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Abstract. We consider a natural Riemannian metric on the infinite dimensional
manifold of all embeddings from a manifold into a Riemannian manifold, and derive

its geodesic equation in the case Emb(R, R) which turns out to be Burgers’ equation.

Then we derive the geodesic equation, the curvature, and the Jacobi equation of a
right invariant Riemannian metric on an infinite dimensional Lie group, which we

apply to Diff(R), Diff(S1), and the Virasoro-Bott group. Many of these results are

well known, the emphasis is on conciseness and clarity.
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1. Introduction

We consider a natural Riemannian metric on the infinite dimensional manifold
of all embeddings from a manifold into a Riemannian manifold, derive its geodesic
equation in the case Emb(R,R) which turns out to be Burgers’ equation. For the
general case see [9]. Then we give a careful exposition of the derivation of the
geodesic equation, the curvature, and the Jacobi equation of a right invariant Rie-
mannian metric on an infinite dimensional Lie group. This is a careful presentation
and extension of results in [1], [2], [3]. The formulas obtained in this way are then
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applied to Diff(R), Diff(S1), and the Virasoro-Bott group, where the geodesic equa-
tion is the Korteweg-de Vries equations. This is due to [8], [10], [23], and also [22].
A fast overview on the geometry of the Virasoro-Bott group can also be found in
[24]. The emphasis of this paper is on a unified setting for these results, and on
conciseness and clarity. Thanks to Hermann Schichl and to the referee for detailed
checks of the computations.

2. The general setting and a motivating example

2.1. The principal bundle of embeddings. Let M and N be smooth finite
dimensional manifolds, connected and second countable without boundary, such
that dimM ≤ dimN . The space Emb(M,N) of all embeddings (immersions which
are homeomorphisms on their images) from M into N is an open submanifold of
C∞(M,N) which is stable under the right action of the diffeomorphism group of M .
Here C∞(M,N) is a smooth manifold modeled on spaces of sections with compact
support Γc(f∗TN). In particular the tangent space at f is canonically isomorphic to
the space of vector fields along f with compact support in M . If f and g differ on a
non-compact set then they belong to different connected components of C∞(M,N).
See [19] and [14]. Then Emb(M,N) is the total space of a smooth principal fiber
bundle with structure group the diffeomorphism group of M ; the base is called
B(M,N), it is a Hausdorff smooth manifold modeled on nuclear (LF)-spaces. It
can be thought of as the ”nonlinear Grassmannian” of all submanifolds of N which
are of type M . This result is based on an idea implicitly contained in [25], it
was fully proved in [5] for compact M and for general M in [18]. The clearest
presentation is in [19], section 13. If we take a Hilbert space H instead of N , then
B(M,H) is the classifying space for Diff(M) if M is compact, and the classifying
bundle Emb(M,H) carries also a universal connection. This is shown in [21].

2.2. If (N, g) is a Riemannian manifold then on the manifold Emb(M,N) there
is a naturally induced weak Riemannian metric given, for s1, s2 ∈ Γc(f∗TN) and
ϕ ∈ Emb(M,N), by

Gφ(s1, s2) =
∫
M

g(s1, s2) vol(φ∗g), φ ∈ Emb(M,N),

where vol(g) denotes the volume form on N induced by the Riemannian metric
g and vol(φ∗g) the volume form on M induced by the pull back metric φ∗g. The
covariant derivative and curvature of the Levi-Civita connection induced by G were
investigated in [4] if N = RdimM+1 (endowed with the standard inner product) and
in [9] for the general case. We shall not reproduce the general formulae here

This weak Riemannian metric is invariant under the action of the diffeomorphism
group Diff(M) by composition from the right and hence it induces a Riemannian
metric on the base manifold B(M,N).

2.3. Example. Let us consider the special case M = N = R, that is, the space
Emb(R,R) of all embeddings of the real line into itself, which contains the diffeo-
morphism group Diff(R) as an open subset. The case M = N = S1 is treated
in a similar fashion and the results of this paper are also valid in this situation,
where Emb(S1, S1) = Diff(S1). For our purposes, we may restrict attention to the
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space of orientation-preserving embeddings, denoted by Emb+(R,R). The weak
Riemannian metric has thus the expression

Gf (h, k) =
∫

R
h(x)k(x)|f ′(x)| dx, f ∈ Emb(R,R), h, k ∈ C∞c (R,R).

We shall compute the geodesic equation for this metric by variational calculus. The
energy of a curve f of embeddings is

E(f) = 1
2

∫ b

a

Gf (ft, ft)dt = 1
2

∫ b

a

∫
R
f2
t fx dxdt.

If we assume that f(x, t, s) is a smooth function and that the variations are with
fixed endpoints, then the derivative with respect to s of the energy is

∂

∂s

∣∣∣∣
0

E(f( , s)) =
∂

∂s

∣∣∣∣
0

1
2

∫ b

a

∫
R
f2
t fx dxdt

= 1
2

∫ b

a

∫
R
(2ftftsfx + f2

t fxs)dxdt

= − 1
2

∫ b

a

∫
R
(2fttfsfx + 2ftfsftx + 2ftftxfs)dxdt

= −
∫ b

a

∫
R

(
ftt + 2

ftftx
fx

)
fsfxdxdt,

so that the geodesic equation with its initial data is:

ftt = −2
ftftx
fx

, f( , 0) ∈ Emb+(R,R), ft( , 0) ∈ C∞c (R,R)(1)

=: Γf (ft, ft),

where the Christoffel symbol Γ : Emb(R,R)× C∞c (R,R)× C∞c (R,R)→ C∞c (R,R)
is given by symmetrisation:

(2) Γf (h, k) := −hkx + hxk

fx
= − (hk)x

fx
.

For vector fields X,Y on Emb(R,R) the covariant derivative is given by the ex-
pression ∇Emb

X Y = dY (X) − Γ(X,Y ). The Riemannian curvature R(X,Y )Z =
(∇X∇Y − ∇Y∇X − ∇[X,Y ])Z is then determined in terms of the Christoffel form
by

Rf (h, k)` = −dΓ(f)(h)(k, `) + dΓ(f)(k)(h, `) + Γf (h,Γf (k, `))− Γf (k,Γf (h, `))

= −hx(k`)x
f2
x

+
kx(h`)x
f2
x

+

(
h (k`)x

fx

)
x

fx
−

(
k (h`)x

fx

)
x

fx

=
1
f3
x

(
fxxhxk`− fxxhkx`+ fxhkxx`− fxhxxk`+ 2fxhkx`x − 2fxhxk`x

)
(3)
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The geodesic equation can be solved in the following way: if instead of the obvious
framing we change variables to T Emb = Emb×C∞c 3 (f, h) 7→ (f, hf2

x) =: (f, F )
then the geodesic equation becomes Ft = ∂

∂t (ftf
2
x) = f2

x(ftt + 2 ftftx

fx
) = 0, so that

F = ftf
2
x is constant in t, or ft(x, t)fx(x, t)2 = ft(x, 0)fx(x, 0)2. From here, a

standard separation of variables argument gives the solution; it blows up in finite
time for most initial conditions.

Now let us consider the trivialisation of T Emb(R,R) by right translation (this
is most useful for Diff(R)). The derivative of the inversion Inv : g 7→ g−1 is given
by

Tg(Inv)h = −T (g−1) ◦ h ◦ g−1 =
h ◦ g−1

gx ◦ g−1
for g ∈ Emb(R,R), h ∈ C∞c (R,R).

Defining

u := ft ◦ f−1, or, in more detail, u(x, t) = ft(f( , t)−1(x), t),

we have

ux = (ft ◦ f−1)x = (ftx ◦ f−1)
1

fx ◦ f−1
=
ftx
fx
◦ f−1,

ut = (ft ◦ f−1)t = ftt ◦ f−1 + (ftx ◦ f−1)(f−1)t

= ftt ◦ f−1 + (ftx ◦ f−1)
1

fx f−1
(ft f−1)

which, by (1) and the first equation becomes

ut = ftt ◦ f−1 −
(
ftxft
fx

)
◦ f−1 = −3

(
ftxft
fx

)
◦ f−1 = −3uxu.

The geodesic equation on Emb(R,R) in right trivialization, that is, in Eulerian
formulation, is hence

(4) ut = −3uxu ,

which is just Burgers’ equation.

3. Right invariant Riemannian metrics on Lie groups

3.1. Geodesics of a right invariant metric on a Lie group. Let G be a Lie
group which may be infinite dimensional, with Lie algebra g. Let µ : G × G → G
be the multiplication, let µx be left translation and µy be right translation, given
by µx(y) = µy(x) = xy = µ(x, y). We also need the right Maurer-Cartan form κ =
κr ∈ Ω1(G, g), given by κx(ξ) := Tx(µx

−1
) · ξ. It satisfies the right Maurer-Cartan

equation dκ − 1
2 [κ, κ]∧ = 0, where [ , ]∧ denotes the wedge product of g-valued

forms on G induced by the Lie bracket. Note that 1
2 [κ, κ]∧(ξ, η) = [κ(ξ), κ(η)].

Let 〈 , 〉 : g× g→ R be a positive definite bounded (weak) inner product. Then

(1) Gx(ξ, η) = 〈T (µx
−1

) · ξ, T (µx
−1

) · η)〉 = 〈κ(ξ), κ(η)〉
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is a right invariant (weak) Riemannian metric on G, and any (weak) right invariant
bounded Riemannian metric is of this form, for suitable 〈 , 〉.

Let g : [a, b] → G be a smooth curve. The velocity field of g, viewed in the
right trivializations, coincides with the right logarithmic derivative T (µg

−1
) · ∂tg =

κ(∂tg) = (g∗κ)(∂t), where ∂t = ∂
∂t . The energy of the curve g(t) is given by

E(g) = 1
2

∫ b

a

Gg(g′, g′)dt = 1
2

∫ b

a

〈(g∗κ)(∂t), (g∗κ)(∂t)〉 dt.

For a variation g(t, s) with fixed endpoint we have then, using the right Maurer-
Cartan equation and integration by parts,

∂sE(g) = 1
2

∫ b

a

2〈∂s(g∗κ)(∂t), (g∗κ)(∂t)〉 dt

=
∫ b

a

〈∂t(g∗κ)(∂s)− d(g∗κ)(∂t, ∂s), (g∗κ)(∂t)〉 dt

=
∫ b

a

(−〈(g∗κ)(∂s), ∂t(g∗κ)(∂t)〉 − 〈[(g∗κ)(∂t), (g∗κ)(∂s)], (g∗κ)(∂t)〉) dt

= −
∫ b

a

〈(g∗κ)(∂s), ∂t(g∗κ)(∂t) + ad((g∗κ)(∂t))>((g∗κ)(∂t))〉 dt

where ad((g∗κ)(∂t))> : g → g is the adjoint of ad((g∗κ)(∂t)) with respect to the
inner product 〈 , 〉. In infinite dimensions one also has to check the existence of this
adjoint. In terms of the right logarithmic derivative u : [a, b]→ g of g : [a, b]→ G,
given by u(t) := g∗κ(∂t) = Tg(t)(µg(t)

−1
) · g′(t), the geodesic equation has the

expression

(2) ut = − ad(u)>u .

This is, of course, just the Euler-Poincaré equation for right invariant systems using
the Lagrangian given by the kinetic energy (see [15], section 13) and the above
derivation is done directly without invoking this theorem.

3.2. The covariant derivative. Our next aim is to derive the Riemannian cur-
vature and for that we develop the basis-free version of Cartan’s method of moving
frames in this setting, which also works in infinite dimensions. The right trivializa-
tion, or framing, (κ, πG) : TG → g × G induces the isomorphism R : C∞(G, g) →
X(G), given by R(X)(x) := RX(x) := Te(µx) ·X(x), for X ∈ C∞(G, g) and x ∈ G.
Here X(G) := Γ(TG) denote the Lie algebra of all vector fields. For the Lie bracket
and the Riemannian metric we have

[RX , RY ] = R(−[X,Y ]g + dY ·RX − dX ·RY ),(1)

R−1[RX , RY ] = −[X,Y ]g +RX(Y )−RY (X),

Gx(RX(x), RY (x)) = 〈X(x), Y (x)〉 , x ∈ G.

In the sequel we shall compute in C∞(G, g) instead of X(G). In particular, we shall
use the convention

∇XY := R−1(∇RX
RY ) for X,Y ∈ C∞(G, g).

to express the Levi-Civita covariant derivative.
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Lemma. Assume that for all ξ ∈ g the adjoint ad(ξ)> with respect to the inner
product 〈 , 〉 exists and that ξ 7→ ad(ξ)> is bounded. Then the Levi-Civita covariant
derivative of the metric 2.1(1) exists and is given for any X,Y ∈ C∞(G, g) in terms
of the isomorphism R by

(2) ∇XY = dY.RX + 1
2 ad(X)>Y + 1

2 ad(Y )>X − 1
2 ad(X)Y.

Proof. Easy computations show that this formula satisfies the axioms of a covariant
derivative, that relative to it the Riemannian metric is covariantly constant, since

RX〈Y, Z〉 = 〈dY.RX , Z〉+ 〈Y, dZ.RX〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉,

and that it is torsion free, since

∇XY −∇YX + [X,Y ]g − dY.RX + dX.RY = 0. �

For ξ ∈ g define α(ξ) : g → g by α(ξ)η := ad(η)>ξ. With this notation, the
previous lemma states that for all X ∈ C∞(G, g) the covariant derivative of the
Levi-Civita connection has the expression

(3) ∇X = RX + 1
2 ad(X)> + 1

2α(X)− 1
2 ad(X).

3.3. The curvature. First note that we have the following relations:

[RX , ad(Y )] = ad(RX(Y )), [RX , α(Y )] = α(RX(Y )),(1)

[RX , ad(Y )>] = ad(RX(Y ))>, [ad(X)>, ad(Y )>] = − ad([X,Y ]g)>.

The Riemannian curvature is then computed by

R(X,Y ) = [∇X ,∇Y ]−∇−[X,Y ]g+RX(Y )−RY (X)

(2)

= [RX + 1
2 ad(X)> + 1

2α(X)− 1
2 ad(X), RY + 1

2 ad(Y )> + 1
2α(Y )− 1

2 ad(Y )]

−R−[X,Y ]g+RX(Y )−RY (X) − 1
2 ad(−[X,Y ]g +RX(Y )−RY (X))>

− 1
2α(−[X,Y ]g +RX(Y )−RY (X)) + 1

2 ad(−[X,Y ]g +RX(Y )−RY (X))

= − 1
4 [ad(X)> + ad(X), ad(Y )> + ad(Y )]

+ 1
4 [ad(X)> − ad(X), α(Y )] + 1

4 [α(X), ad(Y )> − ad(Y )]

+ 1
4 [α(X), α(Y )] + 1

2α([X,Y ]g).

If we plug in all definitions and use 4 times the Jacobi identity we get the following
expression

〈4R(X,Y )Z,U〉 = +2〈[X,Y ], [Z,U ]〉 − 〈[Y,Z], [X,U ]〉+ 〈[X,Z], [Y,U ]〉
− 〈Z, [U, [X,Y ]]〉+ 〈U, [Z, [X,Y ]]〉 − 〈Y, [X, [U,Z]]〉 − 〈X, [Y, [Z,U ]]〉
+ 〈ad(X)>Z, ad(Y )>U〉+ 〈ad(X)>Z, ad(U)>Y 〉+ 〈ad(Z)>X, ad(Y )>U〉
− 〈ad(U)>X, ad(Y )>Z〉 − 〈ad(Y )>Z, ad(X)>U〉 − 〈ad(Z)>Y, ad(X)>U〉
− 〈ad(U)>X, ad(Z)>Y 〉+ 〈ad(U)>Y, ad(Z)>X〉.
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3.4. Jacobi fields, I. We compute first the Jacobi equation directly via variations
of geodesics. So let g : R2 → G be smooth, t 7→ g(t, s) a geodesic for each s. Let
again u = κ(∂tg) = (g∗κ)(∂t) be the velocity field along the geodesic in right
trivialization which satisfies the geodesic equation ut = − ad(u)>u. Then y :=
κ(∂sg) = (g∗κ)(∂s) is the Jacobi field corresponding to this variation, written in
the right trivialization. From the right Maurer-Cartan equation we then have:

yt = ∂t(g∗κ)(∂s) = d(g∗κ)(∂t, ∂s) + ∂s(g∗κ)(∂t) + 0

= [(g∗κ)(∂t), (g∗κ)(∂s)]g + us

= [u, y] + us.

Using the geodesic equation, the definition of α, and the fourth relation in 3.3.(1),
this identity implies

ust = uts = ∂sut = −∂s(ad(u)>u) = − ad(us)>u− ad(u)>us

= − ad(yt + [y, u])>u− ad(u)>(yt + [y, u])

= −α(u)yt − ad([y, u])>u− ad(u)>yt − ad(u)>([y, u])

= − ad(u)>yt − α(u)yt + [ad(y)>, ad(u)>]u− ad(u)> ad(y)u .

Finally we get the Jacobi equation as

ytt = [ut, y] + [u, yt] + ust

= ad(y) ad(u)>u+ ad(u)yt − ad(u)>yt

− α(u)yt + [ad(y)>, ad(u)>]u− ad(u)> ad(y)u ,

ytt = [ad(y)> + ad(y), ad(u)>]u− ad(u)>yt − α(u)yt + ad(u)yt .(1)

3.5. Jacobi fields, II. Let y be a Jacobi field along a geodesic g with right trivi-
alized velocity field u. Then y should satisfy the analogue of the finite dimensional
Jacobi equation

∇∂t
∇∂t

y +R(y, u)u = 0

We want to show that this leads to same equation as 3.4.(1). First note that from
3.2.(2) we have

∇∂t
y = yt + 1

2 ad(u)>y + 1
2α(u)y − 1

2 ad(u)y

so that, using ut = − ad(u)>u, we get:

∇∂t∇∂ty = ∇∂t

(
yt + 1

2 ad(u)>y + 1
2α(u)y − 1

2 ad(u)y
)

= ytt + 1
2 ad(ut)>y + 1

2 ad(u)>yt + 1
2α(ut)y

+ 1
2α(u)yt − 1

2 ad(ut)y − 1
2 ad(u)yt

+ 1
2 ad(u)>

(
yt + 1

2 ad(u)>y + 1
2α(u)y − 1

2 ad(u)y
)

+ 1
2α(u)

(
yt + 1

2 ad(u)>y + 1
2α(u)y − 1

2 ad(u)y
)

− 1
2 ad(u)

(
yt + 1

2 ad(u)>y + 1
2α(u)y − 1

2 ad(u)y
)
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= ytt + ad(u)>yt + α(u)yt − ad(u)yt

− 1
2α(y) ad(u)>u− 1

2 ad(y)> ad(u)>u− 1
2 ad(y) ad(u)>u

+ 1
2 ad(u)>

(
1
2α(y)u+ 1

2 ad(y)>u+ 1
2 ad(y)u

)
+ 1

2α(u)
(

1
2α(y)u+ 1

2 ad(y)>u+ 1
2 ad(y)u

)
− 1

2 ad(u)
(

1
2α(y)u+ 1

2 ad(y)>u+ 1
2 ad(y)u

)
.

In the second line of the last expression we use

− 1
2α(y) ad(u)>u = − 1

4α(y) ad(u)>u− 1
4α(y)α(u)u

and similar forms for the other two terms to get:

∇∂t
∇∂t

y = ytt + ad(u)>yt + α(u)yt − ad(u)yt

+ 1
4 [ad(u)>, α(y)]u+ 1

4 [ad(u)>, ad(y)>]u+ 1
4 [ad(u)>, ad(y)]u

+ 1
4 [α(u), α(y)]u+ 1

4 [α(u), ad(y)>]u+ 1
4 [α(u), ad(y)]u

− 1
4 [ad(u), α(y)]u− 1

4 [ad(u), ad(y)> + ad(y)]u,

where in the last line we also used ad(u)u = 0. We now compute the curvature
term using 3.3.(2):

R(y, u)u = − 1
4 [ad(y)> + ad(y), ad(u)> + ad(u)]u

+ 1
4 [ad(y)> − ad(y), α(u)]u+ 1

4 [α(y), ad(u)> − ad(u)]u

+ 1
4 [α(y), α(u)] + 1

2α([y, u])u

= − 1
4 [ad(y)> + ad(y), ad(u)>]u− 1

4 [ad(y)> + ad(y), ad(u)]u

+ 1
4 [ad(y)>, α(u)]u− 1

4 [ad(y), α(u)]u+ 1
4 [α(y), ad(u)> − ad(u)]u

+ 1
4 [α(y), α(u)]u+ 1

2 ad(u)> ad(y)u .

Summing up we get

∇∂t
∇∂t

y +R(y, u)u = ytt + ad(u)>yt + α(u)yt − ad(u)yt

− 1
2 [ad(y)> + ad(y), ad(u)>]u

+ 1
2 [α(u), ad(y)]u+ 1

2 ad(u)> ad(y)u .

Finally we need the following computation using 3.3.(1):
1
2 [α(u), ad(y)]u = 1

2α(u)[y, u]− 1
2 ad(y)α(u)u

= 1
2 ad([y, u])>u− 1

2 ad(y) ad(u)>u

= − 1
2 [ad(y)>, ad(u)>]u− 1

2 ad(y) ad(u)>u .

Inserting we get the desired result:

∇∂t
∇∂t

y +R(y, u)u = ytt + ad(u)>yt + α(u)yt − ad(u)yt

− [ad(y)> + ad(y), ad(u)>]u.
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3.6. The weak symplectic structure on the space of Jacobi fields. Let us
assume now that the geodesic equation in g

ut = − ad(u)>u

admits a unique solution for some time interval, depending smoothly on the choice of
the initial value u(0). Furthermore we assume that G is a regular Lie group (see [13],
5.3) so that each smooth curve u in g is the right logarithmic derivative of a smooth
curve g in G which depends smoothly on u, so that u = (g∗κ)(∂t). Furthermore
we have to assume that the Jacobi equation along u admits a unique solution for
some time, depending smoothly on the initial values y(0) and yt(0). These are non-
trivial assumptions: in [13], 2.4 there are examples of ordinary linear differential
equations ‘with constant coefficients’ which violate existence or uniqueness. These
assumptions have to be checked in the special situations. Then the space Ju of all
Jacobi fields along the geodesic g described by u is isomorphic to the space g × g
of all initial data.

There is the well known symplectic structure on the space Ju of all Jacobi fields
along a fixed geodesic with velocity field u, see e.g. [11], II, p.70. It is given by the
following expression which is constant in time t:

σ(y, z) : = 〈y,∇∂tz〉 − 〈∇∂ty, z〉
= 〈y, zt + 1

2 ad(u)>z + 1
2α(u)z − 1

2 ad(u)z〉
− 〈yt + 1

2 ad(u)>y + 1
2α(u)y − 1

2 ad(u)y, z〉
= 〈y, zt〉 − 〈yt, z〉+ 〈[u, y], z〉 − 〈y, [u, z]〉 − 〈[y, z], u〉
= 〈y, zt − ad(u)z + 1

2α(u)z〉 − 〈yt − ad(u)y + 1
2α(u)y, z〉.

It is worth while to check directly from the Jacobi field equation 3.4.(1) that σ(y, z)
is indeed constant in t. Clearly σ is a weak symplectic structure on the relevant
vector space Ju ∼= g × g, i.e., σ gives an injective (but in general not surjective)
linear mapping Ju → J ∗u . This is seen most easily by writing

σ(y, z) = 〈y, zt − Γg(u, z)〉|t=0 − 〈yt − Γg(u, y), z〉|t=0

which is induced from the standard symplectic structure on g×g∗ by applying first
the automorphism (a, b) 7→ (a, b−Γg(u, a)) to g×g and then by injecting the second
factor g into its dual g∗.

For regular (infinite dimensional) Lie groups variations of geodesics exist, but
there is no general theorem stating that they are uniquely determined by y(0) and
yt(0). For concrete regular Lie groups, this needs to be shown directly.

4. The diffeomorphism group of the circle revisited

4.1. Geodesics and curvature. We consider again the Lie groups Diff(R) and
Diff(S1) with Lie algebras Xc(R) and X(S1) where the Lie bracket [X,Y ] = X ′Y −
XY ′ is the negative of the usual one. For the inner product 〈X,Y 〉 =

∫
X(x)Y (x) dx

integration by parts gives

〈[X,Y ], Z〉 =
∫

R
(X ′Y Z −XY ′Z)dx =

∫
R
(2X ′Y Z +XY Z ′)dx = 〈Y, ad(X)>Z〉,
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which in turn gives rise to

ad(X)>Z = 2X ′Z +XZ ′,(1)

α(X)Z = 2Z ′X + ZX ′,(2)

(ad(X)> + ad(X))Z = 3X ′Z,(3)

(ad(X)> − ad(X))Z = X ′Z + 2XZ ′ = α(X)Z.(4)

Equation (4) states that − 1
2α(X) is the skew-symmetrization of ad(X) with respect

to to the inner product 〈 , 〉. From the theory of symmetric spaces one then
expects that − 1

2α is a Lie algebra homomorphism and indeed one can check that

− 1
2α([X,Y ]) =

[
− 1

2α(X),− 1
2α(Y )

]
holds for any vector fields X,Y . From (1) we get the same geodesic equation as in
2.3(4), namely Burgers’ equation:

ut = − ad(u)>u = −3uxu.

Using the above relations and the general curvature formula 3.3.(2), we get

R(X,Y )Z = −X ′′Y Z +XY ′′Z − 2X ′Y Z ′ + 2XY ′Z ′ = −2[X,Y ]Z ′ − [X,Y ]′Z

= −α([X,Y ])Z.(5)

If we change the framing of the tangent bundle:

X = h ◦ f−1, X ′ =
(
hx
fx

)
◦ f−1, X ′′ =

(
hxxfx − hxfxx

f3
x

)
◦ f−1,

and similarly for Y = k◦f−1 and Z = `◦f−1, for h, k, ` ∈ C∞c (R,R) or C∞(S1,R),
then (R(X,Y )Z) ◦ f given by (5) coincides with formula 2.3.(3) for the curvature.

4.2. Jacobi fields. A Jacobi field y along a geodesic g with velocity field u is a
solution of the partial differential equation 3.4.(1), which in our case becomes:

ytt = [ad(y)> + ad(y), ad(u)>]u− ad(u)>yt − α(u)yt + ad(u)yt(1)

= −3u2yxx − 4uytx − 2uxyt
ut = −3uxu.

Since the geodesic equation has solutions, locally in time (see the argument in 2.3)
it is to be expected that the space of all Jacobi fields exists and is isomorphic to
the space of all initial data (y(0), yt(0)) ∈ C∞(S1,R)2 or C∞c (R,R)2, respectively.
The weak symplectic structure on it is given by 3.6:

σ(y, z) = 〈y, zt − 1
2uxz + 2uzx〉 − 〈yt − 1

2uxy + 2uyx, z〉

=
∫
S1or R

(yzt − ytz + 2u(yzx − yxz)) dx.(2)
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5. The Virasoro-Bott group and the Korteweg-de Vries-equation

5.1. Geodesics on the Virasoro-Bott group. For ϕ ∈ Diff+(S1) let ϕ′ : S1 →
R+ be the mapping given by Txϕ · ∂x = ϕ′(x)∂x. Then

c : Diff+(S1)×Diff+(S1)→ R

c(ϕ,ψ) :=
∫
S1

log(ϕ ◦ ψ)′d logψ′ =
∫
S1

log(ϕ′ ◦ ψ)d logψ′

satisfies c(ϕ,ϕ−1) = 0 and is a smooth group cocycle, called the Bott cocycle. The
corresponding central extension group S1 ×c Diff+(S1), called the Virasoro-Bott
group, is a trivial S1-bundle S1 × Diff+(S1) that becomes a regular Lie group
relative to the operations(
ϕ

α

)(
ψ

β

)
=
(

ϕ ◦ ψ
αβ e2πic(ϕ,ψ)

)
,

(
ϕ

α

)−1

=
(
ϕ−1

α−1

)
ϕ,ψ ∈ Diff+(S1), α, β ∈ S1.

The Lie algebra of this Lie group is the central extension R ×ω X(S1) of X(S1)
induced by the Gelfand-Fuchs Lie algebra cocycle ω : X(S1)× X(S1)→ R

ω(h, k) = ω(h)k =
∫
S1
h′dk′ =

∫
S1
h′k′′dx = 1

2

∫
S1

det
(
h′ k′

h′′ k′′

)
dx,

a generator of the 1-dimensional bounded Chevalley cohomology H2(X(S1),R).
Thus the bracket on R×ω X(S1) is given by[(

h

a

)
,

(
k

b

)]
=
(
h′k − hk′

ω(h, k)

)
, h, k ∈ X(S1), a, b ∈ R.

Note that the Lie algebra cocycle ω makes sense on the Lie algebra Xc(R) of all
vector fields with compact support on R, but that it does not integrate to a group
cocycle on Diff(R). The subsequent considerations also make sense on Xc(R). Recall
also that H2(Xc(M),R) = 0 for each finite dimensional manifold of dimension ≥ 2
(see [7]), which blocks the way to find a higher dimensional analog of the Korteweg
– de Vries equation in a way similar to that sketched below.

We shall use the L2-inner product on R×ω X(S1):〈(
h

a

)
,

(
k

b

)〉
:=
∫
S1
hk dx+ ab.

Integrating by parts we get〈
ad
(
h

a

)(
k

b

)
,

(
`

c

)〉
=
〈(

h′k − hk′

ω(h, k)

)
,

(
`

c

)〉
=
∫
S1

(h′k`− hk′`+ ch′k′′) dx =
∫
S1

(2h′`+ h`′ + ch′′′)k dx

=

〈(
k

b

)
, ad

(
h

a

)>(
`

c

)〉
, where

ad
(
h

a

)>(
`

c

)
=
(

2h′`+ h`′ + ch′′′

0

)
.
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Using matrix notation we get therefore (where ∂ := ∂x)

ad
(
h

a

)
=
(
h′ − h∂ 0
ω(h) 0

)
ad
(
h

a

)>
=
(

2h′ + h∂ h′′′

0 0

)
α

(
h

a

)
= ad

( )>(
h

a

)
=
(
h′ + 2h∂ + a∂3 0

0 0

)
ad
(
h

a

)>
+ ad

(
h

a

)
=
(

3h′ h′′′

ω(h) 0

)
ad
(
h

a

)>
− ad

(
h

a

)
=
(
h′ + 2h∂ h′′′

−ω(h) 0

)
.

Formula 3.1(2) gives the geodesic equation on the Virasoro-Bott group:(
ut
at

)
= − ad

(
u

a

)>(
u

a

)
=
(
−3u′u− au′′′

0

)
.

Thus a is a constant in time and the geodesic equation is hence the periodic
Korteweg-de Vries equation

ut + 3uxu+ auxxx = 0.

Had we worked on Xc(R) we would have obtained the usual Korteweg-de Vries
equation. The derivation above is direct and does not use the Euler-Poincaré equa-
tions; for a derivation of the Korteweg-de Vries equation from this point of view
see [15], section 13.8.

5.2. The curvature. The computation of the curvature at the identity element
has been done independently by Misiolek [22]; our results of course agree. Here
we proceed with a completely general computation that takes advantage of the
formalism introduced so far. Inserting the matrices of differential- and integral op-
erators ad

(
h
a

)>
, α
(
h
a

)
, and ad

(
h
a

)
etc. given above into formula 3.3(2) and recalling

that the matrix is applied to vectors of the form
(
`
c

)
, where c is a constant, we see

that 4R
((
h1
a1

)
,
(
h2
a2

))
is the following 2×2-matrix whose entries are differential- and

integral operators:

4(h1h
′′
2 − h′′1h2) + 2(a1h

(4)
2 − a2h

(4)
1 )

+(8(h1h
′
2 − h′1h2) + 10(a1h

′′′
2 − a2h

′′′
1 ))∂

+18(a1h
′′
2 − a2h

′′
1)∂2

+(12(a1h
′
2 − a2h

′
1) + 2ω(h1, h2))∂3

−h′′′1 ω(h2) + h′′′2 ω(h1)

2(h′′′1 h
′
2 − h′1h′′′2 )

+2(h1h
(4)
2 − h

(4)
1 h2)

+(a1h
(6)
2 − a2h

(6)
1 )

ω(h2)(4h′1 + 2h1∂ + a1∂
3)

−ω(h1)(4h′2 + 2h2∂ + a2∂
3)

0


.
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Therefore, 4R
((
h1
a1

)
,
(
h2
a2

)) (
h3
a3

)
has the following expression



4(h1h
′′
2 − h′′1h2)h3 + 2(a1h

(4)
2 − a2h

(4)
1 )h3

+ (8(h1h
′
2 − h′1h2) + 10(a1h

′′′
2 − a2h

′′′
1 ))h′3

+ 18(a1h
′′
2 − a2h

′′
1)h′′3 + 12(a1h

′
2 − a2h

′
1)h′′′3

+ 2h′′′3

∫
S1
h′1h

′′
2dx− h′′′1

∫
S1
h′2h

′′
3dx+ h′′′2

∫
S1
h′1h

′′
3dx

+ 2a3(h′′′1 h
′
2 − h′1h′′′2 ) + 2a3(h1h

(4)
2 − h

(4)
1 h2) + a3(a1h

(6)
2 − a2h

(6)
1 )

∫
S1
h′′′3 (a1h

′′′
2 − a2h

′′′
1 )dx

+
∫
S1

2h′3(h1h
′′′
2 − h′′′1 h2 − 2h′1h

′′
2 + 2h′′1h

′
2)dx


which coincides with formula (2.3) in Misiolek [22]. This in turn leads to the
following expression for the sectional curvature

〈
4R
((
h1
a1

)
,
(
h2
a2

)) (
h1
a1

)
,
(
h2
a2

)〉
=

=
∫
S1

(
4(h1h

′′
2 − h′′1h2)h1h2 + 8(h1h

′
2 − h′1h2)h′1h2

+ 2(a1h
(4)
2 − a2h

(4)
1 )h1h2 + 10(a1h

′′′
2 − a2h

′′′
1 )h′1h2

+ 18(a1h
′′
2 − a2h

′′
1)h′′1h2

+ 12(a1h
′
2 − a2h

′
1)h′′′1 h2 + 2ω(h1, h2)h′′′1 h2

− h′′′1 ω(h2, h1)h2 + h′′′2 ω(h1, h1)h2

+ 2(h′′′1 h
′
2 − h′1h′′′2 )a1h2

+ 2(h1h
(4)
2 − h

(4)
1 h2)a1h2

+ (a1h
(6)
2 − a2h

(6)
1 )a1h2

+ (4h′1h1h
′′′
2 + 2h1h

′
1h
′′′
2 + a1h

′′′
1 h
′′′
2

− 4h′2h1h
′′′
1 − 2h2h

′
1h
′′′
1 − a2h

′′′
1 h
′′′
1 )a2

)
dx

=
∫
S1

(
− 4[h1, h2]2 + 4(a1h2 − a2h1)(h1h

(4)
2 − h′1h′′′2 + h′′′1 h

′
2 − h

(4)
1 h2)

− (h′′′2 )2a2
1 + 2h′′′1 h

′′′
2 a1a2 − (h′′′1 )2a2

2

)
dx

+3ω(h1, h2)2.

This formula shows that the sign of the sectional curvature is not constant. Indeed,
choosing h1(x) = sinx, h2(x) = cosx we get −π(8 + a2

1 + a2
2 − 3π) which can be

positive and negative by choosing the constants a1, a2 judiciously.

5.3. Jacobi fields. A Jacobi field y =
(
y
b

)
along a geodesic with velocity field

(
u
a

)
is a solution of the partial differential equation 3.4(1) which in our case looks as
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follows. (
ytt
btt

)
=

[
ad
(
y

b

)>
+ ad

(
y

b

)
, ad

(
u

a

)>](
u

a

)

− ad
(
u

a

)>(
yt
bt

)
− α

(
u

a

)(
yt
bt

)
+ ad

(
u

a

)(
yt
bt

)
=
[(

3yx yxxx
ω(y) 0

)
,

(
2ux + u∂x uxxx

0 0

)](
u

a

)
+
(
−2ux − 4u∂x − a∂3

x −uxxx
ω(u) 0

)(
yt
bt

)
,

which leads to
ytt = −u(4ytx + 3uyxx + ayxxxx)− ux(2yt + 2ayxxx)(1)

− uxxx(bt + ω(y, u)− 3ayx)− aytxxx,
btt = ω(u, yt) + ω(y, 3uxu) + ω(y, auxxx).(2)

Equation (2) is equivalent to:

(2′) btt =
∫
S1

(−ytxxxu+ yxxx(3uxu+ auxxx))dx.

Next, let us show that the integral term in equation (1) is constant:

(3) bt + ω(y, u) = bt +
∫
S1
yxxxu dx =: B1.

Indeed its t-derivative along the geodesic for u (that is, u satisfies the Korteweg-de
Vries equation) coincides with (2′):

btt +
∫
S1

(ytxxxu+ yxxxut) dx = btt +
∫
S1

(ytxxxu+ yxxx(−3uxu− auxxx)) dx = 0.

Thus b(t) can be explicitly solved from (3) as

(4) b(t) = B0 +B1t−
∫ t

a

∫
S1
yxxxu dx dt.

The first component of the Jacobi equation on the Virasoro-Bott group is a genuine
partial differential equation. Thus the Jacobi equations are given by the following
system:

ytt = −u(4ytx + 3uyxx + ayxxxx)− ux(2yt + 2ayxxx)

− uxxx(B1 − 3ayx)− aytxxx,(5)
ut = −3uxu− auxxx,
a = constant,

where u(t, x), y(t, x) are either smooth functions in (t, x) ∈ I×S1 or in (t, x) ∈ I×R,
where I is an interval or R, and where in the latter case u, y, yt have compact
support with respect to x.

Choosing u = c ∈ R, a constant, these equations coincide with (3.1) in Misiolek
[22] where it is shown by direct inspection that there are solutions of this equation
which vanish at non-zero values of t, thereby concluding that there are conjugate
points along geodesics emanating from the identity element of the Virasoro-Bott
group on S1.
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5.4. The weak symplectic structure on the space of Jacobi fields on the
Virasoro Lie algebra. Since the Korteweg - de Vries equation has local solutions
depending smoothly on the initial conditions (and global solutions if a 6= 0), we
expect that the space of all Jacobi fields exists and is isomorphic to the space of all
initial data (R×ω X(S1))× (R×ω X(S1)). The weak symplectic structure is given
in section 3.6:

σ

((
y

b

)
,

(
z

c

))
=
〈(

y

b

)
,

(
zt
ct

)〉
−
〈(

yt
bt

)
,

(
z

c

)〉
+
〈[(

u

a

)
,

(
y

b

)]
,

(
z

c

)〉
−
〈(

y

b

)
,

[(
u

a

)
,

(
z

b

)]〉
−
〈[(

y

b

)
,

(
z

c

)]
,

(
u

a

)〉
=
∫
S1or R

(yzt − ytz + 2u(yzx − yxz)) dx

+ b(ct + ω(z, u))− c(bt + ω(y, u))− aω(y, z)

=
∫
S1or R

(yzt − ytz + 2u(yzx − yxz)) dx(1)

+ bC1 − cB1 − a
∫
S1or R

y′z′′ dx,

where the constant C1 relates to c as B1 does to b, see 5.3.(3) and (4).
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6. Frölicher, A.; Kriegl, A., Linear spaces and differentiation theory, Pure and Applied Mathe-

matics, J. Wiley, Chichester, 1988.

7. Fuks, D. B., Cohomology of infinite dimensional Lie algebras, (Russian), Nauka, Moscow,

1984; English, Contemporary Soviet Mathematics, Consultants Bureau (Plenum Press), New

York, 1986.

8. Gelfand, I.M.; Dorfman, I.Y., Hamiltonian operators and the algebraic structures connected

with them, Funct. Anal. Appl. 13 (1979), 13–30.

9. Kainz, Gerd, A note on the manifold of immersions and its Riemannian curvature, Monat-

shefte für Mathematik 98 (1984), 211-217.

10. Kirillov, A.A., The orbits of the group of diffeomorphisms of the circle, and local Lie super-
algebras, Funct. Anal. Appl. 15 (1981), 135–136.

11. Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry. Vol. I. , J. Wiley-Intersci-
ence, 1963; Vol. II, 1969.

12. Kriegl, A.; Michor, P. W., A convenient setting for real analytic mappings, Acta Mathematica
165 (1990), 105–159.

13. Kriegl, A.; Michor, P. W., Regular infinite dimensional Lie groups, J. Lie Theory (http://ww
w.emis.de/journals/JLT) 7,1 (1997), ESI Preprint 200.



16 PETER W. MICHOR, TUDOR RATIU

14. Kriegl, A.; Michor, P. W., The Convenient Setting for Global Analysis, Surveys and Mono-

graphs 53, AMS, Providence, 1997.
15. Marsden, J; Ratiu, T., Introduction to mechanics and symmetry, Springer-Verlag, New York,

Berlin, Heidelberg, 1994.
16. Michor, P. W., Manifolds of smooth maps, Cahiers Topol. Geo. Diff. 19 (1978), 47–78.

17. Michor, P. W., Manifolds of smooth maps II: The Lie group of diffeomorphisms of a non

compact smooth manifold, Cahiers Topol. Geo. Diff. 21 (1980), 63–86.
18. Michor, P. W., Manifolds of smooth maps III: The principal bundle of embeddings of a non

compact smooth manifold, Cahiers Topol. Geo. Diff. 21 (1980), 325–337.

19. Michor, P. W., Manifolds of differentiable mappings, Shiva, Orpington, 1980.
20. Michor, P. W., Manifolds of smooth mappings IV: Theorem of De Rham, Cahiers Top. Geo.

Diff. 24 (1983), 57–86.

21. Michor, P. W., Gauge theory for diffeomorphism groups, Proceedings of the Conference on
Differential Geometric Methods in Theoretical Physics, Como 1987, K. Bleuler and M. Werner

(eds.), Kluwer, Dordrecht, 1988, pp. 345–371.

22. Misiolek, G., Conjugate points in the Bott-Virasoro group and the KdV equation, Proc. Amer.
Math. Soc. 125 (1997), 935–940.

23. Ovsienko, V.Y; Khesin, B.A., Korteweg–de Vries superequations as an Euler equation, Funct.

Anal. Appl. 21 (1987), 329–331.
24. Segal, G., The geometry of the KdV equation, Int. J. Mod. Phys. A 6 (1991), 2859–2869.

25. Weinstein, Alan, Symplectic manifolds and their Lagrangian manifolds, Advances in Math. 6
(1971), 329–345.

P.W. Michor: Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-

1090 Wien, Austria; and Erwin Schrödinger International Institute of Mathemati-

cal Physics, Pasteurgasse 6/7, A-1090 Wien, Austria.
E-mail address: peter.michor@esi.ac.at

T.S. Ratiu: Department of Mathematics, University of California, Santa Cruz,

CA 95064, USA.
E-mail address: ratiu@math.ucsc.edu


