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Coadjoint orbits in infinite dimensions 2

1. Introduction. Correspondence between coadjoint

orbits and irreducible representations for Lie groups

A symmetry of a classical system is a group G acting on the symplectic manifold
(G,ω) and preserving the symplectic form ω. An elementary classical system is then
a G-orbit, hence a homogeneous symplectic G-space. A symmetry of a quantum
system is a group G acting by projective unitary transformations on a Hilbert
space. Then an elementary quantum system is a projective unitary irreducible
representation of G.

By passing to a central extension of the group, the irreducible projective unitary
representation corresponds to an irreducible unitary representation (see 3.4). By
passing to the universal covering space of the symplectic G-space and to a central
extension of the Lie group, the homogeneous symplectic G-space corresponds to a
homogeneous Hamiltonian one (this means that the fundamental vector fields ζX ,
X ∈ g are Hamiltonian and the action has a moment mapping µ : g → C∞(M,R),
ζX = Hµ(X) which is a Lie algebra homomorphism).

The Kirillov-Kostant-Souriau Theorem assures that each homogeneous Hamil-
tonian G-space is locally isomorphic to a coadjoint orbit of G as Hamiltonian G-
space (see 8.1 for the construction of the symplectic structure on a coadjoint orbit
and the moment map of the coadjoint action). This suggests that there should be
a connection between the coadjoint orbits of a Lie group and its irreducible unitary
representations. Kirillov has found it.

Theorem [Kirillov, 1962]. Let G be a simply connected nilpotent Lie group.
Then:

(1) Each irreducible unitary representation is induced by a 1-dimensional uni-
tary representation of some subgroup.

(2) Any α ∈ g∗ defines an irreducible unitary representation indGH α, where
h is a maximal subalgebra of g such that α|[h,h] = 0, H = exp h and
the 1-dimensional unitary representation on H is given by the character
χ(expX) = e2πiα(X).

(3) The irreducible unitary representations indGH1
α1 and indGH2

α2 are unitarily
equivalent if and only if α1 and α2 lie in the same coadjoint orbit.

For compact simply connected Lie groups, the irreducible representations corre-
spond to integral coadjoint orbits of maximal dimension. By definition, a coadjoint
orbit Oα is integral if the cohomology class of the symplectic form is integral; this
is a necessary and sufficient condition for the existence of a character χ : Gα → S1

that integrates the restriction of α to gα, i.e. χ(expX) = e2πiα(X). (The theorem
says that all the coadjoint orbits of a nilpotent Lie group are integral.)

An integral element α ∈ g for an arbitrary simply connected Lie group induces
a family of irreducible unitary representations having l cyclic parameters, where
l = b1(Oα)=the number of connected components of Oα.

A theorem of Kostant-Auslander says that if G is a simply connected solvable
Lie group with coadjoint orbit space T0 and all coadjoint orbits are integral, then
all irreducible unitary representations are obtained by the above construction from
coadjoint orbits.
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2. Infinite dimensional Lie groups

2.1. Calculus of smooth mappings.
The traditional differential calculus works well for finite dimensional vector

spaces and for Banach spaces. For more general locally convex spaces the main
difficulty is that the composition of linear mappings stops being jointly continuous
at the level of Banach spaces, for any compatible topology. The infinite dimen-
sional calculus used in this work is the Frölicher-Kriegl calculus on convenient vec-
tor spaces: see the book [Frölicher-Kriegl, 1988], which is the general reference for
this section, see also the forthcoming book [Kriegl-Michor] for sections 2.2 and 2.3.

Let E be a locally convex vector space. A curve c : R → E is called smooth if all
derivatives exist and are continuous. Let C∞(R, E) be the space of smooth curves.
It can be shown that C∞(R, E) does not depend on the locally convex topology of
E, only on its associated bornology (system of bounded sets).

The final topologies with respect to the following sets of mappings into E coin-
cide:

(1) C∞(R, E).

(2) Lipschitz curves (so that { c(t)−c(s)
t−s : t ̸= s} is bounded in E).

(3) {EB → E : B bounded absolutely convex in E}, where EB is the linear
span of B equipped with the Minkowski functional pB(x) := inf{λ > 0 :
x ∈ λB}.

(4) Mackey-convergent sequences xn → x (there exists a sequence 0 < λn ↗ ∞
with λn(xn − x) bounded).

This topology is called the c∞-topology on E and is denoted c∞E. In general (on
the space D of test functions for example) it is finer than the given locally convex
topology, it is not a vector space topology, since scalar multiplication is no longer
jointly continuous. The finest among all locally convex topologies on E which are
coarser than c∞E is the bornologification of the given locally convex topology. If
E is a Fréchet space, then c∞E = E.

Definition. Let E be a locally convex vector space. E is said to be a convenient
vector space if one of the following equivalent (completeness) conditions is satisfied:

(1) Any Mackey-Cauchy-sequence (so that (xn − xm) is Mackey convergent to
0) converges. This is also called c∞-complete.

(2) If B is bounded closed absolutely convex, then EB is a Banach space.
(3) Any Lipschitz curve in E is locally Riemann integrable.
(4) For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) with c1 = c′2 (existence of

antiderivative).

Fréchet spaces are convenient.

Lemma. Let E be a locally convex space. Then the following properties are equiv-
alent:

(1) E is c∞-complete.
(2) If f : Rn → E is scalarwise Lipk, then f is Lipk, for k > 1.
(3) If f : R → E is scalarwise C∞ then f is C∞.
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Here a mapping f : Rn → E is called Lipk if all partial derivatives up to order k
exist and are Lipschitz, locally on Rn and f scalarwise C∞ means that λ ◦ f is C∞

for all continuous linear functionals on E. This lemma says that on a convenient
vector space one can recognize smooth curves by investigating compositions with
continuous linear functionals.

Definition. Let E and F be locally convex vector spaces. A mapping f : E → F
is called smooth, if f ◦ c ∈ C∞(R, F ) for all c ∈ C∞(R, E); so f∗ : C∞(R, E) →
C∞(R, F ) makes sense. Let C∞(E,F ) denote the space of all smooth mapping
from E to F .

For E and F finite dimensional this gives the usual notion of smooth mappings:
this was first proved in [Boman, 1967]. Constant mappings are smooth. Multilinear
mappings are smooth if and only if they are bounded. Therefore we denote by
L(E,F ) the space of all bounded linear mappings from E to F .

We equip the space C∞(R, E) with the bornologification of the topology of uni-
form convergence on compact sets, in all derivatives separately. Then we equip the
space C∞(E,F ) with the bornologification of the initial topology with respect to
all mappings c∗ : C∞(E,F ) → C∞(R, F ), c∗(f) := f ◦ c, for all c ∈ C∞(R, E).

Lemma. For locally convex spaces E and F we have:

(1) If F is convenient, then also C∞(E,F ) is convenient, for any E. The space
L(E,F ) is a closed linear subspace of C∞(E,F ), so it is also convenient.

(2) If E is convenient, then a curve c : R → L(E,F ) is smooth if and only if
t 7→ c(t)(x) is a smooth curve in F for all x ∈ E.

The category of convenient vector spaces and smooth mappings is cartesian
closed: we have a natural bijection C∞(E × F,G) ∼= C∞(E,C∞(F,G)), which is
even a smooth diffeomorphism. Other canonical mappings like evaluation, insertion
and composition are also smooth.

Theorem. Let E and F be convenient vector spaces. Then the differential oper-
ator

d : C∞(E,F ) → C∞(E,L(E,F )),

df(x)v := lim
t→0

f(x+ tv)− f(x)

t
,

exists and is linear and bounded (smooth). Also the chain rule holds:

d(f ◦ g)(x)v = df(g(x))dg(x)v.

If one wants the cartesian closedness and assumes some other obvious properties,
then the calculus of smooth functions is already uniquely determined. There are,
however, smooth mappings which are not continuous. For example the evaluation
E × E′ → R is jointly continuous if and only if E is normable, but it is always
smooth. Clearly smooth mappings are continuous for the c∞-topology.
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2.2. Infinite dimensional manifolds.
Infinite dimensional smooth manifolds are defined by gluing c∞-open sets in

convenient vector spaces via smooth diffeomorphisms. Then we equip them with the
identification topology with respect to the c∞-topologies on the modeling spaces.
We require this topology to be Hausdorff and regular.

A manifold is metrizable if and only if it is paracompact and modeled on Fréchet
spaces. If the metrizable manifold is modeled on nuclear convenient spaces, then it
admits smooth partitons of unity subordinated to locally finite open covers.

A subset N of a manifold M is called a submanifold if around each point of N
there exists a chart (U, u) of M such that u(U ∩ N) = u(U) ∩ FU , where FU is a
closed linear subspace of the convenient model space EU . N is called a splitting
submanifold if all FU are complemented subspaces of EU .

Definition. Let M be a manifold with a smooth atlas (uα : Uα → Eα). The space
of equivalence classes

⊔
α Uα × Eα × {α}

/
∼ where (x, v, α) ∼ (y, w, β) if and only

if x = y and d(uαβ)(uβ(x))w = v is called the kinematic tangent bundle.

This is the same as defining tangent vectors as equivalence classes of curves, but
we do not obtain the same tangent space wenn taking derivations (then we get the
operational tangent bundle).

Theorem. Let M and N be smooth finite dimensional manifolds. Then the space
C∞(M,N) of all smooth mappings from M to N is a smooth manifold, modeled
on spaces C∞

c (f∗TN) of smooth vector fields with compact support on N along f .

The construction of an atlas for C∞(M,N): Choose a smooth Riemannian metric
on N and let exp be the smooth exponential mapping of this Riemannian metric.
There exists a smooth diffeomorphism onto an open neighborhood V of the diagonal
(πN , exp) : U ⊂ TN → N ×N . For f ∈ C∞

c (M,N) let

Uf := {g ∈ C∞(M,N) : (f(x), g(x)) ∈ V, ∀x ∈M,f = g off some compact},
uf : Uf → C∞

c (f∗TN),

uf (g)(x) = exp−1
f(x)(g(x)) = ((πN , exp)

−1 ◦ (f, g))(x).

Then uf is a bijective mapping from Uf onto the set of vector fields along f with

image in U ⊂ TN , whose inverse is u−1
f (s) = exp ◦s. The set uf (Uf ) is open in

C∞
c (f∗TN) with the inductive limit topology of C∞

K (f∗TN) where K runs through
all compact sets in M and C∞

K (f∗TN) has the topology of uniform convergence in
all derivatives separately. This is a convenient vector space and the chart change
mappings are smooth. This smooth structure does not depend on the choice of the
Riemannian metric.

Lemma. The smooth curves in C∞(M,N) correspond exactely to the smooth
mappings ĉ ∈ C∞(R×M,N) satisfying the property: (*) for each compact interval
[a, b], there is a compact K in M such that ĉ(t, x) is constant in t ∈ [a, b] for all
x ∈M −K.

Proof. Since R is locally compact, to show (*) for each compact interval is the same
as to show (*) locally around each t ∈ R. Hence it suffices to describe the smooth
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curves in the modeling space C∞
c (E), where (E, p,M, V ) is a vector bundle, C∞

c (E)
being equipped with the inductive limit topology inj limC∞

K (E) over all compact
subsets of M . This is a strict injective limit, so smooth curves locally factor to
smooth maps in some C∞

K (E). Now we apply the cartesian closedness property for
each vector bundle chart (Uα, ψα) of E and get smooth maps R × Uα → V which
fit together to a smooth map R×M → E with support in R×K. �
2.3. Infinite dimensional Lie groups.

Definition. An infinite dimensional Lie group G is a smooth manifold and a group
such that the multiplication µ : G×G→ G and the inversion ν : G→ G are smooth.

We shall use the following notation:
µ : G×G→ G, multiplication, µ(x, y) = x.y.
µa : G→ G, left translation, µa(x) = a.x.
µa : G→ G, right translation, µa(x) = x.a.
ν : G→ G, inversion, ν(x) = x−1.
e ∈ G, the unit element. The kinematic tangent mapping T(a,b)µ : TaG × TbG →
TabG is given by

T(a,b)µ.(Xa, Yb) = Ta(µ
b).Xa + Tb(µa).Yb.

and Taν : TaG→ Ta−1G is given by

Taν = −Te(µa−1

) ◦ Ta(µa−1) = −Te(µa−1) ◦ Ta(µa−1

).

Invariant vector fields and Lie algebras. Let G be a Lie group. A (kinematic)
vector field ξ on G is called left invariant, if µ∗

aξ = ξ for all a ∈ G, where µ∗
aξ =

T (µa−1) ◦ ξ ◦ µa. Since we have µ∗
a[ξ, η] = [µ∗

aξ, µ
∗
aη], the space XL(G) of all left

invariant vector fields on G is closed under the Lie bracket, so it is a Lie subalgebra
of X (G). Any left invariant vector field ξ is uniquely determined by ξ(e) ∈ TeG,
since ξ(a) = Te(µa).ξ(e). Thus the Lie algebra XL(G) of left invariant vector fields
is linearly isomorphic to TeG, and on TeG the Lie bracket on XL(G) induces a Lie
algebra structure, whose bracket is again denoted by [, ]. This Lie algebra will be
denoted as usual by g.

We will also give a name to the isomorphism with the space of left invariant
vector fields: L : g → XL(G), X 7→ LX , where LX(a) = Teµa.X. Thus [X,Y ] =
[LX , LY ](e).

A vector field η on G is called right invariant, if (µa)∗η = η for all a ∈ G. If
ξ is left invariant, then ν∗ξ is right invariant, since ν ◦ µa = µa−1 ◦ ν implies that
(µa)∗ν∗ξ = (ν◦µa)∗ξ = (µa−1◦ν)∗ξ = ν∗(µa−1)∗ξ = ν∗ξ. The right invariant vector
fields form a sub Lie algebra XR(G) of X (G), which is again linearly isomorphic to
TeG and induces also a Lie algebra structure on TeG. Since ν∗ : XL(G) → XR(G)
is an isomorphism of Lie algebras, Teν = −Id : TeG→ TeG is an isomorphism be-
tween the two Lie algebra structures. We will denote by R : g = TeG→ XR(G) the
isomorphism discussed, which is given by RX(a) = Te(µ

a).X. We have [LX , RY ] =
0, thus the flows of LX and RY commute.

Let φ : G → H be a smooth homomorphism of Lie groups. Then φ′ := Teφ :
g = TeG→ h = TeH is a Lie algebra homomorphism.
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Definition. A Lie subgroup H of a group G is a subgroup of G which is also a
submanifold. It follows that H is itself a Lie group.

A global flow for a vector field ξ on a manifold M is a smooth mapping Flξ :
R×M →M with the following properties:

(1) d
dt Fl

ξ(t, x) = ξ(Flξ(t, x));

(2) Flξ(0, x) = x;

(3) Flξ(t+ s, x) = Flξ(t,Flξ(s, x)).

For Banach manifolds the last relation follows from the first two. If the flow of a
vector field exists, then it is unique.

Definition. Let G be a Lie group with Lie algebra g. We say that G admits
an exponential mapping if there exists a smooth mapping exp : g → G such that
t 7→ exp(tX) is the 1-parameter subgroup with tangent vector X at 0. Then we
have also:

(1) The exponential map is unique, since if α, β are 1-parameter subgroups with
α′(0) = β′(0) = X, then d

dtα(t)β(t)
−1= Tµα(t)Tµ

β(−t) d
ds |0α(s)β(−s)= 0.

(2) FlLX (t, x) = x. exp(tX).

(3) FlRX (t, x) = exp(tX).x.
(4) exp(0) = e and T0 exp = Id : T0g = g → TeG = g since T0 exp .X =

d
dt |0 exp(0 + t.X) = d

dt |0 Fl
LX (t, e) = X.

(5) Let φ : G → H be a smooth homomorphism of between Lie groups admit-
ting exponential mappings. Then the diagram

g w
φ′

u
expG

h

u
expH

G w
φ

H

commutes, since t 7→ φ(expG(tX)) is a one parameter subgroup of H and
d
dt |0φ(exp

G tX) = φ′(X), so φ(expG tX) = expH(tφ′(X)).

The adjoint representation. Let G be a Lie group with Lie algebra g. For
a ∈ G we define conja : G → G by conja(x) = axa−1. It is called the conjugation
or the inner automorphism by a ∈ G. This defines a smooth action of G on itself
by automorphisms.

The adjoint representation Ad : G → GL(g) is given by Ad(a) = (conja)
′ =

Te(conja) : g → g for a ∈ G. So Ad(a) is a Lie algebra homomorphism and Ad(a) =

Te(conja) = Ta(µ
a−1

).Te(µa) = Ta−1(µa).Te(µ
a−1

). The coadjoint representation
Ad∗ : G → GL(g∗) is the dual of the adjoint representation: ⟨Ad∗(a)α,X⟩ =
⟨α,Ad(a−1)X⟩ for for every X ∈ g.

Finally we define the (lower case) adjoint representation of the Lie algebra g,
ad : g → gl(g) := L(g, g), by ad := Ad′ = Te Ad.

Like in the finite dimensional case we have:

(1) LX(a) = RAd(a)X(a) for X ∈ g and a ∈ G.
(2) ad(X)Y = [X,Y ] for X,Y ∈ g.
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Theorem. [Grabowski, 1993] Let G be a Lie group with exponential mapping
exp : g → G. Then for all X,Y ∈ g we have

TX exp .Y = TeµexpX .

∫ 1

0

Ad(exp(−tX))Y dt

= Teµ
expX .

∫ 1

0

Ad(exp(tX))Y dt

Remark. If G is a Banach Lie group then the series Ad(exp(tX)) =
∑∞

i=0
ti

i! ad(X)i,
so that we get the usual formula

TX exp = Teµ
expX .

∞∑
i=0

1
(i+1)! ad(X)i.

It is not true in general that every convenient Lie agebra is the Lie algebra of
a convenient Lie group. Also not every Lie subalgebra in the Lie algebra of a Lie
group has a corresponding Lie subgroup.

3. Central extensions of Lie groups and
the coadjoint action in the extended group

3.1. Lie algebra cohomology and central extensions.
Let a be a linear representation of the Lie algebra g in Rp and Ck(g,Rp) the

space of k-multilinear skew-symmetric mappings from g×· · ·× g (k times) to Rp.
We define da : Ck(g,Rp) → Ck+1(g,Rp) by

daω(X0, . . . , Xk) =

k∑
i=0

(−1)ia(Xi)ω(X0, . . . , X̂i, . . . , Xk)

+
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

Because da ◦ da = 0, we obtain by the usual procedure the cohomology groups
Hk

a (g,Rp) of the Lie algebra g with values in Rp.
A central extension of the Lie algebra g by Rp is a central exact sequence of Lie

algebras:
0 −→ Rp −→ g̃ −→ g −→ 0.

The word central means that Rp lies in the center of g̃, i.e. [Rp, g̃] = 0.

Proposition. There is a one-to-one correspondence between equivalence classes of
central extensions of g by Rp and the second cohomology group H2(g,Rp) (here we
consider the trivial representation of g on Rp).

Proof. Let g̃ be such an extension and s : g → g̃ a linear splitting which permits
the identification of g̃ with g× Rp as vector spaces. Because [Rp, g̃] = 0, we have[(

ξ

λ

)
,

(
η

µ

)]
=

[(
ξ

0

)
,

(
η

0

)]
=:

(
[ξ, η]

ω(ξ, η)

)
, ξ, η ∈ g, λ, µ ∈ Rp.
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Concretely: ω(ξ, η) = [s(ξ), s(η)] − s([ξ, η]). This defines the bilinear symmetric
map ω : g × g → Rp. The Jacobi identity in g̃ is equivalent with the cocycle
condition:

ω(ξ, [η, ζ]) + ω(η, [ζ, ξ]) + ω(ζ, [ξ, η]) = 0.

Another splitting will define a cocycle cohomologous to ω, so to every central ex-
tension g̃, we can associate the class [ω] ∈ H2(g,Rp). If two central extensions g̃1
and g̃2 are equivalent, i.e. there exists a Lie algebra homomorphism Φ : g̃1 → g̃2
such that

0 w Rp w4
4
4
46

g̃1 w

u
Φ

g w 0,

g̃2

h
h
hhj

then the two associated cocycles differ by a coboundary ∂τ , where the linear map
τ : g → Rp is defined by Φ

(
ξ
0

)
=:
(

ξ
τ(ξ)

)
. Indeed:

(
[ξ, η]

ω2(ξ, η)

)
=

[
Φ

(
ξ

0

)
,Φ

(
η

0

)]
2

= Φ

([(
ξ

0

)
,

(
η

0

)]
1

)
= Φ

(
[ξ, η]

ω1(ξ, η)

)
=

(
[ξ, η]

ω1(ξ, η) + τ([ξ, η])

)
.

Hence ω2 = ω1 + dτ . �

If G is a compact connected Lie group with Lie algebra g, then the cohomology
of G equals the cohomology of the Lie algebra g: Hk(G) = Hk(g,R). General
extensions of g with Rp, i.e. 0 → Rp → g̃ → g → 0 where Rp is an ideal in g̃, are in
correspondence with elements of H2

a(g,Rp), the representation a being defined by
a(ξ)λ = [λ, s(ξ)] ∈ Rp, ξ ∈ g, λ ∈ Rp.

3.2. Lie group cohomology and central extensions.
Let G be a Lie group and E an abelian Lie group and G-module by some action

A of G on E. We define the cohomology groups Hk
A(G,E) as the cohomology of

the following cochain complex

Ck(G,E) := {c : Gk → E : c smooth}
dAc(g1, . . . , gk+1) := A(g1)c(g2, . . . , gk+1)

+
k∑

i=1

(−1)ic(g1, . . . , gi−1, gigi+1, gi+2, . . . , gk+1)

+ (−1)k+1c(g1, . . . , gk).

Another way to define the cohomology groups Hk
A(G,E) is by using the smooth

homogeneous k-cochains

C̃k
A(G,E) = {c̃ : Gk+1 → E : c̃(gg0, . . . , ggk) = A(g)c̃(g0, . . . , gk)}
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and d̃c̃(g0, . . . , gk+1) =
∑k+1

i=0 (−1)ic̃(g0, . . . , ĝi, . . . , gk+1). The isomorphism be-

tween Ck and C̃k is given by:

c(g1, . . . , gk) = c̃(e, g1, g1g2, . . . , g1 . . . gk)

c̃(g0, . . . , gk) = A(g0)c(g
−1
0 g1, . . . , g

−1
k−1gk).

A central extension of the Lie group G by E is a central exact sequence of Lie
groups

1 −→ E −→ G̃ −→ G −→ 1,

i.e. E lies in the center of G̃.

Proposition. There is a one-to-one correspondence between equivalence classes of
central extensions of G by E which admit a global smooth section, and the second
cohomology group H2(G,E), considering E as a trivial G-module.

Proof. Let G̃ be a central extension of G by E, and S : G→ G̃ a smooth splitting
of the exact sequence. We define the corresponding group cocycle by c(g, h) =
S(g)S(h)S(gh)−1, i.e.(

g

e

)(
h

e

)
=

(
gh

c(g, h)

)
, c : G×G→ E.

Using the property E ⊂ Z(G̃), we obtain that the group multiplication in G̃ is:(
g

z

)(
h

v

)
=

(
gh

zvc(g, h)

)
.

The associativity of this multiplication is equivalent with

c(g2, g3)c(g1g2, g3)
−1c(g1, g2g3)c(g1, g2)

−1 = 1

which means c is a cocycle.
The cocycle c depends on the splitting, but not its cohomology class [c] ∈

H2(G,E). Indeed, let S, S′ : G → G̃ be two splittings. They differ by elements
in E, so there exists a map t : G → E such that S′ = tS. Then c′(g, h) =
c(g, h)t(g)t(h)t(gh)−1 = dt(g, h) = c(g, h)dt(g, h).

So, to every central extension G̃, we have associated a class [c] ∈ H2(G,E). Like
in the Lie algebra case we can prove that equivalent extensions lead to the same
cohomology class. �

General extensions

1 −→ E −→ G̃ −→ G −→ 1

with E a normal subgroup of G, are in correspondence with elements of H2
A(G,E),

where the G-module structure of E is given by: A(g)v := S(g)vS(g)−1 ∈ E, g ∈
G, v ∈ E.
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3.3. How to obtain the Lie algebra cocycle from the group cocycle.
Let g = Lie(G),Rp = Lie(E) and g̃ = Lie(G̃). By differentiating at e the central

extension of G by E:
1 −→ E −→ G̃ −→ G −→ 1,

we obtain a central extension of g by Rp:

0 −→ Rp −→ g̃ −→ g −→ 0.

Proposition. The relation between the group cocycle c defined by the section S
and the Lie algebra cocycle ω defined by the section s = dSe is ω(ξ, η) = c̈(ξ, η)−
c̈(η, ξ), where c̈(ξ, η) := ∂1∂2c(e, e)(ξ, η).

There exists in general a map f ∈ Ck(G,E) 7→ [f ] ∈ Ck(g,Rp) defined by
[f ](ξ1, . . . , ξk) =

∑
σ∈Sk

sgn(σ)∂1 . . . ∂kf(e, . . . , e)(ξ
σ(1), . . . , ξσ(k)), which induces a

map between the cohomology groups.

Proof. If G is a compact Lie group it can be realised as a matrix group and the

exponential map is eξ = 1 + ξ + ξ2

2 + · · · .
The Taylor expansion of the cocycle c at (1, 1) is

c(1 + tξ, 1 + tη) = 1 + t2∂1∂2c(1, 1)(ξ, η) + o(t2) = 1 + t2c̈(ξ, η) + o(t2)

because of the property: c(g, 1) = c(1, g) = 1.
We use

etξetη − etηetξ = t2(ξη − ηξ) + o(t2)

= t2[ξ, η] + o(t2), ξ, η ∈ g

to compute the bracket in the extended Lie algebra:

et(
ξ
0)et(

η
0) − et(

η
0)et(

ξ
0) =

(
etξ

1

)(
etη

1

)
−
(
etη

1

)(
etξ

1

)
=

(
etξetη − etηetξ

c(etξ, etη)− c(etη, etξ)

)
= t2

(
[ξ, η]

c̈(ξ, η)− c̈(η, ξ)

)
+ o(t2),

hence [(ξ
0

)
,

(
η

0

)]
=

(
[ξ, η]

c̈(ξ, η)− c̈(η, ξ)

)
,

which was to be proved. �
3.4. Projective representations.

A projective representation of the group G is a representation of G into the
projective unitary group PU(H) = U(H)/S1, where H denotes a Hilbert space.
This means a map T : G→ U(H) such that

T (g1g2) = c(g1g2)
−1T (g1)T (g2), g1, g2 ∈ G
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with c(g1, g2) ∈ S1. It corresponds to a unitary representation T̃ of the central

extension G̃ of G by S1, defined by the cocycle c. The representation is defined by
T̃
(
g
z

)
:= zT (g), where z ∈ S1, g ∈ G. Then

T̃

((
g1
z1

)(
g2
z2

))
= z1z2c(g1, g2)T (g1g2) = z1z2T (g1)T (g2) = T̃

(
g1
z1

)
T̃

(
g2
z2

)
.

Conversely, every unitary representation T̃ of G̃ such that T̃ (z) = z Id for every

z ∈ S1, defines a projective representation of G. Let S : G→ G̃ be a splitting such
that c(g1, g2) = S(g1)S(g2)S(g1g2)

−1. We define T (g) = T̃ (S(g)). Then

T (g1g2) = T̃ (S(g1g2)) = T̃ (c(g1g2)
−1S(g1)S(g2)) = c(g1, g2)

−1T (g1)T (g2).

3.5. Coadjoint action in the extended group.
Let G̃ be the central extension of G by S1 with the cocycle c : G × G → S1.

Setting g3 = e in the cocycle condition (2.4) we get c(g1g2, e) = c(g2, e) = c(e, e) =

1, and setting g1 = g3 = g−1
2 we get c(g, g−1) = c(g−1, g). The inverse in G̃ is(

g

z

)−1

=

(
g−1

z−1c(g, g−1)−1

)
, g ∈ G, z ∈ S1.

The conjugation in G̃ is

conj

(
g

z

)(
h

v

)
=

(
ghg−1

vc(g, h)c(g, g−1)−1c(gh, g−1)

)
h ∈ G, v ∈ S1.

The adjoint action in G̃ is

Ad

(
g

z

)(
ξ

λ

)
= Te

(
Conj

(
g

z

))(
ξ

λ

)

=

 Ad(g)ξ
λc(g, e)c(g, g−1)−1c(g, g−1) + [d2c(g, e)c(g, g

−1)−1c(g, g−1)]ξ+
+[c(g, e)c(g, g−1)−1d1c(g, g

−1)]Teλg.ξ


=

(
Ad(g)ξ

λ+ [d2c(g, e) + c(g, g−1)−1d1c(g, g−1)Teλg].ξ

)
, for ξ ∈ g, λ ∈ R.

We define h : G→ g∗ by

h(g−1) := d2c(g, e) + c(g, g−1)−1d1c(g, g
−1)Teλg.

Because the adjoint action of G̃ is really an action of G, we write

Ad(g)

(
ξ

λ

)
=

(
Ad(g)ξ

λ+ ⟨h(g)−1, ξ⟩

)
Here ⟨, ⟩ denotes the pairing between the Lie algebra and its dual.
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The coadjoint action is:

⟨Ad∗(g)(p, c),
(
ξ

λ

)
⟩ = ⟨(p, c),Ad(g−1)

(
ξ

λ

)
⟩

= ⟨(p, c),
(

Ad(g−1)ξ

λ+ ⟨h(g), ξ⟩

)
⟩

= ⟨p,Ad(g−1)ξ⟩+ cλ+ c⟨h(g), ξ⟩

= ⟨(Ad∗(g)p+ ch(g), c),

(
ξ

λ

)
⟩, p ∈ g∗, c ∈ R.

Hence

Ad∗(g)(p, c) = (Ad∗(g)p+ ch(g), c).

Using the fact that Ad∗ is a group action on g̃∗, we get that h is a 1-cocycle of
G with values in the G-module g∗ via the coadjoint action.

h(g1g2) = Ad∗(g1)h(g2) + h(g1), so [h] ∈ H1
Ad∗(G, g∗).

3.6. Another way to compute the coadjoint action in G̃.

Let G be a connected Lie group with Lie algebra g and ω : g× g → R a fixed Lie
algebra cocycle, this means ω ∈ Z2(g) ⊂ ∧2g∗. The coadjoint action Ad∗ induces
an action of G on ∧2g∗ denoted also by Ad∗ and then an action on Z2(g), because
every Ad(g) is a Lie algebra homomorphism.

Proposition [Kirillov, 1982]. The mapping α : g̃∗ → Z2(g) defined by α(p, c) :=
dp− cω, p ∈ g∗, c ∈ R is G-equivariant. This is equivalent to

dh(g) = ω −Ad∗(g)ω,

where h is the map defined in 3.5.

Proof. Because G is connected, it suffices to verify that α is a g-equivariant map-
ping. The ad∗-action on g̃∗ is ad∗(ξ)(p, c) = (Lξp− ciξω, 0). Indeed

⟨ad∗(ξ)(p, c),
(
η

µ

)
⟩ = ⟨(p, c),−

(
[ξ, η]

ω(ξ, η)

)
⟩

= −⟨p, [ξ, η]⟩ − cω(ξ, η) = ⟨ad∗(ξ)p− ciξω, η⟩.

The g-equivariance means

α(ad∗(ξ)(p, c)) = Lξ(α(p, c))

⇔ d(Lξp− ciξω) = Lξ(dp− cω)

and this is satisfied because d commutes with the Lie derivative and (d◦iξ)ω = Lξω,
ω being a cocycle.
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So we get the G-equivariance, which means

α(Ad∗(g)(p, c)) = Ad∗(g)(α(p, c))

⇔ α(Ad∗(g)p+ ch(g), c) = Ad∗(g)(dp− cω)

⇔ d(Ad∗(g)p) + cdh(g)− cω = dAd∗(g)p− cAd∗(g)ω

⇔ dh(g) = ω −Ad∗(g)ω. �

It follows in particular that the cocycles ω and Ad∗(g)ω belong to the same
cohomology class.

Remark. If the Lie algebra g obeys to the condition H1(g) = 0, then h(g) ∈ g∗

is uniquely determined by dh(g). The proposition and the results in 3.5 give the

coadjoint action in G̃. This condition is also equivalent to the fact that g is perfect,
i.e. the commutator algebra is the whole algebra:

f ∈ Z1(g) ⇔ f ∈ g∗ and ⟨f, [ξ, η]⟩ = 0, ∀ξ, η ∈ g

⇔ f ∈ g∗ and f |[g, g] ≡ 0

Hence H1(g) = Z1(g) = 0 ⇔ [g, g] = g.
Examples of perfect Lie algebras:

–the semisimple algebras;
–C∞

c (M, h) with M a smooth manifold and h a finite dimensional Lie algebra such
that [h, h] = h (see chapter 4);
–Vectc(M), the Lie algebra of compactly supported vector fields on a smooth man-
ifold M (see chapter 5);
–certain subalgebras of Vect(M) for a smooth manifold M (see chapter 9).

4. Current groups, loop groups

4.1. Some facts.
The current group C∞

c (M,H) is the space of smooth mappings with compact
support from a finite dimensional smooth manifold M into a finite dimensional Lie
group H, i.e. mappings which equal constantly the unit element in H outside a
compact set of M , with pointwise multiplication. This is an infinite dimensional
Lie group: like in 2.2 we endow C∞

c (M,H) with a smooth manifold structure and
it remains only to show that multiplication and inversion are smooth

µ : (φ,ψ) ∈ C∞
c (M,H)× C∞

c (M,H) 7→ µH ◦ (φ,ψ) ∈ C∞
c (M,H)

ν : φ ∈ C∞
c (M,H) 7→ νH ◦ φ ∈ C∞

c (M,H).

We do this by showing that they map smooth curves into smooth curves. Let (c1, c2)
be a smooth curve in C∞

c (M,H)×C∞
c (M,H). Then (µ ◦ (c1, c2))̂ = µH ◦ (ĉ1, ĉ2) :

R ×M → H is smooth and because of the compact support it has automatically
property (*) from 2.2, hence µ ◦ (c1, c2) is a smooth curve. The same is true for ν.
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The Lie algebra is C∞
c (M, h) with the inductive limit topology of C∞

K (M, h), where
K runs through all compact sets in M and each C∞

K (M, h) has the topology of
uniform convergence on K in all derivatives separately. This is a convenient vector
space and if M is compact it is a Fréchet space.

The loop group of H is by definition LH := C∞(S1,H) and its Lie algebra is
denoted by Lh. This is a Fréchet Lie group.

The exponential map exp : C∞
c (M, h) → C∞

c (M,H) is just composition with the
exponential map on H. Therefore it is smooth and it is a local diffeomorphism near
the identity. Even if the exponential map of H is surjective, the exponential map

on LH is not always surjective. An example is provided by z ∈ S1 7→
(
z 0
0 z−1

)
∈

SU(2). For if g = exp ξ for some ξ ∈ Lh, then ξ must commute with g and hence ξ

must be diagonal, i.e. z ∈ S1 7→
(
iϑ(z) 0
0 −iϑ(z)

)
∈ su(2) but there is no smooth

function ϑ : S1 → R such that eiϑ(z) = z. But if H is compact, the exponential
image of Lh is dense in the identity component of LH.

In the same way one can show that C∞
c (E), the space of smooth sections with

compact support of a locally trivial bundle E with a Lie group G as fiber, is an
infinite dimensional Lie group. An example is the Gauge group: Let (P, p,M,G) be
a principal bundle with compact base space M ; then G acts on P by the principal
right action and onG by conjugation. The group of principal bundle automorphisms
of P over the identity on M is called the Gauge group and it is isomorphic to
C∞(P,G)G = C∞(P [G, conj]). Its Lie algebra is C∞(P, g)G = C∞(P [g,Ad]).

4.2. Central extensions of Lh.
Let H be a compact connected Lie group and h its Lie algebra. One can always

find an H-invariant scalar product ⟨, ⟩h on h by choosing any scalar product on h
and integrating over H

⟨ξ, η⟩h =

∫
H

⟨Ad∗(h)ξ,Ad∗(h)η⟩dh.

On the Lie algebra level the invariance of the scalar product is written

⟨[ξ, η], ζ⟩h = ⟨ξ, [η, ζ]⟩h, ∀ξ, η, ζ ∈ h.

Proposition. The form ω(ξ, η) :=
∫
S1

⟨ξ(t), η′(t)⟩hdt on Lh is a Lie algebra cocycle

invariant under conjugation with constant loops and under the action of Diff+(S
1).

Proof.
1.The cocycle identity is ω([ξ, η], ζ) + ω([η, ζ], ξ) + ω([ζ, ξ], η) = 0. Using the

bilinearity of the Lie bracket and then the invariance of the scalar product, we get

ω([ξ, η], ζ) = −
∫
S1

⟨ζ, [ξ, η]′⟩

= −
∫
S1

⟨ζ, [ξ′, η]⟩h −
∫
S1

⟨ζ, [ξ, η′]⟩h

= −
∫
S1

⟨[η, ζ], ξ′⟩h −
∫
S1

⟨[ζ, ξ], η′⟩h

= −ω([η, ζ], ξ)− ω([ζ, ξ], η).
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2.The H-invariance of ω follows from the H-invariance of ⟨, ⟩h.
3.The Diff+(S

1)-invariance. The action of Diff+(S
1) on Lh is by composition on

the right. Then

ω(φ · ξ, φ · η) =
∫
S1

⟨ξ(φ(t)), η′(φ(t))φ′(t)⟩hdt

=

∫
S1

⟨ξ(ϑ), η′(ϑ)⟩hφ′(φ−1(ϑ))|(φ−1)′(ϑ)|dϑ = ω(ξ, η),

where φ ∈ Diff+(S
1) and φ′ : S1 → R+ is defined by Ttφ.

d
dt = φ′(t). ddt

∣∣
φ(t)

. �

Theorem [Pressley-Segal, 1986]. The only continuous H-invariant cocycles ω on
Lh, where H is compact and semisimple, are of the form

ω(ξ, η) =

∫
S1

⟨ξ, η′⟩h, ξ, η ∈ Lh

with ⟨, ⟩h an invariant scalar product on h.

First we need a

Lemma. If H is a compact and semisimple Lie group, then every H-invariant
bilinear map α : hC × hC → C is symmetric.

Proof. Let h = ⊕hi be the decomposition of the semisimple Lie algebra h into a
direct sum of simple Lie algebras. The H-equivariant linear map induced by α,
denoted α̂ : hC = ⊕hi,C → h∗C = ⊕h∗i,C decomposes, by Schur’s lemma, (because the

H-modules hi are non-isomorphic), into a sum of H-equivariant maps : α̂ = ⊕α̂i,
α̂i : hi,C → h∗i,C.

We have reduced the problem to the case of a compact and simple group. Here
the adjoint action of H on hC is irreducible because the fact that hC has no ideals
implies that the ad-action, which is the differential of the Ad-action, is irreducible.
Then the coadjoint action is also irreducible. By the Schur lemma all the H-
equivariant linear maps : hC → h∗C differ by a complex factor. On the other hand
there is a choice which corresponds to a symmetric map : hC × hC → C. So any
choice of α is symmetric. �
Proof of the theorem. Let ω : Lh × Lh → R be a cocycle and ω : LhC × LhC → C
its complex extension. Every ξ ∈ Lh can be expanded in a Fourier series ξ(t) =∑

n∈Z ξne
int, ξn ∈ hC. The H-invariant, complex, bilinear maps ωp,q on hC defined

by ωp,q(ξ, η) = ω(ξeipt, ηeiqt) completely determine the cocycle ω. By the lemma,
ωp,q is symmetric. Together with the antisymmetry of ω this implies ωp,q = −ωq,p.

The cocycle identity gives

ωp+q,r([ξ, η], ζ) + ωq+r,p([η, ζ], ξ) + ωr+p,q([ζ, ξ], η) = 0.

Applying the H-invariance of ωp,q, we get

(ωp+q,r + ωq+r,p + ωr+p,q)([ξ, η], ζ) = 0.
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But the semisimplicity of h assures that [h, h] = h. Hence

ωp+q,r + ωq+r,p + ωr+p,q = 0.

Setting q = r = 0 we find ωp,0 = 0. Setting r = −p − q we find ωp,−p = pω1,−1.
Setting r = n−p− q we find ωn−k,k = kωn−1,1. This implies 0 = ω0,n = nωn−1,1 =
n
kωn−k,k, so ωp,q = 0 if p+ q ̸= 0. Now

ω(ξ, η) =
∑
p,q

ωp,q(ξp, ηq) =
∑
p

pω1,−1(ξp, η−p)

=
1

i

∑
p,q

δ(p+ q)iqω1,−1(ξp, ηq) =
i

2π

2π∫
0

ω1,−1(ξ(t), η
′(t))dt

is of the required form. �

In 3.6 we saw that for any Lie algebra cocycle ω, [Ad∗(g)ω] = [ω], g ∈ G. Then
by averaging ω over H, the group of constant loops, we get an H-invariant cocycle∫
H

Ad∗(h)ωdh in the same cohomology class. Hence the H-invariance is not really

a restriction.

4.3. The coadjoint action of LH on L̃h.

Let H be a connected compact Lie group. An invariant scalar product ⟨, ⟩h on

h defines an LH-invariant form on Lh: ⟨ξ, η⟩ =
∫ 2π

o
⟨ξ(t), η(t)⟩hdt and a cocycle

ω(ξ, η) = ⟨ξ, η′⟩.
We compute the coadjoint action in the extended Lie algebra using the result

from 3.6 and that [Lh, Lh] = Lh, which follows from the following proposition.

Proposition. If h is a finite dimensional Lie algebra with [h, h] = h, then also
C∞

c (M, h) = [C∞
c (M, h), C∞

c (M, h)].

Proof. Let ξ1, . . . , ξn be a basis of h and ξ ∈ C∞
c (M, h). Every ξi is a linear

combination
∑

j,k a
j,k
i [ξj , ξk]. Then

ξ(x) =
∑
i

ci(x)ξi =
∑
i,j,k

ajki c
i(x)[ξj , ξk]

=
∑
i,j,k

ajki [ci(x)ξj , ξk] =:
∑
i,j,k

ajki [ηij(x), ζk(x)]

hence ξ is a linear combination of brackets [ηij , ζk] in C
∞
c (M, h). �

Remark. An analogous statement is true for compact semisimple Lie groups H: the
identity component of C∞

c (M,H) is a perfect Lie group.

We can realize H as a matrix group, since it is compact. Then the adjoint action
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of H is Ad(h)ξ = hξh−1 and we can write:

Ad∗(g)ω(ξ, η) = ω(g−1ξg, g−1ηg)

= ⟨g−1ξg, (g−1ηg)′⟩
= ⟨g−1ξg, g−1η′g + g−1ηg′ − g−1g′g−1ηg⟩
= ⟨ξ, η′ + ηg′g−1 − g′g−1η⟩
= ω(ξ, η) + ⟨ξ, [η, g′g−1]⟩
= ω(ξ, η) + ⟨g′g−1, [ξ, η]⟩.

We can identify (L̃h)∗ with (Lh)∗⊕R. The subspace of regular elements of (Lh)∗ is
Lh∗ and can be identified with Lh under ⟨, ⟩. Then the preceding calculation gives
Ad∗(g)ω − ω = d(g′g−1) and the result in 3.6 gives the coadjoint action of LH on

the regular subspace of (L̃h)∗:

Ad∗(g)(p, c) = (gpg−1 + cg′g−1, c), p ∈ Lh = (L̃h)∗reg, c ∈ R.

In this case h(g) is the right logarithmic derivative of g. We used that the coadjoint
action on the regular dual equals the adjoint action because ⟨, ⟩ is invariant.

4.4. About the smooth coadjoint orbits.
This paragraph follows the book [Pressley-Segal, 1986].
To a regular element (p, c) ∈ Lh ⊕ R in the dual of the extended algebra we

associate an ordinary differential equation in H:

cu′ = pu.

Let u0 : R → H be the solution with initial condition u0(0) = 1. Then the solution
with initial condition u(0) = a is u = u0a, because cu

′(t) = cu′0(t)a = p(t)u0(t)a =
p(t)u(t). The map t 7→ u(t + 2π) is also a solution, so there exist Mu ∈ H, called
the monodromy, such that u(t + 2π) = u(t)Mu. Then Mu = u(0)−1u(2π). The
monodromy matrix of another solution v = ua is conjugated toMu. The conjugacy
class of the monodromy is an invariant of the differential equation cu′ = pu.

We fix a nonzero real number c. There is a bijection Φ between Lh and the set
{u : R → H : u(t+ 2π) = u(t)M,u(0) = 1,M ∈ H} (this is the set of multivalued
mappings on S1 with values inH such that u(0) = 1). To every p ∈ Lh we assign the
solution u0 and conversely, to every map u we assign cu′u−1, which is 2π-periodic,
hence an element in Lh.

p(t+ 2π) = cu′(t+ 2π)u−1(t+ 2π) = cu′(t)M(u(t)M)−1 = cu′(t)u(t)−1 = p(t)

We recall that the coadjoint action of LH on (L̃h)∗reg = Lh⊕ R is

Ad∗(g)(p, c) = (gpg−1 + cg′g−1, c)

Under the bijection Φ, the element p̄ = gpg−1 + cg′g−1 ∈ Lh corresponds to the
function ū(t) = g(t)u(t)g(0)−1. Thus the monodromy matrix for (p̄, c) is Mū =
ū(2π) = g(2π)u(2π)g(0)−1 = g(0)Mug(0)

−1, conjugate to the monodromy for (p, c).
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Proposition. The map π which assigns to every element (p, c) ∈ Lh × {c} the
monodromy conjugacy class of the associated differential equation

π : Lh× {c} → [H]

is the projection onto the space of coadjoint orbits.

Proof. 1.Claim: π is surjective. For everyM ∈ H we can find a path u : [0, 2π] → H
from 1 to M and then extend it to (a multivalued function on S1) u : R → H by
u(t+ 2π) = u(t)M . Let p ∈ Lh be the element corresponding to u by the bijection
Φ. Then π(p, c) = [M ].

2.Claim: π−1([M ]) is a coadjoint orbit. We saw that π(Ad∗(g)(p, c)) = π(p̄, c) =
[Mū] = [g(0)Mug(0)

−1] = [Mu] = π(p, c). It remains to prove that π−1([M ]) con-
tains only one coadjoint orbit. LetM1 = aMa−1 and u1, u2 : R → H be multivalued
functions on S1, u1(0) = u2(0) = 1, with monodromy M1,M and let p1, p ∈ Lh
the elements corresponding by Φ to u1, u. We show that Ad∗(g)(p1, c) = (p, c)
for g ∈ LH defined by g(t) = u(t)a−1u1(t)

−1. (The map g is really 2π-periodic:
g(t+2π) = u(t+2π)a−1u1(t+2π)−1 = u(t)Ma−1M−1

1 u1(t)
−1 = u(t)a−1u1(t)

−1 =
g(t)). Indeed:

Ad∗(g)(p1, c) = (gp1g
−1 + cg′g−1, c)

= (ua−1u−1
1 cu′1u

−1
1 u1au

−1 + c(ua−1u−1
1 )′(ua−1u−1

1 )−1, c)

= (cu′u−1, c) = (p, c).

Hence the space [H] of conjugacy classes in H can be considered as the orbit
space. �

Corollary. Every coadjoint orbit in the regular part of (L̃h)∗ contains a constant
element.

Proof. The Lie group H is compact, hence exponential. Let Mu = exp ξ, ξ ∈ h be
the monodromy of u ↔ (p, c). We claim that (p0, c) where p0 is constant equal to
c
2π ξ is in the same coadjoint orbit as (p, c). By the proposition, we need only to

verify that π(p, c) = π(p0, c). The solution u0 of cu′0 = p0u0 ⇔ u′0 = ξ
2πu0 with

condition u0(0) = 1 is u0(t) = exp(t ξ
2π ). The monodromy Mu0

= exp ξ =Mu. �

Proposition. The isotropy group G(p,c) for (p, c) ∈ g̃∗reg is isomorphic to the cen-
tralizer HMu of the monodromy matrix.

Proof. The isomorphism is the evaluation at zero. The fact that g stabilizes (p, c)
is equivalent to g(t) = u(t)g(0)u(t)−1 and g is uniquely determined by its value at
zero. Indeed Ad∗(g)(p, c) = (p, c) ⇔ ū = u ⇔ g(t)u(t)g(0)−1 = u(t). Then g(0) is
really in the centralizer of Mu.

The converse: If g(0) ∈ HMu , then g given by g = ug(0)u−1 is 2π-periodic:
g(t+2π) = u(t+2π)g(0)u(t+2π)−1 = u(t)Mug(0)M

−1
u u(t)−1 = u(t)g(0)u(t)−1 =

g(t) and centralizes (p, c). �
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4.5. Finite dimensional coadjoint orbits in C∞
c (M,H).

LetM be a smooth manifold andH a Lie group with Lie algebra h being a perfect
Lie algebra. The adjoint action of G = C∞

c (M,H) on g = C∞
c (M, h) is pointwise.

The dual of g is g∗ = C−∞(M, h∗) = D′(M) ⊗ h∗ the space of distributions on M
with values in h∗. From 4.3 we get g = [g, g].

Theorem [Kirillov, 1974]. The coadjoint orbit Oδ is finite dimensional if and only
if the distribution δ ∈ g∗ has finite support.

Proof. Let δ ∈ g∗ with support {x1, . . . , xN}. Then for every g ∈ G, Ad∗(g)δ has
as support a subset of {x1, . . . , xN} and at every point the order of Ad∗(g)δ is less
or equal the order of δ. Hence

dimOδ ≤ dim{δ ∈ C−∞(M, h∗) : supp δ ⊂ {x1, . . . , xN}, ordxi δ ≤ s} =: d

where s = max{ordxi δ : i = 1, . . . , N} < ∞. But d is the dimension of the space
of Nn-tuples of polynomials of degree s in m-variables, where m = dimM and
n = dimH, hence finite. Namely d = N dim(⊕s

j=0L
j
sym(Rm,Rn)) = Nn

(
m+s
s

)
. For

the converse suppose that δ has infinite support. We show that for any natural
number N , there exist N linearly independent vectors in the tangent space at δ
to Oδ, which is ad∗(g)δ ⊂ g∗. For this let x1, . . . , xN ∈ supp δ and U1, . . . , UN be
disjoint open neighbourhoods of x1, . . . , xN . Then there exist ξ1, . . . , ξN ∈ g with

supp ξi ⊂ Ui such that ⟨δ, ξi⟩ ̸= 0. Because g = [g, g], we can find η
(l)
i , ζ

(l)
i ∈ g with

support in Ui, such that ξi =
∑ki

l=1[η
(l)
i , ζ

(l)
i ]. For some li ∈ {1, . . . , ki} is

⟨ad∗(ζ(li)i ).δ, η
(li)
i ⟩ = ⟨δ, [η(li)i , ζ

(li)
i ]⟩ ̸= 0

and so ad∗(ζ
(li)
i ).δ are N linearly independent (having disjoint supports) vectors in

TδOδ for every natural N . This contradicts dimOδ <∞. �

5. The group of diffeomorphisms

5.1. The Lie group Diff(M).

Theorem [Kriegl-Michor]. Let M be a smooth connected finite dimensional man-
ifold. The group G = Diff(M) of all smooth diffeomorphisms of M is an infinite
dimensional Lie group.

Proof. Diff(M) is an open submanifold of C∞(M,M), because it is an open subset
of C∞(M,M) for the Whitney C∞-topology and the topology on C∞(M,M) as
smooth manifold is finer.

The composition µ and inversion ν are smooth, because they map smooth curves
into smooth curves:

Let (c1, c2) be a smooth curve in Diff(M)×Diff(M). Then (µ ◦ (c1, c2))̂(t, x) =
ĉ1(t, ĉ2(t, x)) is smooth as composition of smooth maps. It also has property (*)
from 2.2: Let [a, b] ⊂ R andK1,K2 compact subsets ofM such that ĉi(t, x) = fi(x),
i = 1, 2, doesn’t depend on t for x ∈ M − Ki by property (*) of ĉ1, ĉ2. Because
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c2(t) is a diffeomorphism, f2(M −K1)∩ (M −K2) is the complement of a compact
set K and ĉ1(t, ĉ2(t, x)) = f1 ◦ f2(x) for t ∈ [a, b], x ∈ M − K. So µ ◦ (c1, c2) is
again a smooth curve.

Let c be a smooth curve in Diff(M). Then (ν ◦ c)̂ fulfills the implicit equation
ĉ(t, (ν ◦ c)̂(t, x)) = x. By the finite dimensional implicit function theorem (ν ◦ c)̂
is smooth. It also satisfies (*): Let [a, b] ⊂ R and a compact K in M such that
ĉ(t, x) = f(x) for t ∈ [a, b], x ∈M−K. Because c(t) is a diffeomorphism, f(M−K)
is again the complement of a compact set in M and for t ∈ [a, b] and x ∈ f(M −K)
we have (ν ◦c)̂(t, x) = f−1(x) doesn’t depend on t. So ν ◦c is again a smooth curve.

Hence Diff(M) is a Lie group having Vectc(M) as tangent space at the iden-
tity. �

The same is true for the space Diffc(M) of diffeomorphisms of M which equal to
the identity outside a compact set. Diff(M) only has more connected components.

Proposition. The exponential map associates to a vector field with compact sup-
port its flow at time 1 and is smooth. The image of the exponential map lies in
Diffc(M).

Proof. Let ξ ∈ TIdM Diff(M) = Vectc(M). Because supp ξ is compact, the vector

field ξ is complete, hence its flow exists Flξt ∈ Diffc(M) at every time t ∈ R. The
defining differential equation for exp tξ is{ d

dt exp tξ = T (µexp tξ).ξ

exp 0ξ = IdM .

Here µφ is the right translation in Diffc(M) by φ, which is linear, so T (µφ).ξ = ξ◦φ.
Evaluating the differential equation on x ∈M , we obtain the defining equation for

Flξt (x), hence exp tξ = Flξt .
The exponential mapping exp : Vectc(M) → Diff(M) is smooth, because it maps

smooth curves into smooth curves. Indeed, a smooth curve ξ : R → Vectc(M) is
a time dependent vector field with compact support K. The map (exp ◦ξ)̂(t, x) =
Fl

ξ(t)
1 (x) is smooth because s 7→ Flξ(t)s (x) is the solution of an ordinary differential

equation with smooth parameter t and initial condition x. Moreover (exp ◦ξ)̂(t, x) =
x for x ∈M −K, hence property (*) is satisfied. Hence exp ◦ξ is smooth. �
Proposition. The Lie bracket in Vectc(M) is just the negative of the usual bracket
of vector fields.

Proof. The adjoint action of Diffc(M) on Vectc(M) is

Ad(φ)ξ =
d

dt

∣∣∣
0
φ ◦ Flξt ◦φ−1 = Tφ ◦ ξ ◦ φ−1 = (φ−1)∗ξ.

By the theorem in 2.3 due to Grabowski

ad(η)ξ =
d

dt

∣∣∣
0
Ad(Flηt )ξ =

d

dt

∣∣∣
0
(Flη−t)

∗ξ = −[η, ξ]

is the Lie bracket in Vectc(M). �
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5.2. Some properties of Diffc(M).
The dual of g = Vectc(M) is g∗ = Ω1(M) ⊗

C∞(M)
D′(M), where D′(M) denotes

the space of distributions on M , and is also called the space of moments. The
coadjoint action is Ad∗(φ) = (φ−1)∗. Indeed, for α ∈ Ω1(M) and δ ∈ D′(M) we
have

⟨Ad∗(φ)(α⊗ δ), ξ⟩ = ⟨α⊗ δ, φ∗ξ⟩
= ⟨δ, α(φ∗ξ)⟩
= ⟨δ, φ∗(((φ−1)∗α)(ξ))⟩
def
= ⟨(φ−1)∗δ, ((φ−1)∗α)(ξ)⟩
= ⟨(φ−1)∗α⊗ (φ−1)∗δ, ξ⟩
= ⟨(φ−1)∗(α⊗ δ), ξ⟩, ∀ξ ∈ g.

We define the regular dual g∗reg = Ω1(M) ⊗
C∞(M)

Ωn(M) and the space of moments

with finite support g∗f = Ω1(M) ⊗
C∞(M)

D′
f (M), where D′

f (M) denotes the space of

distributions with finite support. Both are G-invariant subspaces of g∗.

Proposition [Kirillov, 1982]. Every coadjoint orbit of Diffc(M) has infinite codi-
mension in g∗.

Proof. The spaces greg∗ and g∗f are transversal in g∗ and their intersection is 0.

Both are G-invariant, infinite dimensional and dense in g∗ (in the weak topology).
If the orbit intersects g∗reg, then it is contained in g∗reg and its complement

contains g∗f , hence the complement is infinite dimensional. Analogously for orbits
in g∗f , if the orbit doesn’t meet g∗reg ∪ g∗f , then it is contained in the complement of
the orbit, and so the orbit again has infinite codimension. �
Proposition. Let M be a connected smooth manifold of dimension dimM ≥ 2.
Then the group Diffc(M) of all smooth diffeomorphisms with compact support acts
n-transitively on M , for each finite n. I.e. for any two ordered sets of n different
points (x1, . . . , xn) and (y1, . . . , yn) in M there is a smooth diffeomorphism φ with
compact support such that φ(xi) = yi for each i.

Proof. Let M (n) denote the open submanifold of all n-tuples (x1, . . . , xn) ∈ Mn

of pairwise distinct points. Diffc(M) acts on M (n) by the diagonal action, and we
have to show, that this action is transitive.

Let us first assume that (x1, . . . , xn) and (y1, . . . , yn) are pairwise disjoint. For
some ε > 0 let ci : (−ε, 1 + ε) → M be smooth curves with ci(0) = xi and
ci(1) = yi which are embeddings and do not intersect each other. From a drawing
it can be seen that this exists if dimM ≥ 2, since (x1, . . . , xn) and (y1, . . . , yn) are
disjoint. We choose pairwise disjoint tubular neighborhoods of ci(−ε, 1+ε), extend
the velocity vector fields of the curves to them, and use a smooth bump function
to obtain a vector field ξ on M with compact support which coincides with the

velocity vector field c′ ◦ c−1 along each curve ci. Then the flow mapping Flξ1 maps
each xi to yi.
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This argument shows that each Diffc(M)-orbit in M (n) is dense. We may re-
place in the argument the points yi by points zi in small open pairwise disjoint
neighborhoods Ui of yi, not meeting {x1, . . . , xn}. Then the argument shows that
each orbit contains an open set in M (n), thus is open. Since the dimension of M is
at least 2, M (n) is connected, so there is only one orbit and the result follows. �
Proposition. For every smooth manifold M , Vect(M) and Vectc(M) are perfect
Lie algebras.

Proof. By dimension theory it follows that there exists a number p ≤ dimM+1 and
an open cover with coordinate domains O = {Uν : ν ∈ J = J1 ∪ · · · ∪ Jp partition}
such that the open sets (Uν)ν∈Jk

are pairwise disjoint. Let (ρν)ν∈J be a partition
of unity subordinated to O and (φν)ν∈J smooth functions on M with support in
Uν and identically 1 in a neighbourhood of supp ρν .

Let ξ be an arbitrary vector field on M and ξ|Uν =
∑n

k=1 ξ
k ∂
∂xk , where all

ξk ∈ C∞(Uν). Setting

ηkν := φν
∂

∂xk
, ζkν := φν

(∫ xk

0

ρνξ
k 1

φ2
ν

dxk
) ∂

∂xk

we get

[ηνk , ζ
ν
k ] = [φν

∂

∂xk
, φν(

∫ xk

0

ρνξ
k 1

φ2
ν

dxk)
∂

∂xk
] = φ2

ν(ρνξ
k 1

φ2
ν

)
∂

∂xk
= ρνξ

k ∂

∂xk
.

The integral is well defined because supp ρν ⊂ suppφν . Then

ρνξ =
n∑

k=1

[
ηkν , ζ

k
ν

]
and

ξ =
∑
ν∈J

ρνξ =

p∑
i=1

∑
ν∈Ji

n∑
k=1

[
ηkν , ζ

k
ν

]
=

p∑
i=1

n∑
k=1

[
ηki , ζ

k
i

]
where ηki =

∑
ν∈Ji

ηkν and ζki =
∑

ν∈Ji
ζkν . This shows that ξ is in the commutator

algebra of Vect(M). �
There is a similar result on the group level: the connected component of the

identity in Diffc(M), i.e. the group of those diffeomorphisms with compact support
isotopic to the identity by an isotopy with compact support, is a simple group.

5.3. Special cases: the circle and the torus.
Let p : t ∈ R 7→ eit ∈ S1 be the universal covering group of S1.

Proposition. The space

D̃iff(S1) := {φ̃ : R → R : p ◦ φ̃ = φ ◦ p, φ ∈ Diff(S1)}

coincides with
{φ̃ ∈ Diff(R) : φ̃(t+ 2π) = φ̃(t)± 2π, t ∈ R}
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and defines with the projection P : φ̃ 7→ φ the universal covering group of Diff(S1).

Proof. The fiber over φ ∈ Diff(S1) consists of all lifts to R of the function φ ◦ p :
R → S1. These lifts are also smooth functions and the difference between any two
of them is an integer multiple of 2π. Each fiber is then isomorphic to Z. In general

φ̃−1 ◦ φ̃ = Ĩd is a translation by an integral multiple of 2π. But for every φ̃ over φ

we can find a φ̃−1 such that φ̃−1 = φ̃−1. Hence φ̃ ∈ Diff(R).
We have p◦φ̃(t+2π) = φ(p(t+2π)) = φ(p(t)) = p◦φ̃(t) and using the continuity

of φ̃ we get that there exists a k ∈ Z such that φ̃(t+2π) = φ̃(t)+2kπ for all t in R.
But φ̃ is a diffeomorphism, so there must be an s ∈ R with φ̃(s) = φ̃(t) + 2π. We
get s = t+ 2mπ for some integer m and φ̃(s) = φ̃(t+ 2mπ) = φ̃(t) + 2mkπ which
implies mk = 1. Hence k = ±1, +1 for orientation preserving diffeomorphisms and
-1 for orientation reversing.

D̃iff(S1) has two connected components, each one is a convex set, hence it is
simply connected.

It remains to observe that P is a local homeomorphism. �
The reference for Diff(T 2) is [Juriev, 1993]. Let Γ = Za + Zb, with a, b two

independent vectors in R2 be a lattice and p : R2 → R2/Γ the projection. T 2 =
R2/Γ is a two dimensional torus and p its universal covering.

Proposition. The space

D̃iff(T 2) := {φ̃ : R2 → R2 : p ◦ φ̃ = φ ◦ p, φ ∈ Diff(T 2)}

coincides with

{φ̃ ∈ Diff(R2) : φ̃(x+ma+ nb) = φ̃(x) +ma1 + nb1,

x ∈ R2,m, n ∈ Z2,Γ = Za1 + Zb1}

and the projection P : φ̃ ∈ D̃iff(T 2) 7→ φ ∈ Diff(T 2) is the universal covering of
Diff(T 2).

Proof. Every φ̃ is a lifting of φ ◦ p; for a given φ ∈ Diff(T 2), there are Z2 such
liftings because p has Z2 sheets. The fiber over φ−1 consists of the inverses of the

elements in the fiber over φ, hence D̃iff(T 2) is a subgroup of Diff(R2) (we use the
fact that all the liftings of the smooth function φ ◦ p are smooth).

For every x ∈ R2 we have p ◦ φ̃(x + a) = φ(x + a) = φ(p(x)) = p ◦ φ̃(x) and
the same for b. Hence there exist a1, b1 ∈ Γ such that φ̃(x + a) = φ̃(x) + a1 and
φ̃(x+ b) = φ̃(x) + b1 and then for every m,n ∈ Z

φ̃(x+ma+ nb) = φ̃(x) +ma1 + nb1.

Now we show that a1, b1 is a pair of generators too. Suppose there exists an element
pa + qb in Γ \ Za1 + Zb1. Because φ̃ is a diffeomorphism, we can find a y ∈ R2

such that φ̃(y) = φ̃(x) + pa+ qb. Then y = x+ma+ nb for some m,n ∈ Z and so
φ̃(y) = φ̃(x) +ma1 + nb1. We obtain a contradiction: pa+ qb = ma1 + nb1, hence
Γ = Za1 + Zb1.
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Every two pairs of generators of Γ differ by an element in SL(2,Z). D̃iff(T 2) has
as many connected components as Γ has independent generators. Each connected

component is a convex set , hence D̃iff(T 2) is simply connected.
Every fiber is isomorphic to Z2 and P is a local homeomorphism. �

Diff(S1) has two connected components, the one containing the identity is ex-
actly Diff+(S

1), the orientation preserving diffeomorphisms. The fundamental
group of Diff+(S

1) is isomorphic to Z. Moreover, the inclusion S1 ∼= Rot(S1) ⊂
Diff+(S

1) is a homotopy equivalence.
Let Diffe(T

2) be the connected component of Diff(T 2) which contains the iden-
tity; this is a normal subgroup and the quotient is isomorphic to SL(2,Z). Its

universal cover is the connected component of D̃iff(T 2) which contains the identity:

D̃iffe(T
2) = {φ̃ ∈ Diff(R2) : φ̃(x+ma+ nb) = φ̃(x) +ma+ nb, m, n ∈ Z}

There is no canonical inclusion of the rigid transformations T 2 in Diffe(T
2), like in

the case of the circle. Every splitting of the following exact sequence realises T 2 as
a group of movements of the torus.

0 −→ Diff0(T
2) −→ Diffe(T

2)
γ−→ T 2 −→ 0 where

Diff0(T
2) := P

{
φ̃ ∈ Diffe(T

2) :

∫ 1
2

− 1
2

∫ 1
2

− 1
2

φ̃(x+ t1a+ t2b)dt1dt2 − x ∈ Γ

}
and

γ(φ) := p
(∫ 1

2

− 1
2

∫ 1
2

− 1
2

φ̃(t1a+ t2b)dt1dt2
)
∈ T 2.

We prove now the exactness of this sequence.
1.Claim: γ is surjective. For φ̃(x) = x+ c, c ∈ R2 we get γ(φ) = p(c).
2.Claim: ker γ = Diff0(T

2).

ker γ =
{
φ : ∃φ̃ s.t.

∫ 1
2

− 1
2

∫ 1
2

− 1
2

φ̃(t1a+ t2b)dt1dt2 ∈ Γ
}

=
{
φ : ∃φ̃ s.t.

∫ 1
2

− 1
2

∫ 1
2

− 1
2

φ̃(x+ t1a+ t2b)dt1dt2 − x ∈ Γ
}
= Diff0(T

2),

because ∫ 1
2

− 1
2

∫ 1
2

− 1
2

φ̃(x+ t1a+ t2b)dt1dt2 = x+

∫ 1
2

− 1
2

∫ 1
2

− 1
2

φ̃(t1a+ t2b)dt1dt2,

for all φ̃ in D̃iffe(T
2).

5.4. Anomaly.
The smooth manifold structure of Diffc(M) cannot be described by using the

exponential map, because [Pressley-Segal, 1986]:
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Proposition [Koppell, 1970], [Freifeld, 1967]. The exponential map in Diff+(S
1),

the group of orientation preserving diffeomorphisms of the circle, is neither locally
injective, nor locally surjective.

Proof. Let Rot(S1) ⊂ Diff+(S
1) be the subgroup of rigid rotations and let Rt

denote the rotation by t.
(inj) The centralizer of R 2π

n
is

H = {φ ∈ Diff+(S
1) : R−1

2π
n

◦ φ ◦R 2π
n

= φ}

The 1-parameter subgroup of d
dt is Rot(S1), then the 1-parameter subgroup corre-

sponding to φ∗ d
dt is φ ◦ Rot(S1) ◦ φ−1. Hence R 2π

n
∈ φ ◦ Rot(S1) ◦ φ−1 for every

φ ∈ H, i.e. R 2π
n

= exp(tφ.φ
∗ξ). Making n → ∞ we see that exp is not locally

injective.
(surj) A 1-parameter subgroup of Diff+(S

1) without stationary points is always
conjugate to Rot(S1). Indeed, let η = v(t) d

dt with v(t) ̸= 0,∀t ∈ [0, 2π], we as-

sume v > 0. Define ψ(t) := 2π∫ 2π
0

v(s)−1ds

∫ t

0
v(s)−1ds. Then ψ ∈ Diff+(S

1) and

ψ∗η = Tψ ◦ η ◦ ψ−1 = 2π∫ 2π
0

v(s)−1ds
d
dt is a constant vector field on S1. Hence the

1-parameter subgroup generated by η is conjugated to Rot(S1).

A diffeomorphism φ with the following properties is not in the image of the
exponential map:
-φ has no fixed points,
-φ has a point of order n,
-φn ̸= Id.
Indeed, suppose φ = exp η. The 1-parameter subgroup generated by η is conjugate
to the subgroup of rotations, because it has no stationary points. Hence φ =
ψRtψ

−1 for some diffeomorphism ψ and then φn ̸= Id is conjugated with the
rotation by nt. This contradicts the fact that φ has a point of order n.

Diffeomorphisms with the three properties exist arbitrarily close to the identity.

Let φ̃n ∈ D̃iff+(S
1) be defined by

φ̃n(t) := t+
2π

n
+ ε sinnt,

and φn the diffeomorphism of S1 induced by φ̃n. In this case φ̃n has no fixed
points for small ε, (φ̃n)

n(0) = 0 and ((φ̃n)
n)′(0) = (1 + nε)n ̸= 0 hence φn is not

the identity. �

In [Grabowski, 1988] it is shown that Diff(M) contains an arcwise connected free
subgroup with a continuous set of generators, which meets the image of exp only
at the identity.

5.5. Diff+(S
1) does not have a complexification.

The group Diff+(S
1), like the universal cover of SL(2,R), has no complexifica-

tion. Moreover, every homomorphism from Diff+(S
1) into a complex Lie group is

trivial.
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The group PSL(2,R) = SL(2,R)/{±1} = GL(2,R)/R · 1 of projective transfor-
mations is contained in Diff+(S

1), because S1 can be regarded as the real projective

line PR1. The matrix

(
a b
c d

)
∈ SL(2,R) defines the diffeomorphism:

A : [x, y] ∈ PR1 = S1 7→ [ax+ by, cx+ dy] ∈ PR1 = S1.

By the identification of PR1 with R ∪ ∞, the projective transformations become
Moebius transformations

[x, y] w
A

u

[ax+ by, cx+ dy]

u

λ =
x

y
w

A ax+ by

cx+ dy
=
aλ+ b

cλ+ d
.

The universal cover of PSL(2,R) is S̃L(2,R) and can be viewed as a subgroup

of the universal covering group D̃iff+(S
1) of Diff+(S

1), namely all those diffeomor-
phisms of R which cover projective transformations

S̃L(2,R) = {φ̃ ∈ Diff(R) : p ◦ φ̃ = A ◦ p,A ∈ PSL(2,R)}

S̃L(2,R) y w

u
P

D̃iff+(S
1)

u
P

PSL(2,R) y w Diff+(S
1).

A covering diffeomorphism φ̃A ∈ S̃L(2,R) of a projective transformation A (iden-
tified with a Moebius transformation of R ∪ ∞) can be obtained from A via the
diffeomorphism

f : t ∈ (0, 2π) 7→ ctg
t

2
∈ R,

namely by extending f−1 ◦ A ◦ f to a diffeomorphism of R using φ̃A(t + 2π) =

φ̃A(t) + 2π. Each element φ̃ ∈ S̃L(2,R) is uniquely determined by its restriction to
an open intervall.

We define PSL(n)(2,R) as the n-fold covering group of PSL(2,R). More precise,
if pn : S1 → S1, pn(z) = zn is the n-fold covering map of the circle, then

PSL(n)(2,R) := {φ ∈ Diff+(S
1) : pn ◦ φ = A ◦ pn, A ∈ PSL(2,R)}.

Lemma. PSL(n)(2,R) ∼= S̃L(2,R)/nZ, where Z ∼= {φ̃(t) = t + 2kπ, k ∈ Z}, the
center of S̃L(2,R) (diffeomorphisms which cover the identity on S1).
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Proof. We define a surjective homomorphism qn from S̃L(2,R) to PSL(n)(2,R) with
kernel nZ = {t 7→ t+ 2knπ, k ∈ Z}.

R w
φ̃

u

'
'
'
')

R
[
[
[
[̂

eit

u

ei
t
nS1 w

A S1

S1
h
h
hhj

w
φ

S1

4
4
447

zn

Every φ̃ ∈ S̃L(2,R) is a cover of some A ∈ PSL(2,R). We assign to φ̃ an n-fold

cover of A by projecting it down to φ ∈ Diff+(S
1) via t ∈ R 7→ ei

t
n ∈ S1 which is a

universal cover of S1. The elements which project to the identity on S1 are exactly
the translations by 2knπ with k ∈ Z. �
Lemma. The kernel of any homomorphism from S̃L(2,R) into a complex Lie group

contains 2.Center(S̃L(2,R)) = {t 7→ t+ 4kπ}.

Proof. Let f : S̃L(2,R) → GC be a homomorphism and f ′ : sl(2,R) → gC. Then,
because the complexification of SL(2,R) is the simply connected Lie group SL(2,C),
we have the following diagrams on the Lie algebra level:

sl(2,R) w
f ′

y

u
i

gC

sl(2,C)
h
h
h
hj(f ′)C

and on the group level

S̃L(2,R) w
f

u
j

GC

SL(2,C)
h
h
h
hj

h

.

The homomorphism j is the unique with the property j′ = i, so j is really the

projection q2 : S̃L(2,R) → PSL(2)(2,R) = SL(2,R). Hence ker f ⊃ ker q2 =

2.Center(S̃L(2,R)). �

As a corollary we get that S̃L(2,R) has no complexification.

Proposition [Pressley-Segal, 1986]. Every homomorphism from Diff+(S
1) into a

complex Lie group is trivial.

Proof. Let h : Diff+(S
1) → GC be a homomorphism.

The kernel of a homomorphism from PSL(n) into a complex Lie group contains

2.Center(PSL(n)(2,R)) = {R 4πk
n

: k ∈ Z}. Indeed, let g : S̃L(2,R) → GC be a

homomorphism and f = g ◦ qn. We apply the lemma and we get

ker f ⊃ qn(ker f) ⊃ qn(2.Center(S̃L(2,R))) = 2.Center(PSL(n)(2,R)).
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We apply this result to h|PSL(n)(2,R) for every n ∈ N and we obtain that
kerh ⊃ {R 4πk

n
: k ∈ Z, n ∈ N}, so kerh contains the whole subgroup of rotations.

Now we apply the result of [Herman, 1971] that Diff+(S
1) is simple and get the

conclusion. �

6. Morse moments in the diffeomorphism group

The reference for this chapter is [Kirillov, 1982] and [Kirillov, 1990].

6.1. Morse moments.
Let M be a compact orientable manifold and µ a fixed volume form on M . We

denote by G = Diff(M) and g = Vect(M). Then g∗reg = Ω1(M) ⊗C∞(M) Ω
n(M)

can be identified via µ with Ω1(M).

Definition. Let f be a smooth section of the vector bundle E → M and S a
submanifold of E. Then f intersects S transversally at m ∈ M if either f(m) /∈ S
or f(m) ∈ S and Tf(m)S + Tmf.TmM = Tf(m)N . Notation: f t S at m.

Lemma. Let E → M be a smooth vector bundle, S ⊂ E a submanifold and
f ∈ C∞(E) a smooth section with f(m) ∈ S. Suppose there is a neighbourhood U
of f(m) in E and a submersion φ : U → Rk (k = codimS) such that S∩U = φ−1(0).
Then f t S at m if and only if φ ◦ f is a submersion at m.

We consider Jk(g∗reg) = Jk(Ω1(M)) = Jk(C∞(T ∗M)) and the coadjoint action

of G on the jet space: Ad∗(φ)jkmp = jkφ(m)(Ad∗(φ)p). Then we construct appropiate

G-invariant submanifolds S1, · · · , Sn of Jk(g∗reg) to define Morse moments.

Definition. We say that m ∈ M is a singular point of the regular moment α if
jkm(α) ∈ ∪n

i=1Si and a regular point otherwise. The singularity m ∈ M is called
nondegenerate if jkα t Si at m for i = 1, · · · , n and α is called a Morse moment if
all its singularities are nondegenerate.

The G-invariance of the submanifolds Si assures the G-invariance of the property
to be a Morse moment. Hence we have the notion of Morse coadjoint orbits. The
set of Morse moments is dense in g∗reg because of the following:

Thom’s transversality theorem. Let E → M be a smooth vector bundle and
Si submanifold of Jki(E) := Jki(C∞(E)) for i = 1, . . . , n. Then the set of smooth
sections f ∈ C∞(E) satisfying jkif t Si for i = 1, . . . , n is a dense subset of C∞(E)
in the compact C∞-topology.

6.2. The classification of Morse moments in the case dimM = 1.
Since M is compact, this is the case of the circle. The tangent bundle of S1

is trivial, hence g and g∗reg can be identified with C∞(S1,R). The adjoint and

coadjoint action are special cases of the following action of G = Diff+(S
1) on

C∞(S1,R):
φ.f = (f ◦ φ−1)(φ′ ◦ φ−1)n, n ∈ Z.

For n ∈ Z+ this is the action of G on C∞(⊗n(TS1)) and for n ∈ Z− the action
on C∞(⊗−n(T ∗S1)). Since g = C∞(TS1) the space of vector fields on S1 and
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g∗reg = C∞(T ∗S1 ⊗ T ∗S1) = Q(S1) the space of quadratic differentials on S1, we
have

Ad(φ)f = (φ−1)∗f = (f ◦ φ−1)(φ′ ◦ φ−1)

Ad∗(φ)p = (p ◦ φ−1)(φ′ ◦ φ−1)−2

For the definition of Morse moments we take S as follows: the target map τ :
J1(g∗reg) = J1(S1,R) → R is a submersion, hence S := τ−1(0) is a codimension 1

submanifold of J1(S1,R). A regular moment p ∈ C∞(S1,R) is called Morse if j1p
is transversal to S.

Proposition. A regular moment p is Morse if and only if all its zeros are simple.

Proof. Let m be a zero of p. Because τ is a submersion, we can apply the lemma
and get j1p t S at m if and only if τ ◦ j1p = p is a submersion at m, i.e. m is a
simple zero. �

A Morse moment always has an even number of zeros because S1 is compact
and has Euler characteristic 0.

Lemma. Let g∗reg,+ = C∞(S1,R+). This is a G-invariant set (open cone) of g∗reg
and I0 : p ∈ g∗reg,+ →

∫ 2π

0

√
p(t)dt ∈ R+ is exactly the orbit map. All the orbits in

g∗reg,+ are diffeomorphic to Diff+(S
1)/Rot(S1).

Proof. I0 is a G-invariant function:

I0(Ad∗(φ)p) =

∫ 2π

0

√
p(φ−1(t))(φ′(φ−1(t)))−2dt =

∫ 2π

0

√
p(t)dt = I0(p).

Every moment p is G-equivalent to I0(p)
2, namely Ad∗(φ)p = I0(p)

2 where the
diffeomorphism φ is given by

φ(t) =
1

I0(p)

∫ t

0

√
p(s)ds.

Every coadjoint orbit in g∗reg,+ contains a constant moment, say P0, so the isotropy

group is Rot(S1):

p0 = p0(φ
′ ◦ φ−1)−2 ⇔ φ′ = 1 ⇔ φ ∈ Rot(S1)

hence the coadjoint orbit is Diff+(S
1)/Rot(S1). �

Classification theorem. Let g∗reg,n := {p ∈ g∗reg : p has 2n zeros} for all n ∈ N.
This is a partition of g∗reg and a complete set of invariants for g∗reg,n is:

(i) I0 =
∫ 2π

0

√
|p(t)|dt and ε = sgn p, in the case n = 0;

(ii) I1, J1, · · · , In, Jn up to permutations, where we put Ik :=
∫ t2k
t2k−1

√
p(t)dt, Jk :=∫ t2k+1

t2k

√
−p(t)dt, in the case n ̸= 0.

Proof. The case n = 0 follows from the lemma.
Let n ≥ 1, p, q ∈ g∗reg,n with the same invariants I1, J1, · · · , In, Jn. We denote

by t1, · · · , t2n the zeros of p and by s1, · · · , s2n the zeros of q. We can define φ ∈ G

by φ(tk) = sk and
∫ t

tk

√
|p(t)|dt =

∫ φ(t)

sk

√
|q(t)|dt for t ∈ [tk, tk+1]. This implies

φ′(t) =
√

p(t)
q(φ(t)) , i.e. q = Ad∗(φ)p. �
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Proposition. The isotropy algebra of a moment p ∈ g∗reg,n, for n ̸= 0 is gp = 0.

The corresponding coadjoint orbits are diffeomorphic to Diff+(S
1) modulo some

discrete groups.

Proof. By differentiating the coadjoint action Ad∗(φ)p = (p(φ′)−2)φ−1 we get

ad∗(h)p =
d

dt

∣∣
0
(p((Flht )

′)−2)) ◦ Flh−t = −2ph′ − p′h

Hence h ∈ gp if and only if it satisfies the differential equation 2ph′ + p′h = 0, this
means h2p is constant on I1, · · · , Jn and h(tk) = 0. Taking the limit t → tk we
obtain that all the constants are equal to 0, so gp = 0. �

6.3. The local description of Morse moments in the case dimM = 2.
J1(g∗reg) = J1(C∞(T ∗M)) is a manifold of dimension 8. Let (U, u) be a coor-

dinate chart at m ∈ M with u(m) = 0. This chart induces a chart on J1(Ω1(M))
in which j1m(α) is given by (x, y; a, b; ax, ay, bx, by) with (x, y) = u(m), a = A(x, y),

b = B(x, y),

(
ax ay
bx by

)
= D(A,B)

D(x,y) the jacobian matrix at (x, y) of (A,B) if

α = Adx+Bdy in the chart (U, u).
The target map τ : J1(C∞(T ∗M)) → T ∗M is transversal to the zero section

0M ⊂ T ∗M , hence S1 := τ−1(0M ) is a 6-dimensional submanifold of J1(g∗reg). The

exterior derivative of 1-forms induces a map between jet spaces d : J1(Ω1(M)) →
J1(Ω2(M)), the second space can be identified with J1(C∞(M,R)) via µ. The
composition τ ◦ d : J1(Ω1(M)) → R is a submersion given in local coordinates
by: (x, y; a, b; ax, ay, bx, by) 7→ bx − ay. Hence S2 = S1 ∩ (τ ◦ d)−1(0) is a 5-
dimensional submanifold of J1(g∗reg). In local coordinates (x, y; a, b; ax, ay, bx, by)
these submanifolds are:
S1: a = b = 0;
S2: a = b = 0, bx − ay = 0.
and we define S3 by

S3: a = b = 0, axby − (
ay+bx

2 )2 = 0.

S3 is a well defined 5-dimensional submanifold of J1(g∗reg). Indeed, if an element

j1m(α) ∈ S1 is given by X =

(
ax ay
bx by

)
in the chart determined by u, then in

another chart, determined by u′, it is given by X ′ = QtXQ, where Q ∈ GL(2,R)
is the Jacobian matrix at u(m) of the coordinate change u′ ◦ u−1. The expression

axby − (
ay+bx

2 )2 is the determinant of the symmetric part of X and by a change of

coordinates it only multiplies by (detQ)2, hence the definition of S3 makes sense.
We prove now the G-invariance of these submanifolds. S1 is clearly G-invariant

and the invariance of S2 follows from the relation (φ−1)∗dα = d(φ−1)∗α. Now let u
and u′ be coordinate charts at m and φ(m) respectively and Q the Jacobian matrix
at u(m) of u′ ◦φ◦u−1. An element j1m(α) ∈ S1 given in the chart u by (u(m); 0;X)
goes to j1φ(m)((φ

−1)∗α) ∈ S1, given in the chart u′ by (u′(φ(m)); 0;X ′) where

X ′ = QtXQ detQ. This is exactly the transformation law for quadratic forms,
the factor detQ comes from the action of G on Ωn(M). The same relation exists
between the symmetric parts of X and X ′, so we get the G-invariance of S3 too.
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Proposition. A Morse moment α is characterised by the fact that at every point
m ∈M either j1mα is not in S1, or j

1
mα is in S1 but not in S2 ∪ S3 and detX ̸= 0.

In local coordinates this means either (a, b) ̸= (0, 0) or

a = b = 0, bx − ay ̸= 0, axby − (
ay + bx

2
)2 ̸= 0, axby − aybx ̸= 0

.

Proof. The moment α is Morse means that j1α t S1, S2, S3 at every m ∈M . This
means either α(m) ̸= 0 or α(m) = 0 and
(a) transversality to S1 = τ−1(0M ) ⇔ τ ◦ j1α = α is a submersion at m ⇔ detX =
D(A,B)
D(x,y) ̸= 0.

(b) transversality to S2 and S3 just means j1mα /∈ S2, S3 because dimSi+dimM =
5 + 2 = 7 < 8 = dim J1(Ω1(M)). �
Theorem. The local description of Morse moments in the case dimM = 2: around
every point of M one of the following situations occurs:

If α(m) = 0:

(1) α = du and the foliation picture is: nonintersecting lines;

If α(M) ̸= 0:

(2) α = r2d(aϑ+ ln r) and the foliation picture is a spiral;
(3) α = 1

f(x,y)d(|x|
1+a|y|1−a) and the foliation picture is a knot or a saddle.

Proof. (1) If α(m) ̸= 0, there exists a neighbourhood of m where α ̸= 0 and
therefore kerα defines there a 1-dimensional distribution which is always integrable.
The foliation must be locally of the form u = const, that means du = 0 on the leaves.
Then du = fα for some function f without zeros.

If α(m) = 0, the matrixX satisfies all the properties of the preceding proposition.
Because the coadjoint action on S1 is Q.X = QtXQ detQ, we can find a moment

α′ equivalent to α, such that j1mα
′ has the matrix X ′ =

(
0 a
−a 0

)
+

(
1 0
0 ε

)
with

a ̸= 0 (there must be an antisymmetric part) and ε = ±1 (the symmetric part has
nonzero determinant).

(2) The case ε = 1 (index +1). Here α = a(xdy − ydx) + (xdx + ydy) plus
terms of order higher than 1. In polar coordinates (r, ϑ) we get α = ar2dϑ+ rdr =
r2d(aϑ+ ln r). The foliation picture u = const is formed by the spirals

ln r = −aϑ+ const

.

(2) The case ε = −1. We can find an Ad∗-equivalent moment with

(
0 a
−a 0

)
+(

0 1
1 0

)
. Up to higher order terms α = (1 + a)ydx + (1 − a)xdy. An integrating

factor for α is f(x, y) = |xy |
a sgn(xy). So α = 1

f ((1 + a)|x|a|y|1−a(sgnx)dx + (1 −
a)|x|1+a|y|−a(sgn y)dy) = 1

f d(|x|
1+a|y|1−a). The foliation picture u = const is

|y| = c|x|
a+1
a−1 .
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If |a| < 1 we have a saddle (detX < 0) (index -1) and if |a| > 1 we have a knot
(detX > 0) (index +1). �
M is a compact 2-dimensional manifold, hence an orientable surface of genus g.

The Euler characteristic is 2− 2g, hence the singularities of Morse moments occur
pairwise. The torus is the only such surface that has a moment without singularities.
In general we have much more saddles than spirals and knots, because for g > 1
2− 2g < 0 is the sum of the indices over all the singularities.

7. Coadjoint orbits for the Virasoro-Bott group

7.1. Central extensions of Vect(S1).
In this paragraph we show following [Pressley-Segal, 1986] that

dimH2(Vect(S1)) = 1,

i.e. there exists, up to isomorphisms, a unique nontrivial central extension of
Vect(S1) by R. If the manifold M has dimM ≥ 2, then there exist no non-trivial
central extensions of Vect(M) (Fuchs).

Let VectC(S
1) = VectC(S

1) ⊗ C be the complexification of Vect(S1) and α :
VectC(S

1)×VectC(S
1) → C a complex bilinear, skewsymmetric form, the complex-

ification of a cocycle on Vect(S1). An unconditional basis for the nuclear Fréchet
space VectC(S

1) is

{Ln = eint
d

dt
: n ∈ N},

so α is uniquely determined by the complex numbers αp,q = α(Lp, Lq).
In 3.6 we had [Ad∗(φ)α] = [α] for every diffeomorphism φ of S1, in particular

for all rotations. Hence

β =

∫
S1

Ad∗(Rt)αdt

is a Rot(S1)-invariant cocycle cohomologous to α. Without loss of generality we
can then assume that α is invariant under the group of rotations. This assures that
αp,0 = 0 for p = 0. Indeed

αp,0 = α(Lp, L0) = Ad∗(Rϑ)α(Lp, L0)

= α(R∗
ϑe

ipt d

dt
,R∗

ϑ

d

dt
)

= α(eip(t−ϑ) d

dt
,
d

dt
) = e−ipϑαp,0.

Writing the cocycle condition for L0, Lp, Lq and using [Lp, Lq] = i(q − p)Lp+q

we get
(q − p)αp+q,0 − qαq,p + pαp,q = 0.

The antisymmetry of α implies αp,q = −αq,p and the relation becomes

(p− q)αp+q,0 = (p+ q)αp,q.
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We obtain αp,q = 0 if p+ q ̸= 0. The cocycle condition for Lp, Lq, L−(p+q) gives

(q − p)αp+q,−(p+q) − (p+ 2q)α−p,p + (2p+ q)α−q,q = 0.

Denoting αp = αp,−p = −α−p,p, we obtain a recurrence formula for αp:

(p− q)αp+q = (p+ 2q)αp − (2p+ q)αq,

which determines all the αp in terms of α1 and α2. The general solution is αp =
λp3 + µp for some real λ, µ. Hence the general form of a Rot(S1)-invariant cocycle
α is:

(*) α(Lp, Lq) =

{
0, for p+ q ̸= 0

λp3 + µp, for p+ q = 0.

A trivial Rot(S1)-invariant cocycle is

α0(ξ, η) =

∫ 2π

0

[ξ, η]dt = 2

∫ 2π

0

ξdη.

It has the form

α0(Lp, Lq) =

{
0, for p+ q ̸= 0

4πip, for p+ q = 0.

So the value of µ in (*) is unimportant.
The Virasoro cocycle is defined by

ω(ξ, η) =

∫ 2π

0

ξ′dη′.

Evaluated on the basis it gives

ωp,q = −ipq2
∫ 2π

0

ei(p+q)tdt =

{
0, for p+ q ̸= 0

−2πip3, for p+ q = 0.

The Virasoro cocycle is a Rot(S1)-invariant cocycle whose cohomology class gener-
ates H2(Vect(S1)).

7.2. The Virasoro-Bott extension of Diff+(S
1).

For every φ ∈ Diff+(S
1) we denote by φ′ : S1 → R+ the map given by Ttφ.

d
dt |t =

φ′(t) d
dt |φ(t).

Lemma. The map

c : Diff+(S
1)×Diff+(S

1) → S1

c(φ,ψ) :=

∫
S1

log(φ ◦ ψ)′d logψ′,
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is a group cocycle. It is called the Bott cocycle and the extended group is called
the Virasoro-Bott extension of Diff+(S

1).

Proof. Because
∫
S1 logψ

′d logψ′ = 1
2

∫
S1 d(logψ

′)2 = 0, we have

c(φ,ψ) =

∫
S1

log(φ′ ◦ ψ)d logψ′.

We verify the cocycle equation

−c(φ1 ◦ φ2, φ3)− c(φ1, φ2) + c(φ1, φ2 ◦ φ3) + c(φ2, φ3)

= −
∫
S1

log(φ1 ◦ φ2 ◦ φ3)
′d logφ′

3 −
∫
S1

log(φ1 ◦ φ2)
′d logφ′

2

+

∫
S1

log(φ1 ◦ φ2 ◦ φ3)
′d log(φ2 ◦ φ3)

′ +

∫
S1

log(φ2 ◦ φ3)
′d logφ′

3

= −
∫
S1

log(φ′
1 ◦ φ2)d logφ

′
2 +

∫
S1

(log(φ′
1 ◦ φ2 ◦ φ3) + log(φ2 ◦ φ3)

′)d log(φ′
2 ◦ φ3)

+

∫
S1

log(φ2 ◦ φ3)
′d logφ′

3 =

∫
S1

log(φ2 ◦ φ3)
′d log((φ′

2 ◦ φ3)φ
′
3) = 0. �

From this calculation we see that also c : Diff+(S
1)×Diff+(S

1) → R is a group
cocycle and we could extend Diff+(S

1) also by R.

Proposition. The Lie algebra cocycle corresponding to the Bott cocycle

c(φ,ψ) :=
1

2

∫
S1

log(φ ◦ ψ)′d logψ′

is the Virasoro cocycle

ω(ξ, η) =

∫
S1

ξ′dη′, for ξ, η ∈ Vect(S1).

Proof. In 3.3 we proved that a Lie algebra cocycle can be obtained from the group
cocycle by differentiation:

ω(ξ, η) = ∂1∂2c(Id, Id)(ξ, η)− ∂1∂2c(Id, Id)(η, ξ) = c̈(ξ, η)− c̈(η, ξ).

Then

∂1c(Id, ψ)ξ =
1

2

∫
S1

log′(Id′ ◦ψ)(ξ′ ◦ ψ)d logψ′ =
1

2

∫
S1

(ξ′ ◦ ψ)d logψ′

and

∂1∂2c(Id, Id)(ξ, η) =
1

2

∫
S1

(ξ′ ◦ Id)d log′(Id′)η′ + 1

2

∫
S1

ξ′′ηd log Id′ =
1

2

∫
S1

ξ′dη′.

Finally we get

ω(ξ, η) =
1

2

∫
S1

ξ′dη′ − 1

2

∫
S1

η′dξ′ =

∫
S1

ξ′dη′. �
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7.3. The coadjoint action of the Virasoro-Bott group.
There are two possibilities to compute the coadjoint action in the extended group:
1.Method. A direct computation of h like in 3.5;
2.Method. To notice that H1(Vect(S1)) = 0 and to use the result of 3.6.
The final result is h(φ) = S(φ−1)dt2 and then

Ad∗(φ)(p, c) = (Ad∗(φ)p+ cS(φ−1)dt2, c)

where p ∈ g∗reg, c ∈ R, φ ∈ G and S(φ) : S1 → R is the Schwartzian derivative of
φ, or we take some φ̃ who covers φ (see 5.3) and build the 2π-periodic function
S(φ̃) : R → R.

Some facts about the Schwartzian derivative. Let f : R → R be a smooth

function, then S(f) := f ′′′

f ′ − 3
2 (

f ′′

f ′ )
2 measures the deviation of f from being a

Moebius transformation, this means

S(f) = 0 ⇔ f(x) =
ax+ b

cx+ d
for some real a, b, c, d.

Indeed

S(f) =

(
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2

= 0

⇔ y =
f ′′

f ′
satisfies the differential equation y′ =

y2

2

⇔ f ′′

f ′
(x) = − 2

x+ c
⇔ f ′(x) =

1

(cx+ d)2
⇔ f(x) =

ax+ b

cx+ d
.

The Schwartz derivative of a composition is:

S(f ◦ g) = (S(f) ◦ g)(g′)2 + S(g),

then we can deduce the Schwartz derivative of an inverse:

S(f−1) = −(S(f) ◦ f−1)(f−1)′
2
= −S(f)

f ′2
◦ f−1.

1.Method. The long computation

h(φ−1) = d2c(φ, Id) + c(φ,φ−1)−1d1c(φ,φ
−1).Teλφ.

Recall that c(φ,ψ) = 1
2

∫
S1 log(φ

′ ◦ψ)d logψ′. We have c(φ,φ−1) = 0 and Teλφ.ξ =
d
dt

∣∣∣
0
φ ◦ Flξt = Tφ.ξ = φ′ξ. Then

d2c(φ, Id)ξ =
1

2

∫
S1

log′(φ′).ξd log(Id′) +
1

2

∫
S1

logφ′d(log′(Id′).ξ′)

=
1

2

∫
S1

logφ′dξ′ = −1

2

∫
S1

ξ′d logφ′

d1c(φ,φ
−1)φ′ξ =

1

2

∫
S1

log′(φ′ ◦ φ−1)((φ′ξ)′ ◦ φ−1)d log(φ−1)′

=
1

2

∫
S1

(φ′ξ)′

φ′ ◦ φ−1d log(
1

φ′ ◦ φ
−1) =

1

2

∫
S1

φ′′ξ + 1
2φ

′ξ′

φ′ d log(
1

φ′ )

= −1

2

∫
S1

(
φ′′

φ′ )
2ξdt− 1

2

∫
S1

ξ′d logφ′
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Finally

h(φ−1)ξ = −1

2

∫
S1

(
φ′′

φ′ )
2ξdt−

∫
S1

φ′′

φ′ ξ
′dt =

∫
S1

S(φ)ξdt,

hence h(φ−1) = S(φ)dt2.
2.Method. We have H1(Vect(S1)) = 0 (this follows from 5.1), so we can deter-

mine uniquely h(φ) from the relation dh(φ) = ω −Ad∗(φ)ω.
The second long computation

Ad∗(φ)ω(ξ, η) = ω(φ∗ξ, φ∗η) =

∫ 2π

0

(
ξ ◦ φ
φ′ )

′
d(
η ◦ φ
φ′ )

′

=

∫ 2π

0

(ξ′ − Fξ) ◦ φ · d(η′ − Fη) ◦ φ, where F :=
φ′′

(φ′)2

=

∫ 2π

0

(ξ′ − Fξ)d(η′ − Fη)

=

∫ 2π

0

ξ′dη′ +

∫ 2π

0

−ξ′(F ′η + Fη′)dt

+

∫ 2π

0

η′(F ′ξ + Fξ′)dt+

∫ 2π

0

Fξ(F ′η + Fη′)dt

=

∫ 2π

0

ξ′dη′ +

∫ 2π

0

F ′(ξη′ − ξ′η)dt+

∫ 2π

0

F 2

2
(ξη′ − ξ′η)dt

= ω(ξ, η) +

∫ 2π

0

(F ′ +
F 2

2
)(ξη′ − ξ′η)dt.

But F ′ + F 2

2 =
φ′′′φ′− 3

2φ
′′2

(φ′)4 ◦ φ−1 = S(φ)
φ′2 ◦ φ−1 = −S(φ−1). Hence

dh(φ)(ξ, η) = ω(ξ, η)−Ad∗(φ)ω(ξ, η) =

∫ 2π

0

S(φ−1)(ξη′ − ξ′η)dt

= ⟨S(φ−1)dt2, [ξ, η]⟩ = −⟨S(φ−1)dt2, ad(ξ)η⟩ = d(S(φ−1)dt2)(ξ, η).

We get h(φ) = S(φ−1)dt2 and

Ad∗(φ−1)(pdt2, c) = (((p ◦ φ)φ′2 + cS(φ))dt2, c).

7.4. The isotropy group of a moment.
Let G = Diff+(S

1) and g = Vect(S1) its Lie algebra. Let G(p,c) be the isotropy

group of the regular moment (p, c) ∈ g̃∗reg = g∗reg = Q(S1)⊕ R under the coadjoint
action in the extended group. Its Lie algebra is

g(p,c) = {ξ ∈ g : cξ′′′ + 2pξ′ + p′ξ = 0}
because

⟨ad∗(ξ)(p, c),
(
η

µ

)
⟩ = ⟨(p, c),− ad(ξ)

(
η

µ

)
⟩ = −⟨(p, c),

(
−[ξ, η]

ω(ξ, η)

)
⟩

= ⟨p, [ξ, η]⟩ − c

∫ 2π

0

ξ′dη′ =

∫ 2π

0

p(ξη′ − ξ′η) + cξ′′η′ = −
∫ 2π

0

(cξ′′′ + 2pξ′ + p′ξ)η.

So
ad∗(ξ)(p, c) = −(cξ′′′ + 2pξ′ + p′ξ, 0).
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Proposition [Kirillov, 1982]. Every moment (p, c) has nontrivial stabilizer, that
means the equation cξ′′′ + 2pξ′ + p′ξ = 0 has at least one nontrivial 2π-periodic
solution.

Proof. Let L be the space of all solutions. This is a 3-dimensional Lie subalgebra
of Vect(R), because L is the stabilizer of g(p,c) viewed as a Lie algebra action of
Vect(R). We denote by ξ−1, ξ0, ξ1 the basis of solutions with initial conditions
ξk(t) = tk+1 + o(t2). Then the commutation relations between them are:

[ξ0, ξ−1] = −ξ−1 +
p(0)

c
ξ1

[ξ0, ξ1] = ξ1

[ξ1, ξ−1] = −2ξ0.

For example the first equality follows from:

[ξ0, ξ−1](0) = ξ0(0)ξ
′
−1(0)− ξ′0(0)ξ−1(0) = −1

[ξ0, ξ−1]
′(0) = ξ0(0)ξ

′′
−1(0)− ξ′′0 (0)ξ−1(0) = 0

[ξ0, ξ−1]
′′(0) = ξ0(0)ξ

′′′
−1(0)− ξ′0(0)ξ

′′
−1(0)− ξ′′′0 (0)ξ−1(0)− ξ′′0 (0)ξ

′
−1(0)

= −ξ′′0 (0) =
2p(0)

c
.

So we see that L ∼= sl(2,R).
Let T be the automorphism of the Lie algebra L defined by the shift ξ(t) 7→

ξ(t+2π). The fixed points of T are exactly the periodic solutions of the differential
equation cξ′′′+2pξ′+p′ξ = 0. But every automorphism of sl(2,R) has fixed points,
because for every T : sl(2,R) → sl(2,R) there exists a g ∈ GL(2,R) such that
T (X) = gXg−1 and X0 = g − 1

2 tr(g)I ∈ sl(2,R) is a fixed point for T . �

7.5. Coadjoint orbits containing constant moments.

The results of this paragraph can be found in [Kirillov, 1982]. In the special case
p = pdt2 constant, the stabilizing algebra g(p,c) consists of those vector fields which
satisfy the equation

cξ′′′ + 2pξ′ = 0

Proposition. The isotropy Lie algebra is isomorphic to sl(2,R) if p = n2

2 c for
some n ∈ N, and isomorphic to R otherwise.

Proof. The differential equation y′′ + ay = 0 has nontrivial 2π-periodic solutions
if and only if a = n2, namely linear combinations of cosnt and sinnt. Hence the
2π-periodic solutions of the equation cξ′′′ + 2pξ′ = 0 are constants if 2p

c ̸= n2 and

are generated by 1, 1
n cosnt, 1

n sinnt if 2p
c = n2.

g(p,c) =

{
⟨ d
dt ⟩, for p ̸= n2

2 c

⟨ d
dt ,

1
n cosnt d

dt ,
1
n sinnt d

dt ⟩, for p = n2

2 c.



Coadjoint orbits in infinite dimensions 39

From the commutation relations

[ d
dt
,
1

n
sinnt

d

dt

]
= − 1

n
cosnt

d

dt[ d
dt
,
1

n
cosnt

d

dt

]
=

1

n
sinnt

d

dt[ 1
n
cosnt

d

dt
,
1

n
sinnt

d

dt

]
=

d

dt

we see that the last Lie algebra is isomorphic to sl(2,R). �

Proposition. The isotropy group of a constant moment (p, c) ∈ g∗reg is the sub-

group PSL(n)(2,R) of Diff+(S
1), of n-fold coverings of elements in PSL(2,R) if

p = n2

2 cdt
2, n ∈ N, and the subgroup of rotations for all other choices of p.

Proof. 1.Method. To detect the Lie subgroups of Diff+(S
1) corresponding to the

isotropy Lie algebras determined in the preceding proposition. (Every finite di-
mensional Lie algebra of smooth vector fields on M arises from a Lie subgroup of
Diff(M)).

The 1-parameter subgroup in Diff+(S
1) of d

dt is Rot(S1) the subgroup of rota-

tions. The asociated 1-parameter subgroup to sin t d
dt is {x 7→ 2 arctg(ea tg x

2 ) : a ∈
R}. The 1-parameter subgroup of cos t d

dt is {x 7→ 2 arctg
(ea+1) tg x

2+(ea−1)

(ea−1) tg x
2+(ea+1) : a ∈ R}.

In fact we extend these maps defined around 0 uniquely to R by φ̃(x + 2π) =
φ̃(x) + 2π. As mappings from R ∪∞ = S1 to itself they are Moebius transforma-
tions:

x 7→x+ a

x 7→ x

ea

x 7→ (ea + 1)x+ ea − 1

(ea − 1)x+ ea + 1

and they generate the 3-dimensional Moebius group. Hence the Lie subalgebra
corresponding to PSL(2,R) is ⟨ d

dt , sin t
d
dt , cos t

d
dt ⟩.

Lifted to R, the n-fold covering map of the circle pn becomes the multiplication
by n, hence the vector fields d

dt , sin t d
dt , cos t d

dt are pn-related to d
dt ,

1
n sinnt d

dt ,
1
n cosnt d

dt . Then

pn ◦ Flp
∗
nξ

t = Flξt ◦pn

and we conclude from the first part of the proof that the Lie subalgebra

⟨ d
dt
,
1

n
sinnt

d

dt
,
1

n
cosnt

d

dt
⟩

arises from

PSL(n)(2,R) = {φ ∈ Diff+(S
1) : pn ◦ φ = A ◦ pn, A ∈ PSL(2,R)}.
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2.Method. For p = n2

2 c, this result can be obtained directly on the group level.
Recall that the coadjoint action on g∗reg is

Ad∗(φ−1)(pdt2, c) = (((p ◦ φ)φ′2 + cS(φ))dt2, c),

(the left side of the equality we can actually also compute using an arbitrary cov-

ering φ̃ of φ). Hence in the case where p = n2

2 c is constant, the isotropy group
is

G(p,c) = {φ ∈ Diff+(S
1) :

n2

2
(φ′2 − 1) + S(φ) = 0}.

Next we will show that these diffeomorphisms are n-fold coverings of Moebius trans-
formations. We have the following equivalences:

φ̃ ∈ S̃L(2,R) ⇔ f ◦ φ̃ ◦ f−1 is a Moebius transformation

⇔ S(f ◦ φ̃ ◦ f−1) = 0

⇔ 1

2
(φ̃′2 − 1) + S(φ̃) = 0.

The computation uses S(f) = 1
2 :

S(f ◦ φ̃ ◦ f−1) = (S(f ◦ φ̃) ◦ f−1)((f−1)′)2 + S(f−1)

= ((S(f) ◦ φ̃)(φ̃′)2 + S(φ̃)− S(f)) ◦ f−1((f−1)′)2

= (
1

2
((φ̃′)2 − 1) + S(φ̃)) ◦ f−1((f−1)′)2

So we get in the case n = 1 that G(p,c) = PSL(2,R). For the general case we show
that

PSL(n)(2,R) = {φ ∈ Diff+(S
1) :

n2

2
((φ′)2 − 1) + S(φ) = 0}.

Indeed, the condition pn ◦ φ = A ◦ pn which is the definition of PSL(n)(2,R),
transcribes to nφ̃(t) = φ̃A(nt) in D̃iff+(S

1). The result follows then from the
equivalences:

S(φ̃)(t) = S(
1

n
Id ◦φ̃A ◦ n Id)(t) = S(φ̃A ◦ n Id)(t)

= n2S(φ̃A)(nt) = −n
2

2
((φ̃′

A)
2(nt)− 1) = −n

2

2
((φ̃′)2(t)− 1).

We find that the isotropy group of (n
2

2 c, c) is PSL
(n)(2,R). �

Corollary. All constant moments are pairwise nonequivalent.

Proof. Let p1 = p1dt
2, p2 = p2dt

2 be constant moments and suppose there exists a
φ ∈ Diff+(S

1) such that Ad∗(φ)(p1, c) = (p2, c). Then the isotropy groups G(p1,c)

and G(p2,c) are conjugate by φ. This can occur only if both are equal to Rot(S1)

and φ normalizes Rot(S1). Then for every a ∈ R, there exists a b(a) ∈ R with
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φ ◦Ra ◦ φ−1 = Rb(a), i.e. φ̃(t+ a) = φ̃(t) + b(a) for every t. We get φ̃′ is constant,

hence φ ∈ Rot(S1). The relation Ad∗(φ)(p1, c) = (p2, c) gives

p1 = p2(φ̃
′)2 + cS(φ̃) = p21 + c0 = p2. �

Conclusion: To every pair of real numbers (p, c) corresponds a different coadjoint
orbit Op,c:

Op,c
∼= Diff+(S

1)/Rot(S1), if p ̸= n2

2
c

Op,c
∼= Diff+(S

1)/PSL(n)(2,R), if p =
n2

2
.

7.6. Locally projective structures on S1.

Definition. A projective transformation in R is a restriction of an element in

S̃L(2,R) to an open set. A local projective structure on S1 is a complete atlas of
S1 with projective transformations as transition mappings.

Remark. Every projective transformation in R is the restriction of a unique element

in S̃L(2,R).

Proposition. The problem of classifying coadjoint orbits with c ̸= 0 in the Vira-
soro-Bott group is the same as that of determining all local projective structures
on S1.

Proof. First recall that S̃L(2,R) = {φ̃ ∈ D̃iff(S1) : S(φ̃) = 1
2 − 1

2 (φ̃
′)2}. Let

{fα : Uα ⊂ S1 → R} be a complete projective atlas on S1. We define pα =
cS(fα) +

c
2 (f

′
α)

2 : Uα ⊂ S1 → R. The transition mappings fα ◦ f−1
β are projective

transformations, i.e.

S(fα ◦ f−1
β ) =

1

2
− 1

2
((fα ◦ f−1

β )′)2.

Hence

1

c
pα = S(fα ◦ f−1

β ◦ fβ) +
1

2
((fα ◦ f−1

β ◦ fβ)′)2

= (S(fα ◦ f−1
β ) ◦ fβ)(f ′β)2 + S(fβ) +

1

2
(((fα ◦ f−1

β )′)2 ◦ fβ)(f ′β)2

= S(fβ) +
1

2
(f ′β)

2 =
1

c
cpβ

on their common domain of definition and so they can be pieced together to give a
smooth map p : S1 → R.

A projectively equivalent complete atlas is of the form {fα◦φ : φ−1(Uα) ⊂ S1 →
R} for a fixed diffeomorphism φ of S1. The smooth map q : S1 → R defined by
this atlas is:

1

c
q = S(fα ◦ φ) + 1

2
((fα ◦ φ)′)2

= (S(fα) ◦ φ)(φ′)2 + S(φ) +
1

2
((f ′α)

2 ◦ φ)(φ′)2 =
1

c
(p ◦ φ)(φ′)2 + S(φ),
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hence (p, c) and (q, c) lie in the same coadjoint orbit.
For the converse let’s consider (p, c) ∈ g̃∗reg. The ordinary differential equation

of 3-rd order

p = cS(f) +
1

2
c(f ′)2

has local solutions {fα : Uα ⊂ S1 → R}. We show that they form a complete
projective atlas on S1:

S(fα ◦ f−1
β ) = (S(fα) ◦ f−1

β )((f−1
β )′)2 + S(f−1

β )

= ((S(fα)− S(fβ)) ◦ f−1
β )((f−1

β )′)2

=
1

2
(((f ′β)

2 − (f ′α)
2) ◦ f−1

β )((f−1
β )′)2 =

1

2
− 1

2
((fα ◦ f−1

β )′)2

hence fα ◦ f−1
β is a projective transformation in R. The completeness of this atlas:

let φ̃ ∈ S̃L(2,R), i.e. S(φ̃) = 1
2 − 1

2 (φ̃
′)2, and fα a chart of this atlas. Then φ̃ ◦ fα

is again a chart of this atlas because

S(φ̃ ◦ fα) +
1

2
((φ̃ ◦ fα)′)2 = (S(φ̃) ◦ fα)(f ′α)2 + S(fα) +

1

2
(φ̃ ◦ fα)(f ′α)2

= S(fα) +
1

2
(f ′α)

2 =
p

c
.

It is clear that the two constructions are dual, hence the conclusion. �

7.7. The conjugacy classes in S̃L(2,R).

Proposition [Kuiper, 1954]. The equivalence classes of locally projective struc-

tures on S1 are in one-to-one correspondence with conjugacy classes in S̃L(2,R).

Proof. Let Z be S1 equiped with a locally projective structure {fα} and Z̃ a con-
nected component of the topological space of all germs of all coordinate charts in
the complete projective atlas with the topology determined by the base

Nf = {germz(f) : z ∈ Dom(f) ⊂ S1}.

The mapping germz(f) ∈ Z̃ 7→ f(z) ∈ R is a homeomorphism, because in
one connected component we can find only germs of coordinate maps obtained by
extending a fixed coordinate map (extending also around the circle). Let g be
the coordinate map obtained by extending f exactly one time around the circle
(Dom(f) = Dom(g)) and let h = gf−1 be the projective transformation on R
representing the coordinate change.

The mapping
germz(f) ∈ Z̃ 7→ z ∈ Z

is a universal covering projection. The fundamental group of Z operates on Z̃ as a

group of projective transformations generated by the element h ∈ S̃L(2,R):

hn : germz(f) 7→ germz(h
n ◦ f), n ∈ Z.
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Another connected component Z̃1, determined by the coordinate map f1, defines

in this way an element h1 ∈ S̃L(2,R) conjugate to h, because f1 = φ̃f for some

φ̃ ∈ S̃L(2,R) implies g1 = φ̃g and then h1 = g1f
−1
1 = φ̃hφ̃−1.

So the locally projective structure {fα} defines a conjugacy class [h] in S̃L(2,R).
An equivalent structure fα◦φ with φ ∈ Diff+(S

1), defines the same conjugacy class
because (g ◦ φ) ◦ (f ◦ φ)−1 = g ◦ f−1.

Let ĥ be a conjugacy class in S̃L(2,R). We define

Z := R/{hn : n ∈ Z}
with the locally projective structure induced by the (unique) obvious locally pro-

jective structure on R defined by S̃L(2,R). The two constructions are dual. �
In [Segal, 1981] there is a direct proof to the fact that the coadjoint orbits in the

Virasoro Bott group are in bijection with conjugacy classes in S̃L(2,R).
The conjugacy classes in SL(2,R) are of three types:

–elliptic, if | trA| < 2;
–hyperbolic, if | trA| > 2;
–parabolic, if | trA| = 2.

Correspondingly, the conjugacy classes in S̃L(2,R) are of three types. They are
determined by the trace and the component in which they lie. The elliptic classes
are all in the image of the exponential map and have dimension 2. The parabolic
classes are 1-dimensional, the hyperbolic classes 2-dimensional. Only those in the
0-component lie on 1-parameter subgroups.

A coadjoint orbit has a constant representative if and only if the corresponding

conjugacy class in S̃L(2,R) lies in the image of exp [Segal, 1981].

The picture of S̃L(2,R) and its conjugacy classes is obtained after rotating the
following picture around the horizontal axis. The image of the exponential map is
the complement of the dashed part:

7.8. Hill’s equation and superalgebras.
This section follows [Kirillov, 1982]. With every regular moment (p, c), c ̸= 0 we

can associate an auxiliary equation, known as Hill’s equation:

2cu′′(t) + p(t)u(t) = 0

We consider u = u(t)
√

d
dt as the square root of a vector field (or a density of weight

−1
2 ) and the natural action of Diff+(S

1) :Ad∗(φ−1) = φ∗u = (u ◦ φ)(φ′)−
1
2 .
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Lemma. If u is a solution of the Hill equation associated to (p, c), then Ad∗(φ−1)u
is a solution of the Hill equation associated to (q, c) = Ad∗(φ−1)(p, c), for every
φ ∈ Diff+(S

1).

Proof.

(φ∗u)′ = (u′ ◦ φ)(φ′)
1
2 − 1

2
(u ◦ φ)(φ′)−

3
2φ′′

(φ∗u)′′ = (u′′ ◦ φ)(φ′)
3
2 +

3

4
(u ◦ φ)(φ′)−

5
2 (φ′′)2 − 1

2
(u ◦ φ)(φ′)−

3
2φ′′′.

Using 2cu′′ + pu = 0, we get

2c(φ∗u)′′ = ((−pu) ◦ φ)(φ′)
3
2 +

3

2
c(u ◦ φ)(φ′)−

5
2 (φ′′)2

− c(u ◦ φ)(φ′)−
3
2φ′′′ = −(φ∗u)[(p ◦ φ)(φ′)2 + cS(φ)].

Hence φ∗u is a solution of the equation 2cv′′ + qv = 0. �
The known fact that the product of any two solutions of Hill’s equation is a

solution of the equation cξ′′′ + 2pξ′ + p′ξ = 0 which characterizes the isotropy Lie
algebra, has an interpretation in the language of superalgebras.

The Ramon superalgebra γ is the set of pairs (ξ, u) with ξ a vector field on S1

and u the square root of a vector field on S1 with the operations[
ξ
d

dt
, η
d

dt

]
= −(ξη′ − ξ′η)

d

dt[
ξ
d

dt
, u

√
d

dt

]
= −(ξu′ − 1

2
ξ′u)

√
d

dt[
u

√
d

dt
, v

√
d

dt

]
= −2uv

d

dt

The even part of the Ramon superalgebra is g = Vect(S1) and the Virasoro
cocycle

ω(ξ, η) =

∫ 2π

0

ξ′dη′

on g can be extended to the whole superalgebra by

ω(u

√
d

dt
, v

√
d

dt
) = 4

∫ 2π

0

uvdt

ω(ξ
d

dt
, u

√
d

dt
) = 0

The extension γ̃ is again a superalgebra with even part the Virasoro algebra g̃ and
odd part the densities of degree − 1

2 . The bracket operation in γ̃ is

[(ξ, λ, u), (η, µ, v)]

= (−(ξη′ − ξ′η + 2uv)
d

dt
,

∫ 2π

0

(ξ′η′′ + 4u′v′),−(ξv′ − 1

2
ξ′v − ηu′ +

1

2
η′u)

√
d

dt
)

for (ξ, λ), (η, µ) ∈ g̃ and u, v − 1
2 -densities. This induces a coadjoint action ad∗ of γ

on the super-moment-space γ̃∗, because the extension is central.
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Proposition. The isotropy superalgebra of the regular moment (p, c, 0) is

γ(p,c) = {(ξ d
dt
, u

√
d

dt
) : cξ′′′ + 2pξ′ + p′ξ = 0, 2cu′′ + pu = 0}

Proof.

⟨ad∗(ξ, u)(p, c, 0), (η, µ, v)⟩ = ⟨(p, c, 0),−[(ξ, 0, u), (η, µ, v)]⟩

= ⟨p, ξη′ − ξ′η + 2uv⟩ − c

∫ 2π

0

(ξ′η′′ + 4u′v′)

=

∫ 2π

0

(pξη′ − pξ′η − cξ′η′′) + 2

∫ 2π

0

(puv − 2cu′v′)

= ⟨(−(cξ′′′ + 2pξ′ + p′ξ), 0, 2(2cu′′ + pu)), (η, µ, v)⟩

for every (η, µ, v) in the Ramon superalgebra. We get the coadjoint action

ad∗(ξ, u)(p, c, 0) = (−(cξ′′′ + 2pξ′ + p′ξ), 0, 2(2cu′′ + pu))

and the desired form of the stabilizing superalgebra. �
Now two solutions u1, u2 of the equation

2cu′′ + pu = 0

define two elements (0, 0, u1

√
d
dt ), (0, 0,

√
d
dt ) of the even part of the superalgebra

γ(p,c), hence [
u1

√
d

dt
, u2

√
d

dt

]
= −2u1u2

d

dt

belongs again to γ(p,c). This means that u1u2 is a solution of

cξ′′′ + 2pξ′ + p′ξ = 0.

8. The coadjoint orbit Diff+(S1)/Rot(S1)

8.1. The symplectic structure.
Let G be a (possibly infinite dimensional) Lie group with Lie algebra g. There

exists a canonical symplectic structure on each coadjoint orbit

Oα = Ad∗(G) ∼= G/Gα, α ∈ g∗.

Construction. We define an alternating bilinear form on g by

ωα(X,Y ) = ⟨α, [X,Y ]⟩.
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The kernel of ωα is the isotropy Lie algebra gα, because ωα(X,Y ) = −⟨ad∗(X)α, Y ⟩.
Then ωα projects to a weakly nondegenerate alternating bilinear form on g/gα,
denoted also ωα. This is Gα-invariant, so it defines a G-invariant 2-form on G/Gα.
By identifying TβOα = {ζX(β) : X ∈ g} this means

ωα(ζX(β), ζY (β)) = ⟨β, [X,Y ]⟩.

Indeed, if β = Ad∗(g)α, then ω(ζX(β), ζY (β))= ω(ζAd(g−1)X(α), ζAd(g−1)Y (α)) =

⟨α, [Ad(g−1)X,Ad(g−1)Y ]⟩ = ⟨Ad∗(g)α, [X,Y ]⟩= ⟨β, [X,Y ]⟩.
This is a closed non-degenerate form, hence a symplectic form on the orbit. ω is

closed because

dω(ζX , ζY , ζZ) = ζXω(ζY , ζZ) + ζY ω(ζZ , ζX) + ζZω(ζX , ζY )

− ω([ζX , ζY ], ζZ)− ω([ζY , ζZ ], ζX)− ω([ζZ , ζX ], ζY )

and the identities

(ζXω(ζY , ζZ))(β) =
d

dt

∣∣
0
ω(ζY , ζZ)(Ad∗(exp tX).β)

=
d

dt
|0⟨Ad∗(exp tX).β, [Y, Z]⟩ = ⟨ad∗(X).β, [Y, Z]⟩ = −⟨β, [X, [Y, Z]]⟩

ω([ζX , ζY ], ζZ)(β) = ω(ζ[X,Y ], ζZ)(β) = ⟨β, [[X,Y ], Z]⟩

reduce the closedness condition to the Jacoby identity. ω is non degenerate because
ω(ζX(β), ζY (β)) = β([X,Y ]) = 0 for all Y ∈ g is equivalent to Y ∈ gβ , i.e. ζY (β) =
0.

Moreover, the action of G on Oα is Hamiltonian with symplectic moment the
inclusion Oα ↪→ g∗. This means ζX = HevX :

d evX .ζY (β) =
d

dt
|0 evX(Ad∗(exp tY ).β) = ⟨ad∗(Y ).β,X⟩

= ⟨β, [X,Y ]⟩ = ω(ζX(β), ζY (β)) = iζXω.ζY (β), ∀ζY (β) ∈ TβO,

and the map X ∈ g 7→ evX ∈ C∞(Oα,R) is a Lie algebra homomorphism:

{evX , evY } = ω(HevX ,HevY ) = ω(ζX , ζY ) = ev[X,Y ] .

Now we consider the case of the Virasoro-Bott group and the coadjoint orbit
of the constant moment (p, c) = (p(dt)2, c) ∈ g̃∗reg with 2p

c ̸= n2, n ∈ N, which is

diffeomorphic to Diff+(S
1)/Rot(S1).

The references for the rest of this chapter are [Kirillov, 1990] and [Kirillov, 1990].
We compute the bilinear form ω(p,c):

ω(p,c)(ξ, η) = ⟨(p.c),
(

[ξ, η]

ω(ξ, η)

)
⟩

= p

∫ 2π

0

(ξη′ − ξ′η)dt+ c

∫ 2π

0

ξ′η′′dt

=

∫ 2π

0

ξ(2pη′ − cη′′)dt, ∀ξη ∈ g.
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If we expand ξ, η in Fourier series

ξ(t) =
∑
k∈Z

ξke
ikt, η(t) =

∑
k∈Z

ηke
ikt,

(the coefficients ξk, ηk ∈ C verify ξ̄k = ξ−k, η̄k = η−k) we get

ω(p,c)(ξ, η) =

∫ 2π

0

(
∑
k∈Z

ξke
ikt)(2pi

∑
l∈Z

lηle
ilt − ci3

∑
l∈Z

l3ηle
ilt)dt

= i
∑
k≥1

(2p(−k) + c(−k)3)ξkη−k

= −i
∑
k≥1

(2pk + ck3)ξkη̄k

= Im(
∑
k≥1

(2pk + ck3)ξkη̄k).

The tangent space at (p, c) to the orbit can be identified with Vect(S1)/R, i.e. the
space C∞

0 (S1) of smooth functions on the circle with zero integral. This means the
0-coefficient ξ0 in the Fourier expansion is zero.

This two-parameter family of non-degenerate alternating bilinear forms ω(p,c)

on Vect(S1)/R form by Diff+(S
1)-invariance a two-parameter family of different

homogeneous symplectic structures on Diff+(S
1)/Rot(S1).

8.2. The almost complex structure.
The Hilbert transformation operator J on C∞

0 (S1) ∼= Vect(S1)/R is defined by

J(ξ)(s) =
1

2π

∫ 2π

0

ξ(s)− ξ(t)

tg s−t
2

dt.

For a Fourier series this means J(
∑

k ̸=0 ξke
ikt) =

∑
k ̸=0 iξk(sgn k)e

ikt and we see

that J2 = −I. Because J is also Rot(S1)-invariant, it defines a Diff+(S
1)-invariant

almost complex structure on the homogeneous space Diff+(S
1)/Rot(S1). The

eigenspace corresponding to the eigenvalue i is

V+ := {
∑
k ̸=0

ξke
ikt : iξk = iξk sgn k} = {

∑
k>0

ξke
ikt},

the space of boundary values of holomorphic functions in D := {z ∈ C : |z| < 1}
and the eigenspace corresponding to the eigenvalue −i is V− = (V+)

⊥, where the
orthogonality is relative to the scalar product

⟨
∑

ξke
ikt,
∑

ηke
ikt⟩ =

∑
ξkη̄k.

J satisfies the integrability condition [J, J ] = 0, but in the infinite dimensional
case this doesn’t assure the existence of a complex structure.
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Proposition. On Diff+(S
1)/Rot(S1) there is only one integrable almost complex

structure which is Diff+(S
1)-invariant.

Proof. To give a G-invariant almost complex structure J on G/H is the same as to
give an H-invariant decomposition

(g/h)C = V+ ⊕ V−,where V− = V̄+.

Here V+ and V− are the eigenspaces of JC at 0 corresponding to the eigenvalues i
and −i.

Let πC : gC → (g/h)C be the complexification of the canonical projection π. J
is integrable if and only if p+ := (πC)−1(V+) is a Lie subalgebra of gC. Indeed:
let l : G × (G/H) → G/H and ζX the fundamental vector field induced by this
action. The vector fields RX × 0 on G × (G/H) and ζX on G/H are l-related for
every X ∈ g. The complex distribution on G/H obtained by translating V+ with
the G-action is generated by ζX , where X ∈ p+. J is integrable if and only if this
distribution is integrable. This is equivalent to the integrability of the distribution
in G generated by RX with X ∈ p+, i.e. [p+, p+] ⊂ p+.

Hence it suffices to find all Rot(S1)-invariant decompositions of

C∞
0 (S1)C = {

∑
k ̸=0

ξke
ikt : ξk ∈ C fast falling}.

Such a decomposition has the form VA ⊕ V−A, where VA = {
∑

k∈A ξke
ikt} with

A ⊂ Z− {0}, because

Ad(Rϑ)(
∑

ξke
ikt) =

∑
ξke

ikϑeikt.

The condition that p+ = {
∑

k∈A∪{0} ξke
ikt} is a Lie algebra gives

k, l ∈ A ∪ {0}, k ̸= l ⇒ k + l ∈ A ∪ {0}.

We use here the fact that

[eikt
d

dt
, eilt

d

dt
] = i(l − k)ei(k+l)t d

dt

Hence A = N or A = −N and the required decomposition is unique. �
8.3. The complex structure.

The set of univalent functions

F := {f : D̄ → C holomorphic : f(0) = 0, f ′(0) = 1, f injective}

is an infinite dimensional complex manifold; the coordinate map is

z + c1z + c2z
2 + · · · 7→ (c1, c2, · · · ), ci ∈ C.
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Proposition. The spaces Diff+(S
1)/Rot(S1) and F are homeomorphic.

Proof. Let f ∈ F . By the Riemann mapping theorem, there exists a uniquely
defined, modulo Rot(S1), biholomorphic mapping g : Ĉ−D → Ĉ− f(D) such that
g(∞) = ∞. Then γ = f−1 ◦ g : ∂D̄ → ∂D̄ is an element of Diff+(S

1) defined
modulo Rot(S1).

Conversely, let γ ∈ Diff+(S
1). The complement of D̄ in the Riemann sphere Ĉ,

denoted A, is homeomorphic to D, so we can glue D̄ and Ā along their boundaries
using γ and we get Ĉγ := D̄ ⊔γ Ā. The analytic structure on Ĉγ is given by the
condition

F : Ĉγ → Ĉ analytic ⇔
{
F |D,F |A analytic

F continuous.

The Riemann surface Ĉγ is topologically a sphere and depends only on the class

of γ in Diff+(S
1)/Rot(S1). By Riemann’s uniformization theorem, Ĉγ is biholo-

morphically equivalent to the Riemann sphere Ĉ. The automorphisms of Ĉ form
the group of Moebius transformations which is 3-dimensional, hence we have 3 free
complex parameters in the choice of the biholomorphic map F : Ĉγ → Ĉ and the
conditions F (0) = 0, F (∞) = ∞, F ′(0) = 1 uniquely define F . We assign to the
class γ.Rot(S1) the univalent function f = F |D̄ ∈ F . This is the inverse of the
map defined earlier because if g := F |Ā, then f ◦ γ = g on S1. �

Moreover, the homeomorphism constructed above and its inverse are smooth
(they map smooth curves into smooth curves), so the spaces Diff+(S

1)/Rot(S1)
and F are diffeomorphic. Hence on Diff+(S

1)/Rot(S1) there is a complex struc-
ture: the one induced from F . Is this diffeomorphism Diff+(S

1)-invariant? If
yes, then it integrates exactly the almost complex structure given by the Hilbert
transformation.

8.4. The Kähler structure.
For every pair (p, c) with 2p

c ̸= n2, the complex structure J is compatible with
the symplectic structure ω(p,c):

ω(p,c)(Jξ, Jη) = ω(p,c)(
∑
k ̸=0

iξk(sgn k)e
ikt,
∑
k ̸=0

iηk(sgn k)e
ikt)

= −i
∑
k≥1

(2pk + ck3)(iξk sgn k)(iηk sgn k) = −i
∑
k≥1

(2pk + ck3)ξkη̄k = ω(p,c)(ξ, η),

hence they define a family of Kähler structures on Diff+(S
1)/Rot(S1):∑

k≥1

(2pk + ck3)dckdc̄k.

9. Subgroups of the diffeomorphism group

9.1. Diffeomorphisms preserving a given structure.
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Definition. Let ω be a differential p-form on M .
A diffeomorphism φ of M is said to be an automorphism of ω if φ∗ω = ω and a

conformal transformation of ω if φ∗ω = ρω for some positive valued function ρ on
M .

An infinitesimal automorphism of ω is a vector field ξ on M such that for every
element (t, x) of the domain of the flow of ξ,

(Flξt )
∗
ω(x) = ω(x);

and a conformal infinitesimal transformation of ω, if

(Flξt )
∗
ω(x) = ρ(t, x)ω(x)

for a positive valued smooth function ρ.

Proposition. A vector field ξ is an infinitesimal automorphism of ω if and only if

Lξω = 0

and a conformal infinitesimal transformation if and only if

Lξω = λω

where λ is a smooth function on M . The function λ is related to ρ by

ρ(t, x) = exp(

∫ t

0

λ ◦ Flξτ (x)dτ).

Proof. The assertion that ξ is a (conformal) infinitesimal automorphism implies
Lξω = 0 (resp. Lξω = λω) follows from

d

dt

∣∣∣
0
(Flξt )

∗ω = Lξω.

The converse in the first case: let Lξω = 0, then (Flξt )
∗ω is constant in t:

d

dt
((Flξt )

∗
ω) =

d

ds

∣∣∣
0
(Flξs+t)

∗
ω = (Flξt )

∗ d

ds

∣∣∣
0
(Flξs)

∗
ω = (Flξt )

∗
(Lξω) = 0

hence (Flξt )
∗
ω = (Flξ0)

∗
ω = ω.

The converse in the conformal case: let ξ satisfy Lξω = λω. Then

d

dt
((Flξt )

∗
ω) = (Flξt )

∗
(Lξω) = (Flξt )

∗
(λω) = (λ ◦ Flξt )(Fl

ξ
t )

∗
ω

and so the curve t 7→ C(t) = (Flξt )
∗
ω(x) in ∧pT ∗

xM satisfies the ordinary differential
equation: { d

dtC(t) = (λ ◦ Flξt (x))C(t)
C(0) = ω(x)
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whose unique solution is t 7→ ρ(t, x)ω(x), where

ρ(t, x) = exp(

∫ t

0

λ ◦ Flξτ (x)dτ).

Hence (Flξt )
∗
ω(x) = ρ(t, x)ω(x). �

The set of infinitesimal automorphisms of ω and the set of conformal infinitesimal
automorphisms of ω are Lie subalgebras of Vect(M). We give the proof in the
conformal case: let ξ, η ∈ Vect(M) such that Lξω = λξω, Lηω = ληω, for λξ, λη
functions onM . Then L[ξ,η]ω = [Lξ,Lη]ω = [ξ(λη)−η(λξ)]ω, hence [ξ, η] is again a
conformal infinitesimal automorphism of ω. However the group of automorphisms,
resp. conformal automorphisms of ω in general do not form a Lie subgroup of
Diff(M), because it is not always a manifold. This can be done by putting some
non-degeneracy conditions on ω.

(a) The group of symplectomorphisms.
Let (M,ω) be a connected smooth symplectic manifold, i.e. ω is a closed 2-form

on M such that ωn is a volume form. The space of infinitesimal automorphisms of
ω:

Vectc(M,ω) = {ξ ∈ Vectc(M) : Lξω = 0}

is a Lie subalgebra of Vectc(M). In [Michor, 1980] it is shown that the group of
symplectomorphisms

Diffc(M,ω) = {φ ∈ Diffc(M) : φ∗ω = ω}

is a Lie subgroup of Diffc(M) and, if M is compact, its Lie algebra is the space of
infinitesimal automorphisms of ω.

The vector space Vectc(M,ω) can be identfied with Z1
c (M), the space of closed

differential 1-forms on M with compact support, because the correspondence ξ 7→
iξω is an isomorphism between vector fields and 1-forms by which the infinitesimal
automorphisms of ω correspond to the closed 1-forms

d(iξω) = Lξω = 0.

(b) The group of volume preserving diffeomorphisms.
Let µ be a volume form on the compact manifold M . Let Diffc(M,µ) = {φ ∈

Diffc(M) : φ∗µ = µ} be the volume preserving diffeomorphisms (the automor-
phisms of µ) and Vectc(M,µ) = {ξ ∈ Vectc(M) : Lξµ = 0} the Lie algebra of
infinitesimal automorphisms of µ.

The divergence of a vector field ξ is the unique function div such that Lξµ =
(div ξ)µ, so the infinitesimal automorphisms are the zero divergence vector fields.

It follows from the next theorem that Diffc(M,µ) is a submanifold of Diffc(M),
hence a Lie subgroup with Lie algebra Vectc(M,µ).

Theorem. [Ebin-Marsden, 1970]. Let M be a compact orientable manifold and
µ0 a volume form on M with total mass 1. Then Diff(M) splits smoothly into
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Diff(M) = Diff(M,µ0) × Vol(M), where Vol(M) is the space of all volume forms
with total mass 1.

Proof. We construct first a smooth mapping τ : Vol(M) → Diff(M) such that
τ(µ)∗µ0 = µ. Let µ1 ∈ Vol(M) and µt = µ0 + t(µ1 − µ0). We search for a curve
t 7→ φt in Diff(M) with φ∗

tµt = µ0 and we will find one as the evolution operator
of a well chosen time dependent vector field Xt, i.e.

d
dtφt = Xt ◦φt, φ0 = Id. Then

0 =
d

dt
(φ∗

tµt) = φ∗
tLXtµt + φ∗

t (µ1 − µ0)

implies LXtµt = µ0 − µ1. Because
∫
M
(µ1 − µ0) = 0, there exists an (n − 1)-form

ω such that diXtµt = µ0 − µ1 = dω and we can choose by using Hodge theory
(so the condition M compact is necessary) ω depending smoothly on µ1. Then
it is sufficient to choose Xt as the unique time dependent vector field satisfying
iXtµt = ω (this is possible because µt is a volume form for every t). Now we denote
by φt the evolution operator of this Xt and by going back we find d

dt (φ
∗
tµt) = 0,

hence φ∗
1µ1 = µ0. The mapping τ can be defined as τ(µ1) = φ−1

1 and it is smooth
because it maps smooth curves into smooth curves.

Now let the mapping Ψ : Diff(M) → Diff(M,µ)× Vol(M) be given by Ψ(φ) :=
(φ ◦ τ(φ∗µ0)

−1, φ∗µ0). Its inverse is Ψ−1(ψ, µ) = ψ ◦ τ(µ) and both are smooth
because τ is smooth (see also chapter 2.), hence the conclusion. �
Corollary. For a compact orientable manifold all the groups Diff(M,µ) are dif-
feomorphic.

Proof. From the theorem it follows that Diff(M) acts transitvely on the space of
volume forms of total mass c. Let µ1 and µ2 be volume forms with mass c, then
the groups Diff(M,µ1) and Diff(M,µ2) are the isotropy groups of µ1, respectively
µ2, hence they are conjugated subgroups in Diff(M). If c is a constant, then
Diff(M,µ) = Diff(M, cµ). These two facts solve the problem. �

(c) The group of contact diffeomorphisms.
Let (M,α) be a strict contact manifold, i.e. α is a 1-form on M such that

α ∧ (dα)n is a volume form. It has been shown for a compact manifold in [Ratiu-
Schmid, 1981] that the group of contact diffeomorphisms

Diffc(M,α) = {φ ∈ Diffc(M) : φ∗α = ρα, ρ ∈ C∞(M)}

is a Lie group with Lie algebra the space of conformal infinitesimal transformations

Vectc(M,α) = {ξ ∈ Vectc(M) : Lξα = λα, λ ∈ C∞(M)}.

Proposition. The map

ξ ∈ Vect(M,α) 7→ fξ = α(ξ) ∈ C∞(M)

is an isomorphism.

First we need a lemma.
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Lemma. There exists a unique vector field ϵ on M , called the Reeb vector field
on M , which satisfies the following conditions:

iϵα = 1 , iϵdα = 0.

Proof of the lemma. We show that these conditions are equivalent to

iϵ(α ∧ (dα)n) = (dα)n

and from the fact that α∧ (dα)n is a volume form we get the existence and unique-
ness of ϵ.

The direct implication is evident. For the reverse let iϵ(α ∧ (dα)n) = (dα)n.
Because iϵ ◦ iϵ = 0, we have iϵ(dα)

n = 0. Consequently (dα)n = iϵ(α ∧ (dα)n) =
(iϵα)(dα)

n, therefore iϵα = 1. On the other hand 0 = iϵ(dα)
n = n(iϵdα)∧ (dα)n−1,

and (dα)n ̸= 0, therefore iϵdα = 0. �
The tangent bundle may be decomposed into

TM = ker dα⊕ kerα.

Indeed, ker dα is of rank 1 (generated by ε), kerα is of rank 2n (called the horizontal
bundle) and the intersection is 0 because if iξα = 0 and iξdα = 0, then iξ(α ∧
(dα)n) = 0 and this implies ξ = 0. It follows that every vector field is uniquely
determined by iξα and iξdα. The unique decomposition of a vector field ξ is:
ξ = (iξα)ϵ+ (ξ − (iξα)ϵ).

Proof of the proposition. Every infinitesimal contactomorphism ξ is completely de-
termined by the function fξ = α(ξ), because the relation Lξα = λα may be written

dfξ + iξdα = λα.

Since iϵdα = 0 and iϵα = 1, after applying iϵ we get λ = iϵ(dfξ). Finally
iξdα = iϵ(dfξ)α−dfξ depends only on fξ, also iξα = fξ, and together they uniquely
determine ξ.

It remains to verify that every ξ defined in this way starting with an arbitrary
smooth function f , is an infinitesimal contactomorphism:

Lξα = iξdα+ d(iξα) = iϵ(df)α− df + df = iϵ(df)α. �

This isomorphism restricts to an isomorphism between Vectc(M,α) and the space
of smooth functions on M with compact support C∞

c (M).

9.2. Splitting subgroups.
Let (M,ω) be a symplectic manifold. The symplectic form induces an isomor-

phism ξ 7→ iξω
ω : Vect(M) → Ω1(M).

The space Vect(M,ω) is the preimage of Z1(M) and the space of Hamiltonian vector
fields Ham(M,ω) is defined as the preimage of B1(M) under this isomorphism. The
Hamiltonian vector field with generating function u ∈ C∞(M) is denoted by Hu.
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Remark. Ham(M,ω) is a Lie subalgebra of Vect(M,ω) because

[Vect(M,ω),Vect(M,ω)] ⊂ Ham(M,ω).

This follows from i[ξ,η]ω = [Lξ, iη]ω = Lξiηω = diξiηω + iξdiηω = d(ω(η, ξ)) for
every ξ, η corresponding to closed 1-forms.

Let (M,µ) be a smooth manifold with a volume form. This induces an isomor-
phism ξ 7→ iξµ

µ : Vect(M) → Ωm−1(M).

The preimage of Zm−1(M) is the Lie subalgebra Vect(M,µ). The preimage of
Bm−1(M) is denoted B(M,µ).

Remark. B(M,µ) is a Lie subalgebra of Vect(M,µ). Indeed, for ξ, η ∈ Vect(M,µ)
we have i[ξ,η]µ = d(iξiηµ), hence

[Vect(M,µ),Vect(M,µ)] ⊂ B(M,µ).

The exact sequence

0 → Bp(M) ↪→ Zp(M) → Hp(M) → 0

gives exact sequences of Lie algebras:

0 → Ham(M,ω) ↪→ Vect(M,ω) → H1(M) → 0

0 → B(M,µ) ↪→ Vect(M,µ) → Hm−1(M) → 0,

where on H1(M) and on Hm−1(M) we put the trivial Lie algebra structure. The
last two remarks assure that the morphisms

ξ ∈ Vect(M,ω) 7→ [iξω] ∈ H1(M)

ξ ∈ Vect(M,µ) 7→ [iξµ] ∈ Hm−1(M)

are Lie algebra morphisms.

Proposition. For a compact manifold, the spaces of closed p-forms and exact
p-forms are splitting subspaces in the space of p-forms.

Proof. Let g be a Riemannian metric on the compact manifold M , δ the codiffer-
ential and Harmp(M) = ker(∆ = dδ+ δd) the space of harmonic p-forms. Then we
have the following Hodge decomposition

Ωp(M) = dΩp−1(M)⊕ δΩp+1(M)⊕Harmp(M).

More precisely, α = dδGα+ δdGα+Hα, where H is the projection on Harmp(M)
and G the Green operator: the projection on Harmp(M)⊥. Because Zp(M) =
Bp(M)⊕Harmp(M), we get that both Bp(M) and Zp(M) are splitting subspaces
of Ωp(M) �
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Let M be compact. Then the two commutator groups: [Diff(M,ω),Diff(M,ω)]
and [Diff(M,µ),Diff(M,µ)] are Lie subgroups of Diff(M) by [Ratiu-Schmid, 1981]
with Lie algebras (see also 9.3):

[Vect(M,ω),Vect(M,ω)] = Ham(M,ω)

[Vect(M,µ),Vect(M,µ)] = B(M,µ)

respectively. By the isomorphisms ω, resp. µ, the Lie subalgebras Vect(M,ω) and
Ham(M,ω), resp. Vect(M,µ) and B(M,µ), correspond to the spaces of closed and
exact 1-forms, resp. (m − 1)-forms, hence by the proposition they are splitting
subspaces of Vect(M). We just proved the following

Corollary. If M is compact, then Diff(M,ω), [Diff(M,ω),Diff(M,ω)], Diff(M,µ)
and Diff(M,µ),Diff(M,µ) are splitting subgroups of Diff(M).

9.3. The commutator algebra of some subalgebras of Vect(M).

Lemma. The Lie algebras Vectc(Rn, µ) = Bc(Rn, µ) and Vectc(R2n+1, α) are
perfect, where µ = dx1 ∧ · · · ∧ dxn is the standard volume form on Rn and
α = dx2n+1 +

∑n
i=1 x

1dxn+i is the standard contact form on R2n+1.

Proof. See [Arnold, 1969] and [Rozenfeld, 1970]. �
Proposition. 1. Let (M,α) be a contact manifold. Then Vectc(M,α) is a perfect
Lie algebra.
2. Let (M,µ) be a manifold with a volume form. Then the commutator algebra of
Vectc(M,µ) is Bc(M,µ). Moreover, Bc(M,µ) is perfect.

Proof. 1. Let O = {Uν : ν ∈ I} be an open cover of M with canonical coordinate
domains and (φν)ν∈I a partition of unity subordinated to O. Let ξ ∈ Vectc(M,α)
and f = α(ξ). The support of ξ equals the support of f and is covered by finitely
many sets of O, say supp ξ ⊂ U1 ∪ · · · ∪ Uk. Let fj = φjf and ξj ∈ Vectc(M,α)

corresponding to fj by the isomorphism in 9.1(c). Then ξ =
∑k

j=1 ξj and because
the support of ξj lies in a canonical coordinate domain we can apply the lemma
and get the conclusion.

2. Let O = {Uν : ν ∈ I} be an open cover of M with canonical coordinate
domains and (φν)ν∈I a partition of unity subordinated to O. Let ξ ∈ Bc(M,µ) and
choose σ ∈ Ωn−2

c (M) such that iξµ = dσ. The support of σ contains the support
of ξ and is covered by finitely many sets of O, say suppσ ⊂ U1 ∪ · · · ∪ Uk. Let
σj = φjσ and ξj ∈ Bc(M,µ) corresponding to dσj by the isomorphism µ in 9.2.

Then ξ =
∑k

j=1 ξj and because the support of ξj lies in a canonical coordinate
domain we can apply the lemma and get the conclusion. �

Let (M,ω) be a symplectic manifold.

Definition. The symplectic pairing is the alternating bilinear form of H1
c (M)

⟨[α], [β]⟩ :=
∫
M

α ∧ β ∧ ωn−1 for α, β ∈ Z1
c (M).

The symplectic pairing is trivial for the cotangent bundle T ∗N with the canonical
symplectic structure, because in this case the symplectic form is exact.
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Proposition. The symplectic pairing is nonsingular for compact Kähler manifolds.

Proof. Let M be a compact Kähler manifold. Then the Lefschetz Theorem assures
that the map

Lk : Hn−k(M) → Hn+k(M)

which maps [β] to [β ∧ ωk] is an isomorphism. In particular [β] ∈ H1(M) 7→
[β ∧ ωn−1] ∈ H2n−1(M) is an isomorphism. Using also the Poincare duality

([α], [µ]) ∈ H1
c (M)×H2n−1(M) 7→

∫
M

α ∧ µ ∈ R

we get the non-degeneracy of the symplectic pairing. �
Remark. The generating function of the Lie bracket of ξ, η ∈ Vectc(M,ω) is ω(η, ξ)
and satisfies the relation ∫

M

ω(η, ξ)ωn = n⟨[iηω], [iξω]⟩

Indeed, using the properties of the inner product we get

0 = iξ(iηω ∧ ωn) = iξiηω ∧ ωn − iηω ∧ iξ(ωn) = ω(η, ξ)ωn − niηω ∧ iξω ∧ ωn−1.

Then ω(η, ξ)ωn = niηω ∧ iξω ∧ ωn−1.
The space of Hamiltonian vector fields having generating function with inte-

gral zero, is denoted by Ham0
c(M,ω) and is a Lie subalgebra of Hamc(M,ω).

This follows from the preceding remark. If M is compact, then Ham(M,ω) =
Ham0(M,ω) because we can replace any generating function u by the generat-
ing function u0 = u −

∫
M

uωn with integral zero. If M is not compact, then

Hamc(M,ω)/Ham0
c(M,ω) ∼= R because in this case the Hamiltonian vector field

with compact support determines uniquely the generating function with compact
support and

∫
M

: Hamc(M,ω) → R which maps ξ = Hu to
∫
M

uωn is a linear,

surjective map with kernel Ham0
c(M,ω).

Lemma [Arnold, 1969]. Let ω =
∑n

i=1 dx
i ∧ dxn+i be the standard symplectic

form on R2n. Then the commutator algebra of Vectc(R2n, ω) = Hamc(R2n, ω) is
the space Ham0

c(R2n, ω). Moreover, Ham0
c(R2n, ω) is a perfect Lie algebra.

Proof. Let Hu ∈ Ham0
c(R2n, ω), i.e.

∫
R2n uω

n = 0. It follows uωn = dψ for an

(n−1)-form ξ with compact support, which written in coordinates gives u =
2n∑
i=1

∂zi
∂xi ,

if ψ = n!
2n∑
i=1

(−1)izidx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx2n. Taking

vi = zi

wi =

{ −xi+1, if i odd

xi−1, if i even
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we obtain the Poisson bracket (see 10.1)

{vi, wi} =
n∑

l=1

(
∂vi
∂x2l

∂wi

∂x2l−1
− ∂vi
∂x2l−1

∂wi

∂x2l
) =

∂zi
∂xi

.

Hence u =
2n∑
i=1

{vi, wi}.

To obtain elements Hvi , Hwi in Ham0
c(R2n, ω) we must:

–multiply wi by a function h identically 1 on the support of ψ and with compact
support.
–add to vi and wi bump functions with disjoint compact supports in the complement
of suppu; so we make the integral of vi and wi to be zero. The Poisson brackets

remain unchanged, hence Hu =
2n∑
i=1

[Hvi , Hwi ] ∈ [Ham0
c(R2n, ω),Ham0

c(R2n, ω)]. �

Lemma. Ham0
c(M,ω) is a perfect Lie algebra.

Proof. Let ξ = Hu ∈ Ham0
c(M,ω), i.e. suppu is compact and

∫
M

uωn = 0. There

exists a (2n− 1)-form ψ with compact support such that uωn = dψ.
Let O = {Uν : ν ∈ I} be an open cover of M with canonical coordinate domains

and (φν)ν∈I a partition of unity subordinated to O. The support of ψ is covered
by finitely many sets of O, say suppu ⊂ suppψ ⊂ U1 ∪ · · · ∪ Uk. Let ψj = φjψ.
Because ωn is a volume form, there exists a function uj such that dψj = ujω

n.

Then suppuj ⊂ suppψj ⊂ Uj and u =
k∑

j=1

uj , because

uωn = dψ = d(

k∑
j=1

ψj) =
∑
j

dψj = (
∑
j

uj)ω
n.

We also have
∫
M

ujω
n =

∫
M

dψj = 0, henceHu is the finite sum ofHuj ∈ Ham0
c(M,ω)

with support in a canonical coordinate domain. Now we can apply the preceding
lemma and we are done. �

For a compact manifold M it follows that Ham(M,ω) is a perfect Lie algebra.

Theorem [Calabi, 1970]. If M is a non-compact symplectic manifold, then:
1. The commutator algebra of Vectc(M,ω) is either Ham0

c(M,ω) or Hamc(M,ω),
depending on whether the symplectic pairing is trivial or not.
2. Ham(M,ω) is a perfect algebra. In particular, Ham(M,ω) is the commutator
algebra of Vect(M,ω).

Proof. 1. The last lemma assures that

Ham0
c(M,ω) = [Ham0

c(M,ω),Ham0
c(M,ω)]

⊂ [Vectc(M,ω),Vectc(M,ω)] ⊂ Hamc(M,ω).

Because Hamc(M,ω)/Ham0
c(M,ω) ∼= R, we have two possibilities: the commuta-

tor group [Hamc(M,ω),Hamc(M,ω)] is either Hamc(M,ω) or Ham0
c(M,ω). The
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second case arises if and only if the symplectic pairing is trivial; see the remark
about the symplectic pairing.

2. Let ξ = Hu ∈ Ham(M,ω). There exists a (2n − 1)-form ψ on M such that
uωn = dψ because H2n(M) = 0. For every open cover O of M , there exists a
number p ≤ dimM + 1 = 2n+ 1 and a refinement V of O:

V = {Uν : ν ∈ J = J1 ∪ · · · ∪ Jp partition}

such that the open sets (Uν)ν∈Jk
are pairwise disjoint for a fixed k = 1, . . . , p.

We choose an open cover O consisting of relatively compact canonical coordinate
domains. Then V has the same properties. Let (φν)ν∈J be a partition of unity
subordinated to V.

Like in the proof of the lemma we obtain a decomposition u =
∑
ν∈J

uν with the

properties: uνω
n = dψν , suppuν ⊂ suppψν ⊂ Uν and we get functions viν , w

i
ν , i =

1, . . . , 2n with support in Uν such that

uν =
2n∑
i=1

{viν , wi
ν}.

Let uk =
∑

ν∈Jk

uν , v
i
k =

∑
ν∈Jk

viν , w
i
k =

∑
ν∈Jk

wi
ν (these sums have in every point only

one term). The supports of viν and wj
ν are disjoint for i ̸= j, therefore {viν , wj

ν} ≡ 0
and

uk =
2n∑
i=1

{vik, wi
k}.

Thus Hu =
p∑

k=1

Huk
=

p∑
k=1

2n∑
i=1

[Hvi
k
,Hwi

k
] ∈ [Ham(M,ω),Ham(M,ω)]. �

9.4. n-transitivity.

Lemma. Let c : (−ε, 1 + ε) → Mm be a smooth embedding. Then every 1-
form (respectively (m− 1)-form) along c([0, 1]) can be extended to an exact 1-form
(respectively (m−1)-form) on M with compact support in a tubular neighborhood
of the image of c.

Proof. There exists a tubular neighborhood of c(−ε, 1 + ε), i.e. a diffeomorphism
from (−ε, 1 + ε)×Rm−1 to an open neighborhood U of the image of c in M which
on (−ε, 1+ε)×{0} coincides with c, and whose inverse u : U → (−ε, 1+ε)×Rm−1

we may use as a chart with u(c(t)) = (t, 0).

(i) The case of a 1-form.
A 1-form along c is given by σ(t) =

∑m
i=1 ai(t)du

i|c(t) for t ∈ [0, 1], where ai :
[0, 1] → R are smooth and we may extend them smoothly to ai : (−ε, 1 + ε) → R.
Consider the function f : U → R, given by

f = A1(u
1) + u2a2(u

1) + · · ·+ umam(u1),
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where A1(t) =
∫ t

0
a1(s)ds. Then df(c(t)) = σ(t). Let h, k : R → R be smooth bump

functions such that supph ⊂ (−δ, δ), supp k ⊂ (−ε, 1+ ε), h = 1 in a neighborhood
of 0, and k = 1 in a neighborhood of [0, 1]. Then

f̃ := k(u1)h(u2) . . . h(um)f

has compact support in U , so we extend it by 0 to the whole of M , and df̃ = df
near c([0, 1]), so df̃ is also an extension of σ.

(ii) The case of an (m− 1)-form.
An (m− 1)-form along c is given by

σ(t) =

m∑
i=1

bi(t)du
1 ∧ · · · ∧ d̂ui ∧ · · · ∧ dun|c(t)

where bi : [0, 1] → R are smooth functions which we may extend smoothly to
(−ε, 1 + ε). Let us write m = 2k or m = 2k + 1. Then the following (m− 2)-form
β ∈ Ωm−2(U) satisfies dβ|c(t) = ω(t).

β =
k∑

i=1

βidu
1 ∧ · · · ∧ du2(i−1) ∧ du2i+1 ∧ · · · ∧ dum + β̄du1 ∧ · · · ∧ dum−2,

β1 = u2b1(u
1) +

∫ u1

0

b2(t)dt,

βi = u2ib2i−1(u
1) + u2i−1b2i(u

1) for 2 ≤ i ≤ k,

β̄ =

{ −um−1bm(u1) for m = 2k + 1.

0 for m = 2k

Then β̃ := k(u1)h(u2) . . . h(um)β, where h, k are bump functions as above, has
compact support in U , so it may be extended by 0 to the whole of M , and since
β̃ = β near c([0, 1]) we still have dβ̃|c(t) = σ(t). �
Theorem. Let (Mm, µ) be a connected smooth manifold of dimension m ≥ 2
with a positive volume density. Then the group Diffc(M,µ) of all smooth volume
preserving diffeomorphisms of M with compact support acts n-transitively on M ,
for each finite n.

Proof. By the argument used at the end of the proof of the proposition in 5.2
it suffices to show, that there exists φ ∈ Diffc(M,µ) with φ(xi) = yi, for any
(x1, . . . , xn) and (y1, . . . , yn) in M

(n) which are pairwise disjoint sets in M .
Having fixed the points, we may find an orientable connected open subset of M

containing all points and replace M by this set. So without loss we assume that M
is orientable.

For some ε > 0 let ci : (−ε, 1+ε) →M , i = 1, . . . , n be smooth embeddings with
ci(0) = xi, ci(1) = yi which do not intersect. We choose pairwise disjoint tubular
neighborhoods Ui of ci(−ε, 1 + ε), i = 1, . . . , n.

We can find a Riemannian metric g on M whose volume form is µ. Then the
divergence of a vector field ξ ∈ Vect(M) is div ξ = ∗d∗ξ♭, where ξ♭ = g(ξ) ∈ Ω1(M)
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(here we view g : TM → T ∗M) and ∗ is the Hodge star operator. The velocity
field of the curve ci defines an (m− 1)-form ∗(c′i ◦ c

−1
i )♭ along ci([0, 1]). Using the

lemma we extend it to an exact (m − 1)-form dαi on M with support in Ui and
we put α =

∑n
i=1 αi ∈ Ωm−2(M). We consider the vector field ξ uniquely given by

the relation dα = ∗ξ♭, i.e.

ξ = (−1)m+1(∗dα)♯ = (−1)m+1g−1 ∗ dα.

Then ξ is divergence free div ξ = ∗d ∗ ξ♭ = ∗ddα = 0 and has compact support in
the union of all Ui. It also coincides on ci([0, 1]) with the velocity field of the curve

ci. Hence Flξ1 ∈ Diffc(M,µ) with Flξ1(xi) = yi. �
Theorem. Let (M,ω) be a connected symplectic smooth manifold of dimension
m ≥ 2. Then the group Diffc(M,ω) of all smooth diffeomorphisms with compact
support which preserve the symplectic form ω acts n-transitively on M , for each
finite n.

This proof will also show that the Lie subgroup of Diffc(M,ω) whose Lie al-
gebra is the Lie algebra of compactly supported Hamiltonian vector fields acts n-
transitively on M . This group has been identified as a Lie group in [Ratiu-Schmid,
1981], for compact M .

Proof. By the argument used at the end of the proof of the proposition in 5.2
it suffices to show, that there exists φ ∈ Diffc(M,ω) with φ(xi) = yi, for any
(x1, . . . , xn) and (y1, . . . , yn) in M (n) which are pairwise disjoint sets in M . We
take again smooth curves ci : (−ε, 1 + ε) → M with ci(0) = xi and ci(1) = yi
which are embeddings and do not intersect. Let Ui be pairwise disjoint tubular
neighborhoods of ci(−ε, 1 + ε).

The velocity field of the curve ci defines the 1-form αi = ic′iω along the curve ci.
Using the lemma we extend this form to an exact 1-form dfi onM with supp fi ⊂ Ui.
Let f := f1 + · · · + fn and ξ := Hf the Hamiltonian vector field corresponding to
f . Then ξ ∈ Vectc(M,ω), the Lie algebra of locally Hamiltonian vector fields on
M with compact support, and coincides with the velocity field c′i ◦ c

−1
i on ci([0, 1]).

Hence Flξ1 ∈ Diffc(M,ω) and Flξ1(xi) = yi. �
Theorem. Let M be a connected smooth manifold of dimension m ≥ 2, and let α
be a contact form on M . Then the group Diffc(M,α) of contact diffeomorphisms
with compact support acts n-transitively on M for all finite n.

Proof. By the argument used at the end of the proof of the proposition in 5.2
it suffices to show, that there exists φ ∈ Diffc(M,µ) with φ(xi) = yi, for any
(x1, . . . , xn) and (y1, . . . , yn) in M (n) which are pairwise disjoint sets in M . For
ε > 0 let again ci : (−ε, 1+ε) →M be smooth embeddings with ci(0) = xi, ci(1) =
yi which do not intersect. We choose pairwise disjoint tubular neighborhoods Ui of
ci(−ε, 1 + ε).

Let fi :M → R be a smooth extension of α(c′i◦c
−1
i ) : ci([0, 1]) → R with support

in Ui and f :=
∑n

i=1 fi ∈ C∞
c (M,R). Then the unique vector field ξ ∈ Vectc(M,α)

such that α(ξ) = f coincides with the velocity field of the curve ci on ci([0, 1]).

Hence Flξ1 ∈ Diffc(M,α) and Flξ1(xi) = yi for i = 1, . . . , n. �
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9.5. Finite dimensional coadjoint orbits.

Lemma. Let E = C∞
c (⊗pTM⊗⊗qT ∗M) forM a smoothm-dimensional manifold

and G a subgroup of Diffc(M) with the natural action (φ−1)∗ : E → E, φ ∈ G.
Then the orbit of an element of E∗ = D′(M)⊗C∞(M) C

∞(⊗pT ∗M ⊗⊗qTM) with
finite support under the dual action (which is again the natural action) is finite
dimensional.

Proof. Let δ ∈ E∗ and supp δ = {x1, . . . , xN}. Then (φ−1)∗δ has as support a
subset of φ{x1, . . . , xN} and at every point the order is less or equal to the order
of δ. Let s be the maximal order of δ over all the xi. Then

dimOδ ≤ N(n+ dim⊕s
j=0L

j
sym(Rm,R(p+q)m)) = N

(
n+ (p+ q)m

(
m+ s

m

))
,

which is the dimension of the space of all elements in E∗ with support consisting
of maximum N points and having at each point the order ≤ s. Hence Oδ is finite
dimensional. �

Let G = Diffc(M). Then the adjoint action on g = Vectc(M) = C∞
c (TM) is the

natural action, and the lemma can be applied.
Let G = Diffc(M,ω). Then g can be identified with Z1

c (M) = B1
c (M)⊕H1

c (M)
and the adjoint action is again the natural one on 1-forms with compact support,
restricted to the closed forms. Moreover G acts trivially on the cohomology group
H1

c (M), because if σ ∈ Z1
c (M), then Lξ[σ] = [Lξσ] = [diξσ] = 0 for every vector

field ξ, hence [φ∗σ] = [σ] for every diffeomorphism φ. The inclusion of the dual
space B1

c (M)∗ = (Ω0
c(M)/Z0

c (M))∗ = {δ ∈ Ω0
c(M)∗ : δ|Z0

c (M) = 0} in Ω0
c(M)∗

is equivariant. So we can apply the lemma in the case E = Ω0
c(M) to get the

finite dimensionality of the coadjoint orbit in Diffc(M,ω) of an element with finite
support.

Exactly in the same way, applying the lemma for E = Ωm−2
c (M), we get the

result for Diffc(M,µ).

Theorem [Kirillov, 1974]. Let G be one of the groups: Diffc(M), Diffc(M,ω)
or Diffc(M,µ). Then a coadjoint orbit Oδ is finite dimensional if and only if the
distribution δ ∈ g∗ has finite support.

Proof. One direction has just been proved. For the converse let δ ∈ g∗ be an
infinitely supported distribution. We will show that for any natural number N ,
there exist N linearly independent vectors in the tangent space to the orbit Oδ at
δ, which is ad∗(g)δ ⊂ g∗. Let x1, . . . , xN ∈ supp δ and let U1, . . . , UN be disjoint
canonical coordinate domains, centered at x1, . . . , xN respectively. Then there exist
ξ1, . . . , ξN ∈ g vector fields on M with supp ξi ⊂ Ui and ⟨δ, ξi⟩ ̸= 0. The Lie
algebras Vectc(Rn) and Vectc(Rn, µ) are perfect (see 5.1 and 9.3), hence in the case

g is Vectc(M) or Vectc(M,µ), we can find η
(l)
i , ζ

(l)
i ∈ g vector fields with support

in Ui such that ξi =
∑ki

l=1[η
(l)
i , ζ

(l)
i ]. The same is true in the case g = Vectc(M,ω),

because we can add to ξi a Hamiltonian vector field with support in Ui − {xi} to
obtain an element ξ′i ∈ Ham0

c(M,ω) and still ⟨δ, ξ′i⟩ = ⟨δ, ξi⟩ ̸= 0. Now we can use
the lemma in 9.3 which says that Ham0

c(R2n, ω) is perfect.
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Because ⟨δ, ξi⟩ ̸= 0, there exist li ∈ {1, . . . , ki} with

⟨ad∗(ζ(li)i ).δ, η
(li)
i ⟩ = ⟨δ, [η(li)i , ζ

(li)
i ]⟩ ≠ 0.

So we have found N linearly independent tangent vectors at δ, namely ad∗(ζ
(li)
i ).δ.

Indeed, they are not zero and have disjoint supports. Hence Oδ is infinite dimen-
sional. �

10. The group of symplectomorphisms

10.1. Multivalued functions.

Theorem. Let (M,ω) be a symplectic manifold. Then the space of smooth func-
tions on M with the Poisson bracket {f, g} := ω(Hg,Hf ) is a Lie algebra. Consid-
ering also the trivial Lie algebra structure on H0(M) and H1(M), there is an exact
sequence of Lie algebras and Lie algebra homomorphisms:

0 −→ H0(M)
α−→ C∞(M)

H−→ Vect(M,ω)
γ−→ H1(M) −→ 0

where α is the embedding of the locally constant functions, Hf is the unique vector
field with iHf

ω = df and γ(ξ) = [iξω]. In particular the following sequence is also
exact

0 −→ H0(M) −→ C∞(M) −→ Ham(M,ω) −→ 0.

Proof. From the first remark in 9.2 we get [ξ, η] = Hω(η,ξ). In particular [Hf ,Hg] =
Hω(Hg,Hf ) = H{f,g}, so H is a Lie algebra homomorphism. The other two mappings
in the sequence are also Lie algebra homomorphisms because {c1, c2} = 0 for locally
constant functions and γ([ξ, η]) = γ(Hω(η,ξ)) = 0.

(C∞(M), {, }) is a Lie algebra. Indeed

{f, g} = ω(Hg,Hf ) = −ω(Hf ,Hg) = −{g, f}
{{f, g}, h} = H{f,g}h = [Hf ,Hg]h = HfHgh−HgHfh

= Hf{g, h} −Hg{f, h} = {f, {g, h}} − {g, {f, h}}.

The exactness of the sequence at Vect(M,ω): γ(ξ) = 0 if and only if iξω = df for
some smooth function f , i.e. ξ = Hf . The exactness at the other stages is obvious.

�
Every locally Hamiltonian vector field ξ ∈ Vect(M,ω) posesses locally a gener-

ating function because iξω is closed, hence locally exact. So ξ defines a multivalued
function on M .

Definition. A multivalued function on M is a smooth function g on M̃ , the uni-
versal covering space of M , such that g ◦ α − g is constant for every covering
transformation α ∈ Aut(M̃) = {α : M̃ → M̃ : p ◦ α = p}. We denote by C∞

m (M)
the set of multivalued functions on M .
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For every multivalued function g, dg is a 1-form on M̃ , invariant under all cov-
ering transformations:

α∗(dg) = d(g ◦ α) = d(g + const.) = dg,

hence it projects onto a closed 1-form ϑ on M . Indeed, the fact that dg = p∗ϑ
implies p∗dϑ = dp∗ϑ = ddg = 0 and because p∗ is injective we obtain dϑ = 0.
Identifying the closed forms with the locally hamiltonian vector fields, we get the
map K : C∞

m (M) → Vect(M,ω), an analogue to the Hamilton map H : C∞(M) →
Ham(M,ω).

Proposition. There is an exact sequence

0 −→ H0(M̃)
α−→ C∞

m (M)
K−→ Vect(M,ω) −→ 0,

where α is the embedding of the locally constant functions on M̃ into C∞
m (M) ⊂

C∞(M̃).

Proof. The exactness at C∞
m (M): K(g) = 0 if and only if ϑ, the projection of dg, is

zero. This means dg = 0, i.e. G is locally constant. Now we prove the surjectivity
of K. Let ξ ∈ g and ϑ = iξω ∈ Z1(M). The lifted 1-form p∗ϑ is a closed form on

M̃ , hence exact. Every smooth function on M̃ such that p∗ϑ = dg is a multivalued
function on M : d(g ◦ α) = α∗dg = α∗p∗ϑ = α∗ϑ = dg and so ξ = K(g). �
Consequence. The following diagram is commutative and its lines are exact:

0 w H0(M̃) w
α C∞(M̃) w

H Vect(M̃, ω̃) w 0

0 w H0(M̃) w
α

u

Id

C∞
m (M) w

K

u

y

Vect(M,ω) w

u

p∗

0

0 w H0(M) w
α

u

p∗

C∞(M) w
H

u

p∗

Ham(M,ω) w

u

y

0

where ω̃ = p∗ω is the lifted symplectic structure on M̃ and p∗ : Vect(M,ω) →
Vect(M̃, ω̃) is the lifting of vector fields.

Proof. The exactness of the second line follows from the proposition and the exact-
ness of the other two lines follows from the theorem, after noticing that H1(M̃) = 0.
Let g be a multivalued function onM . Then ϑ = iK(g)ω and dg = iH(g)ω̃, hence the
relation p∗ ◦K(g) = H(g) translated in terms of 1-forms is p∗ϑ = dg the definition
of K(g). The relation K ◦ p∗(f) = H(f) for a smooth function f on M is true
because the projection of d(p∗f) is df . �

In the case M is connected we have

Ham(M,ω) ∼= C∞(M)/R ∼= C∞
0 (M) the space of functions with integral zero,

Vect(M,ω) ∼= C∞
m (M)/R,

Vect(M,ω)/Ham(M,ω)′ ∼= H1(M)
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and the following sequence is exact:

0 → Ham(M,ω) → Vect(M,ω) → H1(M) → 0.

For the universal covering p : M̃ → M there is a canonical identification of the
group of covering transformations with the fundamental group of M .

α ∈ Aut(M̃) ↔ [c] ∈ π1(M).

Here c is a loop in M , the projection of a path c̃ in M̃ starting at x and ending at
α(x).

Proposition. For every multivalued function g on M , the assignment

α ∈ Aut(M̃) ∼= π1(M) 7→ g ◦ α− g ∈ R

is a group homomorphism. In fact

g ◦ α− g = ⟨[ϑ], h(α)⟩

where ϑ = iK(g)ω and h is the Hurewitz homomorphism h : π1(M) → H1(M),

h([c]) = c∗[S
1]; here [S1] is the generator of H1(S

1).

Proof. Let α ∈ Aut(M̃), α ≡ [c], and c̃ a lift of c starting at x. Then:

g ◦ α− g = g(α(x))− g(x)

=

∫ 1

0

c̃∗dg =

∫ 1

0

c̃∗p∗ϑ =

∫ 1

0

(p ◦ c̃)∗ϑ =

∫ 1

0

c∗ϑ

=
1

2π

∫
S1

c∗ϑ = ⟨c∗[ϑ], [S1]⟩

= ⟨[ϑ], c∗[S1]⟩ = ⟨[ϑ], h([c])⟩ = ⟨[ϑ], h(α)⟩. �

Example. The multivalued functions on the torus T 2.
Let p : R2 → T 2, p(x, y) = (eix, eiy) be the universal covering of the torus. The

covering transformations Aut(R2) ∼= Z2 are

α(x, y) = (x+ 2mπ, y + 2nπ), (m,n) ∈ Z2

and the group homomorphisms from Z2 to R are

(m,n) 7→ a′m+ b′n, a′, b′ ∈ R.

By the preceding proposition, every multivalued function on the torus satisfies:

g(x+ 2πm, y + 2πn)− g(x, y) = 2π(am+ bn), a, b ∈ R.
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Then f(x, y) = g(x, y) − (ax + by) is a smooth function on R invariant under all
covering transformations, hence f is (2π, 2π)-periodic and can therefore be written
as a Fourier series

f(x, y) =
∑

(k1,k2)∈Z2

ck1k2e
i(k1x+k2y), ck1k2 ∈ C fast falling, c̄k1,k2 = c−k1,−k2 .

Conclusion

C∞
m (T 2) = {f : R2 → R2 : f(x, y) = ax+ by +

∑
(k1,k2)∈Z2

ck1k2e
i(k1x+k2y)}.

We consider on T 2 the projection ω of the standard form dx ∧ dy on R2.
This is a symplectic form. An unconditional basis for the nuclear Fréchet space
Vect(T 2, ω) ∼= C∞

m (T 2)/R is

E1 = K(x) = − ∂

∂y

E2 = K(y) =
∂

∂x

Ek1k2 = K(ei(k1x+k2y)) = iei(k1x+k2y)(k2
∂

∂x
− k1

∂

∂y
), for (k1, k2) ∈ Z2 − {(0, 0)}.

We denote the function ei(k1x+k2y) by ek1k2 . Then the Hamiltonian vector fields
Ek1k2 = Hek1k2

form an unconditional basis for Ham(T 2, ω).

10.2. Central extensions of Vect(M,ω) which leave a certain scalar prod-
uct invariant.

Let (M,ω) a symplectic compact manifold of dimension 2n, g the Lie algebra of
locally Hamiltonian vector fields and g′ the Lie subalgebra of Hamiltonian vector
fields. By choosing a linear splitting of the exact sequence of Lie algebras:

0 −→ g′
i−→ g

γ−→ H1(M) −→ 0

we can identify g and H1(M) ⊕ g′ as vector spaces. On the vector space g̃ =
H1(M)⊕ g′ ⊕H1(M) there is a natural scalar product determined by the pairing
between H1(M) and H1(M), and by the scalar product on g′ : ⟨f, g⟩ =

∫
M

fgωn.

Explicitly:

(1) ((a∗, f, a), (b∗, g, b)) = ⟨a∗, b⟩+ ⟨b∗, a⟩+ ⟨f, g⟩

Any Lie algebra structure extension on g̃ can be defined with the help of a cocycle
on g = H1(M)⊕ g′ with values in H1(M): c ∈ Hom(∧2g,H1(M)).

0 −→ H1(M) −→ g̃ −→ g −→ 0[(
ξ

a

)
,

(
η

b

)]
=

(
[ξ, η]

c(ξ, η)

)
, ξ, η ∈ g, a, b ∈ H1(M).
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Problem: For which Lie algebra structure extensions on g̃ is the scalar product (, )
ad-invariant? This means ([l1, l2], l3) = (l1, [l2, l3]).

Let (ei)i=1,...,b1 , b1 = b1(M) be a basis of H1(M) and ξi = s(ei) ∈ g. Given a
cocycle which fulfills this requirement, we can define an antisymmetric tensor A by

aijk = ⟨ei, c(ξj , ξk)⟩, i, j, k = 1, . . . , b1.

Proof of the antisymmetry:((
ξi
0

)
,

[(
ξj
0

)
,

(
ξk
0

)])
=

((
ξi
0

)
,

(
[ξj , ξ)k]

c(ξj , ξk)

))
= ⟨ei, c(ξj , ξk)⟩ = aijk

and (l1, [l2, l3]) = −(l1, [l3, l2]) by antisymmetry of [ , ]

= −(l2, [l1, l3]) by ad-invariance of ( , ).

Hence A ∈ Hom(∧3H1(M),R) ∼= ∧3H1(M).

Proposition [Kirillov, 1990]. The cocycle is completely determined by this tensor.

Proof. A calculation gives us:

⟨ei, c(ξj +Hf , ξk +Hg)⟩ = ⟨ek, c(ξi, ξj +Hf )⟩+
∫
M

ω(ξi, ξj +Hf )gω
n.

Indeed:

⟨ei, c(ξj +Hf , ξk +Hg)⟩ def. of ( , )

=

((
ξi
0

)
,

(
[ξj +Hf , ξk +Hg]

c(ξj +Hf , ξk +Hg)

))
def. of [ , ] on g̃

=

((
ξi
0

)
,
[(ξj +Hf

0

)
,

(
ξk +Hg

0

)])
ad-invar. of ( , )

=

([(
ξi
0

)
,

(
ξj +Hf

0

)]
,

(
ξk +Hg

0

))
def. of [ , ] on g̃

=

((
Hω(ξi,ξj+Hf )

c(ξi, ξj +Hf )

)
,

(
ξk +Hg

0

))
def. of ( , )

= ⟨ek, c(ξi, ξj +Hf )⟩+
∫
M

ω(ξi, ξj +Hf )gω
n.

From this assertion it follows also that

⟨ek, c(ξi, ξj +Hf )⟩ = ⟨ej , c(ξk, ξi)⟩+
∫
M

ω(ξk, ξi)fω
n

= aijk +

∫
M

ω(ξk, ξi)fω
n
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Using also ω(ξi,Hf ) = −ξif , we get

(2) ⟨ei, c(ξj +Hf , ξk +Hg)⟩ = aijk +

∫
M

(fξig + gω(ξi, ξj)− fω(ξi, ξk))ω
n

Every ξ ∈ g can be written as ξ = [ξ − s(γ(ξ))] + s(γ(ξ)) = Hφ +
∑b1

i=1 λiξi, and
(ei) is a basis in H1(M) = (H1(M))∗, hence the relation (2) defines the cocycle
c. �
Question. Does the formula (2) always define a Lie algebra cocycle? We should
verify the cocycle identity:

(3) c([ξ, ξ′], ξ′′) + c([ξ′, ξ′′], ξ) + c([ξ′′, ξ], ξ′) = 0.

Lemma. Let c be given by (2). Then the restriction of c to the Lie subalgebra g′

of Hamiltonian vector fields is always a cocycle.

Proof. In this case the defining relation of c becomes:

⟨ei, c(Hf ,Hg)⟩ =
∫
M

fξigω
n.

Then ⟨ei, c([Hf ,Hf ′ ], Hf ′′)⟩ =
∫
M

{f, f ′}ξif ′′ωn and the cocycle identity is equivalent

to ∫
M

({f, f ′}ξif ′′ + {f ′, f ′′}ξif + {f ′′, f}ξif ′)ωn = 0.

To show this we need a few identities:

(i)

∫
M

{f, f ′}f ′′ωn =

∫
M

f{f ′, f ′′}ωn

Indeed:

−
∫
M

{f, f ′}f ′′ωn +

∫
M

f{f ′, f ′′}ωn =

∫
M

{f ′, ff ′′}ωn =

∫
M

df ′ ∧ d(ff ′′) ∧ ωn−1 = 0.

(ii) ξ{f, f ′} = {ξf, f ′}+ {f, ξf ′}, ∀ξ ∈ g

(a generalization of the Jacobi identity)

ξ{f, f ′}ω = Lξ({f, f ′}ω){f, f ′}Lξω

= Lξ(dφ ∧ df ′)
= Lξ(df) ∧ df ′ + df ∧ Lξ(df

′)

= d(Lξf) ∧ df ′ + df ∧ d(Lξf
′)

= {ξf, f ′}ω + {f, ξf ′}ω
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(iii)

∫
M

ξfωn =

∫
M

Lξ(fω
n) = 0 ∀ξ ∈ g

Thus ∫
M

{f, f ′}ξif ′′ωn =

∫
M

ξi({f, f ′}f ′′)ωn −
∫
M

f ′′ξi{f, f ′}ωn

= −
∫
M

f ′′{ξif, f ′}ωn −
∫
M

f ′′{f, ξif ′}ωn

= −
∫
M

{f ′, f ′′}ξifωn −
∫
M

{f ′′, f}ξif ′ωn. �

Lemma. If b1(M) = 2, the cocycle identity (3) is satisfied if and only if

(5)

∫
M

({f, g}ω + df ∧ dg)(ξ1, ξ2)ωn = 0

for all f, g in C∞(M) and ξ1, ξ2 in g.

Proof. Let (e1, e2) be a basis of H1(M) and ξ1 = s(e1), ξ2 = s(e2). Because the
cocycle relation is linear in every argument and because every locally Hamiltonian
vector field is a linear combination of ξ1, ξ2 and some Hf , it is sufficient to verify
it for them.

We have

⟨ei, c([ξ, ξ′], ξ′′)⟩ = ⟨ei, c(Hω(ξ,ξ′)−
∫
M

ω(ξ,ξ′)ωn , ξ′′)⟩

=

∫
M

ω(ξ, ξ′)ω(ξ′′, ξ′′′)ωn −
∫
M

ω(ξ, ξ′)ωn

∫
M

ω(ξ′′, ξ′′′)ωn

Then the cocycle identity (3) is equivalent to:

(4)
∑

cyclic(ξ,ξ′,ξ′′)

(

∫
M

ω(ξ, ξ′)ω(ξ′′, ξ′′′)ωn −
∫
M

ω(ξ, ξ′)ωn

∫
M

ω(ξ′′, ξ′′′)ωn)

where every ξ, ξ′, ξ′′, ξ′′′ is ξ1, ξ2 or a Hamiltonian vector field.
Case 1: None of them are Hamiltonian.

ω(ξ1, ξ2)ω(ξ1, ξ2) + ω(ξ2, ξ1)ω(ξ1, ξ2) + ω(ξ1, ξ1)ω(ξ2, ξ2) = 0

and (4) is satisfied.
Case 2: One of them is Hamiltonian. From (iii) we get

∫
M
ω(Hf , ξ)ω

n =
0 , ∀ξ ∈ g. Then (4) becomes∫

M

(ω(ξ1, ξ2)ω(Hf , ξ1) + ω(Hf , ξ1)ω(ξ2, ξ1) + ω(ξ2,Hf )ω(ξ1, ξ1))ω
n = 0

and is always satisfied.
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Case 3: Two of them are Hamiltonian. Then (4) becomes∫
M

(ω(ξ1,Hf )ω(Hg, ξ2) + ω(Hg, ξ1)ω(Hf , ξ2) + ω(Hf ,Hg)ω(ξ1, ξ2))ω
n

= −
∫
M

(ξ1fξ2g − ξ1gξ2f + {f, g}ω(ξ1, ξ2))ωn

= −
∫
M

({f, g}ω + df ∧ dg)(ξ1, ξ2)ωn = 0.

This is the relation (5), that should be satisfied. In the case all three of them are
Hamiltonian, the cocycle relation is always satisfied by the lemma. �

10.3. Examples and counterexamples.

The torus T 2. By the remark in 9.3 which says that ω(ξ, η)ωn = niξω∧ iηω∧ωn−1

for ξ, η ∈ g, we get {f, g}ω = dg ∧ df and the relation (5) in the lemma is satisfied.
Hence c is a cocycle.

Symplectic forms on the torus are the same as volume forms, hence symplecto-
morphisms are just area preserving transformations. Then, by a result in paragraph
9.1, all the symplectomorphism groups are isomorphic.

Therefore we take T 2 = R2/Γ with the lattice Γ generated by (0, 2π) and (2π, 0),
the universal covering p(x, y) = (eix, eiy) and the sympectic form the projection of
dx ∧ dy. A basis for the Lie algebra g = Vect(T 2, ω) is (see 10.1)

E1 = − ∂

∂y
,E2 =

∂

∂x
,Ek1k2 = Hek1k2

= iei(k1x+k2y)

(
k2

∂

∂x
− k1

∂

∂y

)
with (k1, k2) ∈ Z2 − {(0, 0)}. The commutation relations in g are:

[E1, E2] = 0

[E1, Ek1k2 ] = −ik2Ek1k2

[E2, Ek1k2 ] = ik1Ek1k2

[Ek1k2 , El1l2 ] =

∣∣∣∣ k1 k2
l1 l2

∣∣∣∣Ek1+k2,l1+l2 .

Next we choose a splitting s of the exact sequence

0 −→ g′ −→ g −→ H1(T 2) −→ 0

namely s([dx]) = E1, s([dy]) = E2.
The relation (2) defines a unique cocycle c on g with values in H1(M), because

∧3H1(T
2) = 0:

⟨ei, c(Ej +Hf , Ek +Hg)⟩ =
∫
T 2

(fEig + gω(Ei, Ej)− fω(Ei, Ek))ω
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Let [c1], [c2] ∈ H1(T
2) be the dual basis to [dx], [dy] ∈ H1(T 2) relative to the pairing

⟨[c], [α]⟩ =
∫
c
α. Then

c(Ek1k2 , El1l2) = (

∫
T 2

ek1k2(E1el1l2)ω)[c1] + (

∫
T 2

ek1k2(E2el1l2)ω)[c2]

= (

∫
T 2

−il2ek1+l1,k2+l2ω)[c1] + (

∫
T 2

il1ek1+l1,k2+l2ω)[c2]

= iδ(k1 + l1)δ(k2 + l2)(k2[c1]− k1[c2])

c(Ej , Ek1k2) = (

∫
T 2

ek1k2ω(E1, Ej)ω)[c1] + (

∫
T 2

ek1k2ω(E2, Ej)ω)[c2]

= 0 because

∫
T 2

ei(k1x+k2y)dx ∧ dy = 0 for (k1, k2) ̸= (0, 0)

c(Ei, Ej) = 0.

The restriction of the cocycle c to the Lie algebra g′ of Hamiltonian vector fields,
which can be identified with the zero integral functions on T 2, i.e. (2π, 2π)-periodic

functions on R2 with
∫ 2π

0

∫ 2π

0
f(x, y)dxdy = 0, is

c(f, g) = −
(∫ 2π

0

∫ 2π

0

f
∂g

∂y

)
[c1] +

(∫ 2π

0

∫ 2π

0

f
∂g

∂x

)
[c2] ∈ H1(T

2).

We can obtain a 2-parameter family of R-valued cocycles cαβ on g′ ∼= C∞
0 (T 2)

by pairing the cocycle c with elements in H1(T 2).

cαβ = ⟨β[dx]− α[dy], c⟩ : C∞
0 (T 2)× C∞

0 (T 2) → R.

Hence

cαβ(f, g) =

∫ 2π

0

∫ 2π

0

f(α
∂g

∂x
+ β

∂g

∂y
)dxdy ∈ R.

The torus T 4.
For the symplectic form ω = 1

2 (dx1 ∧ dx2 + dx3 ∧ dx4), the cocycle relation

(3) is satisfied. We choose as generators of H1(T 4) the 1-forms dx1, dx2, dx3, dx4
and correspondingly the locally Hamiltonian vector fields ξ1 = − ∂

∂x2
, ξ2 = ∂

∂x1
,

ξ3 = − ∂
∂x4

, ξ4 = ∂
∂x3

. For all possible choices of ξ, ξ′, ξ′′, ξ′′′, the cocycle relation

(2) is satisfied. The non-trivial cases are:
(i) Hf ,Hg, ξ1, ξ2 ∫

T 4

((ξ1f)(ξ2g)− (ξ1g)(ξ2f) + {f, g})ω2 = 0 ⇔∫
T 2

dx1dx2

∫
T 2

{f, g}dx3∧dx4dx3 ∧ dx4 = 0.

The last relation is true because in general
∫
M
{f, g}ωn = 0.

(ii) ξ1, ξ2, ξ3, ξ4∫
T 4

ω(ξ1, ξ2)ω(ξ3, ξ4)ω
2 −

∫
T 4

ω(ξ1, ξ2)ω
2

∫
T 4

ω(ξ3, ξ4)ω
2 = 0

⇔ 1− 1 · 1 = 0
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The relation (4) representing the cocycle identity is not homogeneous in ω, hence,
in general, if for (M,ω) the relation (2) defines a cocycle c, then for (M,aω),
a ∈ R− {−1, 0, 1} this will not be true anymore. This is the case here.

Riemann surface of genus g ≥ 2.
A Riemann surface M has an essentially unique realization as a two sheeted cover

of the sphere Ĉ ∼= PC1, branched over 2g + 2 points. It is the Riemann surface of
the algebraic curve

w2 =

2g+2∏
k=1

(z − ak), ai ̸= aj for i ̸= j

We think of z as a variable point in Ĉ and then view M as the Riemann surface
on which w is a well defined (single valued) meromorphic function. As a function
of z, w is two valued.

Let π : M → Ĉ be the covering and Pk ∈ M the 2g + 2 branched points. Then
π(Pk) = z(Pk) = ak. We suppose that all ak are real numbers. We get a volume
form on M , which is also a symplectic form, by lifting the volume form on PC1

µ =
i

2π

dz ∧ dz̄
(1 + |z|2)2

to the form ω = π∗µ on M.
A basis for the holomorphic 1-forms on M is given by

αk =
zk−1dz

w
, k = 1, . . . , g

hence a basis for H1(M) is determined by the holomorphic and antiholomorphic
forms αk and ᾱk with k = 1, . . . , g. The locally Hamiltonian vector fields corre-
sponding to them are ξk and ξ̄k, defined by iξkω = αk

ξk = −2π

i

zk−1(1 + |z|2)2

w̄

∂

∂z̄

ξ̄k =
2π

i

z̄k−1(1 + |z|2)2

w̄

∂

∂z

The cocycle relation (4) is written in terms of ω(ξ, ξ′). In this case

ω(ξj , ξ̄k) =
2π

i

zj−1z̄k−1(1 + |z|2)2

|w|2

=
2π

i

zj−1z̄k−1(1 + |z|2)2∏2g+2
h=1 |z − ah|

is projectable to Ĉ, hence its integral over M can be written as an integral over Ĉ.∫
M

(π∗f)ω = 2

∫
Ĉ
fµ.
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Furthermore ω(ξj , ξk) = ω(ξ̄j , ξ̄k) = 0.
If we insert the vector fields ξ1, ξ2, ξ̄1, ξ̄2, the relation (8.4) becomes∫

M

ω(ξ1, ξ̄1)ω

∫
M

ω(ξ2, ξ̄2)ω +

∫
M

ω(ξ̄1, ξ2)ω

∫
M

ω(ξ1, ξ̄2)ω = 0.

This is equivalent to∫
C

1∏
|z − ak|

dzdz̄

∫
C

|z|2∏
|z − ak|

dzdz̄ +

∫
C

z∏
|z − ak|

dzdz̄

∫
C

z̄∏
|z − ak|

dzdz̄ = 0,

and writing it as an integral over R2, we see that this relation can never be accom-
plished: ∫

R2

dxdy∏√
(x− ak)2 + y2

∫
R2

x2 + y2∏√
(x− ak)2 + y2

dxdy

+

∫
R2

x+ iy∏√
(x− ak)2 + y2

dxdy

∫
R2

x− iy∏√
(x− ak)2 + y2

dxdy 	 0

because the first term is strictly greater than zero and the second term is(∫
R2

x∏√
(x− ak)2 + y2

dxdy

)2

+

(∫
R2

y∏√
(x− ak)2 + y2

dxdy

)2

≥ 0

We have found that for a surface with genus g ≥ 2 there is no central extension of
g with H1(M) which leaves the scalar product (1) invariant.
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