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1 Preliminaries

1.1 Deformations

In what follows  C R? will be a bounded domain with sufficiently smooth boundary (this will be specified
at particular spots).

The set Q represents the body before it is deformed, so we call Q) the reference configuration.

A deformation of €2 is defined through y :  — R? that is smooth enough, injective (perhaps except 92)
and det Vy > 0 (orientation preserving).

y(Q) denotes the deformed configuration and we write z¥ := y(x).

Lemma 1.1 (see [11, Cor. 2,p. 17]) Let Q@ C R™ be an open set and let y € C(;R™) be injective. Then
y(Q) is open.

Proposition 1.2 Let Q C R™ be an open set and let y € C(£;R™) be a mapping whose restriction on € is

injective. Then y(Q) = y(Q), y(Q) C inty(Q), and y(0Q) D By&Q)

Proof. Take a € y(f2). Then there is € Q such that y(x) = a. Let limgx, = x, {zx} C Q. Due to
continuity of y, y(x) = limy(zx). Thus () C y(Q).
Since € is compact, so is y(Q). Hence, y(Q2) C y(Q) implies

y(©Q) Cy(Q) = y(@) .

Therefore, y(Q) = y(Q).
We see that y(Q) is open, by the previous lemma and it is contained in y(Q2) we get y(Q2) C inty(Q).
Further,
y(Q) = inty(Q) U 9y(Q)

and

int y(Q) Noy(Q) =10 .

On the other hand, - -
y(©2) = y(QU Q) = y(Q2) Uy(09) and y(©?) C inty({2) ,

so that y(9Q) D Iy ().

Theorem 1.3 Let 2 be a bounded subset in R™ that satisfies inl Q= Q and let y € C(Q;R™) be injective.
Then y() = y(Q), y(Q) = inty(Q), y(992) = Iy(Q) = Iy(Q).

Proof. That y(Q) = y(Q) and y(Q) C inty(Q) we already proved.

Take a € int y(Q2). and let a & (). A continuous mapping y : Q — y() is bijective and € is compact,
y~t:y(Q) — Q is also continuous. By the previous lemma y~!(int y(£2) is an open subset Q that contains
vy~ (a).As y~1(a) & Q we have the existence of an open subset of { which strictly contains 2, a contradiction.

Further, y(Q) = y(Q) U dy(Q). Since y : @ — y(Q) is a bijection, we have dy() = y(9Q). As
y(Q) = inty(Q) we also have

-1

y(Q) = y(Q) Uay(Q) and y(Q) N dy(Q) =10,
we have dy(Q) = dy(Q). O

Example 1.4 Consider Q = {(z1 cosxy, x18inmy); 1 <y <2, 0 <y <27}, Then Q # int Q.



1.2 Cofactor

Let A € R**® and denote d;; = (—1)"*/det Aj; where Aj; is the submatrix of A obtained from A by removing
the i-th row and the j-th column. ‘

Then Cof A = (d;;) is the cofactor matrix of A. Clearly, det A = Z?:l a;;d;; or det A = 2;21 a;jdi;
for j € {1,2,3} and i € {1,2,3}, respectively. Therefore, Idet A = A(Cof A)T = (Cof A)T A. Hence, if
A € R®**3 is invertible

Cof A = (det A)A™T .

Component-wise (no summation)
(Cof A)ij = @it1,j+1Gi42,j4+2 — Qit1,j+2i42,j+1 - (1.1)

(counting the indices modulo 3)

2 Principles of elasticity

2.1 Piola transform

The Piola transform establishes a correspondence between tensor fields defined in the deformed and reference
configurations, respectively. If T%(z¥) denotes a tensor field over y() then we define 7' : Q — R3*3 by

T(z) = (det Vy(2))T¥(2¥)(Vy(2))" ", a¥ = y(z) . (2.1)

Theorem 2.1 Let T : Q — R3*3 is the Piola transform of TY : y(2) — R3*3. Then

div T(z) = (det Vy(z)) div YTY(zY) Va¥ = y(z), = € Q, (2.2)
T(x)ndS =TY(z¥)nYdSY V¥ = y(z), x € 002 . (2.3)

The area elements dS and dSY at the points x € 0Q and z¥ = y(x) € I(Q) with unit outer normals n
and nY, respectively are related by

det Vy(x)|Vy(x)~ "n|dS = | Cof Vy(z)n|dS = dSY . (2.4)

Lemma 2.2 (Piola’s identity) If y € C?(Q;R3) then div Cof Vy =0 .

Proof. We have
_ OYiv1 Oyive  Oyir1 OYiro
8$j+1 ij+2 8xj+2 8xj+1

counting the indices modulo 3. Then }°, %(Cof Vy)i; = 0. O

(COf Vy)ij

Proof of Thm. 2.1 We have
Tij(@) = (det Vy(2))Th (y(@) (Vy(@)™ s

which implies

5 Tule) = (et Vyla) 5 )] (Vo) T
—

TR o [(det Vy(a)(Vy() T
’ Piola id.

Using the chain rule we get
_ T3 (y(@) Oyi(x)

Hence,

(det V) 5 ] (To(0) )i = (det Vo) B O 7))

Okt



This proves (2.2). B
In order to show (2.3) we calculate for an arbitrary subdomain A C 2

/8 T@nds

/ div T(x)dz = / (det Vy(x)) div YTY(y(z)) da
A A

/ div YT (2¥) da¥ = / TY(2¥)n¥ dSY |
y(A) 9y(A)

which implies (2.3) because A was arbitrary. Applying (2.3) to TY = I we get
Cof Vy(z)ndS = n¥dSY

which implies (2.4) because [n¥| = |n| = 1. O

Remark 2.3 We see that if ¥ = y(x)

y _ Cof Vy(z)n
") = oyl

i.e., this formula says how to calculate normal vectors in a deformed configuration. This might be important
in many applications where one needs to apply forces in the perpendicular direction to the body surface.

2.2 Volume element in a deformed configuration

Let dz denotes a volume element in a point z of the reference configuration. The volume element da¥ in the

deformed configuration is given by
dz? = det Vy(z)dz .

If AC Qand AY := y(A) then |[A| = [, dz and |AY| = fy(A) da¥ = [, det Vy(x)dz.
2.3 Length element in a deformed configuration
If y is differentiable at € Q then we write for all points = + Az € Q

y(o + Az) = y(o) + Vy(2)Az + o |Aal)

Hence,
ly(a + Ax) —y(2)]* = (Az) T (Vy(2)) " Vy(z) Az + o(|Ax]?) .
The symmetric tensor

C=(Vy vy (2.5)

is called the right Cauchy-Green strain tensor.
Transformation of the length element

dl = (dz"dx)/? | dI¥ = (dz"Cdz)Y/? .

The Almansi tensor E = (C — I)/2 indicates how much the current deformation y differs from the rigid

onel.

2.4 Applied forces

We will consider two types applied of forces:

a/ applied body forces defined through the density f¥ : Q¥ — R? per unit volume in the deformed configura-
tion,

b/ applied surface forces defined by g¥ : I'Y — R3 on a dSY measurable subset I'Y C 9QY. Then, g¥ is the
density per unit area in the deformed configuration.

Remark 2.4 There are also surface forces which are only partly specified, e.g. by their normal component
to the TY. We will discuss them later on.

IThe rigid deformation means that the whole Q is translated and/or rotated as a rigid body, i.e. y(z) = a + Rz, z € Q,
a € R3, and R € SO(3), and it is equivalent to C' = I; cf. [6, Th. 1.8-1] if y is smooth.



2.5 Cauchy stress tensor

Now we are ready to postulate the existence of internal forces in the deformed specimen.

Axiom (S_tress principle of Euler and Cauchy). Consider a body occupying a fized deformed
configuration 2% and subjected to applied forces represented by densities f¥ : Q¥ — R? and ¢¥ : T} — R>.
Let further S? C R? denote the unit sphere centered at the origin. Then there is a vector field

QY x ST 5 R?

called Cauchy’s stress vector such that:
i/ For any subdomain AY C QY and any point z¥ € 'Y N 9AY where the joint outer unit normal vector n¥
exists,

tY(z¥,nY) = g¥(2¥) . (2.6)

ii/ Axiom of balance of forces. For any subdomain AY C QY

F9(aY) dat + / (@, n¥) dSY = 0 . 2.7)

AvY OAY

Again, n¥Y denotes the outer unit normal to 0AY. B
iii/ Aziom of balance of monenta. For any subdomain AY C ¥ with the outer unit normal n¥

/ ¥ x fY(x¥)da? —|—/ ¥ x tY(z¥,nY)dSY =0 . (2.8)
Av DAV

Remark 2.5 The aziom asserts thal there are elementary forces tY(z¥,nY) dSY along boundaries of any
subdomain of QY. These forces depend on AY only through the outer unit normal to OAY. Moreover, the
deformed configuration QY is in the static equilibrium by i/ and iii/.

Theorem 2.6 (Cauchy’s theorem) Let the applied force density fY : QY — R3 be continuous and let
tY(-,n) € CH(QY;R?) for any n € S* and t¥(xY,-) € C(S*R?) for any x¥ € QY. Then the axiom implies the
existence of a symmetric tensor TY : QY — R3*3 belonging to C1(QY; R3*3) such that:

tY(x¥,n) = TY(x¥)n Va¥ € QY Vn € §? | (2.9)
— divTY(zY) = fY(2¥) Va¥ € QY | (2.10)
TY(2¥)nY = g¥(a¥) Va¥ € TY | (2.11)

where nY is the unit outer normal vector to I'Y.

Proof. Let {e;};=123 denotes a orthonormal basis. Consider a point ¥ € Q¥ and a tetrahedron V},
as in Figure 1 with three faces parallel to the coordinate planes and h = dist(vivovs, 2¥). Notice that
this tetrahedron is a Lipschitz domain, so that the outer normal vector exists a.e. We suppose that the
tetrahedron is contained in ¥, which is an open set by Lemma 1.1. Notice also that components of the
normal unit vector n to the plane vivsvs are such that n; > 0,4 =1,2,3.

Let us further denote by |vv9v3| the area of the triangle v1v9v3. An analogous notation is used for other
faces. The volume of the tetrahedron is proportional to h|vivavs| and |vez¥us| = mq|vivavs| ete. Finally,
realize that by the action-reaction principle t¥(2¥,v) = —t¥(z¥, —v) for any 2¥ € QY and any v € S2.

We calculate the force balance for on the tetrahedron Vj,:

fY(a?)da¥ —|—/ tY(a¥,nY)dSY =0 .

Vh, o Vh,

Further, for any i = 1,2,3

/tf(ay,ny)dsy :/ tf(ay,n)dsy—/ tg(ay,el)dsy—/ £(a", e3) dSY
oV, VU203 vozYv3

vixYus

— / tY(a¥,e3)dSY .
vixYvg



Hence,

1
_— tY(a¥,n)dSY = _m t?(a¥,e1)dSY + "2 tY(a¥,e2)dSY
|U1U2’U3‘ v1V2v3 |02va3| vaxYug |’Ull‘y1}3| vizYUs
ns y 1
—_— t!(a¥,e3)dSY — —— f(a¥)da? .
[via¥va| Sy, pve, 3 ) lvivavs| Jy, @)
We have by continuity
. n1
m-—— tY(a¥,e1)dSY = tY(z¥,e1)n
hlﬁo |U2:L‘yv3‘ vazYus l(a ’ 1) z(l’ ’ 1) '
and similarly for other components.
Further,
1
lim ———| f(@¥)da?| < lim Ch =10,
h—0 "Ul’l)21)3| Vi h—0
where [|f¥ c(v;,,re) < C by our assumption.
Altogether, for i =1,2,3
3
t?(z¥,n) = Zti(xy,ej)nj ,
i=1
or, equivalently,
tY(x¥,n) = Zt(my,ej)nj . (2.12)
i=1 V3

¥ Y
M

Fig. 1. Tetrahedron used in the proof of the Cauchy theorem.

4

As t)(zY,e;) = —t! (2, —e;) it follows that (2.12) holds even if some of n; < 0. We define T}; : Q¥ — R
by t¥(x¥,e;) = >, T} (z¥)e;, so that t¥(x¥,n) = 3=, . T} (a¥)e;n;. Hence, t!(2¥,n) = >, T} (x¥)n; for all
x¥ € Q¥ and all n € S2, or,in other words,

tY(z¥,n) =TY(zY)n .

The tensor TY = (Tfj»)ij is called the Cauchy stress tensor. Notice, in particular, that it shows a linear
dependence of t¥ on the normal n. 2
We use the axiom of force balance and the Green theorem to infer that

0 fY(zY)da¥ +/ tY(z¥,nY)dsY

Av 0AY

fY(x¥)da? +/ TY(z¥)nY dSY

Av 0AY

fY(zY)da¥ +/ div YTY(2¥) da?,

AvY AY

which shows (2.10) because AY C Q¥ was arbitrary.
Using the momentum balance we have (summation convention and the Levi-Civita symbol ¢;;;, are used)

0= /Ay gijk““?flg(xy)dm“/%y I?Tfm(xy)n%dSyZAy gijney fi, (z¥) da?
" / corgpr (BT, (@) do? = / cina? ( F(@%) + 2o TE (o) ) da
ROy, NI km IR\ Tk oxh, Fm

—0 by (2.10)

+ / €ijkT£m(£L'y)5jm:/ ey, da?
AvY Av

2See e.g. [10] that T¥ is really a 2nd order tensor.




which implies symmetry of TY. Finally, (2.11) follows from (2.6). O

Let us discuss three important examples of TY. Let us first take 7 > 0 and put TY(2¥) = —=1, so that
t¥(z¥,nY) = —wn¥. This defines the pressure load on Y; cf. Figure 2 a/.

Secondly,let T¥(zY) = Te®e? where 7 > 0, |e| = 1. Then t¥(z¥,nY) = TY(2¥)n¥ = 7(e-nY)e; cf. Figure 2
b/ and it is called pure tension.

Finally, take o > 0 and unit mutually perpendicular vectors e, é and put TY(z¥) = (e ® é+ é®e). This
yields t¥(z¥,nY) = o((e-n)é + (é - n)e); cf. Figure 2 ¢/ and we call it pure shear.

Fig. 2. a/ pressure ™ > 0, b/ pure tension at the direction e, ¢/ pure
shear

The Axiom of material frame-indifference states that if a deformation y is composed with another
deformation z of ¥ where z(z) := Ry(z) for all x € Q and some rotation S € SO(3) (i.e. rotated) then for
all z € Q and any n € S?

t*(z*, Rn) = RtY(2Y,n) . (2.13)
Notice that we can write
t*(x*, Rn) = T*(z*)Rn = RtY(zY,n) = RTY(aY)n .
Let m € S? be such that Rn = m. Then we immediately get that T%(z*) = RTY(zY)R" for any rotation
R.
2.6 Principle of virtual work, Piola-Kirchhoff and Kirchhoff stress tensors
Theorem 2.7 (Principle of virtual work in the deformed configuration) The boundary value problem
—divYTY = f¥ in QY (2.14a)
TYnY = g¥ on T (2.14b)

s formally equivalent to the variational equation
/ Y- VY0Y dx¥ = fY-0YdeY + / g¥ - 0Y dsY (2.15)
Qv Qv ry

for all smooth 0¥ : QY — R3, § =0 on 00V \ T'Y.

Proof. We formally apply the following version of Green’s theorem for 6 as in the theorem.

div yTy-eydx:—/

TY . VY0¥ da¥ + / TVn¥ . 0¥ dSY | (2.16)
Qv

Qv Flll

Thus,
0 :/ (div?TY + fY)6Y dzY :/ (=TY - VY69 + f¥ - 0Y) da¥ + +/ TYnY - 6Y dSY
Qv Qv Fif

which shows that (2.14) implies (2.15).
Conversely, take § with 6 = 0 on 0 and check that (2.15) implies (2.14a). Then (2.14b) easily follows
from (2.16) and (2.14a). O

3Recall that (a ® b);; = a;bj, i,j = 1,2,3.



Remark 2.8 The formulation (2.14) equipped with the condition TY = TYT (which is automatically satisfied
by Theorem 2.6 is called equilibrium equations in the deformed configuration.

The problem is that (2.14) is formulated in the deformed configuration which is apriori unknown and is
a part of a sought solution. Hence, it is desirable to transform the equilibrium equations to the reference
configuration. We define the 1st Piola-Kirchhoff tensor T : Q — R3*3 as the Piola transform of the Cauchy
stress tensor 7Y, i.e.,

T(z) = (det Vy(z))TY(zY)(Vy(z)™ ", z¥ =y(z), z€Q. (2.17)
It follows from the properties of the Piola transform that
div T'(z) = (det Vy(z)) div YTY(zY) . (2.18)

Notice that 7" is not symmetric in general. Instead,

T(@)T = (Vy(x)~ (det Vy(2))T"(2¥) = (Vy(x) "\ T(@)(Ty(z))T - (2.19)
The symmetric tensor Tg : Q — R3¥3
Ty (z) = T(2)(Vy(z))" = (det Vy(z))T¥(z")

is called the Kirchhoff stress tensor. -
Finally, we define the 2nd Piola-Kirchhoff stress tensor ¥ : Q0 — R3*3 by the formula

S(z) = (Vy(2)) 7' T(x) = (Vy(x)) ™" (det Vy(2))T¥(2")(Vy(z))"" | (2.20)

which is clearly symmetric.

2.7 Applied forces in the reference configuration

Next we rewrite force densities from Q¥ to 2. Having f¥ : Q¥ — R3 a body force density (per volume) we
look for f: Q — R? such that f(z)dz = fY(x¥)da¥. Hence,

f(x) = f(a¥)detVy(z) , o7 =y(z) .

Then f is the (volume) density of body forces in the reference configuration.
If p: Q - R and oY : Y — R are mass densities in the reference and deformed configurations,
respectively, we have

o(z) = o(x¥)det Vy(z) , 2¥ = y(z)

and f(z) = o(z)b(x) where b : Q — R? is the mass density of body forces in the reference configuration.
Similarly we proceed with surface forces. We look for g : 'y — R? y(I'y) = 'Y such that g(z)dS =
gY(x¥)dSY. Thus, using properties of Piola’s transform

g(x) = ¢¥(a¥)|(Cof Vy(x))n(x)| , z¥ =y(z) , x €Ty, (2.21)

is the density of surface forces in the reference configuration.

2.7.1 Conservative forces

An applied body force is a dead load if its associated density in the reference configuration is independent
of the deformation y. A simple example is a homogeneous gravity field f(z) = (0,0, —const o(z)), = € Q.
Likewise, an applied surface force is a dead load if its associated density in the reference configuration is
independent of the deformation y.

Consider an applied surface force being a pressure load. In this situation,

g¥(x¥) = —mnY(2Y) ,2¥ €] and 7 > 0 . (2.22)

Clearly, if 7 > 0 then, in general, g¥!(z¥') # g¥2(2¥2) for two different deformations yi,ys :  — R3.
(Think e.g. about an inflated/deflated balloon.)



In order to fix ideas, we will suppose that the applied force densities are of the form
f(@) = flz,y@) , zeq, (2.23)
and
9(x) = §(z, Vy(z)) , z €T, (2.24)

where f: QxR3 5 R3 and §: Iy x R3*® — R? are given?. B
An applied body force is conservative if there is F': {y : O — R3} — R,

Fly) = /Q F(z,y(z) do (2.25)
with F': Q x R3 — R such that
F/(y)f = /Q Fay(@)) - 0() da |

Here F is called the potential of f and it holds that f(z,&) = Ve F(x,£). B
In the same way we say that the applied surface force is conservative if there is G : {y : @ — R3} — R,

Gly) = | Glay(x), Vy(r))dz (2.26)

I

with G : Ty x R? x R3*® — R such that

Here G is called the potential of g.
Proposition 2.9 A pressure load is a conservative surface force.

Proof. Combining Remark 2.3 with (2.21) we get that
g(x) = —mCof (Vy(z))n(x) .

Therefore we look for G : {y : O — R3} — R such that

Gy)0 = - /8 (Cof (Vo) 045 (2.27)

Using the Green’s theorem and the Piola identity we have (summation convention used)

/Q det Vydu = 3 /Q e (Cof (V) da = 3 /Q o ((Cof (V),) e

1
7/ (Cof Vy)n -ydS .
3 Joa

It is a matter of the direct calculation that (det A)'B = %det (A+1tB)|t=o = Cof A B.
Hence, if y(y) = [, det Vyda then

v ()0 = /Q(Cof Vy) - Vodx .

Applying the Green theorem analogous to (2.16) and keeping in mind the Piola identity we get

/(Cof Vy) - VOdx = / (Cof Vy)n - 0dS =+'(y)0 . (2.28)
Q o9

Comparing (2.27) and (2.28) we see that

Q 3 Joa

4Ri><3 denotes 3 X 3 matrices with positive determinants.

10



2.8 Principles of virtual work in the reference configuration

We have the following boundary value problems in the reference configuration.

Theorem 2.10 The 1st Piola-Kirchhoff tensor satisfies:
—divT = f in Q (2.29a)
Tn=g onT (2.29b)

in the reference configuration. The problem (2.29) is formally equivalent to the variational equation

/T-V&dx:/f-ﬁdx—i—/ g-0ds (2.30)
Q Q I
for all smooth 6 : Q2 —R3, 0 =0 on IQ\T;.

Proof. The prof follows from (2.14) and definitions of f,g and T O

Analogously, we have

Theorem 2.11 The 2nd Piola-Kirchhoff tensor satisfies:
—divVyX = f in Q (2.31a)
Vy¥n =g onI (2.31b)

in the reference configuration. The problem (2.29) is formally equivalent to the variational equation
/VyE-Vde: f-9dx—|—/ g-0dS (2.32)
Q Q T

for all smooth 6 : Q2 — R3, 6§ =0 on 0Q\T;.

The problems (2.29) and (2.31) are called equilibrium equations in the reference configurations and
corresponding variational equations are referred to as principles of virtual work in the reference configutration.

3 Elastic materials

Looking at (2.14) we see that we have 9 unknowns (3 components of y and 6 components of TY) but only 3
equations. Therefore, we complete (2.14) by material relations.

3.1 Response functions

We call a material elastic if there is a mapping
TP : Qx RYP — RS (3.1)
called a response function for the Cauchy stress such that
TV(a¥) = TP (2, Vy(z)) , 2¥ = y(z) . (3.2)

The relation (3.2) is called the constitutive equation of the material. -
It can be shown that the material is isotropic (behaves the same way in all directions) at a point x € QY

if
TP(x,F)=T"(x,FR) FeR¥>?®, Re SO(3).
Similarly, we can find response functions for the 1st and 2nd Piola-Kirchhoff stress tensors, respectively:
T(x,F) = (det F)TP(x, F)F~T Vo € QF € R*3
and

S(a, F) = (det F)F'TP(z, F)F~T Vo € QF € R .
Then the P.-K. stress tensors read for all z € Q
T(x) =T(z,Vy(x)) , S(z) =3z, Vy(x)) .

Remark 3.1 “An elastic material” is a theoretical construction and we cannot really prove that a partic-
ular piece of matter is elastic. We can only suggest a response function and compare our predictions with
experiments. A material in the reference configuration is called homogeneous if its response function does
not depend on x, otherwise is called nonhomogeneous. Homogeneity is related to a particular reference
configuration. TP is related to a particular deformed configuration.

There are theories relating TY (zV) to the gradient Vy in the whole Q (nonlocal elasticity) or taking higher
order gradients into considerations (nonsimple materials).
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3.2 Isotropic materials

The intuitive idea of isotropy is that at a given point of our material its response is the same in all directions.
As an example, we can consider polycrystalline materials or dough. On the other hand, wood is an anisotropic
material because its behavior is different along and across fibers. We now give a mathematical definition of
isotropy.

Consider a deformation y : Q — y(Q). Then we have by (3.2)

(") = TP (2, Vy(x)) -

Take ¢ € Q and rotate (2 around this point by a rotation RT € 80(3), i.e., define 0(z) := x + R™(z — )
for all z € Q. Consider § :=yo 0~ :0(Q) — y(Q), so that §(7) = y(zo + R(T — z0)) if € 0(Q). However,
Yy _ .Y
gy = xg and o R X
T%(xg) = TP (w0, V§(wo)) = T (w0, Vy(0)R) -

Hence, we say that a material is isotropic at a point o € Q if the response function for the Cauchy stress
satisfies for all F' € R3*® and all R € SO(3) that

TP (20, F) = TP (20, FR) .
Using response functions for 7" and ¥ we get analogously for all F, R as before that

T(zo, FR) = T'(x0, F)R and %(zo, FR) = R %(z0, F)R .

3.3 Hyperelastic materials

An elastic material is hyperelastic if there is a stored energy function W Qx RiXB — R such that for all
z € Qand all F € R}

T(z,F) = %—I;/(x,F) : (3.3)

As before, a hyperelastic material is a model and its existence cannot be proven. However, it emphasizes
reversibility of deformations and the idea that energy can be stored in the material and used afterwards to
do work.

The Axiom of material frame-indifference asserts that for all z € Q, R € SO(3) and any F' € RY*® we

have TP (z,RF) = RTP (z, F)R". Consequently, the response function T of the first Piola-Kirchoff stress
tensor satisfies

R'T(x,RF)=T(x,F) . (3.4)
Indeed,
T(z,RF) = det (RF)TP(z, RF)RF~" =det (RF)RTP(x, FYR"RF~" = RT'(z, F) .
This means that

oW oW

-

-— F)=—(z,F) . .

BT, RF) = S (. F) (35)
Fix a rotation R and denote Wg(x, F) := W (z, RF). Then we get by the Taylor formula for G € Rixg’

such that det (F 4+ G) > 0 that

Wa(z,F+G) = Wz, RF+ RG) = W(x, RF) + %—V}[j(m, RF):RG + o|G])
= WR(I, F)+ RT%—I;/(JJ,RF):G +o(|G])
. oW,
= Wg(z, F)+ T;(x,F):G—&—OUGD. (3.6)
Therefore, in view of (3.5) and (3.6)
oW _ OWg
87(va) - OF (xaF) .

In other words, for all F' € Rixg’

9 . .
o= (W (@, F) = W (2, RF)) = 0 .

12



As RY*? is a connected set®, we infer that there is a constant C' (depending on R) such that W (z, RF) =

W (x, F) +C. Testing this equality for F':= I, F := R, F := R?, etc. we get that W(x R™) = W(z,I)+nC.
Thus, lim,_, [W (z, R")| = +00. However, the set {R"},en is compact and W (z,-) is differentiable and
continuous. For this reason, C' = 0. Altogether, for all rotations R and all F' € R?’X?’

W (z, RF) = W(z, F) .

As we can always find a decomposition ' = RU where R € SO(3) and U =U " € R‘:’_Xiﬂ with U2 = F'F,
it is clear that W (z, F') = (x, C) for some function @ : Q x {4 =AT; A € R¥*} - Rwith C = FTF.

In the case of hyperelastic material and if the applied forces are conservative, a solution of elasticity
equations is formally equivalent to finding a stationary point of the functional

_ /Q W (2, Vy)de — Fly) — G(y) - (3.7)

Theorem 3.2 Let there be given a hyperelastic material subjected to conservative applied body and surface
forces. Then the equations

— dw a—?g(m?Vy(x)) = flz,y(x), ze€Q (3.8a)
oW X
S5 (& Vy@)n(z) = §(z, Vy(@)) , e €Ty (3.92)
are formally equivalent to the equations
I'(y)0=0 (3.10)

for all smooth maps 0 : © — R3 vanishing on Ty. Here n(x) is the outer unit normal to T'y at x.

Proposition 3.3 Under the assumptions of Theorem 3.2 the following holds. Ify € & =
{y: Q=R y=yo onTo} is smooth enough and I(y) = infgeq I(§) then y solves (3.8-3.9) and y = yo on
To.

Definition 3.4 The functional W (y fsz (Vy) dz is called the strain energy, while I is called the total
energy.

Remark 3.5 (Behavior of W) For all x € Q, all F € R3*® and all R € SO(3)

W (z,F) = W(x,RF) .

This property is called principle of frame indifference. -
We assume that there are positive constants o, p, q,r such that such that for each x € Q and all F € Rixz)’

W(x, F) > o(|F|P 4 | Cof F|? + (det F)") (3.11)
and
W(z,F) — o0 if det F — 04 . (3.12)

where Cof A = (det A)A~T

Proposition 3.6 There is no convex function satisfying (3.12).

5Indeed, notice that if F' € Rixg then there is an upper triangular matrix G and R € SO(3) such that F' = RG. Moreover,
the diagonal components of G can be taken all positive (and then the decomposition of F' is unique). Hence, det F = det G =
Hf’:lGii. Let for ¢ € [0,1] ¢t — G¢ be defined in such a way that G; has the same diagonal as G but its off-diagonal elements are
(1—1t) multiples of off-diagonal elements of G. Therefore, G1 = diag(G11, G22,G33). Now we extend the mapping t — G to the
interval [1, 2] in the following way: If ¢ € [1,2] then G := diag((1—G11)t+2G11 —1, (1 —G22)t+2G22— 1, (1—G33)t+2G33—1).
In particular, Go = I and the path {¢t € [0,2] — G} C ]Rixs and it is continuous. This means that t — F} := RG: makes
a continuous path between F' and R. As R is a rotation it can be joined with the identity by a continuous path as it can be
readily seen from the expression of R in terms of axial rotation angles (called Euler’s decomposition). Altogether, we see that
F is connected with the identity. Consequently, RixB is connected.
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Proof.  First, we notice that the convex hull of RiXB is the whole R3*3.  We observe that
—I =diag(—1,-1,-1) = 0.5diag(—3,1,—1) + 0.5diag(1,—3,—1). Take F € R3*3 and realize that
F =0.5(A +2F) + 0.5(—1I) and that det (A +2F) > 0 for A > 0 large enough.

Suppose that there is W convex. We identify W(m, -) with its convex extension® the whole R3*3.

There is po € (0,1) and Fy, Go € Riw such that poFp + (1 — po)Go € R3*3. Moreover,

sup W (z, AFo + (1 — N\)Go) < max(W (z, Fy), W (z, Go)) .
0<A<1

Further, there is Ag € (0, o] such that det (AFo+(1—A)Gg) > 0 for X € [0, \g) and det (AgFo+(1—Xo)Go) =

0. But this means that limy_,(x,)_ W(z, A\Fy + (1 — A\)Gp) = +00, a contradiction.
O

The following example shows that a minimum of an integral functional with a nonconvex term in the
“gradient variable” does not necessarily exists.

Example 3.7

1
minimize J(y) = /O W (x) + (¥ (x) — 1) de ,y € WH(0,1) , »(0) =y(1) =0

{V\

z z
~ - ' ~

0 e 71

Fig. 8. Possible minimizing sequence.  Lipschitz functions with
derivatives +1 and decreasing amplitudes.

One easily sees that from the sequence depicted above that lim J(y,) = infJ = 0. On the other hand
J(w—limyg) = J(0) > 0 and no solution exists. The functional J is not sequentially weakly lower semicon-
tinuous. A similar situation appears e.g. in models of shape memory alloys.

Definition 3.8 (John M. Ball’s polyconvexity) Take M C R3*3. We say that W : M — R3*3 is polyconvex
if there exists a convex function h : U — R such that

W(F) = h(F, Cof F, det F) ,
where U = {(F, Cof F,det F); F € M} .

It is clear that convex functions are polyconvex. On the other hand, F +— det F, F € R3*3 is not convex
but it is polyconvex. Hence, polyconvexity really generalizes the notion of convexity.”.

Theorem 3.9 (see [6]) Let Q C R3 be a bounded Lipschitz domain. Then for all p > 2 the mapping
y : WHP(Q:R3) — Cof Vy € LP/2(Q;R3*3) is well defined and continuous. Further, let y* — y weakly in
WP (Q;R?) and Cof Vy* — H weakly in L9(Q;R3*3) for some ¢ > 1. Then H = Cof Vy.

Proof. The good sense and continuity of the mapping in question follows by Hoélder’s inequality. Take

y € C?(Q;R?) then
0 0Yj41 0 0y
f = — . J _ i J
(Cof Vy)i; T (yg+z 8:zri+1> T (yj+2 ey

(mod 3, no summation).
Taking, 6 € C§°(€2) we get (no summation)

0yjt1 00 / Oyj+1 00
Cof Vy);,0dr = — ; J d ; J dz . 3.13
/Q (Cof Vy),,0 da /Q gt o [ g (3.13)

6We first extend W by 400 to R3%3 and then we take the pointwise supremum of all affine functions below this infinite
extension.
"See [7] for polyconvex functions defined on R™*™.
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Both sides of the above identity are continuous in C?(Q; R?) equipped with the W12(Q; R?)-norm if 4 is
fixed. Indeed, e.g.

/ (COf Vy),»je dx
Q

< [[(Cof Vy)z‘jHLl(Q)||9||L°°(Q) < C(G)||y||le2(Q;R3) .

We recall that C2(Q; R?) is dense in W12(£2; R?). Thus, (3.13) remains true in W1HP(Q;R?), p > 2. Due to
the compact embedding of W1P(Q;R3) to L™(Q;R3) if 1 < r < p*® we can take r < p* and simultaneously
r~! 4+ p~! < 1. Then we have that y* — y strongly in L"(Q; R?) and hence for example,

oyF 0 ) 9
/ g, e 90 4 /yjHayJH A
o L~ OTiy1 Orito Q 0Ti41 OTiq2

strongly

weakly

In other words, observing (3.13) we get

lim [ ((Cof Vy*);; — (Cof Vy);;)0dx =0

k—o0 Q

and by our assumption H = Cof Vy.

Theorem 3.10 (see [6]) Let  C R3 be a bounded Lipschitz domain. For any p > 2 and any q > p/(p — 1)
the mapping WHP(Q;R3) x LI(Q;R3*3) — L(Q), 1/s = 1/p+ 1/q, given by (summation over j)

(4. Cof V) v det Uy = 2 (Cof W)y,
J

is well defined and continuous. Moreover, if y* — y weakly in WP (Q;R?), Cof Vy* — H in LI(2;R3*3)
and det Vyk — § in LY(Q), t > 1 then H = Cof Vy and & = det Vy.

Proof. The continuity of the mapping follows again by Holder’s inequality. Using the Piola identity (cf.
Lemma 2.1) we have that for y € C?(Q;R3)

0
a—%yl((}of Vy)1; = det Vy .
Thus, for any 6 € C§°(Q2)
0 00
— f ; =— f i—dx .
/anj y1(Cof Vy)1,0 dx /Qy1(Co V)i oz, dz
If p > 3 we proceed similarly as in the proof of Th. 3.9 because y — fQ %jyl(Cof Vy)1;6 dz is continuous

with respect to the norm of WP(Q; R3). It remains to prove the case p € [2,3).
Notice that the bilinear form W1P(Q;R3) x LP' (Q; R3*3) — R defined through

0
H —y1 Hy:60d
(v, )H/anjyl 1;0 dx

is continuous if p’ = p/(p — 1). However,

0 00
7y1H1 0dx = —/ y1H1x7 dx (314)
A 3:Ej J O J a.f[]j
does not generally hold unless for smooth y, H1; aali Y = (. But this is true for the cofactor as div Cof Vy =0

if y € C?(Q;R?). Therefore, [,,(Cof Vy)ljé%ej dz =0 for any 6 € C§°(Q2). Similarly as before we see that for
y € C*(;R?)

H/(COfV ) -ﬁdx
Yy 0 Yy 17 axj

is continuous with respect to the W1?(£2;R?)-norm. Subsequently, Jo(Cof Vy)ljaang dx = 0 for any y €
WP (Q;R?) and any 6 € C°(9).

8p* =3p/(3 —p) if p < 3, or p* < +oo if p > 3.
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Having w € L¥ (Q; R®) satisfying

00
. = 1
/ij oz, dz =0 (3.15)

for all € C§°(2) and any z € WHP(Q) we get for all § € C5°(Q)

00 0z
_/szjaxj dx—/g(axj)wj@dx. (3.16)

For fixed w, @ the above relation is linear and continuous in z, so that it is sufficient to consider z € C°°({2)
because of the density argument. Then z6 € C§° and we see that (3.16) is implied by (3.15). Putting z := y;
and w = (Cof Vy)1; we get that (3.14) holds for H = Cof Vy. Using the same (strong,weak) convergence
argument as in the Th. 3.9 we have for 1/r+1/p’ <1

o0 a0
/Qy’f(Cof vyk)UﬁTj dz — /le(Cof Vy)ljg—xj dz .

This holds if r < p* = 3p/(3 — p) (in our case 2 < p < 3). Hence limy_, [, det Vyp0dz = [, det Vy0da
for all 0 € C§°.% The theorem follows. O

Remark 3.11 (i) Polyconvezity can be defined in R™*™. If m = n = 2 then the convex function h repre-
senting a polyconvex function W depends on A and det A, i.e. W(A) = h(A,det A), A € R?*2,

(ii) The convex function in the definition of polyconvezity is not unique. Consider W(A) = |A|? if A € R2¥2,
Then h1(A) = |A|? and ha(A, det A) = (Ay1 + A2)? + (A12 — A21)? — 2det A.

3.4 Rank-one convexity of polyconvex functions

Now we derive an interesting property of polyconvex functions, namely the so-called rank-one convexity
which plays a crucial role in the calculus of variations and mathematical elasticity.

Take A € R3*3 and a,b € R®. Consider a function o : R — R, a(t) := det (A + ta ® b). We claim that
for all t € R: «'’(t) = 0. First notice that if 7,s € C%(R) then (rs)” = r"s + 2r's’ + rs”. We can write

3
a(t) =det (A+ta®b) = (A+ta®b)s[Cof (A+ta®b) . (3.17)
i=1

Fixi € {1,2,3} and set r(t) := (A+ta®b);1 and s(t) := [Cof (A+ta®b)];1. We immediately see that 7'/ (t) =
0, s”(t) = Cof (ta®b);1 = 0 because the rank of a®b is at most one, so that every subdeterminant of the order
two must be inevitably zero. Finally, we calculate that ' (¢)s'(¢) = Zle(a ® b)il%[Cof (A+ta®b))in =0.
Altogether, we get that « is affine. Consequently, if A, B € R3*3 such that rank(4 — B) < 1 (or equivalently

that 3a,b € R®: A— B=a®b) thenforall 0 <A< 1
det (AMA 4+ (1 —A)B) = Adet A+ (1 — X)det B . (3.18)
An analogous result holds for “cof” because it is a matrix of 2 x 2 subdeterminants, i.e.,
Cof (AMA+ (1 —=A)B) = ACof A+ (1 —\)Cof B . (3.19)
Assuming that W : R3*3 — RU {400} is polyconvex and finite on R%*? then we get for the same A, A, B
as above that
WA+ (1 =XN)B) < AW(A) + (1 - )W (B) . (3.20)

This property is called rank-one convexity of W. We just showed that polyconvexity implies rank-one
convexity of W.

9We showed that weak convergence of yr — y in W1 P(Q;R3), p > 2 results in the convergence of det Vy;, to det Vyy in
the sense of distributions. This is an example of compensated compactness studied by F. Murat and L. Tartar; cf. [13] for a
survey and references therein.
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3.5 Examples of hyperelastic materials
3.5.1 St Venant-Kirchhoff material

The response function of the 1st Piola-Kirchhoff stress tensor is
T(F) = Atr E)I +2uFE |
where E = (FTF —1I)/2 and A\, > 0 are Lamé constants. Then

W(F) = %(tr E)? 4+ u|lE)?* . (3.21)

Equivalently,

. _ 3A+2p A+ 20
N 8

A
tr C + trCz—f—ZtrCofC—i— const., C =F'F

Proposition 3.12 W given by (3.21) is not polyconve.

Proof. Take € > 0 and two families of matrices F. = eI and G. = ¢ diag (1,1, 3). We observe that
1 1
Cof §(FE +Ge) = i(Cof F. + Cof G,)

and 1 1
det §(FE +G€) = §(d€t FE + det GE) .

Suppose that W is polyconvex. It means that there is a convex function h : R3*3 x R3*3 x R, — R such
that W(F) = h(F, Cof F,det F). By convexity of h it means that

<1 1. 1.
W(i(FE +Ge)) < §W(FE) + §W(GE) . (3.22)
The straightforward calculation shows that (3.22) does not hold if € is small enough. a

3.5.2 Compressible Mooney-Rivlin material

This material has a stored energy of the form
W (F) = a|F|? 4+ b|Cof F|? + T'(det F) , (3.23)

where a,b > 0 and I'(§) = ¢6 — dlogé, ¢, d > 0.
It can be shown [6, Th. 4.10.2] that

W(F) = %(tr E? 4+ ulE? +O(EP), E=(C—1)/2.

3.5.3 Compressible neo-Hookean material

This material has a stored energy of the form
W(F) =a|F|?+T(det F) , (3.24)

with the constants as for compressible Mooney-Rivlin materials.

3.5.4 Ogden material

This material has a stored energy of the form
M N
> aitr CY2 Y "bitr (Cof C)%/? +T(det F) , FTF =C (3.25)
i=1 i=1

ai, by > 0, lims_,o, I'(§) = 400 for I' : R, — R convex growing suitably at infinity.
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4 Existence results

4.1 Pure displacement and displacement-traction problem

Theorem 4.1 (Pure displacement and displacement-traction problem) Let Q C R? be a bounded Lipschitz
domain and let W :) x Ri_xs — R be a stored energy function with the following properties:

(a) Polyconverity: For a.a. x € Q 3 a convex function h(z,-) : R3** x RY® x Ry — R such that for all
FeRYS

h(z, F, Cof F,det F) = W (x, F) ; (4.1)
the function h(-, F, H,0) is measurable for all (F, H,¢) € Ri_XS X R:j_xs x Ry.
(b) For a.a. x € Q W(x, F) — +oo if det F — 0.

(c) There are constants «, p,q,r such that « >0, p > 2, q > p%l, r > 1 such that for a.a. x € Q and all
F c R3><3
+

W(x, F) > o(|F|P + | Cof F|? + (det F)") . (4.2)

Let T =ToUT; be a dA-measurable partition of T' = 0Q with the area of Ty > 0 and let yo € WHP(Q; R3)
be given. Let

O: = {yeWhP(Q;R3); Cof Vy € LY(Q;R>*?), det Vy € L"(Q), y=yo on Ty det Vy >0 a.e.} (4.3)

be nonempty.
Let further f € L2(Q;R3) and g € L7 (T'1;R3) be such that

WEPOR3) = R:y — L(y) ;:/f-ydx+/g.ydA
Q T

18 continuous.
If there is y € © such that I(y) < 400 then there exists a minimum of

1) = [ Wia, Vy)do— Liy) (4.4)

on O.

Proof. Note that z — W(z, Vy(z), Cof Vy(z),det Vy(z)) is measurable because W is Carathéodory
function!®
Using (c) we get

1) = a [ (Val? +[Cof Tyl + (det Vy)')do + Al
Q
= NLyllwrr@me) (4.5)
Applying the Poincaré inequality!! we conclude that there are constants c,d > 0 and
I(y) = c(lylfy 10 (oe) + [1Cf VYT, o raxsy + Idet VyllTr (o)) +d

for all y € ® Let {yx} C ® be a minimizing sequence of I, i.e.,

lim =inf 1] .

2, Tl = gl < oo
By (4.5) the sequence {(yx, Cof Vy,det Vyi)}ren is bounded in the reflexive Banach space WP (Q; R3) x
LI(Q;R3%3) x L7(2). Hence it has a subsequence weakly converging to (y, H,d) € WZLP(Q;R3) x
LA(;R3X3) x L™(Q) and by our previous results H = Cof Vy and § = det Vy. To sum up, there is a

minimizing sequence {yx} s.t. yr — y weakly in WHP(Q;R3), Cof Vy — Cof Vy weakly in LI(Q;R3*3)
and det Vy, — det Vy weakly in L"(Q).

10This means that W (z,-) : ]Rixg — R is continuous for almost all z €  and that W (-, F) : Q — R is measurable for all
3x3
F e R3S,
1 |vPde < e (fﬂ |VolP do + ’fl‘o vdA‘p)
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We now show that y € ®. We must show that det Vy > 0 a.e. in Q and that y = yo on I'p. As
det Vyp — det Vy weakly, by Mazur’s theorem there are integers i(k) > k and numbers A\* > 0, Zzs(:k,)f e =
1, k < s < i(k) such that if £k — oo

i(k)
dy = Z)\lgdet Vys — det Vy
s=k

in L"(Q)). Thus, a subsequence of {di} converges a.e. to det Vy. Therefore det Vy > 0. Assume that
det Vy =0on A C Q, |A| > 0. We have

/|det Vyk\dm:/det Vyr dx — det Vydz =0,
A A

hence det Vy;, — 0 strongly in L'(A). Then we take a subsequence {det Vy,,} converging a.e. in A to zero.
Let us define a sequence of measurable functions

() = W(z,Vyn(x)) .

Note that f™ > 0 and we may apply Fatou’s lemma:

/ liminf f™(z)dz < 1iminf/ ™ (x)da .
A A

m— o0 m—o0

By our assumption, liminf f™(z) = +oo for a.a.x € , hence liminf,, fA f™(x)dz — +oo. But this

contradicts our assumption that lim,, o I(ym) = inf I < +00. Altogether we proved that det Vy > 0 a.e. in

Q. The fact that y = yo on Iy follows from the compactness of the trace operator W1P(Q; R3) — LP(9; R3).
We finally show that for any subsequence {y,,} of {yx} it holds

/ W(z,Vy)dz < lim [ W(z, Vy,)de .
Q

m—o0 [e)

By Mazur’s theorem we get that for any m € N there is ¢(m) > m such that and numbers AT* > 0,
S Am — 1, m < s < i(m) such that if m — oo then

D™= Z AT (Vys, Cof Vyg, det Vys) — (Vy, Cof Vy, det Vy)
in LP(;R3*3) x LI(Q;R3%3) x L7(Q).
We may assume!? that D™ — (Vy, Cof Vy,det Vy) a.e. in Q. By continuity of h(z,-) we get
i(m)

W (z, Vy(z)) = Tim | e, > A(Vys(x), Cof Vys(z), det Vya())

s=m
Fatou’s lemma and convexity of h(zx,-) yield

i(m)

lim inf/Q h(z, Z AT (Vys(z), Cof Vys(x),det Vys(z))) da

m—r oo

IN

/ W (z, Vy(x)) dz
Q s=m

i(m)
lgzglgof _Z AT h(z, Vys(x), Cof Vys(x),det Vys(z)) da

= lim W (z, Vym(z))dz .

m—roo Q

IN

We used a simple lemma that if {a,,} C R converges to a € R then b, = ZZ(:mn)z Al'as converges to a as well.

Recall that A™ >0, Y20 ym — 1,
O

12hy extracting still further subsequence
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4.2 Injectivity condition

Local invertibility of a deformation y € C1(€;R?) is ensured by the condition det Vy > 0 in Q. On the
other hand, local invertibility does not entail global one. Indeed, consider €2 a rectangular rod of the length
201 contained in the open half-space z; > 0, e.g. Q = (1,2) x (—61,0l) x (1,2) and the mapping y : Q — R?,

y(x1, 22, 23) = (21 cos(za /1), 1 sin(xa /1), x3) .

We see that det Vy = 1/l > 0 but if § > 7 the injectivity is lost. Indeed, we have y(zi,7l,x3) =
y(z1, —ml,x3) if = 7. If > 7 we even get self-penetration of the material.

In the following theorem the matrix norm is considered to be the operator norm subordinate to the
Euclidean vector norm. It means that [A[ = supj, - [Az].

Theorem 4.2 Let y = id +u : & C R" — R" be a mapping differentiable at a point x € Q. Then if
|Vu(z)| < 1 we have det Vy(x) > 0. Moreover, if Q is convez then any mapping y = id +u € C}(Q;R")
satisfying sup,eq |Vu(z)| < 1 is injective.

Proof. Let = € Q be a point at which |Vu(x)| < 1. Then det (I +tVu(z)) # 0if 0 <t < 113, On the
other hand, the function ¢ : [0,1] — R, 6(¢t) = det (I + tVu(x)) is continuous and therefore §(]0,1]) is a
closed interval in reals. As §([0,1]) contains 1 = §(0) but not 0 we infer that det (I + Vu(z)) = 6(1) > 0.
This proves the first statement.

As in the second assertion we suppose that € is convex, so is Q. Thus, take z1,z2 € Q and apply the
mean-value theorem to y. We get

ly(@1) — y(@2) — (21 — 22)| = [u(@1) —u(z2)| £ sup  |[Vu(z)||lzy — 22| .

z€]xy,x2|

Hence |y(z1) — y(x2) — (21 — z2)| < |x1 — x2| if 21 # 2 and therefore y(x1) # y(z2). O

In fact, we do not need the injectivity up to the boundary because we admit that the body can touch
itself on the boundary. The following condition ensures the injectivity in 2.

Theorem 4.3 Let Q be a bounded domain and y € C*(Q;R3) be such that det Vy > 0 in Q and

/Q det Vy(x) dr < |y(Q)] . (4.6)

Then y is injective in Q. (ly(Q)] is the three-dimensional Lebesgue measure of y(£2).)

Proof. Suppose that there are x1, x2 € Q such that y(z1) = y(z2). Since Vy(z1) and Vy(z2) are invertible
there are by the implicit function theorem open sets U C Q,V C Q, UNV =0 and W’ C y(Q) such that
2eU,7e€V,and y(2) = y(@) € W andy : U - W and y — W' are C'-diffeomorphisms'4. Hence,
#y~L(z) > 2if z € W’. Since'®

/ #y M (2)da' = / det Vy(z)dz
y(2)

Q

whenever one of the integrals exists (in our case at least the right-hand side integral exists) and because
|[W’| >0 (W’ is open) it follows that

ly(Q)| = / dr’ < / #y N2 ) da' = / det Vy(z)dz .
y(2) y(2) Q

But this contradicts (4.6). Hence, y(z1) # y(z2). O

We are going to show that the injectivity condition can be imposed on any admissible deformation and
an existence result similar to Theorem 4.1 still holds.

13You may prove this easily by contradiction.

M e. injective and y~t € CY(W';U), CH(W'; V)

15Namely, we have the general substitution formula, fy(Q) f@#y (") da' = fQ f(y(z))det Vy(z)dz. If y is injective then
#y @) =1
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Theorem 4.4 (Pure displacement and displacement-traction problem with injectivity) Let Q C R3 be a
bounded Lipschitz domain and let W :Q) X RiX?’ — R be a stored energy function with the following properties:
(a) Polyconvezity: For a.a. x € Q 3 a convex function h(z,-) : RY® x RY® x Ry — R such that for all
F e RY?

h(z, F, Cof F,det F) = W(x, F) ; (4.7)
the function h(-, F, H,d) is measurable for all (F,H, ) € ]Rixz)’ X RiX?’ x R,.

(b) For a.a. v € Q W(x,F) — +oo if det F — 0.

(c) There are constants v, p,q,r such that a >0, p >3, g > p%l, r > 1 such that for a.a. x € Q and all
F e R3*?
+

Wz, F) > o(|F|P + |Cof F|?+ (det F)") . (4.8)

LetT' =TgUT'y be a dA-measurable partition of T' = 02 with the area of Ty > 0 and let yg be a measurable
function such that

d: = { y € WHP(Q;R?); Cof Vy € LI R3*3), det Vy € L"(Q), y = yo on Ty

det Vy > 0 a.e., (4.6) holds} (4.9)

is nonempty.
Let further f € Le(S;R3) and g € L7 (T1;R3) be such that

WP R3) = Ry — L(y) ::/f-ydx—i—/g-ydA
Q r

18 CONtINUOUS.
Finally, we assume that there is y € ® such that I(y) < 400 where I is given by (4.4). Then there exists
a minimum of I(y) on ® and the minimizer is injective almost everywhere.

Proof. We only show that y obtained in the proof of Theorem 4.1 satisfies the additional condition. AS
p > 3 we know by the embedding theorem that y € C(€;R3). So a subsequence {y;} of the minimizing
sequence converges uniformly to y. We also have that y(Q) is compact and therefore measurable there is
for any € > 0 an open set O, such that y(Q) C O. and |0, \ y(2)| < e. We claim that there is a number
d(g) > 0 such that

U B(.é(e) cO. .

z€y(Q)

For if not, there is ¢ > 0 and sequences {7} € y(Q), {Zx} & O. and & — 0 if k — oo such that
|#% — zx| < 6x. By compactness we may suppose that z — x € y(2) and we would have also y —  but
this means that = € R?\ O, but it is not possible because y(Q) C O..

Therefore,

U B(x,d(e) cO.

zey(Q)

for some §(g) > 0 and there is ko such that y;,(Q) C O. if k > ko because y;, converges uniformly. As y; € o
we have for k > kg

/ det V() da < [yn()] < [O.] .
Q

By the weak convergence of det we also have
det Vy(z)dz = lim [ det Vy(z)dz < |O.]| .

Q k=oo Jo

But |O.| = [y(Q)| + |0: \ y(Q)| and the arbitrariness of ¢ > 0 yields

/Q det Vy(x) dz < [y(Q)] = [y()]

Using a generalization of (4.6) for Sobolev maps [6] we have
@)= [ s [yt ande = [ det Vy(a)do < (@)
y(2) y(2) Q

Hence, #y~1(2¥) = 1 for almost all 2¥ € y(Q2). However, as p > n, this implies that y is injective a.e. in Q.
O
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5 Linearized elasticity in brief

We know that the Almansi tensor E is defined as

E:ﬂ,
2

where C = FTF is the right Cauchy-Green tensor. If we write F = Vu + I, where u is a displacement we
get for |Vu| small that

Jop %(w + (Vo)) + o |Vul) .

Then we define the linearized strain tensor, also called small strain tensor,, as
1 T
e(u) = i(Vu + (Vu)*) (5.1)

If we write the boundary value problem in nonlinear elasticity in terms of the 2nd Piola-Kirchhoff stress
tensor X then after employing the linearized strain tensor we get the symmetric stress tensor

7 = Ce(u) ,

where C is the 4th-order tensor of elastic constants. In fact, it can be shown that there are only 21 independent
constants in C. If the material is homogeneous and isotropic C reduces to two positive quantities A and u
called Lamé constants (both in [Pa]) and in this case

7 = Mr e(u)l 4 2ue(u) . (5.2)

The Lamé constants can be equivalently expressed in terms of the Young modulus and the Poisson ratio.
We have the following assertion.

Theorem 5.1 Let 'y, 'y C 990 be disjoint and of a positive Hausdorff measure Finding a solution u of the
linear boundary value problem
—div 7 = fin Q

u=0onTy

Tv =g onl

if formally equivalent to finding a solution u of the equation
B(u,v) = L(v) for allveV

where

B(u,v) = /Q(Ce(u) ce(v)

L(v):/ﬂf-vdx—i—/rlg-vdS.

V' denotes the space of smooth enough vector-valued functions Q@ — R? vanishing on T.

and

Proof. We use the Green formula specialized for a symmetric tensor S16:

/divS-vdm = —/S:Vvdm+ Sv-vdS
Q Q Iy

—/S:e(v)dx+ Sv-vdS .
Q r,

The rest of the proof is analogous to the one of Theorem 2.7. a

Theorem 5.2 Let V be a Banach space. Let L : V — R be a continuous linear form and let B:V xV — R
be a symmetric continuous bilinear form that is V-elliptic in the sense that there is § > 0 such that B(u,u) >
Bllul|? for allw € V. Then the problem of finding u € V such that B(u,v) = L(v) for allv € V has exactly
one solution which is a unique minimizer of

over V.

16Realize that if S is symmetric then S: A = %S D (A+ AT)

22



Proof. Using V-ellipticity and the continuity of B we get
Bllvl* < B(v,v) < || B]|v]* -

Hence, B is an inner product over V making it just a Hilbert space with the norm |jv||g = +/B(v,v).
Moreover, ||-|| i and ||-|| are equivalent. By the Riesz theorem there is only one v € V such that L(v) = B(u,v)
for all v € V. Thus u is the unique solution.

Notice that

J(u+v) = J(u) = B(u,v) — L(v) + %B(v,v) .

Therefore , if B(u,v) = L(v) then J(u +v) — J(u) > 0 and v is a minimizer.

Conversely, if u is a minimizer of J and v € V is such that B(u,v) — L(v) # 0 then without loss of
generality we may suppose that B(u,v) — L(v) < 0 (replace v by —v if necessary). Then for § > 0 small
enough we would have

0> J(u+6v)— J(u) = 0(B(u,v) — L(v)) + Q—QB(U,U) )

2
a contradiction. O
We should now decide in which spaces we will seek a solution to the problem stated in Theorem 5.1. We
see that the bilinear form B is continuous with respect to the norm || - ||yy1,2. Therefore, a natural candidate
for V is
V={veW"(Q;R*);v=0o0nTg}. (5.3)

Further we will require the following condition ensuring V-ellipticity of B:
Ja>0: Yo e V: B(v,v) > alle(v)|r2mrsxs) - (5.4)

The V-ellipticity of B follows if we show that the seminorm v — ||e(v)||L2 is a norm equivalent to || - ||yy1.2
on V.
This result is a consequence of Korn’s inequality:

Theorem 5.3 (Korn's inequality, 1907) Let Q@ C R3 be a bounded domain with a smooth boundary. Then
there is a constant C > 0 such that for each v € W12(Q;R?)

[0l ms) < CUIVIL2 @ms) + le()1Z2 @sxs)) - (5.5)

Hence, the norm v — \/||11||L2(Q R3) T ||e(v)||2L2(Q_R3X3) is equivalent to || - ||y1.2 on WH2,

Remark 5.4 Assume that u € Wy *(Q;R?) is smooth. Then we have
. 1 Oui | Ouj\ (Ou; | Ouy
[ etwsetwydr — 4/9(%]_%%)(8%%%) "
3
1 du; du; Ou;
LX) e L) () -

Moreover, applying twice integration by parts to the second term on the RHS we get (keep in mind that
u=20 on 0N)

[ () () o= Lo (o) = [ (52 (Gie) =0
frrsetmarz [ 3 (5e)

i,j=1

Hence,

i.e., the L? norm of the symmetric part of the gradient controls the L? norm of the whole gradient. This is
surprising as the symmetric part has only 6 components whole the whole gradient has 9 components. The
calculation above extends to the whole Wol’z(Q;R?’) by density of smooth maps.

To prove the general case, we will need the following lemma, cf. [8].
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Lemma 5.5 (Lion’s lemma) Let Q C R? be a bounded domain with a smooth boundary. Let v € H—1(£2)
and Ov/dx; € H=1(Q) for all i. Then v € L*(Q).

Proof of Th. 5.3. We show that W12(€2;R™) coincides with
K(Q;R?) = {v e L*(R3); e(v) € LA(Q;R3*3)} .

Clearly, K(Q;R3) > W12(Q;R™), however, the opposite inclusion is far not obvious. The norm v
\/||v||2LQ(Q;R3) + ||e(v)||2L2(Q;R3X3) makes K (Q;R3) a Hilbert space. We have

0%v; 0] 0] 0
81;]85% = ail‘jeik(v) + Tl‘ke” (’U) - 6—%63-;@(1)) . (56)

So .if v € K(Q;R?) then e;j(v) € L*(Q2) and %eij (v) € H1(). Hence 83]25;:k € H~(Q) and by Lion’s
lemma Vv € L?(Q;R3*3). Thus, we see that K(Q;R3?) = WH2(Q;R™) (element-wise). Moreover, the
embedding W12(Q; R™) into K (Q;R3) is continuous and surjective. The proof is finished by an application
of the closed-graph theorem to the identity map: W2(; R™) — K(Q;R3). Notice that the identity is the

bijection W12(Q; R™) — K (£2;R?) which is continuous hence is inverse is too!”. O

Theorem 5.6 Let Q C R? be a domain, let Ty C 9Q be dS-measurable , meas(Tg) > 0. Then V is a closed
subspace of WH2(Q;R3) and v — |le(v)||L2 is a norm equivalent to the W2(Q; R3) norm on V.

Proof. Closeness of V follows from the continuity of the trace operator. Let us show that v — ||e(v)||2
is a norm on V. Let e(v) = 0. Then (5.6) implies that v is linear in z and we get that'®
v(z)=c+dxz

for fixed vectors ¢,d € R3. Now it is easy to see that if v € V and e(v) = 0 then v = 0. Namely, consider
S:={z € Q;v(zr) =0} Then

=

ifd=0and c#0
ifd#0and c-d#0
z=(dxc)/ld?+dt,t eR ifc-d=0,d#0.

S =

=

It is clear that |e(v)||2 < C|v|lwrz2 for v € V. Suppose now that there is {vy} C V such that
llvrllwr2 = 1 and ||e(vg)||z2 — 0. Thus by the compact embedding vy converges in L?(£;R?) (up to a
subsequence) and because e(vg) — 0 in L2(£2; R3*3) we get that the sequence {vy} is Cauchy with respect to
the norm [[v]|2(q;r3) + [|€(v) || L2(araxz). By Korn’s inequality this norm is equivalent to the norm on W2
and therefore it converges to v € V. Then e(v) = 0 and by the first part v = 0. This in not possible because
we supposed that [|vg|wr2 = 1. O

Theorem 5.7 Let Q C R3 be as in the previous theorem. Let f € LS/5(Q;R3), g € LY3(I'y), and (5.4) hold.
Then there is one and only one solution uw € V' of the variational equation: for all v € V. B(u,v) = L(v).
Moreover, u is a minimizer of J.

Proof. Tt is an easy consequence of Theorems 5.1,5.2, and 5.6. O

6 Is there a linear constitutive theory in finite elasticity?

It is an interesting hypothesis whether one can derive linearized elasticity as an infinitesimal theory based on
linear constitutive laws valid in finite elastisticity. A negative answer to this question was given by Fosdick
and Serrin in [9]. Let U := {G € R**3; det (I + G) > 0}. Then we have for the first Piola-Kirchoff stress
tensor T(I + G) = T(G) which defines T in a neighborhood of the origin. In view of (3.4) we have for any
R € SO(3) that

T(R+ RG)=T(RG+ R -1)=RT(+G) = RT(G) .

7If A: X — Y is a bijective continuous linear operator between the Banach spaces X and Y, then the inverse operator
A~ :Y — X is continuous as well (this is sometimes called the bounded inverse theorem); cf. [12, Cor. 2.12].

18Here we use that for any skew symmetric tensor T € R3%3 there is a vector b € R3, called axial vector of T, such that
Ta =b x a for any a € R3.
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Assume that T is linear, i.e., Tij(G) = a;jGrl for 4,5, k,1 = 1,2,3. Hence, setting G = 0 we get for
arbitrary R € SO(3). T(R—1I) = 0. We take R, := exp(uA) for A € R**? skew symmetric and p € R. Then
exp(pA) = 1+ 3052, L5 Therefore, it yields

4!

Setting = 0 and k = 1,2 we get T(W) = T(W?) = 0. As W € R>*3 is skew we have W?2 = b ® b — |b|*I
where b is the axial vector of W. Putting b := e; for ¢ = 1,2,3 and due to e; ® e; = 3I we get from the
linearity of T that T'(—2I) = 0 which implies that T'(b ® b) = 0 for any b. Consequently, as any symmetric
matrix E can be ritten as F = \;v; ® v; where \; € R and v v; € R? are eigenvalues and eigenvectors of v
respectively. Therefore T(E) = 0. This, together with T'(W) = 0 for any skew W yields 7' = 0. This means
that there is not a nonzero linear function assigning to a displacement gradient the first Piola-Kirchhoff
stress tensor.
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