Discontinuous Petrov-Galerkin Methods

Friederike Hellwig

1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015

Motivation

- discontinuous Petrov-Galerkin (dPG) methods invented by L. Demkowicz, J. Gopalakrishnan (2010)
- motivated by search for optimal test functions
- dPG can be viewed as mixed method with nonstandard test space (typically broken test functions) or minimal residual method
- main idea: too many test functions ensure an inf-sup condition, let computer handle redundant dofs
- applications: linear elasticity, Stokes equations, Maxwell, ...

Outline

1 General Framework of dPG Methods

- Inf-Sup Conditions

■ dPG as Mixed Method and Minimal Residual Method

- Built-in A Posteriori Estimate

2 The Primal dPG Method for the Poisson Model Problem

- Problem Formulation

■ Proof of (H1) and (H2)

Outline

1 General Framework of dPG Methods

- Inf-Sup Conditions

■ dPG as Mixed Method and Minimal Residual Method

- Built-in A Posteriori Estimate

2 The Primal dPG Method for the Poisson Model Problem - Problem Formulation - Proof of (H1) and (H2)

Notation

■ X Hilbert space with norm $\|\bullet\|_{X}$

Notation

■ X Hilbert space with norm $\|\bullet\|_{X}$

- Y Hilbert space with norm $\|\bullet\|_{Y}$ and scalar product $(\bullet, \bullet)_{Y}$

Notation

■ X Hilbert space with norm $\|\bullet\|_{X}$

- Y Hilbert space with norm $\|\bullet\|_{Y}$ and scalar product $(\bullet, \bullet)_{Y}$

■ for any normed space W, let $\mathcal{S}(W):=\left\{w \in W \mid\|w\|_{W}=1\right\}$

Notation

■ X Hilbert space with norm $\|\bullet\|_{X}$

- Y Hilbert space with norm $\|\bullet\|_{Y}$ and scalar product $(\bullet, \bullet)_{Y}$

■ for any normed space W, let $\mathcal{S}(W):=\left\{w \in W \mid\|w\|_{W}=1\right\}$

- $b: X \times Y \rightarrow \mathbb{R}$ a bounded bilinear form with $\|b\|=\sup _{x \in \mathcal{S}(X)} \sup _{y \in \mathcal{S}(Y)} b(x, y)$

Notation

■ X Hilbert space with norm $\|\bullet\|_{X}$

- Y Hilbert space with norm $\|\bullet\|_{Y}$ and scalar product $(\bullet, \bullet)_{Y}$

■ for any normed space W, let $\mathcal{S}(W):=\left\{w \in W \mid\|w\|_{W}=1\right\}$

- $b: X \times Y \rightarrow \mathbb{R}$ a bounded bilinear form with $\|b\|=\sup _{x \in \mathcal{S}(X)} \sup _{y \in \mathcal{S}(Y)} b(x, y)$
■ $F \in Y^{\star}:=\{G: Y \rightarrow \mathbb{R} \mid G$ linear and bounded $\}$

Notation

■ X Hilbert space with norm $\|\bullet\|_{X}$

- Y Hilbert space with norm $\|\bullet\|_{Y}$ and scalar product $(\bullet, \bullet)_{Y}$

■ for any normed space W, let $\mathcal{S}(W):=\{w \in W \mid\|w\| w=1\}$

- $b: X \times Y \rightarrow \mathbb{R}$ a bounded bilinear form with $\|b\|=\sup _{x \in \mathcal{S}(X)} \sup _{y \in \mathcal{S}(Y)} b(x, y)$
■ $F \in Y^{\star}:=\{G: Y \rightarrow \mathbb{R} \mid G$ linear and bounded $\}$
■ for any $G \in Y^{\star}$, let $\|G\|_{Y^{\star}}:=\sup _{y \in \mathcal{S}(Y)} G(y)$

The Continuous Problem

Suppose that the problem

$$
x \in X: \quad b(x, \bullet)=F \quad \text { in } Y
$$

is well-posed with unique solution.

The Continuous Problem

Suppose that the problem

$$
x \in X: \quad b(x, \bullet)=F \quad \text { in } Y
$$

is well-posed with unique solution. The standard theory on mixed finite element methods [Boffi, Brezzi, Fortin] shows that this is equivalent to the inf-sup condition

$$
\begin{equation*}
0<\beta:=\inf _{x \in \mathcal{S}(X)} \sup _{y \in \mathcal{S}(Y)} b(x, y) \tag{H1}
\end{equation*}
$$

and non-degeneracy

$$
\{0\}=N:=\{y \in Y \mid b(\bullet, y)=0 \text { in } X\} .
$$

The Discrete Problem?

Question: How to discretize this problem?

The Discrete Problem?

Question: How to discretize this problem? For any chosen finite-dimensional subspaces $X_{h} \subseteq X, Y_{h} \subseteq Y$, the well-posedness of the discrete problem

$$
x_{h} \in X_{h}: \quad b\left(x_{h}, \bullet\right)=F \quad \text { in } Y_{h}
$$

is equivalent to the discrete inf-sup condition

$$
\begin{equation*}
0<\beta_{h}:=\inf _{x_{h} \in \mathcal{S}\left(X_{h}\right)} \sup _{y_{h} \in \mathcal{S}\left(Y_{h}\right)} b\left(x_{h}, y_{h}\right) \tag{H2}
\end{equation*}
$$

and non-degeneracy

$$
\{0\}=N_{h}:=\left\{y_{h} \in Y_{h} \mid b\left(\bullet, y_{h}\right)=0 \text { in } X_{h}\right\} .
$$

The Discrete Problem? (2)

$$
\begin{gathered}
0<\beta_{h}:=\inf _{x_{h} \in \mathcal{S}\left(x_{h}\right)} \sup _{y_{h} \in \mathcal{S}\left(Y_{h}\right)} b\left(x_{h}, y_{h}\right) \\
\{0\}=N_{h}:=\left\{y_{h} \in Y_{h} \mid b\left(\bullet, y_{h}\right)=0 \text { in } X_{h}\right\}
\end{gathered}
$$

Spaces X_{h} and Y_{h} need to be well-balanced to satisfy these two conditions.
For fixed X_{h},

- a big Y_{h} makes it easier to satisfy discrete inf-sup condition

■ but harder to guarantee discrete non-degeneracy.

Trial-to-Test-Operator

The idea of discontinuous Petrov-Galerkin methods (dPG methods):

- choose only the discrete trial space $X_{h} \subseteq X$,
- compute a discrete test space $\subseteq Y$ with (H 2) and non-degeneracy.

Trial-to-Test-Operator

The idea of discontinuous Petrov-Galerkin methods (dPG methods):

- choose only the discrete trial space $X_{h} \subseteq X$,
- compute a discrete test space $\subseteq Y$ with (H2) and non-degeneracy.
Define the trial-to-test-operator $T: X \rightarrow Y$ by

$$
\left(T_{x}, y\right)_{Y}=b(x, y) \quad \text { for any } y \in Y
$$

Trial-to-Test-Operator

The idea of discontinuous Petrov-Galerkin methods (dPG methods):

- choose only the discrete trial space $X_{h} \subseteq X$,
- compute a discrete test space $\subseteq Y$ with $(\mathrm{H} 2)$ and non-degeneracy.
Define the trial-to-test-operator $T: X \rightarrow Y$ by

$$
\left(T_{x}, y\right)_{Y}=b(x, y) \quad \text { for any } y \in Y
$$

For a fixed choice of discrete trial space $X_{h} \subseteq X$ the idealized $d P G$ method utilizes the discrete test space $T\left(X_{h}\right) \subseteq Y$.

dPG methods

Variational formulation
continuous problem

$$
x \in X: \quad b(x, \bullet)=F \text { in } Y
$$

dPG methods

Variational formulation

dPG methods

Variational formulation

- X_{h} and $T\left(X_{h}\right)$ of idealized dPG method automatically satisfy the discrete inf-sup condition and non-degeneracy
F. Hellwig

dPG methods

Variational formulation
continuous problem idealized dPG

- X_{h} and $T\left(X_{h}\right)$ of idealized dPG method automatically satisfy the discrete inf-sup condition and non-degeneracy
■ Operator T requires solution to infinite-dimensional problem \rightarrow not computable

dPG methods

Variational formulation
continuous problem
idealized dPG

$$
x \in X: \quad b(x, \bullet)=F \text { in } Y
$$

$$
x_{h} \in X_{h}: \quad b\left(x_{h}, \bullet\right)=F \text { in } T\left(X_{h}\right)
$$

■ X_{h} and $T\left(X_{h}\right)$ of idealized dPG method automatically satisfy the discrete inf-sup condition and non-degeneracy

- Operator T requires solution to infinite-dimensional problem \rightarrow not computable
■ Remedy: discrete trial-to-test-operator $T_{h}: X \rightarrow Y_{h}$ for some discrete space $Y_{h} \subseteq Y$. Define $T_{h}: X \rightarrow Y_{h}$ similar to the continuous operator T by

$$
\left(T_{h} x, y_{h}\right)_{Y}=b\left(x, y_{h}\right) \quad \text { for any } y_{h} \in Y_{h}
$$

dPG methods

Variational formulation
continuous problem

■ X_{h} and $T\left(X_{h}\right)$ of idealized dPG method automatically satisfy the discrete inf-sup condition and non-degeneracy
■ Operator T requires solution to infinite-dimensional problem \rightarrow not computable
■ Remedy: discrete trial-to-test-operator $T_{h}: X \rightarrow Y_{h}$ for some discrete space $Y_{h} \subseteq Y$. Define $T_{h}: X \rightarrow Y_{h}$ similar to the continuous operator T by

$$
\left(T_{h} x, y_{h}\right)_{Y}=b\left(x, y_{h}\right) \quad \text { for any } y_{h} \in Y_{h}
$$

dPG methods

Variational formulation

- X_{h} and $T_{h}\left(X_{h}\right) \subseteq Y_{h}$ satisfy non-degeneracy but not necessarily the discrete inf-sup condition
F. Hellwig

dPG methods

Variational formulation
continuous problem

- X_{h} and $T_{h}\left(X_{h}\right) \subseteq Y_{h}$ satisfy non-degeneracy but not necessarily the discrete inf-sup condition
■ continuous inf-sup condition holds $\rightarrow Y_{h}$ big enough leads to the discrete inf-sup condition

$$
0<\inf _{x_{h} \in \mathcal{S}\left(x_{h}\right)} \sup _{y_{h} \in \mathcal{S}\left(Y_{h}\right)} b\left(x_{h}, y_{h}\right)=\inf _{x_{h} \in \mathcal{S}\left(x_{h}\right)} \sup _{y_{h} \in \mathcal{S}\left(T_{h}\left(x_{h}\right)\right)} b\left(x_{h}, y_{h}\right) .
$$

dPG methods...seen as minimization

Variational formulation
Minimal Residual Method

F. Hellwig

dPG methods...seen as minimization

Variational formulation
Minimal Residual Method

- equivalence by calculation of Gâteaux derivative

dPG methods...seen as minimization

Variational formulation
Minimal Residual Method

- equivalence by calculation of Gâteaux derivative

A priori estimate

Theorem
Suppose (H1) and (H2) hold. Then the solution $x_{h} \in X_{h}$ to the practical dPG method satisfies

$$
\left\|x-x_{h}\right\| x \leq \frac{\|b\|}{\beta_{h}} \min _{\xi_{h} \in X_{h}}\left\|x-\xi_{h}\right\|_{x}
$$

A posteriori estimate for idealized dPG

Idealized dPG method has built-in a posteriori estimate

$$
\beta\left\|x-x_{h}\right\|_{X} \leq\left\|b\left(x_{h}, \bullet\right)-F\right\|_{Y^{\star}} \leq\|b\|\left\|x-x_{h}\right\|_{X},
$$

i.e.

$$
\left\|x-x_{h}\right\|_{X} \approx\left\|b\left(x_{h}, \bullet\right)-F\right\|_{Y^{\star}} .
$$

Is such an estimate possible for the practical dPG method as well?

Fortin Operator

For an a posteriori estimate of the practical dPG method, we need some Fortin operator $\Pi: Y \rightarrow Y_{h}$.

> Existence of $\Pi: Y \rightarrow Y_{h}$ linear and bounded projection with $b\left(X_{h},(1-\Pi) Y\right)=0$

Fortin Operator

For an a posteriori estimate of the practical dPG method, we need some Fortin operator $\Pi: Y \rightarrow Y_{h}$.

Existence of $\Pi: Y \rightarrow Y_{h}$ linear and bounded projection with $b\left(X_{h},(1-\Pi) Y\right)=0$

Lemma
Suppose (H1) holds. Then (H2) and (H3) are equivalent.

Fortin Operator

For an a posteriori estimate of the practical dPG method, we need some Fortin operator $\Pi: Y \rightarrow Y_{h}$.

Existence of $\Pi: Y \rightarrow Y_{h}$ linear and bounded projection with $b\left(X_{h},(1-\Pi) Y\right)=0$

Lemma
Suppose (H1) holds. Then (H2) and (H3) are equivalent.
Proof.
$(\mathrm{H} 3) \Longrightarrow(\mathrm{H} 2)$.

Fortin Operator

For an a posteriori estimate of the practical dPG method, we need some Fortin operator $\Pi: Y \rightarrow Y_{h}$.

Existence of $\Pi: Y \rightarrow Y_{h}$ linear and bounded projection with $b\left(X_{h},(1-\Pi) Y\right)=0$

Lemma

Suppose (H1) holds. Then (H2) and (H3) are equivalent.
Proof.
$(H 3) \Longrightarrow(H 2)$. Continuity of Π implies $1 /\|y\|_{Y} \leq\|\Pi\| /\|\Pi y\|_{Y}$ and (H1) shows

$$
\begin{aligned}
& 0<\beta \leq \inf _{x_{x_{h} \in \mathcal{S}\left(X_{h}\right)} \sup _{y \in Y, y \neq 0} \frac{b\left(x_{h}, y\right)}{\|y\|_{Y}} \leq\|\Pi\| \inf _{x_{h} \in \mathcal{S}\left(x_{h}\right)} \sup _{y \in Y, y \neq 0} \frac{b\left(x_{h}, \Pi y\right)}{\|\Pi y\| Y}} \\
& \leq\|\Pi\| \inf _{x_{h} \in \mathcal{S}\left(X_{h}\right)} \sup _{y_{h} \in Y_{h}, y_{h} \neq 0} \frac{b\left(x_{h}, y_{h}\right)}{\left\|y_{h}\right\|_{Y}} .
\end{aligned}
$$

Fortin Operator (2)

Lemma
Suppose (H1) holds. Then (H2) and (H3) are equivalent.
Proof.
$(\mathrm{H} 2) \Longrightarrow(\mathrm{H} 3)$.

Fortin Operator (2)

Lemma
Suppose (H1) holds. Then (H2) and (H3) are equivalent.
Proof.
$(H 2) \Longrightarrow(H 3)$. Condition $(H 2)$ and non-degeneracy imply that $B: T_{h}\left(X_{h}\right) \rightarrow X_{h}^{\star}, B T x_{h}:=b\left(\bullet, T x_{h}\right)$ is an isomorphism. Let $G: Y \rightarrow X_{h}^{\star}, G y:=b(\bullet, y)$. Define $\Pi:=B^{-1} \circ G: Y \rightarrow T_{h}\left(X_{h}\right)$ linear and bounded.

- $\Pi\left(T x_{h}\right)=B^{-1} b\left(\bullet, T x_{h}\right)=B^{-1} B T x_{h}=T x_{h}$

■ $y \in Y$ satisfies $b(\bullet, y)=G(y)=B(\Pi y)=b(\bullet, \Pi y)$ in X_{h}

A posteriori estimate

Theorem
Suppose (H1) and (H3) hold. Then any $\xi_{h} \in X_{h}$ satisfies

$$
\begin{array}{r}
\beta\left\|x-x_{h}\right\| x \leq\|\Pi\|\left\|b\left(x_{h}, \bullet\right)-F\right\|_{Y_{h}^{\star}}+\|F \circ(1-\Pi)\|_{Y_{\star}} \\
\leq 2\|b\|\|\Pi\|\left\|x-x_{h}\right\| x .
\end{array}
$$

A posteriori estimate

Theorem
Suppose (H1) and (H3) hold. Then any $\xi_{h} \in X_{h}$ satisfies

$$
\begin{array}{r}
\beta\left\|x-x_{h}\right\|_{X} \leq\|\Pi\|\left\|b\left(x_{h}, \bullet\right)-F\right\|_{Y_{h}^{\star}}+\|F \circ(1-\Pi)\|_{Y_{\star}} \\
\leq 2\|b\|\|\Pi\|\left\|x-x_{h}\right\| x .
\end{array}
$$

Proof.
(H1) and (H3) imply $\beta\left\|x-x_{h}\right\|_{X} \leq\left\|F-b\left(\xi_{h}, \bullet\right)\right\|_{Y^{\star}}$ and

$$
\left\|F-b\left(\xi_{h}, \bullet\right)\right\|_{Y^{\star}} \leq \sup _{y \in \mathcal{S}(Y)} F((1-\Pi) y)+\sup _{y \in \mathcal{S}(Y)} F(\Pi y)-b\left(\xi_{h}, \Pi y\right)
$$

A posteriori estimate

Theorem
Suppose (H1) and (H3) hold. Then any $\xi_{h} \in X_{h}$ satisfies

$$
\begin{array}{r}
\beta\left\|x-x_{h}\right\| x \leq\|\Pi\|\left\|b\left(x_{h}, \bullet\right)-F\right\|_{Y_{h}^{\star}}+\|F \circ(1-\Pi)\|_{Y_{\star}} \\
\leq 2\|b\|\|\Pi\|\left\|x-x_{h}\right\| x .
\end{array}
$$

Proof.
(H1) and (H3) imply $\beta\left\|x-x_{h}\right\|_{X} \leq\left\|F-b\left(\xi_{h}, \bullet\right)\right\|_{Y^{\star}}$ and

$$
\left\|F-b\left(\xi_{h}, \bullet\right)\right\|_{Y^{\star}} \leq \sup _{y \in \mathcal{S}(Y)} F((1-\Pi) y)+\sup _{y \in \mathcal{S}(Y)} F(\Pi y)-b\left(\xi_{h}, \Pi y\right)
$$

Second estimate follows from continuity of $b,\|\Pi\|=\|1-\Pi\|$ and

$$
F((1-\Pi) y)=b(x,(1-\Pi) y)=b\left(x-\xi_{h},(1-\Pi) y\right) .
$$

Computation of dPG Solution

- $\left\{\Phi_{1}, \ldots, \Phi_{J}\right\}$ basis of X_{h}
- $\left\{\Psi_{1}, \ldots, \Psi_{K}\right\}$ basis of Y_{h}

■ $A \in \mathbb{R}^{K \times J}, A_{k j}:=b\left(\Phi_{j}, \Psi_{k}\right), k=1, \ldots, K, j=1, \ldots, J$, matrix for bilinear form
■ $M \in \mathbb{R}^{K \times K}, M_{k \ell}:=\left(\Psi_{k}, \Psi_{\ell}\right)_{Y}, k, \ell=1, \ldots, K$, matrix for scalar product on Y
■ $b \in \mathbb{R}^{K}, b_{k}:=F\left(\Psi_{k}\right), k=1, \ldots, K$, vector for right-hand side For $x \in \mathbb{R}^{J}$ coefficient vector for solution $x_{h}=\sum_{j=1}^{J} x_{j} \Phi_{j}$, the linear system of equation reads

$$
A^{\top} M^{-1} A x=A^{\top} M^{-1} b
$$

Bigger Y_{h} guarantees inf-sup condition, but computation will be more expensive! Concept of broken test functions leads to block-diagonal M.

1 General Framework of dPG Methods

- Inf-Sup Conditions
- dPG as Mixed Method and Minimal Residual Method

■ Built-in A Posteriori Estimate

2 The Primal dPG Method for the Poisson Model Problem

- Problem Formulation
- Proof of (H1) and (H2)

Theorem (Traces of H^{1}-functions)
For $U \subseteq \mathbb{R}^{n}$ open and bounded Lipschitz domain, there exists continuous, linear $\gamma_{0}: H^{1}(U) \rightarrow L^{2}(\partial U)$ with

$$
\gamma_{0} w=\left.w\right|_{\partial U} \quad \text { for all } w \in H^{1}(U) \cap C^{0}(\bar{U}) .
$$

Theorem (Traces of H^{1}-functions)
For $U \subseteq \mathbb{R}^{n}$ open and bounded Lipschitz domain, there exists continuous, linear $\gamma_{0}: H^{1}(U) \rightarrow L^{2}(\partial U)$ with

$$
\gamma_{0} w=\left.w\right|_{\partial U} \quad \text { for all } w \in H^{1}(U) \cap C^{0}(\bar{U}) .
$$

Set

$$
H^{1 / 2}(\partial U):=\gamma_{0}\left(H^{1}(U)\right) \text { and } H^{-1 / 2}(\partial U):=\left(H^{1 / 2}(\partial U)\right)^{\star} .
$$

Traces (2)

Theorem (Normal traces of H (div)-functions)
For $U \subseteq \mathbb{R}^{n}$ open and bounded Lipschitz domain, there exists continuous, linear $\gamma_{v}: H(\operatorname{div}, U) \rightarrow H^{-1 / 2}(\partial U)$, with

$$
\gamma_{v} q=\left.q\right|_{\partial u} \cdot v \quad \text { for all } q \in C^{\infty}\left(\bar{U} ; \mathbb{R}^{n}\right) \text {. }
$$

Any $q \in H(\operatorname{div}, U)$ and $w \in H^{1}(U)$ satisfies

$$
\left\langle\gamma_{v} q, \gamma_{0} w\right\rangle_{\partial U}=(q, \nabla w)_{U}+(\operatorname{div} q, w)_{U} .
$$

Traces (3)

\mathcal{T} regular triangulation, $\partial \mathcal{T}:=\bigcup_{T \in \mathcal{T}} \partial T$ the skeleton

Traces (3)

\mathcal{T} regular triangulation, $\partial \mathcal{T}:=\bigcup_{T \in \mathcal{T}} \partial T$ the skeleton
For $q \in H(\operatorname{div}, \mathcal{T})$ define $\gamma_{v}^{\mathcal{T}} q \in \prod_{T \in \mathcal{T}} H^{-1 / 2}(\partial T)$ by

$$
\gamma_{v}^{\mathcal{T}} q:=\left(t_{T}\right)_{T \in \mathcal{T}}, \quad \text { with } t_{T}:=\gamma_{v}\left(\left.q\right|_{T}\right) \quad \text { for all } T \in \mathcal{T} .
$$

Traces (3)

\mathcal{T} regular triangulation, $\partial \mathcal{T}:=\bigcup_{T \in \mathcal{T}} \partial T$ the skeleton
For $q \in H(\operatorname{div}, \mathcal{T})$ define $\gamma_{v}^{\mathcal{T}} q \in \prod_{T \in \mathcal{T}} H^{-1 / 2}(\partial T)$ by

$$
\begin{gathered}
\gamma_{v}^{\mathcal{T}} q:=\left(t_{T}\right)_{T \in \mathcal{T}}, \quad \text { with } t_{T}:=\gamma_{v}\left(\left.q\right|_{T}\right) \quad \text { for all } T \in \mathcal{T} . \\
H^{-1 / 2}(\partial \mathcal{T}):=\gamma_{v}^{\mathcal{T}} H(\operatorname{div}, \Omega)
\end{gathered}
$$

is a Hilbert space with minimal extension norm

$$
\|t\|_{H^{-1 / 2}(\partial \mathcal{T})}=\min \left\{\|q\|_{H(\operatorname{div})} \mid q \in H(\operatorname{div}, \Omega), \gamma_{v}^{\mathcal{T}} q=t\right\} .
$$

Traces (3)

\mathcal{T} regular triangulation, $\partial \mathcal{T}:=\bigcup_{T \in \mathcal{T}} \partial T$ the skeleton
For $q \in H(\operatorname{div}, \mathcal{T})$ define $\gamma_{v}^{\mathcal{T}} q \in \prod_{T \in \mathcal{T}} H^{-1 / 2}(\partial T)$ by

$$
\begin{gathered}
\gamma_{v}^{\mathcal{T}} q:=\left(t_{T}\right)_{T \in \mathcal{T}}, \quad \text { with } t_{T}:=\gamma_{v}\left(\left.q\right|_{T}\right) \quad \text { for all } T \in \mathcal{T} . \\
H^{-1 / 2}(\partial \mathcal{T}):=\gamma_{v}^{\mathcal{T}} H(\operatorname{div}, \Omega)
\end{gathered}
$$

is a Hilbert space with minimal extension norm

$$
\|t\|_{H^{-1 / 2}(\partial \mathcal{T})}=\min \left\{\|q\|_{H(\operatorname{div})} \mid q \in H(\operatorname{div}, \Omega), \gamma_{v}^{\mathcal{T}} q=t\right\} .
$$

For $t \in \prod_{T \in \mathcal{T}} H^{-1 / 2}(\partial T)$ and $v \in H^{1}(\mathcal{T})$ define

$$
\langle t, v\rangle_{\partial \mathcal{T}}:=\sum_{T \in \mathcal{T}}\left\langle t_{T}, \gamma_{0} v\right\rangle_{\partial T} .
$$

Poisson Model Problem

$\Omega \subseteq \mathbb{R}^{2}$ open Lipschitz domain with polygonal boundary Seek $u: \Omega \rightarrow \mathbb{R}$ with

$$
\begin{aligned}
&-\Delta u=f \\
& \text { in } \Omega \\
& u=0 \\
& \text { on } \partial \Omega
\end{aligned}
$$

Weak formulation

- multiply equation with test function v,
- integrate by parts on Ω
- test function $v \in H_{0}^{1}(\Omega)$

$$
\int_{\Omega} f v \mathrm{~d} x=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\partial \Omega} v \nabla u \cdot v \mathrm{~d} s
$$

Weak formulation

- multiply equation with test function v,
- integrate by parts on Ω
- test function $v \in H_{0}^{1}(\Omega)$
- boundary integral vanishes

$$
\int_{\Omega} f v \mathrm{~d} x=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x-\underbrace{\int_{\partial \Omega} v \nabla u \cdot v \mathrm{~d} s}_{=0}
$$

Weak formulation

- multiply equation with test function v,

■ integrate by parts on $T \in \mathcal{T}$

- test function $v \in H^{1}(\mathcal{T})$
- boundary integral?

$$
\int_{T} f v \mathrm{~d} x=\int_{T} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\partial T} v \nabla u \cdot v \mathrm{~d} s
$$

Weak formulation

- multiply equation with test function v,
- integrate by parts on $T \in \mathcal{T}$
- test function $v \in H^{1}(\mathcal{T})$
- boundary integral introduces new variable t

$$
\int_{T} f v \mathrm{~d} x=\int_{T} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\partial T} v \underbrace{\nabla u \cdot v}_{t_{T}} \mathrm{~d} s
$$

Weak formulation

- multiply equation with test function v,
- integrate by parts on $T \in \mathcal{T}$
- test function $v \in H^{1}(\mathcal{T})$
- boundary integral introduces new variable t
- sum over all elements

$$
\int_{T} f v \mathrm{~d} x=\int_{T} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\partial T} v \underbrace{\nabla u \cdot v}_{t_{T}} \mathrm{~d} s
$$

Primal dPG formulation seeks $u \in H_{0}^{1}(\Omega), t \in H^{-1 / 2}(\partial \mathcal{T})$ with

$$
(f, v)_{\Omega}=\left(\nabla u, \nabla_{N C} v\right)_{\Omega}-\langle t, v\rangle_{\partial \mathcal{T}} \text { for all } v \in H^{1}(\mathcal{T})
$$

Duality lemma

Theorem
Any $t \in H^{-1 / 2}(\partial \mathcal{T})$ satisfies

$$
\|t\|_{H^{-1 / 2}(\partial \mathcal{T})} \leq \sup _{v \in H^{1}(\mathcal{T}), v \neq 0} \frac{\langle t, v\rangle_{\partial \mathcal{T}}}{\|v\|_{H^{1}(\mathcal{T})}} .
$$

F. Hellwig

Duality lemma

Theorem
Any $t \in H^{-1 / 2}(\partial \mathcal{T})$ satisfies

$$
\|t\|_{H^{-1 / 2}(\partial \mathcal{T})} \leq \sup _{v \in H^{1}(\mathcal{T}), v \neq 0} \frac{\langle t, v\rangle_{\partial \mathcal{T}}}{\|v\|_{H^{1}(\mathcal{T})}} .
$$

Proof.

Let $v \in H^{1}(\mathcal{T})$ on each $T \in \mathcal{T}$ weak solution to

$$
-\Delta v+v=0 \text { in } T \text { and } \nabla v \cdot v=t_{T} \text { on } \partial T .
$$

With $q:=\nabla_{N C} v \in H(\operatorname{div}, \Omega)$, it holds $\|t\|_{H^{-1 / 2}(\partial \mathcal{T})} \leq\|q\|_{H(\text { div })}$, $\operatorname{div} q=v$, and $\|q\|_{H(\text { div })}=\|v\|_{H^{1}(\mathcal{T})}$. Integration by parts shows

$$
\langle t, v\rangle_{\partial \mathcal{T}}=\left(q, \nabla_{N C} v\right)_{\Omega}+(\operatorname{div} q, v)_{\Omega}=\|q\|_{H(\operatorname{div})}^{2} .
$$

Inf-Sup Condition

Theorem
The spaces $X:=H_{0}^{1}(\Omega) \times H^{-1 / 2}(\partial \mathcal{T}), Y:=H^{1}(\mathcal{T})$ and the bilinear form $b: X \times Y, b(u, t ; v):=\left(\nabla u, \nabla_{N C} v\right)_{\Omega}-\langle t, v\rangle_{\partial \mathcal{T}}$ satisfy $(H 1)$.

Inf-Sup Condition

Theorem
The spaces $X:=H_{0}^{1}(\Omega) \times H^{-1 / 2}(\partial \mathcal{T}), Y:=H^{1}(\mathcal{T})$ and the bilinear form $b: X \times Y, b(u, t ; v):=\left(\nabla u, \nabla_{N C} v\right)_{\Omega}-\langle t, v\rangle_{\partial \mathcal{T}}$ satisfy $(H 1)$.

Proof.
The Friedrichs inequality implies

$$
\|\nabla u\|_{L^{2}(\Omega)} \lesssim \sup _{v \in H_{0}^{1}(\Omega), v \neq 0} \frac{(\nabla u, \nabla v)_{\Omega}}{\|v\|_{H^{1}(\mathcal{T})}}=\sup _{v \in H_{0}^{1}(\Omega), v \neq 0} \frac{b(u, t ; v)}{\|v\|_{H^{1}(\mathcal{T})}} .
$$

The duality lemma and the triangle inequality show

$$
\|t\|_{H^{-1 / 2}(\partial \mathcal{T})} \leq \sup _{v \in Y, v \neq 0} \frac{b(u, t ; v)}{\|v\|_{H^{1}(\mathcal{T})}}+\sup _{v \in Y, v \neq 0} \frac{\left(\nabla u, \nabla_{N C} v\right)_{\Omega}}{\|v\|_{H^{1}(\mathcal{T})}} .
$$

Discretization

Recall

$$
\begin{aligned}
& X=H_{0}^{1}(\Omega) \times H^{-1 / 2}(\partial \mathcal{T}), \\
& Y=H^{1}(\mathcal{T})
\end{aligned}
$$

The discrete spaces read

$$
\begin{aligned}
& X_{h}:=S_{0}^{1}(\mathcal{T}) \times P_{0}(\mathcal{E}) \subseteq X \\
& Y_{h}:=P_{1}(\mathcal{T}) \subseteq Y
\end{aligned}
$$

Discrete Inf-Sup Condition

Theorem
The discrete spaces X_{h} and Y_{h} satisfy (H2).

Discrete Inf-Sup Condition

Theorem
The discrete spaces X_{h} and Y_{h} satisfy (H2).

Proof.

■ given $x_{h}=\left(u_{C}, t_{0}\right) \in X_{h}$, let $q_{R T} \in R T_{0}(\mathcal{T}), \gamma_{v}^{\mathcal{T}}\left(q_{R T}\right)=t_{0}$
■ choose $v_{1}=-\operatorname{div} q_{R T}+\left(\nabla u_{C}-\Pi_{0} q_{R T}\right) \cdot(\bullet-\operatorname{mid}(\mathcal{T})) \in Y_{h}$

- integration by parts shows

$$
\begin{aligned}
b\left(u_{C}, t_{0} ; v_{1}\right) & =\left(\nabla u_{C}-q_{R T}, \nabla_{N C} v_{1}\right)_{\Omega}-\left(\operatorname{div} q_{R T}, v_{1}\right)_{\Omega} \\
& =\left\|\nabla u_{C}-\Pi_{0} q_{R T}\right\|_{L^{2}(\Omega)}^{2}+\left\|\operatorname{div} q_{R T}\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

■ Since $P_{0}(\mathcal{T})$ is orthogonal to $(\bullet-\operatorname{mid}(\mathcal{T}))$ in $L^{2}(\Omega)$,
$\left\|v_{1}\right\|_{H^{1}(\mathcal{T})}^{2} \leq\left(1+h_{\max }^{2}\right) b\left(u_{C}, t_{0} ; v_{1}\right)$.

Discrete Inf-Sup Condition (2)

Proof.

- recall $b\left(u_{C}, t_{0} ; v_{1}\right)=\left\|\nabla u_{C}-\Pi_{0} q_{R T}\right\|_{L^{2}(\Omega)}^{2}+\left\|\operatorname{div} q_{R T}\right\|_{L^{2}(\Omega)}^{2}$
- Helmholtz decomposition leads to $\alpha_{C} \in S_{0}^{1}(\mathcal{T})$, $\beta_{C R} \in C R^{1}(\mathcal{T})$ with $\nabla u_{C}-\Pi_{0} q_{R T}=\nabla \alpha_{C}+\operatorname{Curl}_{N C} \beta_{C R}$. Orthogonality in Helmholtz and integration by parts shows

$$
\begin{aligned}
\left\|\nabla\left(u_{C}-\alpha_{C}\right)\right\|_{L^{2}(\Omega)}^{2} & =\left(\nabla\left(u_{C}-\alpha_{C}\right), q_{R T}\right)_{\Omega}=-\left(u_{C}-\alpha_{C}, \operatorname{div} q_{R T}\right)_{\Omega} \\
& \lesssim\left\|\nabla\left(u_{C}-\alpha_{C}\right)\right\|_{L^{2}(\Omega)}\left\|\operatorname{div} q_{R T}\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

- triangle inequality implies
$\left\|\nabla u_{C}\right\|_{L^{2}(\Omega)} \leq\left\|\nabla\left(u_{C}-\alpha_{C}\right)\right\|_{L^{2}(\Omega)}+\left\|\nabla \alpha_{C}\right\|_{L^{2}(\Omega)} \lesssim$
$\left\|\operatorname{div} q_{R T}\right\|_{L^{2}(\Omega)}+\left\|\nabla u_{C}-\Pi_{0} q_{R T}\right\|_{L^{2}(\Omega)} \leqslant b\left(u_{C}, t_{0} ; v_{1}\right)^{1 / 2}$ and $\left\|t_{0}\right\|_{H^{-1 / 2}(\partial \mathcal{T})} \leq\left\|q_{R T}\right\|_{H(\text { div })} \lesssim\left\|\Pi_{0} q_{R T}\right\|_{L^{2}(\Omega)}+\left\|\operatorname{div} q_{R T}\right\|_{L^{2}(\Omega)} \lesssim$ $b\left(u_{C}, t_{0} ; v_{1}\right)^{1 / 2}$.

Summary

- idea of dPG: choose discrete trial space, compute discrete test space
■ idealized dPG: inf-sup stable, but not practical
- practical dPG inf-sup stable for Y_{h} big enough
- practical dPG has built-in a priori and a posteriori error control
- application to Poisson as primal dPG with broken test functions
- continuous inf-sup follows from stability of non-broken functions
- discrete inf-sup utilizes discrete Helmholtz decomposition

