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Abstract. We present some new Farkas-type results for inequality systems involving a finite
as well as an infinite number of convex constraints. For this, we use two kinds of conjugate dual
problems, namely an extended Fenchel-type dual problem and the recently introduced Fenchel-
Lagrange dual problem. For the latter, which is a ”combination” of the classical Fenchel and
Lagrange duals, the strong duality is established.
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1. Introduction. The Farkas lemma [6] states that a linear inequality cT x ≤
0 is a consequence of a linear system Ax 5 0 if and only if c is a nonpositive
linear combination of elements of A. This result has played an important role
in the development of linear programming and optimization theory. During the
last two decades a number of Farkas-type results have been given in the literature
with applications to more general nonlinear programming problems and nonsmooth
optimization problems (see [22], [11], [9], [10], [15], [8], [13], [18], [7], [14], [16], [12]).

In this paper we present some new Farkas-type results for inequality systems in-
volving finitely as well as infinitely many convex constraints. The approach is based
on the theory of conjugate duality for convex optimization problems. Two dual
problems play an important role in our investigations, namely an extended Fenchel-
type dual problem (see, for example, [17]) and the so-called Fenchel-Lagrange dual
problem. The last one is a ”combination” of the classical Fenchel and Lagrange dual
problems and has been introduced and extensively studied recently by the authors
of this paper (cf. [19], [2], [20], [21], [1], etc.). The construction of the Fenchel-
Lagrange dual is described here in detail since we use a conjugacy approach which
is based on perturbation theory (cf. [4]). Then we introduce a constraint qualifica-
tion whose fulfillment is sufficient in order to guarantee strong duality. The strong
duality assertion is also proved.

The results we are going to present here underline the connections that exist
between Farkas-type results and theorems of alternative and, on the other hand,
the theory of duality. Furthermore, we bring some generalizations to some recently
published results due to Jeyakumar (cf. [12]).

The paper is organized as follows. In Section 2 we present definitions and
preliminary results that will be used later in the paper. In Section 3 we introduce
a convex optimization problem and construct its Fenchel-Lagrange dual. Then we
prove the existence of strong duality between these two problems. Section 4 provides
some Farkas-type results, obtained by using the Fenchel-Lagrange dual problem,
for inequality systems involving a finite number of convex constraints. Finally,
in Section 5 we give some Farkas-type results for inequality systems involving an
infinite number of convex constraints. There we use an extended version of the
classical Fenchel dual problem.

2. Notation and preliminaries. In this section we describe the notations
we use throughout this paper and present preliminary results. All vectors will be
column vectors. A column vector will be transposed to a row vector by an upper
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index T . The inner product of two vectors x = (x1, ..., xn)T and y = (y1, ..., yn)T

in the n-dimensional real space R
n will be denoted by xT y =

∑n
i=1 xiyi. For a

set X ⊆ R
n we shall denote the closure, the convex hull and the relative interior

of X by cl(X), co(X) and ri(X), respectively. Similarly, we shall denote the cone
and the convex cone generated by the set X by cone(X) =

⋃

λ≥0

λX, respectively,

coneco(X) =
⋃

λ≥0

λco(X).

Furthermore, for the set X ⊆ R
n, the indicator function δX : R

n → R =
R ∪ {±∞} is defined by

δX(x) =

{

0, if x ∈ X,
+∞, otherwise,

while the support function σX : R
n → R is defined by

σX(p) = sup
x∈X

pT x.

Considering now a function f : R
n → R, we denote by

dom(f) = {x ∈ R
n : f(x) < +∞}

its effective domain, by

epi(f) = {(x, r) ∈ R
n × R : f(x) ≤ r}

its epigraph and by cl(f) its closure, namely the function whose epigraph is the
closure of epi(f) in R

n+1. We say that f is proper if dom(f) 6= ∅ and f(x) 6= −∞
for all x ∈ R

n.
When X is a nonempty subset of R

n we define for f the so-called conjugate
relative to the set X

f∗
X : R

n → R, f∗
X(p) = sup

x∈X

{pT x − f(x)}.

When X equals the whole space R
n, the conjugate relative to the set X becomes

the classical conjugate function of f (the Fenchel-Moreau conjugate)

f∗ : R
n → R, f∗(p) = sup

x∈Rn

{pT x − f(x)}.

Assuming that f : R
n → R is a proper function, we have the following elemen-

tary result for its conjugate

(αf)∗(p) = αf∗

(

1

α
p

)

∀p ∈ R
n ∀α > 0. (2.1)

Two results, which play an important role in this paper, follow. But first the
following definition is necessary.

Definition 2.1. Let the functions f1, ..., fm : R
n → R be given. The function

f1� · · ·�fm : R
n → R, defined by

f1� · · ·�fm(x) := inf

{

m
∑

i=1

fi(xi) :

m
∑

i=1

xi = x

}

,

is called the infimal convolution function of f1, ..., fm.
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Theorem 2.2 (cf. Theorem 16.4 in [17]). Let f1, ..., fm : R
n → R be proper

convex functions. Then

(cl(f1) + · · · cl(fm))∗ = cl(f∗
1 � · · ·�f∗

m).

If the sets ri(dom(fi)), i = 1, ...,m, have a point in common, then

(

m
∑

i=1

fi

)∗

(p) = (f∗
1 � · · ·�f∗

m)(p) = inf

{

m
∑

i=1

f∗
i (pi) :

m
∑

i=1

pi = p

}

,

where for each p ∈ R
n the infimum is attained.

A direct consequence of this theorem comes next.
Corollary 2.3. Let f1, ..., fm : R

n → R be proper convex functions. Then

epi

((

m
∑

i=1

cl(fi)

)∗)

= cl

(

m
∑

i=1

epi(f∗
i )

)

. (2.2)

If the sets ri(dom(fi)), i = 1, ...,m, have a point in common, then

epi

((

m
∑

i=1

fi

)∗)

=

m
∑

i=1

epi(f∗
i ). (2.3)

3. The Fenchel-Lagrange dual problem. In this section we assume that
X is a nonempty convex subset of R

n, f : R
n → R is a proper convex function and

g = (g1, ..., gm)T : R
n → R

m is a vector-valued function, with gi also convex for
i = 1, ...,m. Using them we introduce the following convex optimization problem,
further called primal problem,

(P ) inf
x∈C

f(x),

C = {x ∈ X : g(x) 5 0}.

As usual, g(x) 5 0 means gi(x) ≤ 0 for all i = 1, ...,m.
In order to determine the so-called Fenchel-Lagrange dual problem of (P ) we

need to introduce the perturbation function (cf. [19], [2], [20], [21], [1])

ΦFL : R
n × R

n × R
m → R,ΦFL(x, y, z) =

{

f(x + y), if x ∈ X, g(x) 5 z,
+∞, otherwise,

with the perturbation variables y and z. Following the path of the perturbation
method described in [4] and [17] the next step is to calculate the conjugate function
to Φ. Let us proceed with the definition for Φ∗

FL : R
n × R

n × R
m → R,

Φ∗
FL(x∗, p, q) = sup

x,y∈R
n,

z∈R
k

{

x∗T x + pT y + qT z − Φ(x, y, z)
}

= sup
x∈X,y∈R

n,

g(x)5z

{

x∗T x + pT y + qT z − f(x + y)
}

.

In order to ease the calculations let us introduce the new variables r instead of
y and s instead of z by

r := x + y, s := z − g(x)
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and therefore the supremum above can be separated into a sum of three suprema

Φ∗
FL(x∗, p, q) = sup

s∈R
m
+

qT s + sup
r∈Rn

{

pT r − f(r)
}

+ sup
x∈X

{

(x∗ − p)T x + qT g(x)
}

=

{

f∗(p) − inf
x∈X

{

(p − x∗)T x − qT g(x)
}

, if q ∈ −R
m
+ ,

+∞, otherwise,

where R
m
+ = {z : z ∈ R

m, 0 5 z}.
According to [4] the dual problem to (P ) is

(DFL) sup
p∈R

n,
q∈R

m

{

− Φ∗
FL(0, p, q)

}

,

that becomes in our case after changing the sign of the variable q

(DFL) sup
p∈R

n,
q∈R

m
+

{

− f∗(p) + inf
x∈X

[pT x + qT g(x)]
}

or, equivalently,

(DFL) sup
p∈R

n,
q∈R

m
+

{

− f∗(p) − (qT g)∗X(−p)
}

. (3.1)

The dual problem (DFL) has been introduced by Wanka and Boţ in [19] and has
been extensively studied in [2], [20], [21], [1], etc. We call it the Fenchel-Lagrange
dual problem because, as one may observe, it is a ”combination” of the well-known
Lagrange and Fenchel dual problems.

It is obvious from the construction of the dual that the weak duality assertion
between (P ) and (DFL), i. e. the value of the primal objective function at any
feasible point is greater than or equal to the value of the dual objective function
at any dual feasible point, always holds. By strong duality we understand the
situation in which the optimal objective values of the primal and dual are equal
and (DFL) has an optimal solution. Unlike weak duality, strong duality can fail
in the general case. To avoid this undesired situation, we introduce a constraint
qualification that guarantees the validity of strong duality in case this constraint
qualification is fulfilled. First let us divide the index set {1, ...,m} into two subsets,

L :=

{

i ∈ {1, ...,m} : gi : R
n → R is an affine function

}

and N := {1, ..., k}\L. The constraint qualification follows

(CQ) ∃x′ ∈ ri(X) ∩ ri(dom(f)) :

{

gi(x
′) ≤ 0, i ∈ L,

gi(x
′) < 0, i ∈ N.

We are ready now to formulate the strong duality assertion. Before that let us
denote by v(P ) and v(DFL) the optimal objective values of the primal and dual
problem, respectively.

Theorem 3.1. Assume that v(P ) > −∞. Provided that the constraint quali-
fication (CQ) is fulfilled, there is strong duality between problems (P ) and (DFL),
i. e. their optimal objective values are equal and the dual problem has an optimal
solution.
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Proof. We can write the problem (P ) equivalently

(P ) inf
x∈X∩dom(f),

g(x)50

f(x).

By Theorem 6.5 in [17], (CQ) yields

x′ ∈ ri
(

X ∩ dom(f)
)

= ri(X) ∩ ri
(

dom(f)
)

.

Theorem 5.7 in [5] states under the present hypotheses the existence of a q̄ = 0 such
that the Lagrange duality holds, namely

v(P ) = max
q=0

inf
x∈X∩dom(f)

[

f(x) + qT g(x)
]

= inf
x∈X∩dom(f)

[

f(x) + q̄T g(x)
]

.

Defining

h : R
n → R, h(x) =

{

q̄T g(x), if x ∈ X,
+∞, if x /∈ X,

we can rewrite the right-hand side term in the following way

v(P ) = inf
x∈Rn

[

f(x) + h(x)
]

.

Because ri(dom(f)) ∩ ri(dom(h)) = ri(dom(f)) ∩ ri(X) 6= ∅, by Theorem 31.1
(Fenchel’s Duality Theorem) in [17], there exists a p̄ ∈ R

n such that this infimum
is equal to

v(P ) = max
p∈Rn

[

− f∗(p) − h∗(−p)
]

= −f∗(p̄) − h∗(−p̄)

= −f∗(p̄) − sup
x∈Rn

{

− p̄T x − h(x)
}

= −f∗(p̄) − sup
x∈X

{

− p̄T x − q̄T g(x)
}

= −f∗(p̄) − (q̄T g)∗X(−p̄). (3.2)

In the right-hand term of (3.2) one may recognize the objective function of (DFL)
at (p̄, q̄). From weak duality it follows that the supremum of (DFL) is attained at
(p̄, q̄), which is therefore an optimal solution of the dual problem.

Remark 3.2. Let us notice that in the proof above we have first proved that
under the fulfillment of (CQ) there holds strong duality between the primal problem
and its Lagrange dual problem. Then we proved the existence of strong duality
between the inner infimum of the Lagrange dual at its outer maximum and its
Fenchel dual problem, the last one proving to be exactly the Fenchel-Lagrange dual
problem we introduced earlier.

4. Some new Farkas-type results for finitely many constraints. In the
following we give some new Farkas-type results for inequality systems involving
finitely many convex constraints. The main theorem yields a new dual charac-
terization for this kind of results by using the duality concept introduced above.
Moreover, it generalizes some recently published results due to Jeyakumar in [12].

Let X be again a nonempty convex subset of R
n and I = {1, ...,m} be an index

set. Like in the previous section, let f : R
n → R be a proper and convex function

and gi : R
n → R, i ∈ I, be real-valued convex functions. By g : R

n → R
m we

denote the vector-valued function defined by g(x) := (g1(x), ..., gm(x))T ∀x ∈ R
n.

We formulate now the main result of this section.
Theorem 4.1. Let the constraint qualification (CQ) be fulfilled. Then the

following statements are equivalent:
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(i) x ∈ X, gi(x) ≤ 0 ∀i ∈ I ⇒ f(x) ≥ 0.
(ii) There exist p ∈ R

n and q ∈ R
m, q = 0, such that

f∗(p) + (qT g)∗X(−p) ≤ 0.

Proof. (ii) ⇒ (i). Choose p ∈ R
n and q ∈ R

m, q = 0, such that f∗(p) +
(qT g)∗X(−p) ≤ 0 or, equivalently, −f∗(p)− (qT g)∗X(−p) ≥ 0. The optimal objective
value v(DFL) of the optimization problem

(DFL) sup
p∈R

n

q = 0

{

−f∗(p) − (qT g)∗X(−p)
}

is greater than or equal to zero, which implies that the optimal objective value
v(P ) of the problem (P ) must be greater than or equal to zero, too. We recall that
by weak duality the following inequality is true v(P ) ≥ v(DFL). Therefore for all
x ∈ X such that gi(x) ≤ 0 ∀i ∈ I, we have f(x) ≥ 0 and so (i) is fulfilled.

(i) ⇒ (ii). Assuming now that (i) is true, it follows that the optimal objective
value of the problem (P ) is greater than or equal to zero. On the other hand, the
constraint qualification (CQ) being fulfilled, we obtain by Theorem 3.1 that there
exists (p, q), p ∈ R

n, q ∈ R
m, q = 0, an optimal solution to (DFL), such that

v(P ) = v(DFL) = −f∗(p) − (qT g)∗X(−p) ≥ 0.

This proves the validity of (ii).
Remark 4.2. For the implication (ii) ⇒ (i) the constraint qualification (CQ)

is not necessary.
As an immediate consequence of Theorem 4.1 we get the following theorem of

the alternative.
Corollary 4.3. Let the constraint qualification (CQ) be fulfilled. Then either

the inequality system

(I) x ∈ X, gi(x) ≤ 0 ∀i ∈ I, f(x) < 0

has a solution or the system

(II) f∗(p) + (qT g)∗X(−p) ≤ 0, p ∈ R
n, q = 0

has a solution, but never both.
The next assertion offers an alternative formulation for the statement (ii) in

Theorem 4.1.
Proposition 4.4. The statement (ii) in Theorem 4.1 is equivalent to

0 ∈ epi(f∗) + coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX). (4.1)

Proof. (ii) ⇒ (4.1). Let p ∈ R
n and q ∈ R

m, q = 0, be such that f∗(p) +
(qT g)∗X(−p) ≤ 0.

At first we assume that q = 0. This implies that f ∗(p) + sup
x∈X

(−pT x) ≤ 0.

Therefore σX(−p) = sup
x∈X

(−pT x) ≤ −f∗(p) and so (−p,−f∗(p)) ∈ epi(σX). This

leads to the following relation

0 = (p, f∗(p)) + (−p,−f∗(p)) ∈ epi(f∗) + epi(σX)

⊆ epi(f∗) + coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX).
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When q 6= 0 the set of indices Iq := {i ∈ I : qi 6= 0} is not empty. On the other
hand, because f∗(p) + (qT g)∗X(−p) ≤ 0, there exists an r ∈ R such that

f∗(p) ≤ r ≤ −(qT g)∗X(−p),

which yields

(p, r) ∈ epi(f∗) and (−p,−r) ∈ epi
(

(qT g)∗X

)

. (4.2)

From the definition of the conjugate function relative to the set X we have

(qT g)∗X(p) = sup
x∈X

{

pT x − qT g(x)
}

= sup
x∈Rn

{

pT x −
(

qT g(x) + δX(x)
)

}

= (qT g + δX)∗(p) ∀p ∈ R
n,

where δX is the indicator function of X. Obviously, (qT g)∗X = (qT g + δX)∗.
Moreover, the fact that X is a convex set implies that the relative interior of
X = dom(δX) is not empty. By Corollary 2.3 we have further

(−p,−r) ∈ epi
(

(qT g + δX)∗
)

= epi
(

(qT g)∗
)

+ epi(δ∗X). (4.3)

By (2.1) and (2.3) we get

epi
(

(qT g)∗
)

= epi









∑

i∈Iq

qigi





∗

 =
∑

i∈Iq

epi
(

(qigi)
∗
)

=
∑

i∈Iq

qiepi(g∗i ).

Therefore

epi
(

(qT g)∗
)

=
∑

i∈Iq

qiepi(g∗i ) =





∑

i∈Iq

qi





∑

i∈Iq

qi
∑

i∈Iq

qi

epi(g∗i )

⊆





∑

i∈Iq

qi



 co

(

⋃

i∈I

epi(g∗i )

)

⊆ coneco

(

⋃

i∈I

epi(g∗i )

)

.

So, by (4.2), (4.3) and, because δ∗X = σX , we obtain

0 ∈ epi(f∗) + coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX).

(4.1) ⇒ (ii). Now let be p ∈ R
n and r ∈ R such that (p, r) ∈ epi(f∗) and

(−p,−r) ∈ coneco
(
⋃

i∈I epi(g∗i )
)

+ epi(σX). Further, there exists λ ≥ 0 such that

(−p,−r) ∈ λco
(
⋃

i∈I epi(g∗i )
)

+ epi(σX).

If λ = 0, then (−p,−r) ∈ epi(σX) = epi(δ∗X) and, by taking q ∈ R
m, q := 0, we

get (qT g)∗X(−p) = (0)∗X(−p) = σX(−p) ≤ −r. It follows that f∗(p)+(qT g)∗X(−p) ≤
r − r = 0.

Assuming now that λ > 0, there exist some µi ≥ 0, i = 1, ...,m,
∑m

i=1 µi = 1,
such that (−p,−r) ∈ λ

∑m
i=1 µiepi(g∗i )+epi(σX). Let us consider now the following

set of indices Iµ := {i ∈ I : µi 6= 0}. The relation above can be written as
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(−p,−r) ∈
∑

i∈Iµ

λµiepi(g∗i ) + epi(δ∗X) =
∑

i∈Iµ

epi
(

(λµigi)
∗
)

+ epi(δ∗X)

= epi

(

(

∑

i∈Iµ

λµigi

)∗

)

+ epi(δ∗X) = epi

(

(

m
∑

i=1

λµigi

)∗

)

+ epi(δ∗X)

= epi

(

(

m
∑

i=1

λµigi + δX

)∗

)

= epi
(

(qT g)∗X

)

,

for q := (λµ1, ..., λµm)T . Therefore we found a pair (p, q) ∈ R
n × R

m
+ such that

f∗(p) + (qT g)∗X(−p) ≤ r − r = 0.
Corollary 4.5. Let be u ∈ R

n, α ∈ R and let us assume that there exists
x′ ∈ ri(X) such that gi(x

′) ≤ 0 ∀i ∈ L and gi(x
′) < 0 ∀i ∈ N . Then the following

statements are equivalent:
(i) x ∈ X, gi(x) ≤ 0 ∀i ∈ I ⇒ uT x ≤ α.
(ii) There exists q ∈ R

m, q = 0, such that (qT g)∗X(u) ≤ α.
Proof. Considering f : R

n → R, f(x) = α − uT x, we get

f∗(p) =

{

−α, if p = −u,
+∞, otherwise.

The equivalence follows from Theorem 4.1.
Remark 4.6. For f : R

n → R, f(x) = α−uT x, the epigraph of f∗ is nothing but
the set {(−u,−α)}+ {0}×R+. By Proposition 4.4, the statement (ii) in Corollary
4.5 can be equivalently written as

(u, α) ∈ coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX) + {0} × R+

and, because epi(σX) + {0} × R+ = epi(σX), we get

(u, α) ∈ coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX).

Remark 4.7. If we reconsider Corollary 4.5 for X = R
n, the following state-

ments turn out to be equivalent:
(i) x ∈ R

n, gi(x) ≤ 0 ∀i ∈ I ⇒ uT x ≤ α.
(ii) There exists q ∈ R

m, q = 0, such that (qT g)∗(u) ≤ α.
Because epi(σRn) = {0} × R+, both (i) and (ii) are equivalent to

(u, α) ∈ coneco

(

⋃

i∈I

epi(g∗i )

)

+ {0} × R+. (4.4)

Assuming now that u 6= 0, relation (4.4) can be further equivalently written as

(u, α) ∈ coneco

(

⋃

i∈I

epi(g∗i )

)

,

which is exactly the result obtained in [12]. Thus our results extend those of Jeyaku-
mar, because the equivalences hold here under much weaker conditions, namely even
if the set {x ∈ R

n : gi(x) < 0 ∀i ∈ I} is empty.
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The readers interested in the applicability of the Farkas-type results presented
in this section are referred to the forthcoming paper [3]. There we characterize
the containment of a nonempty polyhedral set in an arbitrary polyhedral set, in a
reverse-polyhedral set and in a reverse-convex set determined by convex quadratic
constraints. Moreover some famous theorems of the alternative are rediscovered as
special cases of our results.

5. Some new Farkas-type results for infinitely many constraints. In
this section we consider Farkas-type results for inequality systems involving in-
finitely many convex constraints. To achieve them we use an extended Fenchel-type
dual problem for which strong duality holds, provided that a regularity condition is
fulfilled. Under the same hypotheses we give then equivalent formulations by using
the epigraphs of the conjugates of the functions involved. Similar results obtained
by using epigraphs are stated next, this time under closedness assumptions.

Let I be an arbitrary index set, gi : R
n → R be convex functions, for i ∈ I,

and let G denote the set {x ∈ R
n : gi(x) ≤ 0 ∀i ∈ I}. For X ⊆ R

n a nonempty
convex set and f : R

n → R a proper convex function let us consider the primal
optimization problem

(P∞) inf
x∈C

f(x),

C := X ∩ G = {x ∈ X : gi(x) ≤ 0 ∀i ∈ I}.

Moreover, let us assume that the set C is not empty.

By using the indicator functions δG and δX of the sets G and X, respectively,
we may formulate (P∞) as follows

(P∞) inf
x∈Rn

(

f(x) + δG(x) + δX(x)
)

= −
(

f + δG + δX

)∗

(0).

If ri(dom(f)) ∩ ri(G) ∩ ri(X) 6= ∅, then, by Theorem 2.2, it follows that the
extended Fenchel-type dual problem to (P∞)

(D∞
F ) sup

p1,p2∈Rn

{

− f∗(p1 + p2) − δ∗G(−p1) − δ∗X(−p2)
}

has an optimal solution and the optimal objective values of (P∞) and (D∞
F ) coin-

cide, i.e. v(P∞) = v(D∞
F ).

Remark 5.1. The extended Fenchel-type dual problem (D∞
F ) can also be ob-

tained using the approach described in Section 3 by considering as perturbation
function

ΦF : R
n × R

n × R
n → R,ΦF (x, y) =

{

f(x + y), if x + z ∈ G, x ∈ X,
+∞, otherwise,

with the perturbation variables y and z. The relations between the classical Fenchel,
Lagrange and the Fenchel-Lagrange dual problems have been investigated in [19]
and [2].

By using the extended Fenchel-type dual problem we can prove the following
Farkas-type result.

Theorem 5.2. Assume that ri(dom(f))∩ri(G)∩ri(X) 6= ∅. Then the following
statements are equivalent:

(i) x ∈ X, gi(x) ≤ 0 ∀i ∈ I ⇒ f(x) ≥ 0.
(ii) There exist p1, p2 ∈ R

n such that f∗(p1 + p2) + δ∗G(−p1) + δ∗X(−p2) ≤ 0.
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Proof. (ii) ⇒ (i). Let p1, p2 ∈ R
n such that f∗(p1+p2)+δ∗G(−p1)+δ∗X(−p2) ≤ 0.

The optimal objective value v(D∞
F ) of the extended Fenchel-type dual problem

(D∞
F ) sup

p1,p2∈Rn

{

− f∗(p1 + p2) − δ∗G(−p1) − δ∗X(−p2)
}

is greater than or equal to zero. By weak duality we have that the optimal objective
value v(P∞) of the primal problem (P∞) must also be greater than or equal to zero.
This implies that for all x ∈ C, f(x) ≥ 0 and so (i) is fulfilled.

(i) ⇒ (ii). Assuming now that (i) is true it follows that v(P∞) ≥ 0. The
regularity condition being fulfilled, Theorem 2.2 guarantees the existence of (p1, p2),
an optimal solution to (D∞

F ), such that

v(P∞) = −
(

f + δG + δX

)∗

(0) = −f∗(p1 + p2)− δ∗G(−p1)− δ∗X(−p2) = v(D∞
F ) ≥ 0.

Therefore (i) is also fulfilled.
Remark 5.3. For the implication (ii) ⇒ (i) the condition ri(dom(f))∩ ri(G)∩

ri(X) 6= ∅ is not necessary.
Let us reformulate now Theorem 5.2 as a theorem of the alternative.
Corollary 5.4. Assume that the regularity condition in Theorem 5.2 is ful-

filled. Then either the inequality system

(I) x ∈ X, gi(x) ≤ 0 ∀i ∈ I, f(x) < 0

has a solution or the system

(II) f∗(p1 + p2) + δ∗G(−p1) + δ∗X(−p2) ≤ 0, p1 ∈ R
n, p2 ∈ R

n

has a solution, but never both.
The next result provides an equivalent characterization of the statement (ii) in

Theorem 5.2.
Proposition 5.5. The statement (ii) in Theorem 5.2 is equivalent to

0 ∈ epi(f∗) + cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

+ epi(σX). (5.1)

Proof. The statement (ii) in Theorem 5.2 can equivalently be written as follows:
There exist p1, p2 ∈ R

n, r ∈ R and s ∈ R such that f∗(p1 + p2) ≤ −r −
s, δ∗G(−p1) ≤ r and δ∗X(−p2) ≤ s ⇔ there exist p1, p2 ∈ R

n, r ∈ R and s ∈ R such
that (p1 + p2,−r − s) ∈ epi(f∗), (−p1, r) ∈ epi(δ∗G) and (−p2, s) ∈ epi(δ∗X) ⇔

0 ∈ epi(f∗) + epi(δ∗G) + epi(δ∗X) = epi(f∗) + epi(σG) + epi(σX).

Using that epi(σG) = cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

(see, for example, [14],[16],

[12]), we get (5.1).
The next theorem provides a similar characterization to (5.1), this time under

some closedness assumptions.
Theorem 5.6. Alongside the initial hypotheses we assume that X is a closed

set and f is a lower semi-continuous function. Then the following statements are
equivalent:

(i) x ∈ X, gi(x) ≤ 0 ∀i ∈ I ⇒ f(x) ≥ 0.

(ii) 0 ∈ cl

(

epi(f∗) + coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX)

)

.
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Proof. As we have seen, statement (i) is rewritable as

inf
x∈Rn

(

f(x) + δG(x) + δX(x)
)

= −
(

f + δG + δX

)∗

(0) ≥ 0

or, equivalently,

0 ∈ epi ((f + δG + δX)∗) .

The sets X and G =
⋂

i∈I

{x ∈ R
n : gi(x) ≤ 0} are closed and therefore the functions

δG and δX are lower semi-continuous. Thus by (2.2) in Corollary 2.3 we have

epi ((f + δG + δX)∗) = epi ((cl(f) + cl(δG) + cl(δX))∗) =

cl (epi(f∗) + epi(δ∗G) + epi(δ∗X)) = cl (epi(f∗) + epi(σG) + epi(σX)) =

cl

(

epi(f∗) + cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

+ epi(σX)

)

. (5.2)

Since cl(S1 + cl(S2)) = cl(S1 + S2) for arbitrary sets S1 and S2 in R
n, we get

0 ∈ cl

(

epi(f∗) + cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

+ epi(σX)

)

=

cl

(

epi(f∗) + coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX)

)

.

Remark 5.7. If X = R
n and f : R

n → R, the assumptions in both Theorem
5.2 and Theorem 5.6 are valid, namely

(i) ri(dom(f)) ∩ ri(G) ∩ ri(X) 6= ∅,
(ii) X is closed and f is lower semi-continuous.

Having that

epi(f∗) + epi(σRn) = epi(f∗) + {0} × R+ = epi(f∗),

the statement

(i)x ∈ R
n, gi(x) ≤ 0 ∀i ∈ I ⇒ f(x) ≥ 0

turns out to be equivalent to

0 ∈ cl

(

epi(f∗) + coneco

(

⋃

i∈I

epi(g∗i )

))

= epi(f∗) + cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

,

which is nothing else than Theorem 4.1 in [12].
The next theorem provides a Farkas-type result involving a difference of convex

functions.
Theorem 5.8. Let h : R

n → R be a proper convex function with the property
that C is a subset of ri(dom(h)). Assume that ri(dom(f)) ∩ ri(G) ∩ ri(X) 6= ∅.
Then the following statements are equivalent:



12 R. I. BOŢ AND GERT WANKA

(i) x ∈ X, gi(x) ≤ 0 ∀i ∈ I ⇒ h(x) − f(x) ≤ 0.
(ii) ∀u ∈ R

n ∃pu
1 , pu

2 ∈ R
n such that f∗(u + pu

1 + pu
2 ) + δ∗G(−pu

1 ) + δ∗X(−pu
2 ) ≤

h∗(u).
Proof. By Theorem 7.4 and Theorem 12.2 in [17] we have that ∀x ∈ C h(x) =

cl(h)(x) = h∗∗(x) = sup
u∈Rn

{uT x − h∗(u)}. This implies that (i) is rewritable as

∀u ∈ R
n ∀x ∈ C f(x) − uT x + h∗(u) ≥ 0. (5.3)

Applying Theorem 5.2 we obtain, equivalently, that for all u ∈ R
n there exist

pu
1 , pu

2 ∈ R
n (even if h∗(u) = +∞) such that

sup
x∈Rn

{

(pu
1 + pu

2 )T x −
(

f(x) − uT x + h∗(u)
)

}

+ δ∗G(−pu
1 ) + δ∗X(−pu

2 ) ≤ 0 ⇔

f∗(u + pu
1 + pu

2 ) + δ∗G(−pu
1 ) + δ∗X(−pu

2 ) ≤ h∗(u).

Proposition 5.9. The statement (ii) in Theorem 5.8 is equivalent to

epi(h∗) ⊆ epi(f∗) + cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

+ epi(σX). (5.4)

Proof. (ii) ⇒ (5.4). Let (u, r) ∈ epi(h∗) ⇔ h∗(u) ≤ r. By (ii) in Theorem 5.8
there exist pu

1 , pu
2 ∈ R

n such that

r ≥ h∗(u) ≥ f∗(u + pu
1 + pu

2 ) + δ∗G(−pu
1 ) + δ∗X(−pu

2 ).

Therefore

(u, r) = (u + pu
1 + p2

u, r − δ∗G(−pu
1 ) − δ∗X(−pu

2 )) + (−pu
1 , δ∗G(−pu

1 )) + (−pu
2 , δ∗X(−pu

2 )

∈ epi(f∗) + epi(δ∗G) + epi(δ∗X) = epi(f∗) + cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

+ epi(σX)

and so (5.4) is verified.
(5.4) ⇒ (ii). Let u ∈ R

n be fixed. If h∗(u) = +∞, then (ii) is true. Assuming
that h∗(u) < +∞, we have (u, h∗(u)) ∈ epi(h∗) and so there exist (a, s) ∈ epi(f∗),

(b, t) ∈ cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

= epi(δ∗G) and (c, z) ∈ epi(σX) such that a + b +

c = u and s + t + z = h∗(u). Taking pu
1 := −b and pu

2 := −c, we get

f∗(u + pu
1 + pu

2 ) + δ∗G(−pu
1 ) + δ∗X(−pu

2 ) = f∗(a) + δ∗G(b) + δ∗X(c) ≤ s + t + z = h∗(u).

We consider now in the hypotheses of Theorem 5.8 instead of the regularity
condition ri(dom(f)) ∩ ri(G) ∩ ri(X) 6= ∅, the assumptions that X is a closed set
and f is a lower semi-continuous function. This leads us to the following result.

Theorem 5.10. Let h : R
n → R be a proper convex function with the property

that C is a subset of ri(dom(h)). Assume that X is a closed set and f is a lower
semi-continuous function. Then the following statements are equivalent:

(i) x ∈ X, gi(x) ≤ 0 ∀i ∈ I ⇒ h(x) − f(x) ≤ 0.

(ii) epi(h∗) ⊆ cl

(

epi(f∗) + coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX)

)

.
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Proof. As we have seen in the proof of Theorem 5.8, the statement (i) can be
equivalently written as (cf. (5.3))

∀u ∈ R
n ∀x ∈ R

n f(x) + δG(x) + δX(x) − uT x + h∗(u) ≥ 0 ⇔

∀u ∈ R
n ∀x ∈ R

n h∗(u) ≥ uT x − (f + δG + δX)(x) ⇔

∀u ∈ R
n h∗(u) ≥ (f + δG + δX)∗(u) ⇔ epi(h∗) ⊆ epi ((f + δG + δX)∗) .

The desired conclusion follows using that (cf. (5.2))

epi ((f + δG + δX)∗) = cl

(

epi(f∗) + coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX)

)

.

Remark 5.11. For X = R
n and f : R

n → R the assumptions in Theorem 5.8
and Theorem 5.10 are again valid. If G ⊆ ri(dom(h)), the statement

(i)x ∈ R
n, gi(x) ≤ 0 ∀i ∈ I ⇒ h(x) − f(x) ≤ 0

becomes equivalent to

epi(h∗) ⊆ cl

(

epi(f∗) + coneco

(

⋃

i∈I

epi(g∗i )

))

= epi(f∗) + cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

.

In case h : R
n → R, this result is nothing else than Theorem 4.2 in [12] (see also

Theorem 3.1 and Theorem 3.2 in [16]).
For the last part of this section we consider under the same hypotheses as for

Theorem 5.8 that f : R
n → R, f(x) = 0 ∀x ∈ R

n. The mentioned theorem leads us
to the following result.

Theorem 5.12. Let h : R
n → R be a proper convex function with the prop-

erty that C ⊆ ri(dom(h)). Assume that ri(G) ∩ ri(X) 6= ∅. Then the following
statements are equivalent:

(i) x ∈ X, gi(x) ≤ 0 ∀i ∈ I ⇒ h(x) ≤ 0.
(ii) ∀u ∈ R

n ∃pu ∈ R
n such that h∗(u) ≥ δ∗G(u + pu) + δ∗X(−pu).

Because epi(f∗) = {0} × R+, the statement (i) in Theorem 5.12 can be equiv-
alently written as (cf. (5.4))

epi(h∗) ⊆ cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

+ epi(σX). (5.5)

By the same argument, Theorem 5.10 can be formulated as follows.
Theorem 5.13. Let h : R

n → R be a proper convex function with the property
that C is a subset of ri(dom(h)). Assume that X is a closed set. Then the following
statements are equivalent:

(i) x ∈ X, gi(x) ≤ 0 ∀i ∈ I ⇒ h(x) ≤ 0.

(ii) epi(h∗) ⊆ cl

(

coneco

(

⋃

i∈I

epi(g∗i )

)

+ epi(σX)

)

.

For X = R
n, we have epi(σX) = {0} × R+ and therefore (5.5) and (ii) in

Theorem 5.13 become

epi(h∗) ⊆ cl

(

coneco

(

⋃

i∈I

epi(g∗i )

))

. (5.6)

In case h : R
n → R, (5.6) is nothing else than Corollary 4.3 in [12].
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6. Conclusion. In this paper we present some new Farkas-type results for
inequality systems involving finitely as well as infinitely many convex constraints.
Our approach, which employs the conjugates of the functions involved, is based on
the theory of duality for convex optimization problems. An important role is played
by an extended Fenchel-type dual problem as well as by the Fenchel-Lagrange dual
problem. The last one has been introduced and extensively studied in the last years
by the authors of this paper. The results we formulate and prove here generalize
some recently published results due to Jeyakumar in [12]. Moreover, they underline
the connections that exist between Farkas-type results and theorems of alternative
and, on the other hand, the theory of duality.
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eare Optimierung, B. G. Teubner Verlag, Leipzig, 1977.
[6] J. Farkas, Theorie der einfachen Ungleichungen, J. Reine Angew. Math., 124 (1901), pp.

1–27.
[7] B. M. Glover, Y. Ishizuka, V. Jeyakumar, and H. D. Tuan, Complete characterizations

of global optimality for problems involving the pointwise minimum of sublinear functions,
SIAM J. Optim., 6 (1996), pp. 362–372.

[8] B. M. Glover, V. Jeyakumar, and W. Oettli, A Farkas lemma for difference sublinear

systems and quasidifferentiable programming, Math. Program., 63 (1994), pp. 109–125.
[9] J. Gwinner, Results of Farkas type, Numer. Funct. Anal. Optimization, 9 (1987), pp. 471–

520.
[10] J. Gwinner, Corrigendum and addendum to ”Results of Farkas type”, Numer. Funct. Anal.

Optimization, 10 (1989), pp. 415–418.
[11] C. W. Ha, On systems of convex inequalities, J. Math. Anal. Appl., 68 (1979), pp. 25–34.
[12] V. Jeyakumar, Characterizing set containments involving infinite convex constraints and

reverse-convex constraints, SIAM J. Optim., 13 (2003), pp. 947–959.
[13] V. Jeyakumar, and B. M. Glover, Nonlinear extensions of Farkas’ lemma with applica-

tions to global optimization and least squares, Math. Oper. Res., 20 (1995), pp. 818–837.
[14] , Characterizing global optimality for DC optimization problems under convex inequal-

ity constraints, J. Glob. Optim., 8 (1996), pp. 171–187.
[15] V. Jeyakumar, and J. Gwinner, Inequality systems and optimization, J. Math. Anal. Appl.,

159 (1991), pp. 51–71.
[16] V. Jeyakumar, A. M. Rubinov, B. M. Glover, and Y. Ishizuka, Inequality systems and

global optimization, J. Math. Anal. Appl., 202 (1996), pp. 900–919.
[17] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[18] A. M. Rubinov, B. M. Glover, and V. Jeyakumar, A general approach to dual character-

izations of solvability of inequality systems with applications, J. Convex Anal., 2 (1995),
pp. 309–344.

[19] G. Wanka, and R. I. Boţ, On the relations between different dual problems in convex

mathematical programming, in Operations Research Proceedings 2001, P. Chamoni, R.
Leisten, A. Martin, J. Minnemann and H. Stadtler, eds., Springer Verlag, Berlin, 2002,
pp. 255–262.

[20] , A new duality approach for multiobjective convex optimization problems, J. Nonlinear
Convex Anal., 3 (2002), pp. 41–57.

[21] , Multiobjective duality for convex ratios, J. Math. Anal. Appl., 275 (2002), pp. 354–
368.
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