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Abstract. A new characterization of elements of Colombeau-type algebras of generalized func-

tions is presented. Since Colombeau functions are not uniquely determined by their pointvalues as

defined in [1], [2], a concept of generalized points suitable for securing such a pointvalue description

is introduced. This characterization provides an affirmative answer to an open question in the theory

of algebras of generalized functions and enables a direct transfer of methods from classical analysis

to generalized functions.

1. Introduction

In the sequential approach to the nonlinear theory of generalized functions, differ-
ential algebras are constructed as factor algebras

F(Ω) = A(Ω)/I(Ω)

where Ω is an open subset of IRn,A(Ω) is a differential subalgebra of (C∞(Ω))I for some
infinite index set I and I(Ω) is a differential ideal in A(Ω). These algebras contain the
space of distributions D′(Ω) as a linear subspace and serve as a framework for solving
nonlinear partial differential equations with singular data. Typical examples are the
algebras of Colombeau [1, 2], Egorov [3], Rosinger [11, 12], as well as the ultrapower
construction of the nonstandard space ∗C∞(Ω), see e.g. [5, 13]. For a general survey
of these methods we refer to [10]. In the mentioned cases, the ring of generalized
numbers K can be defined as F(IR0) and is isomorphic to the ring of constants in the
differential algebraic sense in case Ω is connected. Further, for u ∈ F(Ω), x ∈ Ω, the
pointvalue u(x) can be defined as a generalized number in K by using representatives.

In this paper we address the question whether generalized functions u ∈ F(Ω) are
uniquely determined by their pointvalues. Example 2.1 below shows that this is not
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the case in general. It may serve as a counterexample not only in the Colombeau
setting, but in the other algebras as well. Moreover, in Nonstandard Analysis it is
well-known that an internal smooth function, an element of ∗C∞(Ω), is not uniquely
determined by its pointvalues on the standard points x ∈ Ω (take again Examle
2.1 with ε infinitesimal), but is determined by its pointvalues on all points x ∈ ∗Ω
(the nonstandard points inclusive). This is actually an immediate consequence of the
transfer principle.

It has been an open question (Problem 27.4 in [9]) whether a similar assertion is
true for Colombeau algebras. The purpose of this paper is to give an affirmative
answer. Guided by nonstandard principles, we introduce generalized points of Ω (as
Ω-valued generalized maps on IR0) and show that members of the Colombeau algebra
G(Ω) are determined by their values on compactly supported generalized points. We
also show that elements of the algebra Gτ (Ω), playing a central role in the theory
of Fourier transforms in the Colombeau setting, are determined by their pointvalues
under suitable restrictions on the set Ω. The proofs in the Colombeau setting require
rather intricate estimates with respect to growth in the regularization parameters.
We also observe that an analogous pointvalue characterization is valid in the Egorov
setting.

Finally, we would like to bring this concept in relation to the notion of a pointvalue
of a distribution in the sense of  Lojasiewicz [8]. Indeed,  Lojasiewicz has shown that
if a distribution w ∈ D′(Ω) has the pointvalue zero at every point of Ω, then w
vanishes as a distribution. However, the pointvalue of a distribution at an arbitrary
point generally does not exist, in contrast to the situation in the setting of algebras of
generalized functions.. In fact, if a distribution has a pointvalue in  Lojasiewicz’ sense
at every point, then it is a function of first Baire class [8]. In case the  Lojasiewicz
pointvalue exists at some point x ∈ Ω, it is associated with the generalized pointvalue
in the sense of Colombeau (see [1, 2]).

In order to reduce notational complications we are going to work in the so-called
simplified variants of the Colombeau algebras (see [1, 2, 9]). Thus, let Ω be an open
subset of IRn. Throughout this paper, for elements of the space C∞(Ω)I of sequences
of smooth functions indexed by ε ∈ I = (0,∞) we shall use the notation (uε)ε (so
uε ∈ C∞(Ω) for ε ∈ I). We set G(Ω) = EM (Ω)/N (Ω), where

EM (Ω) := {(uε)ε ∈ C∞(Ω)I : ∀K ⊂⊂ Ω,∀α ∈ INn
o ∃p ∈ IN with

sup
x∈K

|∂αuε(x)| = O(ε−p) as ε → 0}

N (Ω) := {(uε)ε ∈ C∞(Ω)I : ∀K ⊂⊂ Ω,∀α ∈ INn
o ∀q ∈ IN

sup
x∈K

|∂αuε(x)| = O(εq) as ε → 0}.

G(Ω) is a differential algebra containing D′(Ω) as a linear subspace and C∞(Ω) as a
faithful subalgebra, the embedding depending on a ‘mollifier’ from S(IRn), the space of
rapidly decreasing functions on IRn (in contrast to the ‘full’ version of the Colombeau
algebra for which a canonical embedding exists). Equivalence classes of sequences (uε)ε

will be denoted by cl[(uε)ε]. Second, we consider the algebra Gτ (Ω) = Eτ (Ω)/Nτ (Ω)
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of tempered generalized functions, where

OM (Ω) = {f ∈ C∞(Ω) : ∀α ∈ INn
o ∃p > 0 sup

x∈Ω
(1 + |x|)−p|∂αf(x)| < ∞}

Eτ (Ω) = {(uε)ε ∈ (OM (Ω))I : ∀α ∈ INn
o ∃p > 0

sup
x∈Ω

(1 + |x|)−p|∂αuε(x)| = O(ε−p) (ε → 0)}

Nτ (Ω) = {(uε)ε ∈ (OM (Ω))I : ∀α ∈ INn
o ∃p > 0 ∀ q > 0

sup
x∈Ω

(1 + |x|)−p|∂αuε(x)| = O(εq) (ε → 0)}

Take ρ ∈ S(IRn) with
∫

ρ(x) dx = 1 and
∫

ρ(x) xα dx = 0 for |α| ≥ 1. Then

ι : S ′(IRn) → Gτ (IRn)
w → cl[(w ∗ ρε)ε]

is a linear embedding commuting with partial derivatives and rendering

OC(IRn) = {f ∈ C∞(IRn) : ∃p > 0 ∀α ∈ INn
o sup

x∈IRn
(1 + |x|)−p|∂αf(x)| < ∞}

a faithful subalgebra. The ring of constants of the above algebras, i.e. the ring of
generalized numbers will be denoted by K if the smooth functions uε in the above
definitions are supposed to be K-valued (with K = IR or C ). A detailed exposition of
the constructions outlined in this section can be found in [6]. We emphasize that all
of the results to be presented in the sequel carry over to the respective full versions of
the Colombeau algebras as well.

2. Pointvalue Characterization

As noted in the Introduction, the pointvalue of an element U ∈ G(Ω) or Gτ (Ω)
at x ∈ Ω is defined as the class of (uε(x))ε, where (uε)ε is a representative of U .
Here is the announced example that elements of G(Ω) are not uniquely determined by
prescribing their pointvalues:

Example 2.1. Take some ϕ ≥ 0 ∈ D(IR) with supp(ϕ) ⊆ [−1, 1] and
∫

ϕ = 1
and set uε(x) = ϕε(x − ε), where ϕε(y) := 1

εϕ(y
ε ). Then (uε)ε ∈ EM (IR), so U :=

cl[(uε)ε] ∈ G(IR). It is easily seen that every pointvalue of every derivative of U is 0
in K. But clearly U 6= 0 in G(IR).

To remedy this situation we consider ‘generalized points’ in the following sense:

Definition 2.2. Let Ω be an open subset of IRn. On

ΩM := {(xε)ε ∈ ΩI : ∃p > 0 ∃ η > 0 |xε| ≤ ε−p (0 < ε < η)}

we introduce an equivalence relation by

(xε)ε ∼ (yε)ε ⇔ ∀q > 0 ∃η > 0 |xε − yε| ≤ εq (0 < ε < η)
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and set Ω̃ := ΩM/ ∼. The set of compactly supported points is

Ω̃c = {x̃ ∈ Ω̃ : ∃ representative (xε)ε ∃K ⊂⊂ Ω ∃η > 0 : xε ∈ K, ε ∈ (0, η)}

It is clear that if the Ω̃c-property holds for one representative of x̃ ∈ Ω̃ then it holds
for every representative. Also, for Ω = K we have K̃ = K. Our first observation is
that generalized functions can be evaluated at generalized points:

Proposition 2.3. Let U ∈ G(Ω) (resp. U ∈ Gτ (Ω)) and x̃ ∈ Ω̃c (resp. x̃ ∈ Ω̃). Then
the pointvalue of U at x̃ = cl[(xε)ε], U(x̃) := cl[(uε(xε))ε] is a well-defined element of
K.

Proof. If x̃ = cl[(xε)ε] ∈ Ω̃c, there exists some K ⊂⊂ Ω such that xε ∈ K for ε
small. Since U ∈ G(Ω) it follows that |uε(xε)| ≤ supx∈K |uε(x)| ≤ ε−p for small ε.
Next we show that x̃ ∼ ỹ implies U(x̃) ∼ U(ỹ):

|uε(xε)− uε(yε)| ≤ |xε − yε|
1∫

0

|∇uε(xε + σ(yε − xε))|dσ(2.1)

The claim now follows since xε + σ(yε − xε) remains within some compact subset of
Ω for small ε: The first factor is eventually smaller than any εq while the second is
bounded by some ε−p. Next, if (wε)ε ∈ N (Ω) then (wε(xε))ε ∼ 0 again because xε

stays within some compact set for ε small. If (xε)ε ∈ ΩM and (uε)ε ∈ Eτ (Ω) then

|uε(xε)| ≤ ε−p(1 + |xε|)p ≤ ε−p(1 + ε−p1)p ≤ ε−p′

for small ε, so (uε(xε))ε ∈ E . If x̃ ∼ ỹ then the right hand side of (2.1) is dominated
by

|xε − yε|(1 + |xε|+ |yε − xε|)pε−p ≤ Cεq(1 + ε−p1)pε−p

for arbitrary q and small ε, so (uε(xε))ε − (uε(yε))ε ∼ 0. By similar arguments,
(wε)ε ∈ Nτ (Ω) implies (wε(xε))ε ∼ 0. 2

As the main result of the paper, we show that contrary to usual pointvalues, point-
values on generalized points characterize elements of G(Ω):

Theorem 2.4. If Ω is an open subset of IRn then

U = 0 in G(Ω) ⇔ U(x̃) = 0 in K for all x̃ ∈ Ω̃c.

Proof. ⇒: follows directly from (the proof of) 2.3.
⇐: If U 6= 0 in G(Ω) then

∃K ⊂⊂ Ω ∃α ∈ INn
o ∃q > 0 ∀η > 0 ∃0 < ε < η : sup

x∈K
|∂αuε(x)| > εq.(2.2)

We choose α with the above property in such a way that |α| is minimal. (2.2) yields
the existence of sequences εk → 0 and xk ∈ K such that |∂αuεk

(xk)| ≥ εq
k for all
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k ∈ IN. For ε > 0 we set xε = xk for εk+1 < ε ≤ εk, k ∈ IN. Then (xε)ε ∈ ΩM

and has values in K, so x̃ = cl[(xε)ε] belongs to Ω̃c. Also, from the above we have
∂αU(x̃) 6= 0 in K. We have to distinguish two cases:

(i) α = 0. Then U(x̃) 6= 0 and the proof is completed.
(ii) α 6= 0. We will show that this leads to a contradiction. Since |α| was assumed

to be minimal, for any β ∈ INn
o , |β| = |α| − 1 and L ⊂⊂ Ω we have

∀r > 0 ∃η > 0 ∀0 < ε < η : sup
x∈L

|∂βuε(x)| ≤ εr(2.3)

We may assume that α1 6= 0. Set β := (α1 − 1, α2, . . . , αn), γ := (α1 + 1, α2, . . . , αn)
and x = (x1, x

′) for x ∈ IRn. Since (uε)ε ∈ EM (Ω) it follows that

∃p > 0 ∃η > 0 ∀0 < ε < η : sup
x∈L

|∂γuε(x)| ≤ ε−p

Choose L ⊂⊂ Ω such that K ⊆ L◦ (where L◦ denotes the interior of L). Then for k
sufficiently large we have

|∂αuεk
(y1, x2,k, . . . , xn,k)| = |∂αuεk

(xk) +
y1∫

x1,k

∂γuεk
(ξ, x′k)dξ| ≥

≥ εq
k − ε−p

k |y1 − x1,k| ≥ 1
2εq

k

provided that |y1 − x1,k| ≤ 1
2εp+q

k and that k is in addition so large that the line con-
necting xk and (y1, x2,k, . . . , xn,k) is contained in L. Setting xk := (x1,k + 1

2εp+q
k , x2,k,

. . ., xn,k) we obtain

|∂βuεk
(xk)| = |∂βuεk

(xk) +
x1,k∫
x1,k

∂αuεk
(ξ, x′k)dξ| ≥

≥ −εr
k + |x1,k − x1,k| 12εq

k = −εr
k + 1

4εp+2q
k ≥ 1

8εp+2q
k

for r large enough and k ≥ ko. This implies that sup
x∈L

|∂βuεk
(x)| ≥ 1

8εp+2q
k for k ≥ ko,

contradicting (2.3) because εk → 0. 2

The corresponding result for tempered generalized functions requires some restric-
tions on the underlying open set Ω. By an n-dimensional box we mean a subset of the
form I1 × . . .× In where each Ik is a (finite or infinite) open interval in IR.

Proposition 2.5. If Ω is an n-dimensional box and U ∈ Gτ (Ω) then

U = 0 in Gτ (Ω) ⇔ U(x̃) = 0 in K for all x̃ ∈ Ω̃.

Proof. ⇒: Follows from (the proof of) 2.3.
⇐: That U 6= 0 in Gτ (Ω) means

∃α ∈ INn
o ∀p > 0 ∃q > 0 ∀η > 0 ∃0 < ε < η : sup

x∈Ω
(1 + |x|)−p|∂αuε(x)| > εq.(2.4)
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We claim that

∃po > 0 ∀p ≥ po ∃q > 0 ∃s > 0 ∀η > 0 ∃0 < ε < η :
sup

x∈Ω,|x|≤ 1
εs

(1 + |x|)−p|∂αuε(x)| > εq.(2.5)

Indeed, since (uε)ε ∈ Eτ (Ω) there are p1 > 0, η1 > 0 such that

|∂αuε(x)| ≤ (1 + |x|)p1ε−p1 ∀x ∈ Ω, ∀0 < ε < η1.

If we take po > p1 then for any p ≥ po we get

sup
x∈Ω,|x|≥ 1

εs

(1 + |x|)−p|∂αuε(x)| ≤ sup
x∈Ω,|x|≥ 1

εs

(1 + |x|)−po |∂αuε(x)| ≤

≤ sup
x∈Ω,|x|≥ 1

εs

(1 + |x|)−po+p1ε−p1 ≤
(
1 + 1

εs

)p1−po
ε−p1 ≤ εs(po−p1)−p1

for 0 < ε < η1. Taking the q from (2.4) belonging to the given p we have

εs(po−p1)−p1 ≤ εq for s >
q + p1

po − p1
.

(We can clearly suppose η1 < 1.) With this choice,

sup
x∈Ω,|x|≥ 1

εs

(1 + |x|)−p|∂αuε(x)| ≤ εq (0 < ε < η1).(2.6)

For p ≥ po, (2.4) together with (2.6) yields

∀η > 0 ∃0 < ε < η : sup
x∈Ω,|x|≤ 1

εs

(1 + |x|)−p|∂αuε(x)| > εq,

thus verifying (2.5). This shows that for any p ≥ po there exist q > 0, s > 0 and
sequences (xk)k in Ω and εk → 0 such that |xk| ≤ 1

εs
k

and

(1 + |xk|)−p|∂αuεk
(xk)| > εq

k.(2.7)

Set xε := xk for εk+1 < ε ≤ εk, k ∈ IN. Then |xε| ≤ 1
εs for εk+1 < ε ≤ εk, so

x̃ := cl[(xε)ε] ∈ Ω̃ and ∂αU(x̃) 6= 0 in K. Again, we distinguish two cases:
(i) If α = 0 then U(x̃) 6= 0 and we are done.
(ii) Assuming α 6= 0 we take an α with minimal |α| satisfying (2.4). Without loss

of generality we may suppose α1 6= 0. Set β := (α1 − 1, α2, . . . , αn), γ := (α1 +
1, α2, . . . , αn) and x = (x1, x

′) for x ∈ IRn. By minimality,

∃p2 > 0 ∀r > 0 ∃η > 0 ∀0 < ε < η : sup
x∈Ω

(1 + |x|)−p2 |∂βuε(x)| ≤ εr(2.8)

By the Eτ -property of (uε)ε,

∃p3 > 0 ∃η > 0 ∀0 < ε < η : sup
x∈Ω

(1 + |x|)−p3 |∂γuε(x)| ≤ ε−p3(2.9)



Oberguggenberger, Kunzinger, Pointvalues of Colombeau Functions 7

Take p = max(po, p2, p3) in (2.5) and s, q, εk → 0, (xk)k (and from these x̃) corre-
sponding to this p. Then

|∂αuεk
(y1, x2,k, . . . , xn,k)| = |∂αuεk

(xk) +
y1∫

x1,k

∂γuεk
(ξ, x′k)dξ| ≥

(2.7),(2.9)

≥ (1 + |xk|)pεq
k − (1 + |(x1,k + θ(y1 − x1,k), x′k)|)pε−p

k |y1 − x1,k|
≥ (1 + |xk|)pεq

k − (2 + |xk|)pε−p
k |y1 − x1,k| (if |y1 − x1,k| < 1)

≥ ((1 + |xk|)p − 1
2 (1 + |xk|

2 )p)εq
k ≥

1
2 (1 + |xk|)pεq

k

(2.10)

provided |y1 − x1,k| ≤ ( 1
2 )p+1εp+q

k and (y1, x2,k, . . . , xn,k) ∈ Ω. Since Ω is a box,
there exists some ko such that for each k ≥ ko, either (x1,k + ( 1

2 )p+1εp+q
k , x′k) or

(x1,k − ( 1
2 )p+1εp+q

k , x′k) is in Ω. For each k ≥ ko, choose one of these values which is
in Ω and denote it by xk. Then

|∂βuεk
(xk)| = |∂βuεk

(xk) +
x1,k∫
x1,k

∂αuεk
(ξ, x′k)dξ|

(2.8),(2.10)

≥ −(1 + |xk|)pεr
k+

+|x1,k − x1,k| 12 (1 + |xk|)pεq
k = (1 + |xk|)p(−εr

k + ( 1
2 )p+2εp+2q

k )
(2.11)

Now for k large enough we have

(1 + |xk|)p ≥ (1 + |xk| − |xk − xk|)p = (1− ( 1
2 )p+1εp+q

k + |xk|)p ≥
≥ ( 1

2 + |xk|)p ≥ ( 1
2 )p(1 + |xk|)p

In addition, we can choose r and k so large that εr
k < ( 1

2 )p+3εp+2q
k , so that by (2.11)

for sufficiently large k and r we get

|∂βuεk
(xk)| ≥ (1 + |xk|)p(

1
2

)2p+3εp+2q
k .

But this contradicts (2.8). 2

Next, we are going to extend the range of applicability of 2.5 from boxes to a wider
class of open subsets of IRn. We first note the following immediate consequence of the
basic definitions:

Lemma 2.6. Let Ω′ be an open subset of IRn and f : Ω′ → Ω a diffeomorphism such
that both f and f−1 are OM -functions. Then U ∈ Gτ (Ω) is 0 in Gτ (Ω) iff U ◦ f = 0
in Gτ (Ω′). 2

In the situation of Lemma 2.6, we shall say that Ω is OM -diffeomorphic with Ω′.
Thus from 2.5 and 2.6 we conclude

Theorem 2.7. If Ω ⊆ IRn is OM -diffeomorphic with some open box and U ∈ Gτ (Ω)
then

U = 0 in Gτ (Ω) ⇔ U(x̃) = 0 in K for all x̃ ∈ Ω̃.
2
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That the conclusion of 2.7 cannot be generalized to arbitrary open sets is demon-
strated by the following

Example 2.8. For x ∈ IR, by dxe we denote the least integer ≥ x. Now take

Ω =
∞⋃

n=2

(
n− 1

nn
, n +

1
nn

)
=:

∞⋃
n=2

In

For ε > 0 set nε = d 1
εe. We define a smooth function uε on Ω by

uε(x) =
{

x− nε x ∈ Inε

0 x ∈ Ω \ Inε

(uε)ε ∈ Eτ (Ω) since it is bounded in all derivatives, uniformly in ε. Hence U :=
cl[(uε)ε] ∈ Gτ (Ω) and we show that U 6= 0: Suppose that (uε)ε ∈ Nτ (Ω). Then

∃p > 0 ∀q > 0 ∃η > 0 ∀x ∈ Ω : |u′ε(x)| ≤ (1 + |x|)pεq (0 < ε < η).(2.12)

Setting x = nε in (2.12) we get 1 ≤ (1+nε)pεq ≤ 2p( 1
ε )pεq for arbitrary q and small ε,

which is absurd. Nevertheless, all pointvalues of U on generalized points are 0: Indeed,
for arbitrary q > 0 we even have supx∈Ω |uε(x)| ≤ n−nε

ε ≤ εq for ε < min(1
q , 1). So, in

particular, if x̃ = cl[(xε)ε] ∈ Ω̃ then |uε(xε)| < εq for arbitrary q and sufficiently small
ε, i.e. U(x̃) = 0 in K.

In applications it is often necessary to consider the following ‘mixed’ variant of
Colombeau algebras:

Definition 2.9. Let Ω ⊆ IRm, Ω′ ⊆ IRn be open sets. We define

Ẽτ (Ω× Ω′) = {(uε)ε ∈ (C∞(Ω× Ω′))I : ∀K ⊂⊂ Ω ∀α ∈ INm+n
o ∃p > 0

sup
x∈K

sup
y∈Ω′

(1 + |y|)−p|∂αuε(x, y)| = O(ε−p) (ε → 0)}

Ñτ (Ω× Ω′) = {(uε)ε ∈ (C∞(Ω× Ω′))I : ∀K ⊂⊂ Ω ∀α ∈ INm+n
o ∃p > 0

∀q > 0 sup
x∈K

sup
y∈Ω′

(1 + |y|)−p|∂αuε(x, y)| = O(εq) (ε → 0)}

G̃τ (Ω× Ω′) = Ẽτ (Ω× Ω′)/Ñτ (Ω× Ω′).

Thus, the elements of G̃τ (Ω×Ω′) satisfy G-bounds in the x-variables and Gτ -bounds
in the y-variables. A pointvalue characterization for elements of such algebras can
immediately be derived from the results achieved so far:

Theorem 2.10. Let Ω ⊆ IRm be an open set and let Ω′ ⊆ IRn be an OM -
diffeomorphic image of some open box. Then for any U ∈ G̃τ (Ω× Ω′) we have

U = 0 in G̃τ (Ω× Ω′) ⇔ U(x̃, ỹ) = 0 ∀x̃ ∈ Ω̃c, ∀ỹ ∈ Ω̃′.

Proof. Clearly, U = 0 in G̃τ (Ω×Ω′) implies that all generalized pointvalues are 0 by
the same reasoning as in 2.3. Conversely, take some open box B with B ⊂⊂ Ω and set
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V := U |B×Ω′ . If (x̃, ỹ) ∈ B̃×Ω̃′, then x̃ ∈ Ω̃c, so V (x̃, ỹ) = U(x̃, ỹ) = 0 by assumption.
Now from 2.7 we conclude that V = 0 in Gτ (B ×Ω′). Thus, if K is a compact subset
of B we obtain the Ñτ -estimates for U on K × Ω′ from the Nτ -estimates for V on
B × Ω′. Since every K ⊂⊂ Ω is included in a finite union of relatively compact open
boxes in Ω, U = 0. 2

Note that by a similar argument one can deduce 2.4 from 2.7.

Remark 2.11. An analogous pointvalue characterization is available for elements
of the algebra F(Ω) introduced by Egorov in [3]. F(Ω) is defined as the factor algebra
A(Ω)/I(Ω) where A(Ω) is the algebra of sequences (fk)k of smooth functions on Ω
modulo the ideal consisting of those sequences that eventually vanish on each K ⊂⊂ Ω.
The corresponding generalized numbers C̃ are defined as C̄ IN

/I where C̄ is the one-
point compactification of C and I = {(ck)k ∈ C̄ IN : ∃N ∈ IN : ck = 0 ∀k ≥ N}.
Inserting x ∈ Ω componentwise into some f ∈ F(Ω) yields a well-defined pointvalue
f(x) ∈ C̃ . However, example 2.1 with ε = 1

k demonstrates that elements of F(Ω) are
not uniquely determined by their pointvalues. Thus on

Ωc := {(xk)k ∈ ΩIN : ∃K ⊂⊂ Ω ∃N ∈ IN : xk ∈ K ∀k ≥ N}

we introduce an equivalence relation by (xk)k ∼ (yk)k if for some N ∈ IN xk = yk

for all k ≥ N . Then Ω̃c := Ωc/ ∼ is the set of compactly supported points in
the F(Ω)-setting. Clearly, if f = cl[(fk)k] ∈ F(Ω) and x̃ = cl[(xk)k] ∈ Ω̃c then
f(x̃) := cl[(fk(xk))k] is a well-defined element of C̃ . Then we have

f = 0 in F(Ω) ⇔ f(x̃) = 0 in C̃ for all x̃ ∈ Ω̃c.

Indeed, necessity is immediate from the definitions. Conversely, if f = cl[(fk)k] 6= 0
then

∃K ⊂⊂ Ω ∀k ∈ IN ∃nk ≥ k ∃xnk
∈ K : fnk

(xnk
) 6= 0.

Set ym = xnk
for nk ≤ m < nk+1. Then ỹ := cl[(ym)m] ∈ Ω̃c and f(ỹ) 6= 0, as

required.

Finally, we consider some immediate implications of this new pointvalue concept on
the theory of Colombeau algebras. In a sense, generalized points are the ‘right’ adap-
tation of classical pointvalues to Colombeau functions as they take into account the
basic structure of the factor algebras under consideration. Thus, direct generalizations
of results from classical analysis become possible:

Example 2.12. Mean value theorem: Let I be an open interval in IR, U ∈ G(I) and
let x̃, ỹ ∈ Ĩc, x̃ ≤ ỹ (meaning that there exist representatives (xε)ε, (yε)ε with xε ≤ yε

for all ε). Then there exists some ξ̃ ∈ Ĩc with x̃ ≤ ξ̃ ≤ ỹ such that U(ỹ) − U(x̃) =
U ′(ξ̃)(ỹ − x̃). (In particular, one may consider x, y ∈ I). This follows immediately
from a componentwise application of the classical mean value theorem.

An important consequence of theorems 2.4 and 2.7 is that they allow a geometric
interpretation of generalized functions by identifying any element U of G(Ω) with its
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graph
ΓU := {(x̃, U(x̃)) : x̃ ∈ Ω̃c}

(and analogously for U ∈ Gτ (Ω)). Such a description enables a generalization of clas-
sical geometrical methods (e.g. action of transformation groups, cf. [6]) to elements
of Colombeau algebras. This in turn can be utilized for extending the range of ap-
plicability of group analysis of differential equations to include nonlinear operations
on distributional solutions ([7]). Moreover, in many cases a transfer of methods from
classical analysis is greatly facilitated by (or even enabled through) making use of
pointvalue arguments (e.g. flow-properties of generalized ODEs, cf. [4]).
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