫
M

Φ.ḡ

([∂1Φ

Φ
(D(f,m) Vol) + 2.

∂2Φ

Φ
ḡ
(
D(f,m) Trg(S),Trg(S)

)
+
D(f,m) vol(g)

vol(g)

]
h, k

)
vol(g)
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Therefore, using the formulas from section 1.3 we can calculate the K gradient:

Kf (m,h) =

=
[∂1Φ

Φ
(D(f,m) Vol) + 2.

∂2Φ

Φ
ḡ
(
D(f,m) Trg(S),Trg(S)

)
+
D(f,m) vol(g)

vol(g)

]
h

=

[
∂1Φ

Φ

(∫
M

−ḡ
(
m⊥,Trg(S)

)
vol(g)

)
+ 2.

∂2Φ

Φ

(
ḡ
(

2 Tr
(
ḡ(m⊥, g−1.S.g−1).S

)
,Trg(S)

)
− ḡ
(
∆(m⊥),Trg(S)

)
+ ḡ(Trg(Rḡ(m⊥, T f).T f),Trg(S)) + ḡ

(
Lm> Trg(S),Trg(S)

))
+ divg(m>)− ḡ

(
m⊥,Trg(S)

)]
h.

To calculate the H-gradient, we treat the four summands of D(f,m)G
Φ
f (h, k)

separately. The first summand is∫
M

(∂1Φ)(D(f,m) Vol(x))ḡ(h(x), k(x)) vol(g)(x)

= −
∫
x∈M

(∂1Φ)

∫
y∈M

ḡ
(
m⊥(y),Trg(S)(y)

)
vol(g)(y)ḡ(h(x), k(x)) vol(g)(x)

=

∫
y∈M

ḡ

(
m⊥(y),−Trg(S)(y)

∫
x∈M

(∂1Φ).ḡ(h(x), k(x)) vol(g)(x)

)
vol(g)(y)

= GΦ
f

(
m,− 1

Φ
Trg(S)

∫
M

(∂1Φ).ḡ(h, k) vol(g)

)
.

In the calculation of the second term we will make use of the selfadjointness of
the Laplacian, i.e. for any tensor fields B,C ∈ T rs (M) we have∫

M

grs(∆B,C) vol(g) =

∫
M

grs(∇∗∇B,C) vol(g) =

∫
M

grs(B,∆C) vol(g),

of the following Leibnitz rule for the derivative of the mean curvature:

ḡ
(
Lm> Trg(S),Trg(S)

)
=

=
1

2

(
ḡ
(
Lm> Trg(S),Trg(S)

)
+ ḡ
(

Trg(S),Lm> Trg(S)
))

=
1

2
Lm> ḡ

(
Trg(S),Trg(S)

)
=

1

2
d ‖Trg(S)‖2ḡ (m>),

and of a symmetry property of the curvature tensor (see [34, 24.4.4]):

ḡ(Rḡ(X,Y )Z,U) = −ḡ(Rḡ(Y,X)Z,U) = −ḡ(Rḡ(Z,U)Y,X).

Thus the second summand is given by∫
M

(∂2Φ).D(f,m) ‖Trg(S)‖2ḡ .ḡ(h, k) vol(g) =

= 2

∫
M

(∂2Φ).ḡ
(

2 Tr
(
ḡ(m⊥, g−1.S.g−1).S

)
,Trg(S)

)
.ḡ(h, k) vol(g)
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− 2

∫
M

(∂2Φ).(ḡ ⊗ g0
0)
(
∆(m⊥),Trg(S)

)
.ḡ(h, k) vol(g)

+ 2

∫
M

(∂2Φ)ḡ
(

Trg(Rḡ(m⊥, Tf)Tf),Trg(S)
)
ḡ(h, k) vol(g)

+ 2.

∫
M

(∂2Φ)
1

2
d ‖Trg(S)‖2ḡ (m>).ḡ(h, k) vol(g)

= 4

∫
M

(∂2Φ).Tr
(
ḡ(m⊥, g−1.S.g−1).ḡ

(
S,Trg(S)

))
ḡ(h, k) vol(g)

− 2

∫
M

(∂2Φ).(ḡ ⊗ g0
0)
(

∆(m⊥),Trg(S)
)
ḡ(h, k) vol(g)

+ 2

∫
M

(∂2Φ) Trg
(
ḡ
(
Rḡ(m⊥, Tf)Tf,Trg(S)

))
ḡ(h, k) vol(g)

+

∫
M

(∂2Φ).g
(

gradg ‖Trg(S)‖2ḡ ,m
>
)
.ḡ(h, k) vol(g)

= 4

∫
M

(∂2Φ).ḡ

(
m⊥,Tr

(
g−1.S.g−1.ḡ

(
S,Trg(S)

)
.ḡ(h, k)

))
vol(g)

− 2

∫
M

(ḡ ⊗ g0
0)
(
m⊥,∆

(
(∂2Φ).Trg(S).ḡ(h, k)

))
vol(g)

− 2

∫
M

(∂2Φ) Trg
(
ḡ
(
Rḡ(Tf,Trg(S))Tf,m⊥

))
ḡ(h, k) vol(g)

+

∫
M

(∂2Φ).ḡ
(
Tf. gradg ‖Trg(S)‖2ḡ , T f.m

>
)
.ḡ(h, k) vol(g)

= GΦ
f

(
m⊥, 4.

∂2Φ

Φ
Tr
(
g−1.S.g−1.ḡ

(
S,Trg(S)

)
.ḡ(h, k)

))
−GΦ

f

(
m⊥,

2

Φ
∆
(

(∂2Φ).Trg(S).ḡ(h, k)
))

− 2

∫
M

ḡ
(
ḡ(h, k)(∂2Φ) Trg

(
Rḡ(Tf,Trg(S))Tf

)
,m⊥

)
vol(g)

+

∫
M

(∂2Φ).ḡ
(
m,Tf.ḡ(h, k). gradg ‖Trg(S)‖2ḡ

)
vol(g)

= GΦ
f

(
m, 4.

∂2Φ

Φ
Tr
(
g−1.S.g−1.ḡ

(
S,Trg(S)

)
.ḡ(h, k)

))
−GΦ

f

(
m,

2

Φ

(
∆
(

(∂2Φ).Trg(S).ḡ(h, k)
))⊥)

−GΦ
f

(
m, 2.

∂2Φ

Φ
ḡ(h, k) Trg

(
Rḡ
(
Tf,Trg(S)

)
Tf
)⊥)

+GΦ
f

(
m,

∂2Φ

Φ
Tf.ḡ(h, k). gradg ‖Trg(S)‖2ḡ

)
In the calculation of the last term of the Hf (m,h) gradient, we will make use
of the following formula, which is valid for φ ∈ C∞(M) and X ∈ X(M):

0 =

∫
M

div(φ.X). vol(g) =

∫
M

Lφ.X vol(g)

=

∫
M

(d ◦ iφ.X + iφ.X ◦ d) vol(g) =

∫
M

d(φ.iX vol(g))



2.2. THE GEODESIC EQUATION ON IMMERSIONS 41

=

∫
M

dφ ∧ iX vol(g) +

∫
M

φ ∧ d(iX vol(g))

=

∫
M

(
− iX(dφ ∧ vol(g)) + iX ◦ dφ ∧ vol(g)

)
+

∫
M

φ.LX vol(g)

=

∫
M

dφ(X) vol(g) +

∫
M

φ. div(X) vol(g).

Therefore we can calculate the last summand, which is given by

∫
M

Φ.ḡ(h, k)(D(f,m) vol(g)) =

=

∫
M

Φ.ḡ(h, k)
(

divg(m>)− ḡ
(
m⊥,Trg(S)

))
vol(g)

=

∫
M

−
(
d
(
Φ.ḡ(h, k)

)
(m>) + Φ.ḡ

(
m⊥, ḡ(h, k).Trg(S)

))
vol(g)

=

∫
M

−ḡ
(
Tf. gradg

(
Φ.ḡ(h, k)

)
, T f.m>

)
vol(g)−GΦ

f

(
m⊥, ḡ(h, k) Trg(S)

)
= GΦ

f

(
m,− 1

Φ
Tf. gradg

(
Φ.ḡ(h, k)

)
− ḡ(h, k) Trg(S)

)

Summing up all the terms the H-gradient is given by

Hf (h, k) = − 1

Φ
Trg(S)

∫
M

(∂1Φ).ḡ(h, k) vol(g)

+ 4.
∂2Φ

Φ
Tr
(
g−1.S.g−1.ḡ

(
S,Trg(S)

)
.ḡ(h, k)

)
− 2

Φ

(
∆
(

(∂2Φ).Trg(S).ḡ(h, k)
))⊥

− 2.
∂2Φ

Φ
ḡ(h, k) Trg

(
Rḡ
(
Tf,Trg(S)

)
Tf
)⊥

+
∂2Φ

Φ
Tf.ḡ(h, k). gradg ‖Trg(S)‖2ḡ

− 1

Φ
Tf. gradg

(
Φ.ḡ(h, k)

)
− ḡ(h, k) Trg(S)

Using the formulas from section 1.2.8 and section 1.2.9 leads:

Theorem. The geodesic equation for an almost local metric GΦ depending on
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volume and mean curvature on Imm(M,N) is given by

∇∂tft =
1

2
Hf (ft, ft)−Kf (ft, ft)

= − 1

2.Φ
Trg(S)

∫
M

(∂1Φ). ‖ft‖2ḡ vol(g)

+ 2.
∂2Φ

Φ
Tr
(
g−1.S.g−1.ḡ

(
S,Trg(S)

)
. ‖ft‖2ḡ

)
− 1

Φ

(
∆
(

(∂2Φ).Trg(S). ‖ft‖2ḡ
))⊥

− ∂2Φ

Φ
‖ft‖2ḡ Trg

(
Rḡ
(
Tf,Trg(S)

)
Tf
)⊥

+
∂2Φ

2.Φ
Tf. ‖ft‖2ḡ . gradg ‖Trg(S)‖2ḡ −

1

2.Φ
Tf. gradg

(
Φ. ‖ft‖2ḡ

)
− 1

2
‖ft‖2ḡ Trg(S)−

[
∂1Φ

Φ

(∫
M

−ḡ
(
f⊥t ,Trg(S)

)
vol(g)

)
+ 2.

∂2Φ

Φ

(
ḡ
(

2 Tr
(
ḡ(f⊥t , g

−1.S.g−1).S
)
,Trg(S)

)
− ḡ
(
∆(f⊥t ),Trg(S)

)
+ ḡ
(

Trg
(
Rḡ(f⊥t , T f)Tf

)
,Trg(S)

)
+ ḡ
(
Lf>t Trg(S),Trg(S)

))
+ divg(f>t )− ḡ

(
f⊥t ,Trg(S)

)]
ft

According to section 1.2.9 we can rewrite this equation as an equation for the
momentum p:

p = Φ(Vol,Tr(L))ft ⊗ vol(g)

∇∂tp = −1

2
Trg(S)

∫
M

(∂1Φ). ‖ft‖2ḡ vol(g)⊗ vol(g)

+ 2.(∂2Φ) Tr
(
g−1.S.g−1.ḡ

(
S,Trg(S)

)
. ‖ft‖2ḡ

)
⊗ vol(g)

−
(

∆
(

(∂2Φ).Trg(S). ‖ft‖2ḡ
))⊥

⊗ vol(g)

− (∂2Φ) ‖ft‖2ḡ Trg
(
Rḡ
(
Tf,Trg(S)

)
Tf
)⊥
⊗ vol(g)

+
∂2Φ

2
Tf. ‖ft‖2ḡ . gradg ‖Trg(S)‖2ḡ ⊗ vol(g)

− 1

2
Tf. gradg

(
Φ. ‖ft‖2ḡ

)
⊗ vol(g)− Φ

2
‖ft‖2ḡ Trg(S)⊗ vol(g)

2.2.1 Momentum mappings

The metric GΦ is invariant under the action of the reparametrization group
Diff(M). According to section 1.2.10 the momentum mapping for this group
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action is constant along any geodesic in Imm(M,N):

∀X ∈ X(M) :

∫
M

Φ
(

Vol(f), ‖Trg(S)‖2ḡ
)
ḡ(Tf.X, ft) vol(g) rep. mom.

or Φ
(

Vol(f), ‖Trg(S)‖2ḡ
)
g(f>t ) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) rep. mom.

For a flat ambient space N = Rn the metric GΦ is in addition invariant under
the action of the Euclidean motion group RnoSO(n). This yields the following
conserved quantities: ∫

M

Φ
(

Vol(f), ‖Trg(S)‖2ḡ
)
ft vol(g) lin. mom.

∀X ∈ so(n) :

∫
M

Φ
(

Vol(f), ‖Trg(S)‖2ḡ
)
ḡ(X.f, ft) vol(g) ang. mom.

or

∫
M

Φ
(

Vol(f), ‖Trg(S)‖2ḡ
)
(f ∧ ft) vol(g) ∈

∧2Rn ∼= so(n)∗ ang. mom.

2.3 The geodesic equation on shape space

2.3.1 The horizontal bundle

Since vol(f∗ḡ) and Trg(S) react equivariantly to the action of the group Diff(M),
every GΦ-metric is Diff(M)-invariant. As described in Section 1.2.13 it induces
a Riemannian metric on Bi (off the singularities) such that the projection π :
Imm→ Bi is a Riemannian submersion. The restriction to almost local metrics
is very beneficial, namely:

Lemma 1. For an almost local metric GΦ the horizontal bundle at the point f
equals the set of sections of the normal bundle (see section 1.1.12) along f .

Proof. By definition, a tangent vector h to f ∈ Imm(M,N) is horizontal if and
only if it is GΦ-perpendicular to the Diff(M)-orbits. This is the case if and only
if ḡ(h(x), Txf.Xx) = 0 at every point x ∈M .

According to section 1.2.14 the calculation of the geodesic equation can be
done on the horizontal bundle instead of on Bi assuming that every path in Bi
corresponds to exactly one horizontal path in Imm. The following lemma shows
that this assumptions is satisfied.

Lemma 2. For any smooth path f in Imm(M,N) there exists a smooth path
ϕ in Diff(M) with ϕ(t, ) = IdM depending smoothly on f such that the path
f(t, ϕ(t, x)) is horizontal, i.e. ∂tf(t, ϕ(t, x)) lies in the horizontal bundle.

Proof. The proof is taken from [35, Section 2.5]. The basic idea is to write the
path ϕ as the integral curve of a time dependent vector field. This method is
called the Moser-Trick.
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In the following we will write f ◦ϕ for the map f(t, ϕ(t, x)), etc. We look for
ϕ as the integral curve to the time dependent vector field ξ(t, x) on M , given
by

∂tϕ = ξ ◦ ϕ

We want the following expression to vanish for all x ∈M and Xx ∈ TxM :

ḡ(∂t(f ◦ ϕ)(x), T (f ◦ ϕ).Xx) = ḡ((∂tf)(ϕ(x)) + Tf.(∂tϕ)(x), T f ◦ Tϕ.X)

= ḡ((∂tf)(ϕ(x)) + Tf.ξ(ϕ(x)), T f ◦ Tϕ.X)

Since Tϕ is surjective, Tϕ.X exhausts the tangent space Tϕ(x)M , and we have

(∂tf)(ϕ(x)) + Tf.ξ(ϕ(x)) ⊥ f.

This holds for all x ∈M , and by the surjectivity of ϕ, we also have

(∂tf)(x) + Tf.ξ(x) ⊥ f

at all x ∈ M . This determines the non-autonomous vector field ξ = −(ft)
>

uniquely.

2.3.2 The geodesic equation on shape space

As described in section 1.2.14 and 2.3.1 geodesics in Bi correspond to horizontal
geodesics in Imm. A horizontal geodesic f in Imm has ft = f⊥t . The geodesic
equation is then given by

∇∂tft =
1

2
H(f⊥t , f

⊥
t )−K(f⊥t , f

⊥
t ),

see section 1.2.14. This equation splits into a normal and a tangential part. The
normal part is given by

(∇∂tft)⊥ =
(1

2
H(f⊥t , f

⊥
t )−K(f⊥t , f

⊥
t )
)⊥
.

From section 2.2, where we calculated the geodesic equation on Imm we can
read off the tangential part of this equation:

(∇∂tft)> =
(1

2
H(f⊥t , f

⊥
t )−K(f⊥t , f

⊥
t )
)>

= +
∂2Φ

2.Φ

∥∥f⊥t ∥∥2

ḡ
. gradg ‖Trg(S)‖2ḡ −

1

2.Φ
gradg

(
Φ.
∥∥f⊥t ∥∥2

ḡ

)
= +

∂2Φ

2.Φ

∥∥f⊥t ∥∥2

ḡ
. gradg ‖Trg(S)‖2ḡ

− 1

2
gradg

( ∥∥f⊥t ∥∥2

ḡ

)
−

∥∥f⊥t ∥∥2

ḡ

2.Φ
(∂2Φ). gradg

(
‖Trg(S)‖2ḡ

)
= −1

2
gradg

( ∥∥f⊥t ∥∥2

ḡ

)
,

where we used the the following Leibnitz rule for the gradient:

g(gradg(f1.f2), X) = g(f1 gradg f2 + f2 gradg f1, X).
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In section 1.2.14 we proved that this equation is satisfied automatically. We will
nevertheless check this by hand. The following calculation holds for all vector
fields X ∈ X(M):

g
(
(∇∂tft)>, X

)
= ḡ
(
Tf.(∇∂tft)>, T f.X

)
= ḡ(∇∂tft, T f.X)

= ∇∂t ḡ(f⊥t , Tf.X)− ḡ(ft,∇∂tTf.X)

= 0− ḡ(ft,∇Xft) = −1

2
d(ḡ(ft, ft))(X)

= −1

2
g(gradg(‖ft‖2ḡ), X) = −1

2
g(gradg(

∥∥f⊥t ∥∥2

ḡ
), X).

Therefore we have:

(∇∂tft)> = −1

2
gradg(

∥∥f⊥t ∥∥2

ḡ
).

According to section 1.2.15 we can rewrite the geodesic equation as an equation
for the momentum. This yields:

Theorem. On the smooth cotangent bundle the horizontal geodesic equation for
the momentum of an almost local metric GΦ is given by:

ft = f⊥t ∈ Nor(f)

p = Φ.ft ⊗ vol(g)

∇∂tp = −1

2
Trg(S)

∫
M

(∂1Φ).
∥∥f⊥t ∥∥2

ḡ
vol(g)⊗ vol(g)

+ 2.(∂2Φ) Tr
(
g−1.S.g−1.ḡ

(
S,Trg(S)

)
.
∥∥f⊥t ∥∥2

ḡ

)
⊗ vol(g)

−
(

∆
(

(∂2Φ).Trg(S).
∥∥f⊥t ∥∥2

ḡ

))⊥
⊗ vol(g)

− (∂2Φ)
∥∥f⊥t ∥∥ḡ .Trg

(
Rḡ
(
Tf,Trg(S)

)
Tf
)⊥
⊗ vol(g)

− 1

2
.Φ ‖ft‖2ḡ Trg(S)⊗ vol(g)

2.4 Geodesic distance on shape space

We will state some conditions on Φ ensuring that the almost local metric GΦ

induces non-vanishing geodesic distance on Bi. The proofs are based on a
comparison between the GΦ-length of a path and its area swept out. The main
result is in section 2.4.5. This section is based on [6, section 7], with slight
modifications due to a possibly curved ambient space.Some of the ideas can also
be found in [22, 7, 35]

Geodesic distance on Bi is given by

distG
Φ

Bi (F0, F1) = inf
F
LG

Φ

Bi (F ),

where the infimum is taken over all F : [0, 1]→ Bi with F (0) = F0 and F (1) =

F1. LG
Φ

Bi
is the length of paths in Bi given by

LG
Φ

Bi (F ) =

∫ 1

0

√
GΦ
F (Ft, Ft)dt for F : [0, 1]→ Bi.
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Letting π : Imm→ Bi denote the projection, we have

LG
Φ

Bi (π ◦ f) = LG
Φ

Imm(f) =

∫ 1

0

√
GΦ
f (ft, ft)dt for horizontal f : [0, 1]→ Imm.

By non-vanishing geodesic distance on Bi we mean that distG
Φ

Bi separates points.

2.4.1 Area swept out

For a path of immersions f seen as a mapping f : [0, 1]×M → N one has

(area swept out by f) =

∫
[0,1]×M

vol(f(·, ·)∗ḡ) =

∫ 1

0

∫
M

∥∥f⊥t ∥∥ vol(g)dt.

2.4.2 First area swept out bound

Lemma. For an almost local metric GΦ satisfying

Φ ≥ C1 for C1 > 0.

and a horizontal path f : [0, 1]→ Imm, we have the area swept out bound√
C1 (area swept out by f) ≤ max

t

√
Vol

(
f(t)

)
.LG

Φ

Imm(f)

The proof is an adaptation of the one given in [35, section 3.4] for the GA-
metric.

Proof.

LG
Φ

Imm(f) =

∫ 1

0

√
GΦ
f (ft, ft)dt

=

∫ 1

0

(∫
M

Φ ‖ft‖2 vol(g)
) 1

2

dt ≥
√
C1

∫ 1

0

(∫
M

‖ft‖2 vol(g)
) 1

2

dt

≥
√
C1

∫ 1

0

(∫
M

vol(g)
)− 1

2

∫
M

1. ‖ft‖ vol(g)dt

≥
√
C1 min

t

(∫
M

vol(g)
)− 1

2

∫ 1

0

∫
M

1. ‖ft‖ vol(g)dt

=
√
C1

(
max
t

∫
M

vol(g)
)− 1

2

∫ 1

0

∫
M

1. ‖ft‖ vol(g)dt

2.4.3 Lipschitz continuity of
√
Vol

Lemma. For an almost local metric GΦ, the condition

Φ ≥ C2 ‖Tr(L)‖2ḡ
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implies the Lipschitz continuity of the map

√
Vol : (Bi,distBi

GΦ)→ R≥0

by the inequality holding for fF1 and F2 in Bi:√
Vol(F1)−

√
Vol(F2) ≤ 1

2
√
C2

distBi
GΦ(F1, F2),

The proof is an adaptation of the one given in [35, section 3.3] for the GA-
metric.

Proof. Let f : [0, 1] → Imm be a path, and let ft denote its derivative. Using
the formula from section 1.3.7 for the variation of the volume we get

∂t Vol(f) = −
∫
M

ḡ(ft,Trg(S)) vol(g) ≤
∣∣∣∣∫
M

ḡ(ft,Trg(S)) vol(g)

∣∣∣∣
≤
(∫

M

12 vol(g)
) 1

2
(∫

M

ḡ(ft,Trg(S))2 vol(g)
) 1

2

≤
√

Vol(f)
(∫

M

‖ft‖2ḡ ‖Trg(S)‖2ḡ vol(g)
) 1

2

≤
√

Vol(f)
(∫

M

Φ

C2
‖ft‖2ḡ vol(g)

) 1
2 ≤ 1√

C2

√
Vol(f)

√
GΦ
f (ft, ft).

Thus

∂t
√

Vol(f) =
∂t Vol(f)

2
√

Vol(f)
≤ 1

2
√
C2

√
GΦ
f (ft, ft).

By integration we get

√
Vol(f1)−

√
Vol(f0) =

∫ 1

0

∂t
√

Vol(f)dt

≤
∫ 1

0

1

2
√
C2

√
GΦ
f (ft, ft) =

1

2
√
C2

LG
Φ

Imm(f).

Now take the infimum over all paths f : [0, 1] → Imm with π(f(0)) = F0 and
π(f(1)) = F1.

2.4.4 Second area swept out bound

Lemma. For an almost local metric GΦ satisfying

Φ ≥ C Vol with C > 0

and a horizontal path f : [0, 1]→ Imm, we get the area swept out bound

√
C (area swept out by f) ≤ LG

Φ

Imm(f),
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The proof is adapted from proofs for the case of planar curves that can be
found in [37, section 3.7], [41, Lemma 3.2], [53, proposition 1] and [52, theo-
rem 7.5].

Proof.

LG
Φ

Imm(f) =

∫ 1

0

√
GΦ
f (ft, ft)dt =

∫ 1

0

(∫
M

Φ ‖ft‖2 vol(g)
) 1

2

dt

≥
√
C

∫ 1

0

√
Vol(f)

(∫
M

‖ft‖2 vol(g)
) 1

2

dt

≥
√
C

∫ 1

0

∫
M

1. ‖ft‖ vol(g)dt

=
√
C

∫
[0,1]×M

vol(f(·, ·)∗ḡ)dt =
√
C (area swept out by f).

2.4.5 Geodesic distance

Theorem. At least on Be, the almost local metric GΦ induces non-vanishing
geodesic distance if one of the two following conditions holds:

Φ ≥ C1 + C2 Tr(L)2 for C1, C2 > 0.(1)

Φ ≥ C Vol for C > 0.(2)

On the other hand, the almost local metric GΦ induces vanishing geodesic dis-
tance on shape space if

Φ ≤ C3 Vol−k for k ≥ 0.(3)

Proof. The first part of this theorem is a consequence of the previous estimates.
The following proof of the vanishing geodesic distance result for Φ = 1 is taken
from [35], the figure illustrating the construction is from [36].

Take a path f(t, x) in Imm(M,N) from f0 to f1 and make it horizontal by
the same method that was used in 2.3.1. Horizontality for the H0-metric simply
means ḡ(ft, Tf) = 0. This forces a reparametrization on f1.

Let α : M → [0, 1] be a surjective Morse function whose singular values are
all contained in the set { k

2N : 0 ≤ k ≤ 2N} for some integer N . We shall use
integers n below and we shall use only multiples of N .

Then the level sets Mr := {x ∈ M : α(x) = r} are of Lebesque measure
0. We shall also need the slices Mr1,r2 := {x ∈ M : r1 ≤ α(x) ≤ r2}. Since
M is compact there exists a constant C such that the following estimate holds
uniformly in t:∫

Mr1,r2

vol(f(t, )∗ḡ) ≤ C(r2 − r1)

∫
M

vol(f(t, )∗ḡ)
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Figure 2.1: Plot of the function ϕ. Each zig-zagged line corresponds to ϕ(t, ·)
for some fixed values of t, namely t = 1

10 ,
2
10 , . . . ,

9
10 .

Let f̃(t, x) = f(ϕ(t, α(x)), x) where ϕ : [0, 1] × [0, 1] → [0, 1] is given as in
[36], 3.10 by

ϕ(t, α) =


2t(2nα− 2k), 0 ≤ t ≤ 1/2, 2k

2n ≤ α ≤
2k+1

2n

2t(2k + 2− 2nα), 0 ≤ t ≤ 1/2, 2k+1
2n ≤ α ≤

2k+2
2n

2t− 1 + 2(1− t)(2nα− 2k), 1/2 ≤ t ≤ 1, 2k
2n ≤ α ≤

2k+1
2n

2t− 1 + 2(1− t)(2k + 2− 2nα), 1/2 ≤ t ≤ 1, 2k+1
2n ≤ α ≤

2k+2
2n .

See figure 2.1 for an illustration of the construction.

Then we get T f̃ = ϕα.dα.ft + Tf and f̃t = ϕt.ft where

ϕα =


+4nt

−4nt

+4n(1− t)
−4n(1− t)

, ϕt =


4nα− 4k

4k + 4− 4nα

2− 4nα+ 4k

−(2− 4nα+ 4k)

.

We use horizontality ḡ(ft, T f) = 0 to determine f̃⊥t = f̃t + T f̃(X) where X ∈
TM satisfies 0 = ḡ(f̃t + T f̃(X), T f̃(ξ)) for all ξ ∈ TM . We also use

dα(ξ) = g(gradg α, ξ) = ḡ
(
Tf(gradg α), T f(ξ)

)
and get

0 = ḡ
(
f̃t + T f̃(X), T f̃(ξ)

)
= g
(
ϕtft + ϕαdα(X)ft + Tf(X), ϕαdα(ξ)ft + Tf(ξ)

)
= ϕt.ϕα.g(gradg α, ξ)‖ft‖2+

+ ϕ2
α.g(gradg α,X).g(gradg α, ξ)‖ft‖2 + ḡ(Tf(X), T f(ξ))
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= (ϕt.ϕα + ϕ2
α.g(gradg α,X))‖ft‖2g(gradg α, ξ) + g(X, ξ)

This implies that X = λ gradg α for a function λ and in fact we get

f̃⊥t =
ϕt

1 + ϕ2
α‖dα‖2g‖ft‖2

ft −
ϕtϕα‖ft‖2g

1 + ϕ2
α‖dα‖2f∗ḡ‖ft‖2

Tf(gradg α)

and

‖f̃t‖2 =
ϕ2
t‖ft‖2

1 + ϕ2
α‖dα‖2f∗ḡ‖ft‖2

From T f̃ = ϕα.dα.ft + Tf and ḡ(ft, Tf) = 0 we get for the volume form

vol(f̃∗ḡ) =
√

1 + ϕ2
α ‖dα‖2g‖ft‖2 vol(g).

For the horizontal length we get

Lhor(f̃) =

∫ 1

0

(∫
M

‖f̃⊥t ‖2 vol(f̃∗ḡ)
) 1

2
dt =

=

∫ 1

0

(∫
M

ϕ2
t‖ft‖2√

1 + ϕ2
α‖dα‖2g‖ft‖2

vol(g)
) 1

2
dt =

=

∫ 1
2

0

(
n−1∑
k=0

(∫
M 2k

2n ,
2k+1

2n

(4nα− 4k)2‖ft‖2√
1 + (4nt)2‖dα‖2g‖ft‖2

vol(g)+

+

∫
M 2k+1

2n ,
2k+2

2n

(4k + 4− 4nα)2‖ft‖2√
1 + (4nt)2‖dα‖2g‖ft‖2

vol(g)
)) 1

2

dt+

+

∫ 1

1
2

(
n−1∑
k=0

(∫
M 2k

2n ,
2k+1

2n

(2− 4nα+ 4k)2‖ft‖2√
1 + (4n(1− t))2‖dα‖2g‖ft‖2

vol(g)+

+

∫
M 2k+1

2n ,
2k+2

2n

(2− 4nα+ 4k)2‖ft‖2√
1 + (4n(1− t))2‖dα‖2g‖ft‖2

vol(g)
)) 1

2

dt

Let ε > 0. The function (t, x) 7→ ‖ft(ϕ(t, α(x)), x)‖2 is uniformly bounded. On
M 2k

2n ,
2k+1

2n

the function 4nα − 4k has values in [0, 2]. Choose disjoint geodesic

balls centered at the finitely many singular values of the Morse function α of total
g-volume < ε. Restricted to the union Msing of these balls the integral above is

O(1)ε. So we have to estimate the integrals on the complement M̃ = M \Msing

where the function ‖dα‖g is uniformly bounded from below by η > 0.

Let us estimate one of the sums above. We use the fact that the singular
points of the Morse function α lie all on the boundaries of the sets M̃ 2k

2n ,
2k+1

2n
so that we can transform the integrals as follows:

n−1∑
k=0

∫
M̃ 2k

2n ,
2k+1

2n

(4nα− 4k)2‖ft‖2√
1 + (4nt)2‖dα‖2g‖ft‖2

vol(g) =
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=

n−1∑
k=0

∫ 2k+1
2n

2k
2n

∫
M̃r

(4nr − 4k)2‖ft‖2√
1 + (4nt)2‖dα‖2g‖ft‖2

vol(i∗rf
∗ḡ)

‖dα‖g
dr

We estimate this sum of integrals: Consider first the set of all (t, r, x) ∈ Mr

such that |ft(ϕ(t, r), x)| < ε. There we estimate by

O(1).n.16n2.ε2.(r3/3)|r=1/2n
r=0 = O(ε).

On the complementary set where |ft(ϕ(t, r), x)| ≥ ε we estimate by

O(1).n.16n2.
1

4ntη2ε
(r3/3)|r=1/2n

r=0 = O(
1

ntη2ε
)

which goes to 0 if n is large enough. The other sums of integrals can be estimated
similarly, thus Lhor(f̃) goes to 0 for n→∞. It is clear that one can approximate
ϕ by a smooth function whithout changing the estimates essentially.
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Chapter 3

Hypersurfaces in n-space

In chapter 2 we studied metrics weighted by volume and mean curvature. In
codimension one it is natural to incorporate det(L) weights in the definition of
the metric. This yields almost local metrics with

Φ = Φ
(

Vol,Tr(L),det(L)
)
.

For such metrics we will derive the geodesic equation on the manifold of immer-
sions and on shape space (section 3.1 and section 3.2). In section 3.3 we will
calculate the sectional curvature of an almost local metrics weighted by mean
curvature and Volume and in section 3.4 all the previously derived formulas
are presented for special cases of Φ. We will study the totally geodesic subset
of concentric spheres (section 3.5) and finally in section 3.6 we will compare
various almost local metrics to the Fréchet metric.

Assumption. In this chapter we will study hypersurfaces in n-space, i.e. we
have

dim(M) = n− 1 and N = Rn.

This chapter is based on [6, 8, 7].

3.1 The geodesic equation for the momentum
on immersions

Assumption. In this section and in section 3.2 we will assume that the weight
function Φ depends on Volume, mean curvature and det(L).

Let m ∈ Tf Imm(M,Rn) with m = ḡ(m, ν).ν + Tf.m> = a.ν + Tf.m>. We
calculate:

(∇ḡmGΦ)(h, k) = D(f,m)G
Φ
f (h, k)

=

∫
M

(∂1Φ)(D(f,m) Vol)ḡ(h, k) vol(g)

53
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+

∫
M

(∂2Φ)(D(f,m) Tr(L))ḡ(h, k) vol(g)

+

∫
M

(∂3Φ)(D(f,m) det(L))ḡ(h, k) vol(g)

+

∫
M

Φḡ(h, k)(D(f,m) vol(g)).

As in section 2.2, we can easily read off the K-gradient:

Kf (m,h) =

[
∂1Φ

Φ

(∫
M

−Tr(L).a vol(g)
)

+
∂2Φ

Φ

(
−∆a+ aTr(L2) + dTr(L)(m>)

)
+
∂3Φ

Φ

(
Tr(L).det(L).a+ g0

2

(
g.C(L),∇2(a)

)
+ ddet(L)(m>)

)
+ divg(m>)− Tr(L).a

]
h.

To calculate the H-gradient, we treat the four summands of D(f,m)G
Φ
f (h, k)

separately. To the first and last term we can apply the same analysis as in 2.2.
The second summand is given by∫

M

(∂2Φ)(D(f,m) Tr(L)) ḡ(h, k) vol(g)

=

∫
M

(∂2Φ)
(
−∆a+ aTr(L2) + dTr(L)(m>)

)
ḡ(h, k) vol(g)

=

∫
M

−a.∆
(
(∂2Φ)ḡ(h, k)

)
vol(g) +

∫
M

a.(∂2Φ) Tr(L2).ḡ(h, k) vol(g)

+

∫
M

(∂2Φ)g
(

gradg(Tr(L)),m>
)
ḡ(h, k) vol(g)

= GΦ
f

(
m,− 1

Φ
∆
(
(∂2Φ)ḡ(h, k)

)
.ν
)

+GΦ
f

(
m,

1

Φ
(∂2Φ) Tr(L2)ḡ(h, k).ν

)
+GΦ

f

(
m,

1

Φ
(∂2Φ)ḡ(h, k)Tf. gradg(Tr(L))

)
The third summand is∫

M

(∂3Φ)(D(f,m) det(L))ḡ(h, k) vol(g) =

=

∫
M

(∂3Φ) Tr(L).det(L).a.ḡ(h, k) vol(g)

+

∫
M

(∂3Φ)ddet(L)(m>)ḡ(h, k) vol(g)

+

∫
M

g0
2

(
(∂3Φ).ḡ(h, k).g.C(L),∇2(a)

)
vol(g)

=

∫
M

(∂3Φ) Tr(L).det(L).a.ḡ(h, k) vol(g)

+

∫
M

(∂3Φ)g
(

gradg(det(L)),m>
)
ḡ(h, k) vol(g)
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+

∫
M

∇∗∇∗
(

(∂3Φ).g.C(L)ḡ(h, k)
)
.a vol(g)

= GΦ
f

(
m,

∂3Φ

Φ
Tr(L).det(L).ḡ(h, k).ν

)
+GΦ

f

(
m,

∂3Φ

Φ
ḡ(h, k).T f. gradg(det(L))

)
+GΦ

f

(
m,

1

Φ
∇∗∇∗

(
(∂3Φ).g.C(L)ḡ(h, k)

)
.ν
)
.

Summing up all the terms the H-gradient is given by

Hf (h, k) =
[
− 1

Φ
Tr(L)

∫
M

(∂1Φ)ḡ(h, k) vol(g)− 1

Φ
∆
(
(∂2Φ)ḡ(h, k)

)
+
∂2Φ

Φ
Tr(L2)ḡ(h, k) +

∂3Φ

Φ
.Tr(L).det(L).ḡ(h, k)

+
1

Φ
∇∗∇∗

(
(∂3Φ).g.C(L)ḡ(h, k)

)
− ḡ(h, k) Tr(L)

]
νf

+
1

Φ
Tf.
[
(∂2Φ)ḡ(h, k) gradg(Tr(L))

+ (∂3Φ)ḡ(h, k) gradg(det(L))− gradg(Φḡ(h, k))
]

Using the formula from section 1.2.9

Theorem. The geodesic equation for the momentum of an almost local metric
GΦ on Imm is given by

p = Φ(Vol,Tr(L),det(L)).ft ⊗ vol(g) = Φ.(a.ν + Tf.f>t )⊗ vol(g),

pt =
1

2

[
− Tr(L)

∫
M

∂1Φ ‖ft‖2 vol(g)−∆
(
(∂2Φ) ‖ft‖2

)
+ (∂2Φ) Tr(L2) ‖ft‖2 + (∂3Φ).Tr(L).det(L). ‖ft‖2

+∇∗∇∗
(
(∂3Φ).g.C(L) ‖ft‖2

)
− Φ ‖ft‖2 Tr(L)

]
ν ⊗ vol(g)

+
1

2
Tf.
[
(∂2Φ) ‖ft‖2 gradg(Tr(L))

+ (∂3Φ) ‖ft‖2 gradg(det(L))− gradg(Φ ‖ft‖2)
]
⊗ vol(g)

3.2 The geodesic equation on shape space

For an almost local metric in codimension one a horizontal geodesic f in Imm
has ft = a.ν with a ∈ C∞(R × M). In the following we will calculate the
horizontal geodesic equation in terms of the velocity. This will allow us to
rewrite the horizontal geodesic equation as an equation for the function a only.

The horizontal geodesic equation is given by

ftt = at.ν︸︷︷︸
normal

+ a.νt︸︷︷︸
tang.

=
1

2
H(a.ν, a.ν)−K(a.ν, a.ν),
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see section 1.2.14.

In 1.2.14 it was shown the tangential part of the geodesic equation is satisfied
automatically. Again we will check this by hand. Using the formulas from
section 2.2, we can easily read off the tangential part of the geodesic equation

a.νt =
1

2Φ
Tf.
[
(∂2Φ)a2 gradg(Tr(L)) + (∂3Φ)a2 gradg(det(L))− gradg(Φa2)

]
=

1

2Φ
Tf.
[
a2 gradg(Φ)− Φ. gradg(a2)− a2. gradg(Φ)

]
= − 1

2Φ
ΦTf. gradg(a2) = −Tf.a. gradg(a).

By the variational formula for ν in section 1.3.14 this equation is satisfied au-
tomatically.

The normal part is given by

at = ḡ
(1

2
H(a.ν, a.ν)−K(a.ν, a.ν), ν

)
=

1

Φ

[1
2

Φa2 Tr(Lf )− 1

2
Tr(Lf )

∫
M

(∂1Φ)a2 vol(f∗ḡ)− 1

2
a2∆(∂2Φ)

+ 2aTrg(d(∂2Φ)⊗ da) + (∂2Φ) Trg(da⊗ da)

+ (∂1Φ)a

∫
M

Tr(Lf ).a vol(f∗ḡ)− 1

2
(∂2Φ) Tr((Lf )2)a2

]
.

We can rewrite this equation by expanding Laplacians of products as follows:

∆(a1a2) = (∆a1)a2 − 2 Trg(da1 ⊗ da2) + a1(∆a2).

Theorem. The horizontal geodesic equation of an almost local metric GΦ on
immersions is given by

ft = a.ν,

at =
1

Φ

[Φ

2
a2 Tr(L)− 1

2
Tr(L)

∫
M

(∂1Φ)a2 vol(g)− 1

2
a2∆(∂2Φ)

+ 2ag−1(d(∂2Φ), da) + (∂2Φ) ‖da‖2g−1

+ (∂1Φ)a

∫
M

Tr(L).a vol(g)− 1

2
(∂2Φ) Tr(L2)a2

+
1

2
∇∗∇∗

(
(∂3Φ).g.C(L)a2

)
− (∂3Φ)g0

2

(
g.C(L),∇2(a)

)
.a

− ∂3Φ

2
.Tr(L).det(L).a2

]

This equation is in accordance to the equation in section 2.3.2. For the case
of curves immersed in R2, this formula specializes to the formula given in [37,
section 3.4]. (When verifying this, remember that ∆ = −D2

s and Tr(L) = det(L)
in the notation of [37].)
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3.3 Sectional curvature on shape space

The following part is taken from [6].

Assumption. In all of this section we will assume that the weight function Φ
depends on Volume and mean curvature only.

To compute the sectional curvature we will use the following formula, which
is valid in a chart:

R0(a1, a2, a1, a2) = GΦ
0 (R0(a1, a2)a1, a2) =

1

2
d2GΦ

0 (a1, a1)(a2, a2)− d2GΦ
0 (a1, a2)(a1, a2) +

1

2
d2GΦ

0 (a2, a2)(a1, a1)

+GΦ
0 (Γ0(a1, a1),Γ0(a2, a2))−GΦ

0 (Γ0(a1, a2),Γ0(a1, a2)).

Sectional curvature is given by

R0(a1, a2, a2, a1) = −R0(a1, a2, a1, a2).

Therefore we have to calculate the metric in a chart and calculate its second
derivative.

3.3.1 The almost local metric GΦ in a chart

In the following section we will follow the method of [35]. First we will construct
a local chart for Bi. Let f0 : M → Rn be a fixed immersion, which will be the
center of our chart. Consider the mapping

ψ = ψf0 : C∞(M, (−ε, ε))→ Imm(M,Rn)

ψ(a)(x) = expḡf0(x)(a(x).νf0(x)) = f0(x) + a(x).νf0(x),

where ε is so small that ψ(a) is an immersion for each a.

Denote by π the projection from Imm(M,Rn) to Bi(M,Rn). The inverse
on its image of π ◦ ψ : C∞(M, (−ε, ε))→ Bi(M,Rn) is then a smooth chart on
Bi(M,Rn). We want to calculate the induced metric in this chart, i.e.

((π ◦ ψ)∗GΦ)a(b1, b2)

for any a ∈ C∞(M, (−ε, ε)) and b1, b2 ∈ C∞(M). We shall fix the function a
and work with the ray of points t.a in this chart. Everything will revolve around
the map:

f(t, x) = ψ(t.a)(x) = f0(x) + t.a(x).νf0(x)

We shall use a fixed chart (u, U) on M with ∂i = ∂
∂ui . Then in this chart, the

pullback metric is given by

g|U =

n−1∑
i,j

gijdu
i ⊗ duj =

n−1∑
i,j

ḡ
(
∂if, ∂jf

)
dui ⊗ duj ,
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the volume density by

vol(g) =
√

det(ḡ (∂if, ∂jf))|du1 ∧ · · · ∧ dun−1|,

the second fundamental form by

sij = s(∂i, ∂j) = ḡ(∇∂iTf.∂j , ν) = ḡ(
∂2f

∂i∂j
, νf0),

and the mean curvature by Tr(L) =
∑
i,j g

ijsij . To calculate the metric GΦ in
this chart we have to understand how

Tt.aψ.b1 = b1(x).νf0(x)

splits into a tangential and horizontal part with respect to the immersion f(t, ).
The tangential part locally has the form

Tf.(T(t.a)ψ.(b1))> =
n−1∑
i=1

ci∂if(t, x),

where the coefficients ci are given by

ci =

n−1∑
j=1

gij ḡ
(
b1(x)νf0(x), ∂jf(t, x)

)
.

Thus the horizontal part is

(Tt.aψ.b1).ν = (Tt.aψ.b1)− Tf.(T(t.a)ψ.(b1))> = b1(x)νf0(x)−
n−1∑
i=1

ci∂if(t, x).

Lemma. The expression of GΦ in the chart (π ◦ ψ)−1 is:(
(π ◦ ψf0)∗GΦ

)
(t.a)(b1, b2) = GΦ

π(ψ(t.a))

(
Tt.a(π ◦ ψ).b1, Tt.a(π ◦ ψ)b2

)
= GΦ

ψ(t.a)

(
(Tt.aψ.b1)⊥.ν, (Tt.aψ.b2)⊥.ν

)
=

∫
M

Φḡ
(
(Tt.aψ.b1)⊥.ν, (Tt.aψ.b2)

)
vol(g)

=

∫
M

Φ

(
b1.b2 −

n−1∑
i=1

ciḡ(∂if(t, x), b2(x).νf0(x))

)
vol(g)

3.3.2 Second derivative of the GΦ-metric in the chart

We will calculate
∂2
t |0((π ◦ ψf0

)∗GΦ)(t.a)(b1, b2).

We will use the following arguments repeatedly:

∂t|0∂jf = ∂j∂t|0f = ∂j(a.ν
f0) = (∂ja)νf0 + a (∂jν

f0)︸ ︷︷ ︸
tang.

,
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ḡ
(
b1(x)νf0(x), ∂jf(t, x)

)
|t=0 = 0,

and consequently ci|t=0 = 0.

∂t|0ci =

n−1∑
j=1

∂t|0(gij).0 +

n−1∑
j=1

gij∂t|0ḡ
(
b1ν

f0 , ∂jf
)

=

n−1∑
j=1

gij ḡ
(
b1ν

f0 , ∂t|0∂jf
)

=

n−1∑
j=1

gij ḡ
(
b1ν

f0 , ∂j(a.ν
f0)
)

=

n−1∑
j=1

gijb1∂ja.

Therefore(
b1.b2 −

n−1∑
i=1

ciḡ(∂if, b2.ν
f0)
)∣∣
t=0

= b1.b2

∂t|0
(
b1.b2 −

n−1∑
i=1

ciḡ(∂if, b2.ν
f0)
)

=

= −
n−1∑
i=1

(∂t|0ci).0−
n−1∑
i=1

0.∂t|0ḡ(∂if, b2.ν
f0) = 0

∂2
t |0
(
b1.b2 −

n−1∑
i=1

ciḡ(∂if, b2.ν
f0)
)

=

= −
n−1∑
i=1

(∂2
t |0ci).0− 2

n−1∑
i=1

(∂t|0ci)∂t|0ḡ(∂if, b2.ν
f0)−

n−1∑
i=1

0.∂2
t |0ḡ(∂if, b2.ν

f0)

= −2

n−1∑
i=1

(∂t|0ci)ḡ(∂i(a.ν
f0), b2.ν

f0) = −2

n−1∑
i=1

(∂t|0ci)(∂ia)b2

= −2b1b2

n−1∑
i=1

n−1∑
j=1

gij∂ja.∂ia = −2b1b2 ‖da‖2g−1 .

The derivatives of Φ are

∂t|0
(
Φ ◦ (Vol,Tr(L))

)
= (∂1Φ).(∂t|0 Vol) + (∂2Φ).(∂t|0 Tr(L))

∂2
t |0
(
Φ ◦ (Vol,Tr(L))

)
= (∂1∂1Φ).(∂t|0 Vol)2 + (∂2∂2Φ).(∂t|0 Tr(L))2

+ 2(∂1∂2Φ).(∂t|0 Vol).(∂t|0 Tr(L)) + (∂1Φ)(∂2
t |0 Vol) + (∂2Φ)(∂2

t |0 Tr(L)).

Lemma. The second derivative of the GΦ-metric in the chart (π◦ψ)−1 is given
by:

(1)

∂2
t |0
(
(π ◦ ψf0)∗GΦ

)
(t.a)

(b1, b2) =
(
d2
(
(π ◦ ψf0)∗GΦ

)
(0)(a, a)

)
(b1, b2)

=

∫
M

. . . b1.b2 vol(g)

over the following expression

. . . = Φ
(∂2

t |0 vol

vol
− 2 ‖da‖2g−1

)
+ (∂1Φ).

(
(∂2
t |0 Vol) + 2(∂t|0 Vol)

∂t|0 vol

vol

)
+ (∂2Φ).

(
(∂2
t |0 Tr(L)) + 2(∂t|0 Tr(L))

∂t|0 vol

vol

)
+ (∂1∂1Φ).(∂t|0 Vol)2

+ 2(∂1∂2Φ).(∂t|0 Vol)(∂t|0 Tr(L)) + (∂2∂2Φ).(∂t|0 Tr(L))2.
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3.3.3 Sectional curvature on shape space

To understand the structure in the formulas for the sectional curvature tensor,
we will use some facts from linear algebra.

Lemma 1. Let V = C∞(M), and let P and Q be bilinear and symmetric maps
V × V → V . Then

�(P,Q)(a1 ∧ a2, b1 ∧ b2) :=
1

2

(
P (a1, b1)Q(a2, b2)− P (a1, b2)Q(a2, b1)

+ P (a2, b2)Q(a1, b1)− P (a2, b1)Q(a1, b2)
)

defines a symmetric, bilinear map (V ∧ V )⊗ (V ∧ V )→ V .

Also �(P,Q) = �(Q,P ). The symbol � stands for the Young tableau
encoding the symmetries, see [20]. We have

�(P,Q)(a1 ∧ a2, a1 ∧ a2)

=
1

2
P (a1, a1)Q(a2, a2)− P (a1, a2)Q(a2, a1) +

1

2
P (a2, a2)Q(a1, a1).

P is called positive semidefinite if for all x ∈M and a ∈ C∞(M), P (a, a)(x) ≥ 0.
P is called negative semidefinite if −P is positive semidefinite. We will write
P ≥ 0, P ≤ 0, P <

> 0 if P is positive semidefinite, negative semidefinite or
indefinite.

Lemma 2. If P and Q are positive semidefinite bilinear and symmetric maps
V × V → V , then also �(P,Q) is a positive semidefinite symmetric, bilinear
map.

Proof. To shorten notation, we will write for instance P12 instead of P (a1, a2).
The Cauchy inequality applied to P and Q gives us

P12Q12 ≤
√
P11P22Q11Q22,

and therefore we have

�(P,Q)(a1 ∧ a2, a1 ∧ a2) =
1

2
P11Q11 − P12Q12 +

1

2
P22Q22

≥ 1

2
P11Q22 −

√
P11P22Q11Q22 +

1

2
P22Q11

=
1

2

(√
P11Q22 −

√
P22Q11

)2

≥ 0.

Let λ, µ : V → V . Then the map λ⊗ µ : V ⊗ V → V is given by

(λ⊗ µ)(a⊗ b) = λ(a).µ(b),

where the multiplication is in V = C∞(M). Denote by λ∨µ the symmetrization
of the tensor product given by

λ ∨ µ = 1
2 (λ⊗ µ+ µ⊗ λ).

We will make use of the following simplifications:
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Lemma 3. Let λ, β, µ, ν, : V → V . Then the bilinear symetric map

�(λ ∨ β, µ ∨ ν)

satisfies the following properties:

�(λ ∨ µ, λ ∨ ν)(a1 ∧ a2, a1 ∧ a2) = −1

4
(λ⊗ µ)(a1 ∧ a2).(λ⊗ ν)(a1 ∧ a2),(S1)

�(λ ∨ µ, λ⊗ λ) = 0,(S2)

�(λ⊗ λ, µ ∨ ν)(a1 ∧ a2, a1 ∧ a2) =
1

2
(λ⊗ µ)(a1 ∧ a2).(λ⊗ ν)(a1 ∧ a2).(S3)

Proof. For the proof of simplification (S1) we calculate:

�(λ ∨ µ, λ ∨ ν)(a1 ∧ a2, a1 ∧ a2)

=
1

2
(λ⊗ µ⊗ λ⊗ ν)

[
a1 ⊗ a1 ⊗ a2 ⊗ a2 + a2 ⊗ a2 ⊗ a1 ⊗ a1

−1

2
a1 ⊗ a2 ⊗ a1 ⊗ a2 −

1

2
a1 ⊗ a2 ⊗ a2 ⊗ a1

−1

2
a2 ⊗ a1 ⊗ a1 ⊗ a2 −

1

2
a2 ⊗ a1 ⊗ a2 ⊗ a1

]
Using the symmetries of the quasilinear mapping λ⊗µ⊗λ⊗µ, we can swap the
first and third position in the tensor product of the two summands in the first
line. Then the expression inside the square brackets equals− 1

2 (a1∧a2)⊗(a1∧a2).

Since λ⊗ λ vanishes when applied to elements of V ∧ V , simplification (S2)
is a direct consequence of (S1).

For the proof of simplification (S3) we calculate:

�(λ⊗ λ, µ ∨ ν)(a1 ∧ a2, a1 ∧ a2)

=
1

2
(λ⊗ λ⊗ µ⊗ ν)

[
a1 ⊗ a1 ⊗ a2 ⊗ a2 + a2 ⊗ a2 ⊗ a1 ⊗ a1

−a1 ⊗ a2 ⊗ a1 ⊗ a2 − a1 ⊗ a2 ⊗ a2 ⊗ a1

]
Using symmetries as above, we can replace third summand a1⊗ a2⊗ a1⊗ a2 by
a2 ⊗ a1 ⊗ a2 ⊗ a1, because the first two tensor components of λ⊗ λ⊗ µ⊗ ν are
equal. Then, swapping the second and third position in all tensor products, we
get

�(λ⊗ λ, µ⊗ ν)(a1 ∧ a2, a1 ∧ a2)

=
1

2
(λ⊗ µ⊗ λ⊗ ν)

[
a1 ⊗ a2 ⊗ a1 ⊗ a2 + a2 ⊗ a1 ⊗ a2 ⊗ a1

−a2 ⊗ a1 ⊗ a1 ⊗ a2 − a1 ⊗ a2 ⊗ a2 ⊗ a1

]
The expression inside the square brackets equals (a1 ∧ a2)⊗ (a1 ∧ a2).

For orthonormal a1, a2 sectional curvature is the negative of the curvature
tensor R0(a1, a2, a1, a2). We will use the following formula for the curvature
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tensor, which is valid in a chart:

(1)

R0(a1, a2, a1, a2) = GΦ
0 (R0(a1, a2)a1, a2) =

1

2
d2GΦ

0 (a1, a1)(a2, a2)− d2GΦ
0 (a1, a2)(a1, a2) +

1

2
d2GΦ

0 (a2, a2)(a1, a1)

+GΦ
0 (Γ0(a1, a1),Γ0(a2, a2))−GΦ

0 (Γ0(a1, a2),Γ0(a1, a2)).

Looking at Formula (1) from section 3.3.2 we can express the second deriva-
tive of the metric GΦ in the chart as(
d2(π ◦ ψf0

)∗GΦ(0)(a1, a2)
)

(b1, b2)

=

∫
M

(
Φ.P1(a1, a2) + (∂1Φ)P2(a1, a2) + (∂2Φ)P3(a1, a2) + (∂1∂1Φ)P4(a1, a2)

+ (∂1∂2Φ)P5(a1, a2) + (∂2∂2Φ)P6(a1, a2)
)
P (b1, b2) vol(g),

where P (b1, b2) = b1.b2, so P = id⊗ id, and where the Pi are obtained by
symmetrizing the terms in Formula (1) from section 3.3.2.

For the rest of this section, we do not note the pullback via the chart any-
more, writing GΦ

0 instead of
(
(π ◦ψf0)∗GΦ

)
(0), for example. To further shorten

our notation, we write L instead of Lf0 and g instead of g0. The following terms
are calculated using the variational formulas from section 1.3.

P1(a, a) =
∂2
t |0 vol

vol
− 2 ‖da‖2g−1 = a2

(
Tr(L)2 − Tr(L2)

)
− ‖da‖2g−1

P2(a, a) = (∂2
t |0 Vol) + 2(∂t|0 Vol)

∂t|0 vol

vol

=

∫
M

a2
(

Tr(L)2 − Tr(L2)
)

+

∫
M

‖da‖2g−1 vol(g)

+ 2 Tr(L).a

∫
M

Tr(L).a vol(g)

P3(a, a) = (∂2
t |0 Tr(L)) + 2(∂t|0 Tr(L))

∂t|0 vol

vol

= 2a2 Tr(L3) + 4aTr
(
L.g−1.∇2a

)
+ 2 Tr(g−1(da⊗ da)L)

− ‖da‖2g−1 Tr(L) + 2aTrg
(
∇grad as

)
+ 2
(
−∆a+ aTr(L2)

)
(−Tr(L).a)

= 2a2 Tr(L3) + 4aTr
(
L.g−1.∇2a

)
+ 2 Tr(g−1(da⊗ da)L)

− ‖da‖2g−1 Tr(L) + 2aTrg
(
∇grad as

)
+ 2 Tr(L)a∆a− 2 Tr(L) Tr(L2).a2

P4(a, a) = (∂t|0 Vol)2 =
(∫

M

Tr(L).a vol(g)
)2

P5(a, a) = 2(∂t|0 Vol)(∂t|0 Tr(L)) = 2

∫
M

−Tr(L).a vol(g)
(
−∆a+ aTr(L2)

)
= 2∆a

∫
M

Tr(L).a vol(g)− 2 Tr(L2)a

∫
M

Tr(L).a vol(g)
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P6(a, a) = (∂t|0 Tr(L))2 =
(
−∆a+ aTr(L2)

)2
= (∆a)2 − 2a∆aTr(L2) + a2 Tr(L2)2

Then the first part of the curvature tensor is given by

1

2
d2GΦ

0 (a1, a1)(a2, a2)− d2GΦ
0 (a1, a2)(a1, a2) +

1

2
d2GΦ

0 (a2, a2)(a1, a1)

=

∫
M

(
Φ.�(P1, P ) + (∂1Φ)�(P2, P ) + (∂2Φ)�(P3, P )

+ (∂1∂1Φ)�(P4, P ) + (∂1∂2Φ)�(P5, P ) + (∂2∂2Φ)�(P6, P )
)

vol(g)

· (a1 ∧ a2, a1 ∧ a2).

Note that P is positive definite, so that �(Pi, P ) is positive semidefinite if
Pi is positive semidefinite. We can always assume that Φ is positive because
otherwise GΦ would not be a Riemannian metric.

P1 = P 1
1 + P 2

1 ,P1P

with

P 1
1 = (Tr(L)2 − Tr(L2)) id⊗ id

P 2
1 = −Trg(d⊗ d)

Applying simplification (S3) to �(P 1
1 , P ) and �(P 2

1 , P ), we get

�(P 1
1 , P ) =

1

2
(Tr(L)2 − Tr(L2))(id⊗ id)2 = 0

on (V ∧ V )⊗ (V ∧ V ) and

�(P 2
1 , P ) = −1

2
Trg

(
(id⊗ d)2

)
,

�(P 2
1 , P )(a1 ∧ a2, a1 ∧ a2) = −1

2
‖a1da2 − a2da1‖2g−1 ≤ 0.

Therefore we have∫
M

Φ.�(P1, P )(a1 ∧ a2, a1 ∧ a2) vol(g) ≤ 0.

P2 = P 1
2 + P 2

2 + P 3
2P2P

with

P 1
2 =

∫
M

(id⊗ id)(Tr(L)2 − Tr(L2)) vol(g)

P 2
2 = 2 Tr(L)(id∨

∫
M

Tr(L) id vol(g))
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P 3
2 =

∫
M

Trg(d⊗ d) vol(g)

P 1
2 is indefinite. Applying Simplification (S2) we get �(P 2

2 , P ) = 0. P 3
2 and

therefore also �(P 3
2 , P ) is positive semidefinite. Therefore∫

M

(∂1Φ)�(P 1
2 , P )(a1 ∧ a2, a1 ∧ a2) vol(g) <

> 0,∫
M

(∂1Φ)�(P 3
2 , P )(a1 ∧ a2, a1 ∧ a2) vol(g) ≥ 0

P3 = P 1
3 + P 2

3 + P 3
3 ,P3P

with

P 1
3 = 2 id∨

(
Tr(L3) id +2 Tr(Lg−1∇2(id)) + Trg(∇grad ids)

+ Tr(L)∆(id)− Tr(L) Tr(L)2 id
)

P 2
3 = 2 Tr

(
g−1(d⊗ d)L

)
P 3

3 = −Trg(d⊗ d) Tr(L)

Applying Simplification (S2) we get that �(P 1
3 , P ) vanishes. Furthermore,

�(P 2
3 , P )(a1 ∧ a2, a1 ∧ a2) = a2

1 Tr(g−1(da2 ⊗ da2).L)

− 2a1a2 Tr(g−1(da1 ⊗ da2).L)

+ a2
2 Tr(g−1(da1 ⊗ da1).L)

= g0
2

(
(a1da2 − a2da1)⊗ (a1da2 − a2da1), s)

)
<
> 0

�(P 3
3 , P )(a1 ∧ a2, a1 ∧ a2) = −1

2
‖a1da2 − a2da1‖2g−1 Tr(L) <

> 0

P4 =

∫
M

Tr(L) id vol(g)⊗
∫
M

Tr(L) id vol(g)P4P

Applying Simplification (S3) we get

�(P4, P ) =
1

2

(
id⊗

∫
M

Tr(L) id vol(g)
)2

.

Therefore, if ∂1∂1Φ ≥ 0∫
M

∂1∂1Φ�(P4, P )(a1 ∧ a2, a1 ∧ a2) vol(g) ≥ 0,

P5 = P 1
5 + P 2

5P5P

with

P 1
5 = 2

(
∆ ∨

∫
M

Tr(L) id vol(g)
)

P 2
5 = −2 Tr(L2)

(
id∨

∫
M

Tr(L)a2 vol(g)
)
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Applying Simplification (S3) we get that �(P 1
5 , P ) is the indefinite form given

by

�(P 1
5 , P ) =

(
id⊗∆

)
⊗
(

id⊗
∫
M

Tr(L) id vol(g)
)

Simplification (S2) gives �(P 2
5 , P ) = 0. Therefore∫

M

(∂1∂2Φ)�(P 1
5 , P )(a1 ∧ a2, a1 ∧ a2) vol(g) <

> 0.

P6 = P 1
6 + P 2

6P6P

with

P 1
6 = ∆⊗∆

P 2
6 = Tr(L2)2 id⊗ id

P 3
6 = −2 Tr(L2) id∨∆

Applying Simplification (S2) we get that �(P 2
6 , P ) and �(P 3

6 , P ) vanish. Sim-
plification (S3) gives

�(P 1
6 , P ) =

1

2
(id⊗∆)2

We get ∫
M

(∂2∂2Φ)�(P6, P )(a1 ∧ a2, a1 ∧ a2) vol(g) ≥ 0

if ∂2∂2Φ ≥ 0.

Now we come to the second part of the curvature tensor R0(a1, a2, a1, a2),
which is given by

G0(Γ0(a1, a1),Γ0(a2, a2))−G0(Γ0(a1, a2),Γ0(a1, a2)).

From the geodesic equation calculated in section 3.2, which is given by

at = Γ0(a, a) =
1

Φ

[1
2

Φa2 Tr(L)− 1

2
Tr(L)

∫
M

(∂1Φ)a2 vol(g)− 1

2
a2∆(∂2Φ)

+ 2aTrg(d(∂2Φ)⊗ da) + (∂2Φ) Trg(da⊗ da)

+ (∂1Φ)a

∫
M

Tr(L).a vol(g)− 1

2
(∂2Φ) Tr(L2)a2

]
,

we can extract the Christoffel symbol by symmetrization and get

Γ0(a1, a2) =
1

Φ

5∑
i=1

Qi(a1, a2),
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where Q1, . . . , Q5 are the symmetrizations of the summands in the geodesic
equation. Qi are given by

Q1 =
1

2

(
Φ Tr(L)−∆(∂2Φ)− (∂2Φ) Tr(L2)

)
id⊗ id,

Q2 = −1

2
Tr(L)

∫
M

(∂1Φ) id⊗ id vol(g),

Q3 = 2 id∨Trg(d(∂2Φ)⊗ d)

Q4 = (∂1Φ) id∨
∫
M

Tr(L) id vol(g),

Q5 = (∂2Φ) Trg(d⊗ d).

Then

G0(Γ0(a1, a1),Γ0(a2, a2))−G0(Γ0(a1, a2),Γ0(a1, a2))

=

∫
M

1

Φ

∑
i

�(Qi, Qi)(a1 ∧ a2, a1 ∧ a2) vol(g)

+

∫
M

2

Φ

∑
i<j

�(Qi, Qj)(a1 ∧ a2, a1 ∧ a2) vol(g).

The contribution of the following terms to R0(a1, a2, a1, a2) is
∫
M

1
Φ . . . vol(g)

over the terms listed.

�(Q1, Q1) = 0Q1Q1

according to Simplification (S2).

�(Q2, Q2)(a1 ∧ a2, a1 ∧ a2) =
Tr(L)2

4

[
Q2Q2 ∫

M

(∂1Φ)a2
1 vol(g).

∫
M

(∂1Φ)a2
2 vol(g)−

( ∫
M

(∂1Φ)a1a2 vol(g)
)2]

which is positive by the Cauchy-Schwarz inequality, assuming that ∂1Φ ≥ 0.

�(Q3, Q3)(a1 ∧ a2, a1 ∧ a2) =Q3Q3

= −
((

id⊗Trg(d(∂2Φ)⊗ d)
)
(a1 ∧ a2)

)2

= −g−1
(
d(∂2Φ), a1da2 − a2da1

)2 ≤ 0

according to Simplification (S1).

�(Q4, Q4) = −1

4
(∂1Φ)2(id⊗

∫
M

Tr(L) id vol(g))2 ≤ 0Q4Q4

according to Simplification (S1).

�(Q5, Q5) = (∂2Φ)2
(
‖da1‖2g−1 ‖da2‖2g−1 − g−1(da1, da2)2

)
Q5Q5
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= (∂2Φ)2 ‖da1 ∧ da2‖2g0
2
≥ 0

by the Cauchy-Schwarz inequality.

The contribution of the following terms to R0(a1, a2, a1, a2) is
∫
M

2
Φ . . . vol(g)

over the terms listed.

�(Q1, Q2) = −1

4

(
Φ Tr(L)2 − Tr(L)∆(∂2Φ)− Tr(L) Tr(L2)(∂2Φ)

)
.Q1Q2

.�
(

id⊗ id,

∫
M

(∂1Φ) id⊗ id vol(g)
)
,

where the second factor is ≥ 0 assuming that ∂1Φ ≥ 0.

�(Q1, Q3) = 0Q1Q3

according to Simplification (S2).

�(Q1, Q4) = 0Q1Q4

according to Simplification (S2).

�(Q1, Q5) =
1

4

(
Φ Tr(L)(∂2Φ)− (∂2Φ)∆(∂2Φ)− Tr(L2)(∂2Φ)2

)
.Q1Q5

. ‖a1da2 − a2da1‖2g−1

�(Q2, Q3) <
> 0Q2Q3

�(Q2, Q4) = −1

2
(∂1Φ) Tr(L)·Q2Q4

·�
( ∫

M

(∂1Φ) id⊗ id vol(g), id∨
∫
M

Tr(L) id vol(g)
)

This form is indefinite, but we have∫
M

2

Φ
�(Q2, Q4) vol(g) = −�(Q̃2, Q̃4),

with the positive semidefinite form

Q̃2 =

∫
M

(∂1Φ) id⊗ id vol(g),

and the form

Q̃4 =

∫
M

Tr(L)
1

Φ
(∂1Φ) id vol(g) ∨

∫
M

Tr(L) id vol(g),

which is positive semidefinite if ∂1Φ
Φ is a non-negative constant.

�(Q2, Q5) = −1

2
(∂2Φ) Tr(L)·Q2Q5
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·�
( ∫

M

(∂1Φ) id⊗ id vol(g),Trg(d⊗ d)
)
<
> 0,

because of the factor (∂2Φ) Tr(L). But the factor

�
( ∫

M

(∂1Φ) id⊗ id vol(g),Trg(d⊗ d)
)

is positive definite.

�(Q3, Q4) <
> 0Q3Q4

�(Q3, Q5)(a1 ∧ a2, a1 ∧ a2) =Q3Q5

= (∂2Φ)
(
a1g
−1(d(∂2Φ), da1) ‖da2‖2g−1 −

(
a1g
−1(d(∂2Φ), da2)+

a2g
−1(d(∂2Φ), da1)

)
g−1(da1, da2) + a2g

−1(d(∂2Φ), da2) ‖da1‖2g−1

)
= (∂2Φ)g0

2

(
d(∂2Φ)⊗ (a1da2 − a2da1), da1 ∧ da2

)
<
> 0

�(Q4, Q5) <
> 0Q4Q5

We are now able to compile a list of all negative, positive and indefinite
terms of R0(a1, a2, a1, a2). Remember that negative terms of R0(a1, a2, a1, a2)
make a positive contribution to sectional curvature. Positive sectional curvature
is connected to the vanishing of geodesic distance because the space wraps up
on itself in tighter and tighter ways.

P4P P6P Q2Q2 Q5Q5 are positive, assuming ∂1Φ, ∂1∂1Φ, ∂2∂2Φ ≥ 0.

P1P Q3Q3 Q4Q4 Q1Q2 are the negative, assuming that ∂1Φ ≥ 0.

Q2Q4 is negative assuming that ∂1Φ
Φ is a non-negative constant, and indefinite

otherwise.

Q2Q5 is negative assuming that Tr(L)(∂2Φ) is positive, and indefinite other-

wise.

P2P P3P P5P Q1Q5 Q2Q3 Q3Q4 Q3Q5 Q4Q5 are indefinite.

3.4 Special cases of almost local metrics

3.4.1 The G0-metric

The G0-metric is the special case of a GΦ-metric with Φ ≡ 1. Thus its geodesic
equation can be read off from section 3.1. It reads as

ft = a.ν + Tf.f>t

ftt = −1

2

(
‖ft‖2 Tr(L).ν + Tf. gradg(‖ft‖2)

)
+
(
Tr(L).a− divg(hf>t )

)
.ft.



3.4. SPECIAL CASES OF ALMOST LOCAL METRICS 69

We have three conserved quantities, namely:

g(f>t ) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) reparametrization momentum∫
M

ft vol(g) linear momentum∫
M

(f ∧ ft) vol(g) ∈
∧2Rn ∼= so(n)∗ angular momentum

The geodesic equation on Bi(M,Rn) is well studied. We can read it off from
section 3.2:

ft = a.ν, at =
Tr(L).a2

2
.

Sectional curvature is given by

R0(a1, a2, a2, a1) =
1

2

∫
M

‖a1da2 − a2da1‖2g−1 vol(g) ≥ 0.

This formula is in accordance with [35, section 4.5] since we have codimension
one and a flat ambient space, so that only term(6) remains, and for the case of
plain curves, it is in accordance with [37, section 3.5].

The G0-metric induces vanishing geodesic distance, see section 2.4.5.

3.4.2 The GA-metric

For a constant A > 0, the GA-metric is defined as

GAf (h, k) =

∫
M

(1 +ATr(L)2)ḡ(h, k) vol(g).

This metric has been introduced by [36, 35, 37]. It corresponds to an almost
local metric GΦ with Φ(x, y, z) = (1 + Ay2), thus its geodesic equation on
Imm(M,Rn) is given by (see section 3.1):

ft = a.ν + Tf.f>t ,

ftt =
1

2

[
−

∆
(
(2ATr(L)) ‖ft‖2

)
1 +ATr(L)2

+ ‖ft‖2 .Tr(L)
( 2ATr(L2)

1 +ATr(L)2
− 1
)]
ν

+
Tf.
[
(2ATr(L)) ‖ft‖2 gradg(Tr(L))− gradg((1 +ATr(L)2) ‖ft‖2)

]
2(1 +ATr(L)2)

−
[ (2ATr(L))

1 +ATr(L)2

(
−∆a+ aTr(L2) + dTr(L)(f>t )

)
+ divg(f>t )− Tr(L).a

]
ft.
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The conserved quantities have the form

(1 +ATr(L)2) g(f>t ) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) reparam. momentum∫
M

(1 +ATr(L)2)ft vol(g) linear momentum∫
M

(1 +ATr(L)2)(f ∧ ft) vol(g) ∈
∧2Rn ∼= so(n)∗ angular momentum

The horizontal geodesic equation for the GA metric reduces to

ft = a.ν

at =
1

2
a2 Tr(L) +

−a2A∆(Tr(L)) + 4Aag−1(dTr(L), da)

(1 +ATr(L)2)

+
2ATr(L) ‖da‖2g−1 −ATr(L) Tr(L2)a2

(1 +ATr(L)2)

For the case of curves immersed in R2, this formula specializes to the formula
given in [36, section 4.2]. (When verifying this, remember that ∆ = −D2

s in the
notation of [36].)

The curvature tensor R0(a1, a2, a1, a2) is the sum of:

P1P Q3Q3 negative terms,

P6P Q5Q5 positive terms, and

P3P Q1Q5 Q3Q5 indefinite terms.

R0(a1, a2, a1, a2) =

∫
M

A(a1∆a2 − a2∆a1)2 vol(g)

+

∫
M

2ATr(L)g0
2

(
(a1da2 − a2da1)⊗ (a1da2 − a2da1), s

)
vol(g)

+

∫
M

1

1 +ATr(L)2

[
− 4A2g−1

(
dTr(L), a1da2 − a2da1

)2

−
(1

2

(
1 +ATr(L)2

)2
+ 2A2 Tr(L)∆(Tr(L)) + 2A2 Tr(L2) Tr(L)2

)
·

· ‖a1da2 − a2da1‖2g−1 + (2A2 Tr(L)2) ‖da1 ∧ da2‖2g2
0

+ (8A2 Tr(L))g0
2

(
dTr(L)⊗ (a1da2 − a2da1), da1 ∧ da2

)]
vol(g)

We want to express the curvature in terms of the basic skew symmetric forms.
Therefore, mimicking the notation of [36, 37] we define

W2 = a1da2 − a2da1, W22 = a1∆a2 − a2∆a1, W12 = da1 ∧ da2.
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Then the above equation reads as:

R0(a1, a2, a1, a2) =

∫
M

AW 2
22 vol(g) +

∫
M

2ATr(L)g0
2

(
W2 ⊗W2, s

)
vol(g)

+

∫
M

1

1 +ATr(L)2

[
− 4A2g−1

(
dTr(L),W2

)2

−
(1

2

(
1 +ATr(L)2

)2
+ 2A2 Tr(L)∆(Tr(L)) + 2A2 Tr(L2) Tr(L)2

)
‖W2‖2g−1

+ (2A2 Tr(L)2) ‖W12‖2g2
0

+ (8A2 Tr(L))g0
2

(
dTr(L)⊗W2,W12

)]
vol(g)

For the case of plain curves, this formula specializes to the formula given in
[37, section 3.6].

The GA-metric satisfies condition (1) from section 2.4, thus it induces non-
vanishing geodesic distance.

3.4.3 The GB-metric

For a constant B > 0, the GB-metric is defined as

GAf (h, k) =

∫
M

(1 +B det(L)2)ḡ(h, k) vol(g).

This metric is another generalization of the plane curves GA-metric. It cor-
responds to an almost local metric GΦ with Φ(x, y, z) = (1 + Bz2), thus its
geodesic equation on Imm(M,Rn) is given by (see section 3.1):

ft = a.ν + Tf.f>t ,

ftt =
1

2

[ 2B det(L)

1 +B det(L)2
.Tr(L).det(L). ‖ft‖2

+
1

1 +B det(L)2
∇∗∇∗

(
(2B det(L)).g.C(L) ‖ft‖2

)
− ‖ft‖2 Tr(L)

]
ν

+
1

2(1 +B det(L)2)
Tf.
[
(2B det(L)) ‖ft‖2 gradg(det(L))

− gradg((1 +B det(L)2) ‖ft‖2)
]

−
[

2B det(L)

1 +B det(L)2

(
Tr(L).det(L).a+ g0

2

(
g.C(L),∇2(a)

)
+ ddet(L)(f>t )

)
+ divg(f>t )− Tr(L).a

]
ft.
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The conserved quantities have the form

(1 +B det(L)2) g(f>t ) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) reparam. momentum∫
M

(1 +B det(L)2)ft vol(g) linear momentum∫
M

(1 +B det(L)2)(f ∧ ft) vol(g) ∈
∧2Rn ∼= so(n)∗ angular momentum

The horizontal geodesic equation for the GB metric reduces to

ft = a.ν,

at =
1

2

[ 2B det(L)

1 +B det(L)2
.Tr(L).det(L).a2

+
1

1 +B det(L)2
∇∗∇∗

(
(2B det(L)).g.C(L)a2

)
− a2 Tr(L)

]

−
[

2B det(L)

1 +B det(L)2

(
Tr(L).det(L).a+ g0

2

(
g.C(L),∇2(a)

))
− Tr(L).a

]
a.

3.4.4 Conformal metrics

The conformal metrics correspond to almost local metrics GΦ with Φ = Φ(Vol).
For the case of planar curves these metrics have been treated in [51, 52, 53, 41].
[41] provides very interesting estimates on geodesic distance induced by metrics
with Φ(Vol) = Vol and eVol. The geodesic equation on Imm(M,Rn) is given by:

ft = h = a.ν + Tf.h>,

ht = −1

2

[Φ′

Φ

(∫
M

‖h‖2 vol(g)

)
Tr(L).ν

+ ‖h‖2 Tr(L).ν + Tf. gradg(‖h‖2)
]

+

[
Φ′

Φ

(∫
M

Tr(L).a vol(g)

)
+ Tr(L).a− divg(h>)

]
.h

The conserved quantities are given by

Φ(Vol)g(f>t ) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) reparam. momentum

Φ(Vol)

∫
M

ft vol(g) linear momentum

Φ(Vol)

∫
M

(f ∧ ft) vol(g) ∈
∧2Rn ∼= so(n)∗ angular momentum

The horizontal part of the geodesic equation is given by

at = ḡ
(1

2
H(a.ν, a.ν)−K(a.ν, a.ν), ν

)
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= − Φ′

2Φ

(∫
M

a2 vol(g)

)
Tr(L) +

1

2
a2 Tr(L) +

Φ′

Φ

(∫
M

a.Tr(L) vol(g)

)
a.

To simplify this equation let b(t) = Φ(Vol).a(t). We get

bt = Φ′.(D(f,a.ν) Vol).a+ Φ.at

= −Φ′.a.

∫
M

Tr(L).a. vol(g) + Φ
1

2
a2.Tr(L)

− 1

2
Φ′
(∫

M

a2 vol(g)

)
.Tr(L) + Φ′.a.

∫
M

Tr(L).a vol(g)

= −1

2
Φ′
∫
M

a2 vol(g).Tr(L) +
1

2
Φa2.Tr(L).

Thus the geodesic equation of the conformal metric GΦ on Bi is

ft =
b(t)

Φ(Vol)
ν

bt =
Tr(L)

2Φ(Vol)

(
b2 − Φ′(Vol)

Φ(Vol)

∫
M

b2 vol(g)

)
.

For the case of curves immersed in R2, this formula specializes to the formula
given in [37, section 3.7].

Assuming that Φ′ and Φ′′ are non-negative, the curvature tensor consists of
the following summands.

P4P Q2Q2 are the positive summands.

P1P Q4Q4 Q1Q2 are the negative summands.

Q2Q4 is indefinite, but assuming that Φ′

Φ is a non-negative constant, it is

negative. Solving the ODE Φ′

Φ = C > 0 leeds to Φ(Vol) = eC.Vol. In the case of
curves, conformal metrics of this type have been studied by [30] and [41].

P2P is indefinite.

Since the formula for sectional curvature with general Φ = Φ(Vol) is still too
long, we will only print the formula for Φ(Vol) = Vol. To shorten notation we
will write a for the integral over a ∈ C∞(M), i.e.

a =

∫
M

a vol(g).
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Then the sectional curvature reads as:

R0(a1, a2, a1, a2) = −1

2
Vol

∫
M

‖a1da2 − a2da1‖2g−1 vol(g)

+
1

4 Vol
Tr(L)2

(
a2

1.a
2
2 − a1.a2

2
)

+
1

4

(
a2

1.Tr(L)2a2
2 − 2a1.a2.Tr(L)2a1.a2 + a2

2.Tr(L)2a2
1

)
− 3

4 Vol

(
a2

1.Tr(L)a2
2
− 2a1.a2.Tr(L)a1.Tr(L)a2 + a2

2.Tr(L)a1
2
)

+
1

2

(
a2

1.Trg((da2)2)− 2a1.a2.Trg(da1.da2) + a2
2Trg((da1)2)

)
− 1

2

(
a2

1.a
2
2.Tr(L2)− 2.a1.a2.a1.a2.Tr(L2) + a2

2.a
2
1.Tr(L2)

)
.

For the case of curves immersed in R2, this formula is in accordance with the
formula given in [37, section 3.7].

From Condition (2) in section 2.4 we read off that the conformal metrics in-
duce non-vanishing geodesic distance if Φ(Vol) ≥ C.Vol for some constant C >
0.

3.4.5 A scale invariant metric

For a constant A > 0 we define the metric

GSIf (h, k) =

∫
M

(
Vol

1+n
1−n +A

Tr(L)2

Vol

)
ḡ(h, k) vol(g).

Scale invariance means that this metric does not change when f, h, k are replaced
by λf, λh, λk for λ > 0. To see that GSI is scale invariant, we calculate as in
[37] how the scaling factor λ changes the metric, volume form, volume and mean
curvature. We fix an oriented chart (u1, . . . , un−1) on M . Then

(λf)∗ḡ(∂i, ∂j) = ḡ(T (λf).∂i, T (λf).∂j) = λ2.f∗ḡ(∂i, ∂j)

vol((λ.f)∗ḡ) =
√

det(λ2(f∗ḡ)|U ) du1 ∧ . . . ∧ du−1 = λn−1 vol(f∗ḡ)

Tr(L((λf)∗ḡ))) = ((λf)∗ḡ)ij ḡ(
∂2(λf)

∂i∂j
, νλ.f )

=
λ

λ2
(f∗ḡ)ij ḡ(

∂2f

∂i∂j
, νf ) =

1

λ
Tr(L(f)).

The scale invariance of the metric GSI follows. Thus along geodesics we have
an additional conserved quantity (see section 1.2.10), namely:

∫
M

(
Vol

1+n
1−n +A

Tr(L)2

Vol

)
ḡ(f, ft) vol(g) scaling momentum
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From 3.2 we can read off the geodesic equation for GSI on Bi:

ft = a.ν,

at =
1

2
a2 Tr(L) +

1

Vol
1+n
1−n +ATr(L)2

Vol[
− 1

2
Tr(L)

∫
M

(
1+n
1−n Vol

2n
1−n −ATr(L)2

Vol2

)
a2 vol(g)−A∆(Tr(L)).a2

Vol

+
4A.a

Vol
g−1(dTr(L), da) +

2ATr(L)

Vol
‖da‖2g−1

+
(

1+n
1−n Vol

2n
1−n −ATr(L)2

Vol2

)
a

∫
M

Tr(L).a vol(g)−ATr(L2) Tr(L)

Vol
a2
]
.

For the case of curves immersed in R2, this formula specializes to the formula
given in [37, section 3.8]. (When verifying this, remember that ∆ = −D2

s in the
notation of [37].)

The metric GSI induces non-vanishing geodesic distance. This follows from
the fact that log(Vol) is Lipschitz, see [37, section 3.8].

3.5 The set of concentric spheres

For an almost local metric, the set of spheres with common center x ∈ Rn is a
totally geodesic subspace of Bi. The reason is that it is the fixed point set of a
group of isometries acting on Bi, namely the group of rotations of Rn around x.
(We also have to assume uniqueness of solutions to the geodesic equation.) For
the GA metric and plane curves the set of concentric spheres has been studied
in [36] and for Sobolev type metrics they have been studied in [7, 22] Some work
for the G0-metric has also been done by [40].

Theorem. Within a set of concentric spheres, any sphere is uniquely described
by its radius r. Thus the geodesic equation within a set of concentric spheres
reduces to an ordinary differential equation for the radius. It is given by:

rtt = −r2
t

n− 1

Φ

[ 1

2r
Φ +

∂1Φ

2

nπ
n
2 rn−2

Γ(1 + n
2 )

+
1

2r2
(∂2Φ) +

(−1)n

2.rn
(∂3Φ)

]
.

The space of concentric spheres is geodesically complete with respect to a GΦ

metric iff∫ r1

0

r
n−1

2

√
Φ
(nπ n2 rn−1

Γ(1 + n
2 )
,−(n− 1)/r, 1/(−r)2n−2

)
dr =∞ r1 > 0

and

∫ ∞
r0

r
n−1

2

√
Φ
(nπ n2 rn−1

Γ(1 + n
2 )
,−(n− 1)/r, 1/(−r)2n−2

)
dr =∞ r0 > 0.
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For the metrics studied in this work, this yields:

Φ = Volk =
nkπ

kn
2

Γ(1 + n
2 )k

rk(n−1) : incomplete

Φ = eVol = e
nπ

n
2

Γ(1+n
2

) er
n−1

: incomplete

Φ = 1 +ATr(L)2k = 1 +A (n−1)2k

r2k : complete iff k ≥ n+ 1

2

Φ = 1 +B det(L)2l = 1 +B
1

r2l(n−1)
: complete iff l ≥ 1

2
+

1

n− 1

Φ = Vol
1+n
1−n +A

Tr(L)2

Vol
=
C(n)

rn+1
: complete.

Proof. The differential equation for the radius can be read off the geodesic
equation in section 2.3, when it is taken into account that all functions are
constant on each sphere, and that

Vol =
nπ

n
2 rn−1

Γ(1 + n
2 )
, L = − 1

r IdTM , Tr(Lk) = (−1)k n−1
rk
, det(L) = 1

(−r)n−1 .

To determine whether the space of concentric spheres is complete, we calculate
the length of a path f connecting a sphere with radius r0 to a sphere with radius
r1:

LG
Φ

Bi (f) =

∫ 1

0

√
GΦ
f (f⊥t , f

⊥
t )dt =∫ 1

0

√∫
M

Φ
(

Vol,Tr(L),det(L)
)
r2
t vol(g)dt

=

∫ 1

0

|rt|

√
Φ
(nπ n2 rn−1

Γ(1 + n
2 )
,−(n− 1)/r, 1/(−r)2n−2

)nπ n2 rn−1

Γ(1 + n
2 )
dt

=

√
nπ

n
4√

Γ(1 + n
2 )

∫ r1

r0

r
n−1

2

√
Φ
(nπ n2 rn−1

Γ(1 + n
2 )
,−(n− 1)/r, 1/(−r)2n−2

)
dr.

3.6 The Fréchet distance

The vector space structure of Rn allows us to define a Fréchet metric on shape
space Bi(M,Rn). In 3.6.1 it is shown how this metric is related to a L∞ Finsler
metric, and in 3.6.2 the Fréchet metric is compared to almost local metrics.

3.6.1 Fréchet distance and Finsler metric

The Fréchet distance on shape space Bi(M,Rn) is defined as

distBi∞ (F0, F1) = inf
f0,f1

‖f0 − f1‖L∞ ,
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where the infimum is taken over all f0, f1 with π(f0) = F0, π(f1) = F1. As
before, π denotes the projection π : Imm→ Bi. Fixing f0 and f1, one has

distBi∞
(
π(f0), π(f1)

)
= inf

ϕ
‖f0 ◦ ϕ− f1‖L∞ ,

where the infimum is taken over all ϕ ∈ Diff(M). The Fréchet distance is related
to the Finsler metric

G∞ : T Imm(M,Rn)→ R, h 7→
∥∥h⊥∥∥

L∞
.

Lemma. The path length distance induced by the Finsler metric G∞ provides
an upper bound for the Fréchet distance:

distBi∞ (F0, F1) ≤ distBiG∞(F0, F1) = inf
f

∫ 1

0

‖ft‖G∞ dt,

where the infimum is taken over all paths

f : [0, 1]→ Imm(M,Rn) with π(f(0)) = F0, π(f(1)) = F1.

Proof. Since any path f can be reparametrized such that ft is normal to f , one
has

inf
f

∫ 1

0

∥∥f⊥t ∥∥L∞ dt = inf
f

∫ 1

0

‖ft‖L∞ dt,

where the infimum is taken over the same class of paths f as described above.
Therefore

distBi∞ (F0, F1) = inf
f
‖f(1)− f(0)‖L∞ = inf

f

∥∥∥∥∫ 1

0

ftdt

∥∥∥∥
L∞
≤ inf

f

∫ 1

0

‖ft‖L∞ dt

= inf
f

∫ 1

0

∥∥f⊥t ∥∥L∞ dt = distBiG∞(F0, F1).

It is claimed in [30, theorem 13] that d∞ = distG∞ . However, the proof
given there only works on the vector space C∞(M,Rn) and not on Bi(M,Rn).
The reason is that convex combinations of immersions are used in the proof,
but that the space of immersions is not convex.

3.6.2 Almost local versus Fréchet distance on shape space

Theorem. On the shape space Bi(M,Rn) the GΦ distance can not be bounded
from below by the Fréchet distance if one of the following conditions holds:

Φ ≤ C1 + C2 Tr(L)2k for C1, C2 > 0 and k < (dim(M) + 2)/2,(1)

Φ ≤ C Volk for C > 0,(2)

Φ ≤ C eV ol for C > 0,(3)

Φ ≤ C1 + C2 del(L)2l for C1, C2 > 0 and l <
1

2
+

1

dim(M)
.(4)



78 CHAPTER 3. HYPERSURFACES IN N -SPACE

Indeed, then the identity map

Id : (Bi(M,Rn), dGΦ)→ (Bi(M,Rn), d∞)

is not continuous.

Note that this result also holds in higher codimension n−m.

Proof. Let f0 be a fixed immersion of M into Rn, and let f1 be a translation of
f0 by a vector h of length `. We will show that the Hp-distance between π(f0)
and π(f1) is bounded by a constant 2L that does not depend on `. It follows
that the Hp-distance can not be bounded from below by the Fréchet distance,
and this proves the claim.

For small r0, we calculate the GΦ-length of the following path of immersions:
First scale f0 by a factor r0, then translate it by h, and then scale it again until
it has reached f1. The following calculation shows that under one of the above
assumption the immersion f0 can be scaled down to zero in finite GΦ-path length
L.

LG
Φ

Imm(r.f0) =

=

∫ 1

0

√∫
M

Φ
(

Vol(r.f0),Tr(Lr.f0),det(Lr.f0)
)
ḡ
(
rt.f0, rt.f0

)
vol
(
(r.f0)∗ḡ

)
dt

=

∫ 1

0

√∫
M

r2
t .Φ
(
rm Vol(f0),

1

r
Tr(Lf0),

1

rm
det(Lf0)

)
ḡ
(
f0, f0

)
rm vol

(
f∗0 ḡ
)
dt

=

∫ 0

1

√∫
M

Φ
(
rm Vol(f0),

1

r
Tr(Lf0),

1

rm
det(Lf0)

)
ḡ
(
f0, f0

)
rm vol

(
f∗0 ḡ
)
dr

The last integral converges for all of the above assumptions. Scaling down to
r0 > 0 needs even less effort. So we see that the length of the shrinking and
growing part of the path is bounded by 2L.

The energy needed for a pure translation of the scaled immersion by distance
` is given by (f = t.h, with ḡ(h, h) = `2):

LG
Φ

Imm(f) =

∫ 1

0

∫
M

Φ.ḡ(ft, ft) vol(g)dt

=

∫ 1

0

∫
M

Φ.t2`2 vol(g)dt = `2
∫
M

Φ vol(g)

=


O(r(m−2k)), if Φ satisfies (1)

O(rm(k+1)), if Φ satisfies (2)

O(er.m.rm), if Φ satisfies (3)

This length tends to zero as r tends to zero. Therefore

distG
Φ

Bi

(
π(f0), π(f1)

)
≤ distG

P

Imm(f0, f1) ≤ 2L.



Chapter 4

Numerical results

4.1 Discretizing the horizontal path energy

We want to solve the boundary value problem for geodesics in shape space of
surfaces in R3 with respect to several almost local metrics, more specifically
with respect to GΦ-metrics with

Φ = Volk, Φ = eVol, Φ = 1 +ATr(L)2k +B det(L)2l

and the scale-invariant metric

Φ = Vol
1+3
1−3 +A

Tr(L)2

Vol
.

In order to solve this infinite-dimensional problem numerically, we will reduce
it to a finite-dimensional problem by approximating an immersed surface by a
triangular mesh. This chapter is based on [6, 8].

One approach to solve the boundary value problem is by the method of
geodesic shooting. This method is based on iteratively solving the initial value
problem for geodesics while suitably adapting the initial conditions.

Another approach, and the approach we will follow, is to minimize horizontal
path energy

Ehor(f) =

∫ 1

0

∫
M

Φ(Vol,Tr(L),det(L))(f⊥t )2 vol(g)

over the set of paths f of immersions with fixed endpoints. Note that by defini-
tion, the horizontal path energy does not depend on reparametrizations of the
surface. Nevertheless we want the triangular mesh to stay regular. This can be
achieved by adding a penalty functional to the horizontal path energy.

79
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4.1.1 Discrete path energy

To discretize the horizontal path energy

Ehor(f) =

∫ 1

0

∫
M

Φ(Vol,Tr(L),det(L))(f⊥t )2 vol(g),

one has to find a discrete version of all the involved terms, notably the gauss
and mean curvature. We will follow [44] to do this. Let V,E, F denote the
vertices, edges and faces of the triangular mesh, and let star(p) be the set of
faces surrounding vertex p. Then the discrete mean curvature at vertex p can
be defined as

Tr(L)(p) =
‖vector mean curvature‖

‖vector area‖
=

‖∇p(surface area)‖
‖∇p(enclosed volume)‖

.

Here ∇p stands for a discrete gradient, and

(vector mean curvature)p = ∇p(surface area) =
∑

(p,pi)∈E

(cotαi + cotβi)(p− pi)

is the vector mean curvature defined by the cotangent formula. In this formula,
αi and βi are the angles opposite the edge (p, pi) in the two adjacent triangles.
For the numerical simulation it is advantageous to express this formula in terms
of scalar and cross products instead of the cotangents. Furthermore,

(vector area)p = ∇p(enclosed volume) =
∑

f∈Star(p)

ν(f).(surface area of f)

is the vector area at vertex p.

The discrete Gauss curvature can be defined as

det(L)(p) =
Θ(p)

Area of star(p)
.

Here Θ(p) stands for the angular deflection at p, defined by

Θ(p) = 2π −
#(star(p))∑

i=1

θi,

where θi denotes the internal angle of the i-th corner of vertex p and #(star(p)
the number of faces adjacent to vertex p. We discretize the time by

0 = t1 < . . . < tN+1 = 1.

Then the (N − 1)(#V ) free variables representing the path of immersions f are

f(ti, p), with 2 ≤ i ≤ N, p ∈ V.

f(0, p) and f(1, p) are not free variables, since they define the fixed boundary
shapes. ft can be approximated by either forward increments

ffwt (ti, p) =
f(ti+1, p)− f(ti, p)

ti+1 − ti
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or backward increments

f bwt (ti, p) =
f(ti, p)− f(ti−1, p)

ti − ti−1
.

We use a combination of both to make path energy symmetric. (Instead of this
we could have also used the central difference quotient. However minimizing an
energy functional depending on central differences favors oscillations, since they
are not felt by the central differences.) Using the discrete definitions of normal
vector and increments we can calculate f⊥t at every vertex p and are now able
to write down the discrete horizontal path energy:

GΦ
f (h, k) =

∑
p∈V

∑
F3p

Φ
(

Vol,Tr(L)(p),det(L)(p)
)

.ḡ
(
h(p), ν(F )

)
.ḡ
(
k(p), ν(F )

)area(starf (p))

3

Ehor(f) =

N∑
i=1

ti+1 − ti
2

.
(
GΦ
f(ti)

(
ffwt (ti), f

fw
t (ti)

)
+GΦ

f(ti+1)

(
f bwt (ti+1), ffwt (ti+1)

))
.

This is not the only way to discretize the energy functional. There are several
ways to distribute the discrete energy on faces, vertices and edges. Depending
on how this was done, the minimizer converged faster, slower or even not at
all. However if the minimizer converged to a smooth solution, the results were
qualitatively the same. This increased our belief in the discretization. However
we do not guarantee the accuracy of the simulations in this section.

This energy functional does not depend on the parametrization of the surface
at each instant of time. So we are free to choose a suitable parametrization. We
do this by adding to the energy functional a term penalizing irregular meshes. So
instead of minimizing horizontal path energy, we minimize the sum of horizontal
path energy and a penalty term. The penalty term measures the deviation
of angles from the “perfect angle” 2π divided by the number of surrounding
triangles, i.e.

N∑
t=2

∑
p∈V

∑
(p,q,r)∈∆

∣∣∣^(pq, pr)− (perfect angle)
∣∣∣k, k ∈ N.

4.1.2 Numerical implementation

Discrete path energy depends on a very high number of real variables, namely
three times the number of vertices times one less than the number of time
steps. In the numerical experiments that we have done, this were between
5.000 and 50.000 variables. To solve this problem we used the nonlinear solver
IPOPT (Interior Point OPTimizer [50]). IPOPT uses a filter based line search
method to compute the minimum. In this process it needs the gradient and the
Hessian of the energy. IPOPT was invoked by AMPL (A Modeling Language
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for Mathematical Programming [18] ). The advantage of using AMPL is that
it is able to automatically calculate the gradient and Hessian. The user only
has to write a model and data file for AMPL in a quite readable notation (see
appendix 4.4 for the model file). The data file containing the definition of the
combinatorics of the triangle mesh was automatically generated by the computer
algebra system Mathematica. As an example, some discretizations of the sphere
that we used can be seen in figure 4.1.

Figure 4.1: Triangulations of a sphere with 320, 500 and 720 triangles, respec-
tively.

4.2 Scaling a sphere

In section 3.5 we studied the set of concentric spheres in n dimensions. In
dimension three the geodesic equation for the radius simplifies to

rtt = −r2
t

1

Φ

[1
r

Φ + ∂1Φ4r2π +
1

r2
(∂2Φ) +

1

r2
(∂3Φ)

]
.

This equation is in accordance with the numerical results obtained by minimizing
the discrete path energy defined in section 4.1.1. As will be seen, the numerics
show that the shortest path connecting two concentric spheres in fact consists
of spheres with the same center, and that the above differential equation is (at
least qualitatively) satisfied. Furthermore, in our experiments the optimal paths
obtained were independent of the initial path used as a starting value for the
optimization.

In all numerical experiments of this section we used 50 timesteps and a
triangulation with 320 triangles.

For conformal metrics of the type Φ = Volk and Φ = eVol, the differential
equation for the radius is:

Φ = Volk : rtt = −r2
t

k + 1

r
,

Φ = eVol : rtt = −r2
t

(1

r
+ 4rπ

)
.



4.2. SCALING A SPHERE 83

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

à

à

à

à

à

à

à

à

à

à

à

à

à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì ì

ì ì
ì ì

ì ì
ì ì

ì ì

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò ò

ò ò
ò ò

ò ò
ò ò

ò ò
ò ò

ò ò
ò ò

ò ò
ò ò

ò ò

ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø

æ à ì ò ò Φ = 1

VolΦ = eVolΦ = Vol2 Φ = Vol3Φ = Vol

r

t
10.2 0.4 0.6 0.8

0.5

0.6

0.7

0.8

75

Figure 4.2: Geodesics between concentric spheres of radius 0.4 to 0.8 for several
conformal metrics. Solid lines are the exact solutions.
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Figure 4.3: Geodesics between concentric spheres of radius 0.1 to 0.2 for several
conformal metrics. Solid lines are the exact solutions.
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Figure 4.4: Geodesics between concentric spheres for Φ = 1 + 0.1 Tr(L)k, and
varying k. Solid lines are the exact solutions.
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Figure 4.5: Geodesics between concentric spheres for Φ = 1 + ATr(L)2 and
varying A. Solid lines are the exact solutions.
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Figure 4.6: Geodesics between concentric spheres for Gauss curvature weighted
metrics with Φ = 1 +B det(L)2.
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Figure 4.7: Geodesics between concentric spheres for the scale-invariant metric.
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Note that the equation for Φ = Vol−1 is rtt = 0. These equations have explicit
analytic solutions given by

Φ = Volk : r = C1

(
(k + 2)t− C2

) 1
k+2

Φ = eVol : r =
1

2π

√
log
(
C1t+ C2

)
.

A comparison of the numerical results with the exact analytic solutions can
be seen in figure 4.2 and 4.3. The solid lines are the exact solutions. For the
numerical solutions, 50 time steps and a triangulation with 320 triangles (see
figure 4.1) were used. Note that for big radii as in figure 4.2, the solution for
Φ = eVol has a very steep ascent, is more curved and lies above the solutions
for Φ = Vol,Vol2,Vol3. For small radii, it lies below these solutions, as can be
seen in figure 4.3. Note also that when the ascent gets too steep, the discrete
solution is somewhat inexact as in figure 4.2.

For mean curvature weighted metrics, the differential equation for the radius
is:

Φ = 1 +ATr(L)2k : rtt = −r2
t

(1

r
− 2kA22k−1

r2k+1 +A22kr

)
.

The numerics for these metrics are shown in figure 4.4 and figure 4.5. Note
that we got convergence to a path consisting of concentric spheres even for the
G0-metric (A = 0), even though we know from the theory that this is not the
shortest path. In fact, there are no shortest paths for the G0 metric since it has
vanishing geodesic distance [35].

The geodesic equation for Φ = 1 +B det(L)2l on a set of concentric spheres
in Bi reads as):

Φ = 1 +B det(L)2l rtt = −r2
t

(
1

r
− 2l.B

r4l+1 +B.r

)
.

Note that det(L) =
(

Tr(L)/(2)
)2

. Therefore this equation is equal to the equa-
tion for metrics weighted by mean curvature with suitably adapted coefficients.
A comparison of the numerical results with the exact analytic solutions can be
seen in figure 4.6.

For the scale-invariant metric, the differential equation is given by:

Φ = Vol−2 +A
Tr(L)2

Vol
: rtt =

r2
t

r
.

This equation has an explicit analytical solution:

Φ = Vol−2 +A
Tr(L)2

Vol
: r = C1e

C2t.

Note that this equation and therefore its solution is independent of A. Again,
this is confirmed by the numerics, see figure 4.7.
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4.3 Translation of a sphere

In this section we will study geodesics between a sphere and a translated sphere
for various almost local metrics of the type Φ = Volk, Φ = eVol and Φ =
1 +ATr(L)2k +B det(L)2l.

Depending on the distance (relative to the radius) of the two translated
spheres, different behaviors can be observed.

High distance:

• Shrink and grow: For some metrics it is possible to shrink a sphere in finite
time to zero. For these metrics long translation go via a shrinking and
growing part. Studied metrics of this behavior are: Φ = Volk, Φ = eVol

and Φ = 1 + ATr(L)2. This phenomenon is studied in more detail in
section 4.3.1, see also figure 4.9.

• Moving an optimal middle shape: For some of the metrics translation of
a sphere with a certain optimal radius is a geodesic. For these metrics
geodesics for long translations scale the sphere to the optimal radius and
translate the sphere with the optimal radius. Metrics with this behavior
include Φ = 1+ATr(L)2k for k > 1 and Φ = 1+B det(L)2l. This behavior
is studied in section 4.3.2.

Low distance:

• Geodesics of pure translation. (Φ = 1 + ATr(L)2k for k > 1 and Φ =
1 +B det(L)2l, c.f. figure 4.12)

• Geodesics that pass through an ellipsoid, where the longer principal axis
is in the direction of the translation (Conformal metrics, c.f. figure 4.8).

• Geodesics that pass through an ellipsoid, where the principal axis is in the
direction of the translation is shorter (Φ = 1 + ATr(L)2k for k > 1 and
Φ = 1 +B det(L)2l, c.f. figure 4.12).

• Geodesics that pass through an cigar shaped figure (Φ = 1+ATr(L)2, c.f.
figure 4.11.)

Figure 4.8: Geodesic between two unit spheres translated by distance 1.5 for
Φ = Vol. 20 timesteps and a triangulation with 500 triangles were used. Time
progresses from left to right. Boundary shapes t = 0 and t = 1 are not included.
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4.3.1 Shrink and grow

In section 3.5 we showed that it is possible to shrink a sphere to zero in finite time
for some of the metrics, namely conformal metrics with Φ = Volk or Φ = eVol

and for the GA metric. For these metrics geodesics of long translation will go
via a shrinking and growing part, and almost all of the translation will be done
with the shrunken version of the shape. We now want to get an bound about
the ratio of distance and radius of the boundary spheres where these behavior
cannot occur. To do this, we compare the energy needed for a pure translation

Figure 4.9: Geodesic between two unit spheres translated by distance 2 for
Φ = eVol. 20 timesteps and a triangulation with 500 triangles were used. Time
progresses from left to right. Boundary shapes t = 0 and t = 1 are not included.

with the energy needed to first shrink the sphere to almost zero, move it, and
then blow it up again.

The energy needed for a pure translation of a sphere with radius r by distance
` in the direction of a unit vector e1 is given by

E =

∫ 1

0

∫
S2

Φ(Vol,Tr(L))ḡ(`.e1, ν)2 vol(g)dt

= Φ(4r2π,−2

r
)

∫ π

0

∫ 2π

0

ḡ

`.e1,

 cosϕ sin θ
sinϕ sin θ

cos θ

2

r2 sin θ dϕdθ

= Φ(4r2π,−2

r
)

∫ π

0

∫ 2π

0

`2.(cosϕ sin θ)2r2 sin θdϕdθ = Φ(4r2π,−2

r
).

4π

3
`2.r2

Any other unit vector can be chosen instead of e1, yielding the same result.

We will now calculate the energy needed for shrinking the sphere, moving
it, and blowing it up again. The energy needed for translating a sphere of
radius almost zero can be neglected. Shrinking and blowing up is done using
the solutions to the geodesic equation for the radius from the last section, where
one has to adapt the constants to the boundary conditions. For the shrinking
part, we have r(0) = r and r( 1

2 ) = 0, and for the growing part we have r( 1
2 ) =

0, r(1) = r, see figure 4.10 (left).

The energy of the path is

Φ = Volk : E =

∫ 1

0

Volk
∫
S2

r2
t vol(g)dt =

4k+2πk+1

(k + 2)2
r2k+4

Φ = eVol : E =

∫ 1

0

eVol

∫
S2

r2
t vol(g)dt =

1

π
(e2πr2

− 1)2.
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à à à à à
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Figure 4.10: Left: Shrinking a sphere to zero along a geodesic path and blowing
it up again. Right: Pairs of ` and r such that translating a sphere of radius r
by distance ` needs as much energy as shrinking it to zero and blowing it up
again. G1 stands for the GA metric with A = 1.

The energy of the two different paths are the same when

Φ = Volk : ` =
2
√

3r

k + 2

Φ = eVol : ` =

√
3(1− e−2πr2

)

2rπ
.

These curves are shown in figure 4.10 (right). We did not derive an analytic
solution for the GA metric, but for A = 1 one can see the solution curves
in figure 4.10. In figure 4.9 one can see an example of this shrink and grow
phenomenon. We could not determine numerically whether a collapse of the
sphere to a point occurs or not. But the more time steps were used, the smaller
the ellipsoid in the middle turned out. Also, the energy of the geodesic path
comes very close to the energy needed to shrink the sphere to a point and blow
it up again. It is remarkable that almost all of the translation is concentrated
at a single time step, independently of the number of timesteps that were used.
The reason for this behavior is that high volumes are penalized so much: In the
case of figure 4.9, eVol is more than 1000 times smaller in the middle than at
the boundary shapes.

4.3.2 Moving an optimal shape

In the following we want to determine whether pure translation of a sphere is
a geodesic. Therefore let ft = f0 + b(t) · e1, where f0 is a sphere of radius r
and where b(t) is constant on M . Plugging this into the geodesic equation from
section 3.1 yields an ODE for b(t) and a part which has to vanish identically.
The latter is given by:

(1) (∂1Φ)
2

r
4r2π + (∂2Φ)

2

r2
− (∂3Φ).

2

r
.

1

r2
+ Φ

2

r
= 0

For conformal metrics this equation is only satisfied if Φ = Vol−1. Since this
metric induces vanishing geodesic distance (see section 2.4.5) we are not inter-
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ested in this case. For curvature weighted metrics the above equation reads
as:

Φ = 1 +ATr(L)2k :
4kA(k − 1)

r4k
= 1

Φ = 1 +B det(L)2l :
B(2l − 1)

r4l
= 1

Solutions to this equations are given by:

Φ = 1 +ATr(L)2k : r = 2 2k
√
A(k − 1), k ≥ 1.

Φ = 1 +B det(L)2l : r = 4l
√
B(2l − 1), l ≥ 1.

For the most prominent example the GA metric this yields r = 0 and there-
fore translation can never be a geodesic for this type of metrics. The numerics
have shown that the GA metrics yields geodesics that resemble the geodesics of
the GA metric for planar curves from [36, section 5.2]. Namely, when the two
spheres are sufficiently far apart, the geodesic passes through a cigar-like middle
shape, see figure 4.11. As predicted by the theory (see section 3.6.2) geodesics
for very high distances tend to have a similar behavior as Volk metrics, i.e. the
geodesic first shrinks the sphere, then moves it, and then blows it up again (cf.
section 4.3.1).

Figure 4.11: Middle figure of a geodesic between two unit spheres translated by
distance 3 for Φ = 1 +ATr(L)2. From left to right: A = 0.2, A = 0.4, A = 0.6,
A = 0.8. In each of the simulations 20 timesteps and a triangulation with 720
triangles were used.

For metrics weighted by higher factors of mean curvature and for Gauß
curvature weighted metrics the above equation for the radius has a positive
solution. For these metrics geodesics for translations tend to scale the sphere
until it has reached the optimal radius and then translate it. If the radius is
already optimal the resulting geodesic is a pure translation (see figure 4.12).

If the distance is not high enough there is still a scaling towards the optimal
size, but the middle figure is not a perfect sphere anymore. Instead it is an
ellipsoid as in figure 4.12.
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Figure 4.12: Geodesic between two unit spheres translated by distance 3 for
Φ = 1 + det(L)2 (first row) and Φ = 1 + Tr(L)6 (second row). In each of
the experiments 20 timesteps and a triangulation with 720 triangles were used.
Time progresses from left to right. Boundary shapes t = 0 and t = 1 are not
included.

4.4 Deformation of a shape

We will calculate numerically the geodesic between a shape and a deformation
of the shape for various almost local metrics. Small deformations are handled
well by all metrics, and they all yield similar results. An example of a geodesic
resulting in a small deformation can be seen in figure 4.13, where a small bump
is grown out of a sphere. The energy needed for this deformation is reasonable
compared to the energy needed for a pure translation. Taking the Φ = Vol-
metric as an example, growing a bump of size 0.4 as in figure 4.13 costs about
a third of a translation of the sphere by 0.4.

Figure 4.13: Geodesic between a sphere and a sphere with a small bump for
Φ = Vol. 20 timesteps and a triangulation with 500 triangles were used. Time
progresses from left to right.

Bigger deformations work well with Volk-metrics and curvature weighted
metrics, but not with the eVol-metric, which tends to shrink the object and to
concentrate almost all of the deformation at a single time step. In figure 4.14,
a large deformation can be seen for the case of Φ = Vol and Φ = eVol. Clearly
one can see that the eVol-metric concentrates almost all of the deformation in a
single time step. We have met this misbehavior of the eVol-metric already with
translations. Again, the reason is that eVol is so sensitive to changes in volume.

In figure 4.15 one sees that using higher curvature weights smoothens the
geodesics.
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Figure 4.14: Large deformation of a shape for Φ = Vol and Φ = eVol. 20
timesteps and a triangulation with 500 triangles were used. Time progresses
from left to right.

Figure 4.15: Large deformation of a shape for Φ = 1 + 0.1 Tr(L)2 (top), Φ =
1 + 10 Tr(L)2 (middle) and Φ = 1 + Tr(L)6 (bottom) . 20 timesteps and a
triangulation with 720 triangles were used. Time progresses from left to right.



The AMPL model file

Listing 1: AMPL model file

1 param A default 1;
param k default 1;

3 param B default 1;
param l default 1;

5 param C default 1;
param j default 1;

7 param D default 1;
param TimestepsN > 1 integer;

9 param VerticesN integer;
param PenaltyFactor default 1;

11 param PenaltyExponent default 2;
set VerticesI := 1..VerticesN;

13 set VerticesOfEdgesI within {VerticesI , VerticesI };
set VerticesOfFacesI within {VerticesI , VerticesI , VerticesI };

15 set FacesOfVerticesI {v in VerticesI} within VerticesOfFacesI;
set LinkOfVerticesI {VerticesI} within {VerticesOfFacesI,VerticesOfEdgesI,{−1,1}};

17 set AdjacentEdgesOfVerticesI {VerticesI} within {VerticesOfEdgesI,{1,−1},VerticesOfEdgesI,{1,−1}};

93
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set EdgesOfFacesI {VerticesOfFacesI} within VerticesOfEdgesI;
19 set EdgesOfVerticesI {v in VerticesI} := setof {(f1 , f2 , f3 ,e1,e2,o) in LinkOfVerticesI[v]}(e1,e2);

21 param Pi default 3.141592653589793;
param PerfectAngle {v in VerticesI} default cos(2∗Pi/card(FacesOfVerticesI[v]));

23 param InitialVertices {VerticesI ,1..3};
param FinalVertices {VerticesI,1..3};

25

var MiddleVertices {2..TimestepsN,VerticesI ,1..3};
27

var Vertices {t in 1..TimestepsN+1,v in VerticesI,i in 1..3} =
29 ( if t=1 then InitialVertices [v, i ]

else if t=TimestepsN+1 then FinalVertices[v,i]
31 else MiddleVertices[t ,v, i ]);

33 var VectorOfEdges {t in 1..TimestepsN+1, (v1,v2) in VerticesOfEdgesI,i in 1..3} =
Vertices [ t ,v2, i ] − Vertices[t ,v1, i ];

35

var LengthOfEdges {t in 1..TimestepsN+1, (v1,v2) in VerticesOfEdgesI} =
37 sqrt(VectorOfEdges[t,v1,v2,1]ˆ2+VectorOfEdges[t,v1,v2,2]ˆ2+VectorOfEdges[t,v1,v2,3]ˆ2);

39 var CrossOfFaces {t in 1..TimestepsN+1,(v1,v2,v3) in VerticesOfFacesI,i in 1..3} =
if i=1 then (Vertices[t,v2,2]−Vertices[ t ,v1 ,2])∗( Vertices [ t ,v3,3]−Vertices[t ,v1 ,3]) −

41 (Vertices [ t ,v2,3]−Vertices[ t ,v1 ,3])∗( Vertices [ t ,v3,2]−Vertices[t ,v1 ,2])
else if i=2 then −(Vertices[t,v2,1]−Vertices[t,v1 ,1])∗( Vertices [ t ,v3,3]−Vertices[t ,v1 ,3]) +

43 (Vertices [ t ,v2,3]−Vertices[t ,v1 ,3])∗( Vertices [ t ,v3,1]−Vertices[t ,v1 ,1])
else (Vertices [ t ,v2,1]−Vertices[t ,v1 ,1])∗( Vertices [ t ,v3,2]−Vertices[t ,v1 ,2]) −

45 (Vertices [ t ,v2,2]−Vertices[t ,v1 ,2])∗( Vertices [ t ,v3,1]−Vertices[t ,v1 ,1]) ;

47 var NormCrossOfFaces {t in 1..TimestepsN+1,(v1,v2,v3) in VerticesOfFacesI} =
sqrt(CrossOfFaces[t,v1,v2,v3,1]ˆ2 + CrossOfFaces[t,v1,v2,v3,2]ˆ2 + CrossOfFaces[t,v1,v2,v3,3]ˆ2);
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49

var NuOfFaces {t in 1..TimestepsN+1,(v1,v2,v3) in VerticesOfFacesI,i in 1..3} =
51 CrossOfFaces[t,v1,v2,v3, i ]/NormCrossOfFaces[t,v1,v2,v3];

53 var AreaOfFaces {t in 1..TimestepsN+1,(v1,v2,v3) in VerticesOfFacesI} =
NormCrossOfFaces[t,v1,v2,v3]/2;

55

var AreaOfVertices {t in 1..TimestepsN+1, v in VerticesI} =
57 (sum {(f1,f2,f3) in FacesOfVerticesI[v]} AreaOfFaces[t,f1, f2 , f3 ])/3;

59 var VectorAreaOfVertices {t in 1..TimestepsN+1, v in VerticesI, i in 1..3} =
(sum {(v1,v2,v3) in FacesOfVerticesI[v]} CrossOfFaces[t,v1,v2,v3, i ])/6;

61

var SquareOfNormOfVectorAreaOfVertices {t in 1..TimestepsN+1, v in VerticesI} =
63 VectorAreaOfVertices[t,v,1]ˆ2+VectorAreaOfVertices[t,v,2]ˆ2+VectorAreaOfVertices[t,v,3]ˆ2;

65 var NormOfVectorAreaOfVertices {t in 1..TimestepsN+1, v in VerticesI} =
sqrt( SquareOfNormOfVectorAreaOfVertices[t,v]);

67

var Volume {t in 1..TimestepsN+1} =
69 sum{(v1,v2,v3) in VerticesOfFacesI} AreaOfFaces[t,v1,v2,v3];

71 var GaussCurvature {t in 1..TimestepsN+1, v in VerticesI} =
(2∗Pi− sum{(v1,w1,o1,v2,w2,o2) in AdjacentEdgesOfVerticesI[v]}

73 acos(( VectorOfEdges[t,v1,w1,1]∗VectorOfEdges[t,v2,w2,1]
+VectorOfEdges[t,v1,w1,2]∗VectorOfEdges[t,v2,w2,2]

75 +VectorOfEdges[t,v1,w1,3]∗VectorOfEdges[t,v2,w2,3])
∗ o1 ∗ o2 / LengthOfEdges[t,v1,w1] / LengthOfEdges[t,v2,w2]))/AreaOfVertices[t,v];

77

var VectorMeanCurvatureOfVertices {t in 1..TimestepsN+1, v in VerticesI, i in 1..3} =
79 if i=1 then
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sum {(f1,f2,f3 ,e1,e2,o) in LinkOfVerticesI[v]} o∗
81 ( VectorOfEdges[t,e1,e2,2]∗NuOfFaces[t,f1,f2 , f3 ,3] −

VectorOfEdges[t,e1,e2,3]∗NuOfFaces[t,f1,f2 , f3 ,2] )
83 else if i=2 then

sum {(f1,f2,f3 ,e1,e2,o) in LinkOfVerticesI[v]} o∗
85 (−VectorOfEdges[t,e1,e2,1]∗NuOfFaces[t,f1,f2,f3 ,3] +

VectorOfEdges[t,e1,e2,3]∗NuOfFaces[t,f1,f2 , f3 ,1] )
87 else

sum {(f1,f2,f3 ,e1,e2,o) in LinkOfVerticesI[v]} o∗
89 ( VectorOfEdges[t,e1,e2,1]∗NuOfFaces[t,f1,f2 , f3 ,2] −

VectorOfEdges[t,e1,e2,2]∗NuOfFaces[t,f1,f2 , f3 ,1] ) ;
91

var SquareOfScalarMeanCurvatureOfVertices {t in 1..TimestepsN+1, v in VerticesI} =
93 (VectorMeanCurvatureOfVertices[t,v,1]ˆ2+VectorMeanCurvatureOfVertices[t,v,2]ˆ2

+VectorMeanCurvatureOfVertices[t,v,3]ˆ2)/SquareOfNormOfVectorAreaOfVertices[t,v];
95

var PhiOfVertices {t in 1..TimestepsN+1,v in VerticesI} =
97 1+ A∗(SquareOfScalarMeanCurvatureOfVertices[t,v])ˆk + B∗(GaussCurvature[t,v])ˆ(2∗l)

+C∗(Volume[t])ˆj+D∗ exp(Volume[t]);
99

var IncrementsOfVertices {t in 1..TimestepsN,v in VerticesI, i in 1..3} =
101 TimestepsN∗(Vertices[t+1,v,i] − Vertices[t ,v, i ]);

103 var Energy = 1/ 12 / TimestepsN ∗(
sum {t in 1..TimestepsN,v in VerticesI}

105 PhiOfVertices[t ,v] ∗ sum {(w1,w2,w3) in FacesOfVerticesI[v]}
( IncrementsOfVertices[t,v,1]∗CrossOfFaces[t,w1,w2,w3,1] +

107 IncrementsOfVertices[t,v,2]∗CrossOfFaces[t,w1,w2,w3,2] +
IncrementsOfVertices[t,v,3]∗CrossOfFaces[t,w1,w2,w3,3] )ˆ2 /

109 NormCrossOfFaces[t,w1,w2,w3] +
sum {t in 1..TimestepsN,v in VerticesI}
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111 PhiOfVertices[t+1,v] ∗ sum {(w1,w2,w3) in FacesOfVerticesI[v]}
( IncrementsOfVertices[t,v,1]∗CrossOfFaces[t+1,w1,w2,w3,1] +

113 IncrementsOfVertices[t,v,2]∗CrossOfFaces[t+1,w1,w2,w3,2] +
IncrementsOfVertices[t,v,3]∗CrossOfFaces[t+1,w1,w2,w3,3] )ˆ2 /

115 NormCrossOfFaces[t+1,w1,w2,w3] )
;

117

var Penalty =
119 sum {t in 1..TimestepsN+1, v in VerticesI,(v1,w1,o1,v2,w2,o2) in AdjacentEdgesOfVerticesI[v]}

abs(
121 ( VectorOfEdges[t,v1,w1,1]∗VectorOfEdges[t,v2,w2,1] +

VectorOfEdges[t,v1,w1,2]∗VectorOfEdges[t,v2,w2,2] +
123 VectorOfEdges[t,v1,w1,3]∗VectorOfEdges[t,v2,w2,3] ) ∗ o1 ∗ o2

/ LengthOfEdges[t,v1,w1] / LengthOfEdges[t,v2,w2]
125 − PerfectAngle[v]

)ˆPenaltyExponent;
127

minimize f:
129 Energy+Penalty∗PenaltyFactor;
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[50] A. Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Opti-
mization with Applications in Process Engineering. PhD thesis, Carnegie
Mellon University, 2002.

[51] A. Yezzi and A. Mennucci. Conformal riemannian metrics in space of
curves. EUSIPCO, 2004.

[52] A. Yezzi and A. Mennucci. Metrics in the space of curves.
arXiv:math/0412454, December 2004.

[53] Anthony Yezzi and Andrea Mennucci. Conformal metrics and true ”gra-
dient flows” for curves. In ICCV ’05: Proceedings of the Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1, pages
913–919, Washington, DC, USA, 2005. IEEE Computer Society.

[54] L. Younes, P. W. Michor, J. Shah, and D. Mumford. A metric on shape
space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat.
Natur. Rend. Lincei (9) Mat. Appl., 19(1):25–57, 2008.

[55] Laurent Younes. Computable elastic distances between shapes. SIAM J.
Appl. Math., 58(2):565–586 (electronic), 1998.



Curriculum Vitae

Personal Data

Name: Martin Bauer

Email: bauer.martin@univie.ac.at

Nationality: Austria

Date of birth: 30.08.1984

Place of birth: Vienna

Education

2008–2010 PhD in Mathematics
University of Vienna

2003–2008 Master in Mathematics, with distinction
Vienna University of Technology

1997–2002 Violin, Preparatory Course
Konservatorum Wien, Privatuniversität

1996–2002 A-level, with distinction
Musik-Gymnasium, Wien

Conferences and research visits

October, 2010 Imperial College, London: Research visit

May, 2010 Shape FRG, London: Conference

March, 2010 Johns Hopkins University, Baltimore: Visiting scholar

January, 2010 The 30th Winter School Geometry and Physics, Srni:
Conference

April 2009 Shape FRG, Annapolis, MD: Conference

January, 2009 The 29th Winter School Geometry and Physics, Srni:
Conference

103



104 APPENDIX

Teaching experience

2005-2007 Vienna University of Technology:
Mathematics 1 for mechanical engineering,
Mathematics 2 for mechanical engineering

2005-2006 Vienna University of Technology:
Mathematics 1 for electrical engineering,
Mathematics 2 for electrical engineering

Publications and Preprints

Preprint: Curvature weighted metrics on shape space of sur-
faces in n-space

Preprint: Sobolev metrics on shape space

Preprint: Almost local metrics on shape space of surfaces in
n-space

Master Thesis: Geodesics in Subriemannian Geometry

November 26, 2010



Zusammenfassung

In vielen Bereiche der Wissenschaft, Technik und Medizin ist es notwendig
zwischen verschiedenen geometrischen Figuren zu unterscheiden. Daher ist
es sehr wichtig signifikante Metriken für den Raum aller Figuren zu bestim-
men. Wir modellieren Figuren als immersive unparametrisierte Unterman-
nigfaltigkeiten. In dieser Arbeit betrachten wir Riemannsche Metriken auf
dem Raum der Figuren die von Metriken auf der Mannigfaltigkeit der Im-
mersionen induziert werden. Diese Metriken werden auch als innere Metriken
bezeichnet. Unglüchierweise induziert die einfachste und natürlichste solche
Metrik verschwinde geodätische Distanz am Raum aller Figuren. Diese Ent-
deckung von Michor und Mumford war der Startpunkt der Suche nach stärkeren
aussagekräftigen Metriken. In dieser Arbeit betrachten wir eine bestimmten
Klasse innerer Metriken auf Figurenräume beliebiger Dimension. Wir berech-
nen die Geodätengleichung und die Schnittkrümmung, zeigen dass sie positive
geodaätische Distanz induzieren und vergleichen sie mit der Fréchet Distanz. Im
letzten Teil studieren wir das Verhalten dieser Metriken anhand verschiedener
numerischer Experimente.
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