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Abstract

The theory of optimal transport (OT) has seen a tremendous development in the last
25 years with fascinating applications ranging from geometric and functional inequalities
over PDEs and geometry to image analysis and statistics. In recent years, variants of the
optimal transport problem with additional stochastic constraints have received increasing
attention, e.g. martingale optimal transport (MOT) and causal/adapted optimal transport
(COT).

The aim of this lecture is to serve as an introduction into the stochastic variants of the
transport problem. After a quick recall of the classical OT problem we will start investi-
gating its martingale variant which is motivated by intriguing questions from robust/model
independent finance. In the second part of the lecture we will complement the worst case
point of view of MOT on robust finance by a “local” approach. This will naturally lead
us to adapted versions of the OT problem, the COT, which we will explore in detail. Our
discussion will be guided by examples from finance and stochastic analysis.

Frequently used notation

• X,Y denote Polish spaces
• For a Polish space X we denote the probability measures over X by P(X), the set

of Borel measures byM(X), and the Borel sets by B(X).
• For a map T : X→ Y and λ ∈ P(X) we denote the image measure of λ under T by

T (λ) = T]λ = λ ◦ T−1

• The Lebesgue measure will be denoted by Leb.
• The set of all couplings between two probability measures µ, ν will be denoted by

Cpl(µ, ν).
• Cb(X) denotes the set of continuous and bounded functions f : X→ R.
• For integrable f : X→ R and µ ∈ M(X) we often write µ( f ) :=

∫
f dµ.

1. The optimal transport problem

In this section we will give a short introduction into the theory of optimal transport.
This will serve as a benchmark or guidance for what to expect for the different stochastic
variations of the transport problem we will consider in the next sections. At the end of this
section we will shortly hint at some of the fascinating applications of optimal transport in
analysis of PDEs, geometry, and beyond.

For reference and further reading we refer to the books [San15, AG13, Vil03].

1.1. The Monge and Kantorovich optimal transport problem.

Definition 1.1. A topological space (X, τ) is called Polish, iff it is separable and there
exists a metric d metrizing τ s.t. (X, d) is a complete metric space.

Let X,Y be Polish spaces and denote the set of probability measures by P(X),P(Y).
Fix a Borel measurable function c : X × Y → R ∪ {∞}. We will interpret c as the cost of
transporting a unit of mass from x ∈ X to y ∈ Y. Therefore, we will call such a function a
cost function.
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Figure 1. A possible transport from a distribution µ to a distribution ν
via a map T . The cost from x to y is given via some cost function c(x, y);
total cost:

∫
c(x,T (x))µ(dx).

Given two distributions of mass µ ∈ P(X), ν ∈ P(Y) we are interested in ways of trans-
porting mass distributed according to µ into mass distributed according to ν. In mathemat-
ical terms:

Definition 1.2. For a Borel function T : X → Y we define the push-forward of µ by T or
the image measure of µ under T by

T (µ) := T]µ = µ ◦ T−1,

i.e. T (µ)(A) = µ(T−1(A)) for all A ∈ B(Y). If T (µ) = ν we call T a transport map (or
Monge transport) from µ to ν.

Definition 1.3. Let µ ∈ P(X), ν ∈ P(Y) and c a cost function. The Monge problem is to
solve

PM
c := PM

c (µ, ν) := inf
∫

c(x,T (x)) µ(dx), (MP)

where the infimum runs over all transport maps T : X → Y such that T (µ) = ν. Any map
T attaining the infimum in (MP) is called optimal transport map.

This problem was first formulated by Gaspard Monge in 1781 in the article “Sur la
theorie des déblais et des remblais” [Mon81] where he was interested in minimizing the
transport cost of moving a pile of sand. His motivation originated from engineering and he
considered the special case of c(x, y) = |x − y| in Rd.

This problem is very difficult due to various reasons. It is a non-linear problem in the
unknown T . More seriously, it can be ill-posed:

Example 1.4. Assume µ = δ0 ∈ P(R) and ν , δa for all a ∈ R. Since, T (µ) = δT (0) for any
transport map T there cannot be any map T s.t. T (µ) = ν.

Example 1.5. In X = Y = Rd, if µ, ν have densities and T is regular enough, then T is a
transport map between µ and ν iff

|det(DT )|
dν

dLeb
◦ T =

dµ
dLeb

,

as follows by change of variables. This is a complicated PDE in the unknown T , called the
Monge-Ampère Equation. Finding an optimal map then boils down to finding a solution
with further structural properties.

In general, it is difficult to find conditions ensuring the existence of at least one (optimal)
map T transporting µ to ν. Moreover, the constraint T (µ) = ν is not weakly sequentially
closed w.r.t. any reasonable topology. For instance, let f : R → R be a one-periodic
function which equals 1 on [0, 1/2) and −1 on [1/2, 1). Let fn(x) = f (nx). Put µ = Leb|[0,1]

and ν = 1
2 (δ1 + δ−1). Then, fn(µ) = ν for all n but fn converges weakly to the zero function

f̄ ≡ 0 so that limn fn(µ) = ν , f̄ (µ) = δ0. These observations show two severe limitations
which one would like to overcome in a relaxed version of the Monge-problem. To get an
idea on how this might look like let us consider the following example.
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Example 1.6. Let X = Y = R2 and c(x, y) = |x − y|2. Let µ = Leb1
|{0}×[0,1] and ν =

1
2

(
Leb1

|{−1}×[0,1] + Leb1
|{1}×[0,1]

)
. Then, PM

c = 1 but no optimal transport map exists. In-
deed, for any candidate map T it holds that

∫
|x − T (x)|2 µ(dx) ≥ 1. By looking at

dyadic subdivisions of {0} × [0, 1] it is not difficult to construct transport maps Tn with
|x−Tn(x)|2 ≤ 1+2−2n. Integrating w.r.t. µ shows that PM

c = 1. However, there cannot be any
map T : R2 → R2 such that T (µ) = ν and |T (x)−x| = 1 µ-a.e. so that no optimal map exists.
(Indeed, assume optimal T exists, s.t. T (0, y) ∈ {(−1, y), (1, y)} µ a.s. Put A± = {y : T (0, y) =

(±1, y)}. Then, Leb1(A+) + Leb1(A−) = 1 and T (µ) = Leb1
|{−1}×A− + Leb1

|{1}×A+ . Assume
Leb1(A+) > 0. It then follows, that T (µ)({1}×A+) = Leb1(A+) , 1

2 Leb1(A+) = ν({1}×A+),
a contradiction.)

In the last example it is very intuitive how the optimal solution should look like. It
should split the mass at each point (0, y) into two equal pieces and send one piece to the
“right” and one to the “left“. Hence, we should relax the constraint that each point x ∈ X
is transported to exactly one y ∈ Y and allow for multivalued transport maps or even
”continuously“-valued transport maps. This is best captured in the language of couplings
of probability measures.

Definition 1.7. Let µ ∈ P(X), ν ∈ P(Y). A coupling of µ and ν is a measure q ∈ P(X × Y)
with marginals µ and ν, i.e.

q(A × Y) = µ(A) for all A ∈ B(X) and q(X × B) = ν(B) for all B ∈ B(Y).

The set of all couplings of µ and ν will be denoted by Cpl(µ, ν).

Stochastically, a coupling q of µ and ν is a joint law of two random variables (X,Y) such
that Lawq(X) = µ and Lawq(Y) = ν. In particular, conditioning on X = x we can interpret
the regular conditional probability q(·|X = x) as a plan on how to transport the mass at
x. Therefore, we will often call couplings by the name transport plans. Analytically, this
corresponds to disintegrating q w.r.t. its first marginal µ to obtain a family of probability
measures (qx(dy))x∈X (see Theorem A.1). Writing projX : X × Y → X, (x, y) 7→ x, projY :
X × Y → Y, (x, y) 7→ y a measure q ∈ P(X × Y) is an element of Cpl(µ, ν) iff projX(q) = µ
and projY(q) = ν.

Observe, that any transport map T : X → Y from µ to ν induces a transport plan
qT := (Id,T )(µ) ∈ Cpl(µ, ν). We call qT a Monge coupling or the coupling induced by the
map T .

Definition 1.8. Let µ ∈ P(X), ν ∈ P(Y) and c a cost function. The Kantorovich problem is
to solve

PK
c := PK

c (µ, ν) := inf
∫

c(x, y) q(dx, dy), (KP)

where the infimum runs over all couplings q ∈ Cpl(µ, ν). Any coupling q attaining the
infimum in (KP) is called optimal coupling or optimal transport plan.

Remark 1.9. The optimal coupling in Example 1.6 is given by q = 1
2 (qT+

+ qT− ) where
T±(0, y) = (±1, y).

As we will see, the Kantorovich problem is much nicer than the Monge problem. For
instance, the following properties are immediate.

Remark 1.10. • The set Cpl(µ, ν) is always non-empty. The product coupling (stochas-
tically, the independent coupling) µ ⊗ ν ∈ Cpl(µ, ν).

• The set Cpl(µ, ν) is convex.
• The map q 7→

∫
c dq is linear.

Moreover, Cpl(µ, ν) is compact in a natural topology which will allow us to show exis-
tence of optimal couplings under some assumption on the cost function c.
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Recall that a sequence of measures (µn)n∈N ⊆ P(Z) on a Polish space Z converges
weakly to µ ∈ P(Z) iff ∫

f dµn →

∫
f dµ, for all f ∈ Cb(Z),

where Cb(Z) denotes the continuous and bounded functions on Z. We call the induced
topology on P(Z) the weak topology. For us, Z will usually be X, Y or X × Y.

Theorem 1.11 (Prokhorov). Let Z be a Polish space. A family A ⊆ P(Z) of probability
measures on Z is relatively compact w.r.t. the weak topology iff it is tight, i.e. for every
ε > 0 there exists Kε ⊆ Z compact such that

sup
µ∈A

µ(Z \ Kε) ≤ ε.

For a proof we refer to [Bil99].

Lemma 1.12. If A1 ⊆ P(X), A2 ⊆ P(Y) are tight so is A3 := {q ∈ P(X × Y) : projX(q) ∈
A1 and projY(q) ∈ A2}.

Proof. Let q ∈ A3 and ε > 0 be given. Pick K1 ⊆ X,K2 ⊆ Y such that µ(X \ K1) ≤
ε, ν(Y \K2) ≤ ε for all µ ∈ A1, ν ∈ A2. Since K1 ×K2 ⊆ X×Y is compact the claim follows
from

q(X × Y \ K1 × K2) ≤ q((X \ K1) × Y) + q(X × (Y \ K2)) = µ(X \ K1) + ν(Y \ K2) ≤ 2ε.

�

Corollary 1.13. The set Cpl(µ, ν) is compact.

Proof. Since {µ} ⊆ P(X), {ν} ⊆ P(Y) are tight, Cpl(µ, ν) is tight by Lemma 1.12. It remains
to show that it is closed. Pick (qn)n∈N ⊆ Cpl(µ, ν) with limit q. We have to show that q has
marginals µ and ν. Pick ϕ ∈ Cb(X) and define ϕ̄(x, y) := ϕ(x) so that ϕ̄ ∈ Cb(X × Y). Then,
we know that ∫

ϕdq =

∫
ϕ̄dq = lim

n

∫
ϕ̄dqn = lim

n

∫
ϕdqn =

∫
ϕdµ

so that projX(q) = µ. Similarly, it follows that projY(q) = ν. �

As an important consequence of this corollary we have the following result on existence
of optimal couplings. For the definition of lower semi-continuity see Appendix B.

Theorem 1.14. Assume that c is lower semi-continuous and bounded from below. Then
there exists a minimizer q∗ to (KP), i.e. q∗ ∈ arg minq∈Cpl(µ,ν)

∫
cdq.

Proof. The proof follows by the direct method of the calculus of variations.
Observe that the map q 7→

∫
cdq is lower semi-continuous by the Portmanteau theorem.

(If you have not seen this, see Lemma B.1.) Take a minimizing sequence (qn)n∈N i.e.∫
cdqn → PK

c (µ, ν). By Corollary 1.13, there is q ∈ Cpl(µ, ν) such that up to passing to a
subsequence qn → q. By the first part of the proof it follows that∫

cdq ≤ lim inf
n

∫
cdqn = PK

c (µ, ν).

Hence, q is an optimal coupling. �

In Theorem 1.14 the condition of lower boundedness can be suitably relaxed. However,
lower semi-continuity is important. Consider for instance X = Y = [0, 1], µ = ν uniformly
distributed, and c(x, y) = 1 on {y ≥ x} and 0 otherwise: then PK

c = 0, so if q is optimal we
must have q(y < x) = 1, leading to a contradiction since

∫
|y − x|q(dx, dy) =

∫
xµ(dx) −∫

yν(dy) = 0 would imply q(y = x) = 1.
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Remark 1.15. The Monge optimizer, if it exists, can be strictly worse than the Kantorovich
optimizer. Indeed, consider the cost function c(x, y) = |x − y| for X = Y = R, and the
measures µ = 1

3δ0 + 2
3δ1, ν = 2

3δ0 + 1
3δ1. Then the only admissible Monge map is T (0) = 1,

T (1) = 0. Observe that c(x,T (x)) = 1. On the other hand the coupling q = 1
3δ0,0 + 1

3δ1,0 +
1
3δ1,1 has marginals µ and ν but its cost is only 1

3 .

As a consequence of the relaxation of the Monge problem to the Kantorovich problem
we can guarantee the existence of optimal couplings in some generality. However, there
are several natural questions. For instance,

• When is the optimal coupling unique?
• What is the relationship between (KP) and (MP)?
• Can we characterize the structure of optimal couplings? Are there necessary/sufficient

conditions for optimality?
A powerful tool to answer these questions lies in the notion of monotonicity (more pre-
cisely, c-cyclical monotonicity) and the dual problem.

1.2. The dual problem and characterization of optimal couplings. We aim to find nec-
essary and sufficient conditions for a coupling to be optimal. Let us first look at a discrete
example.

Example 1.16. Let µ = 1
n
∑n

i=1 δxi , ν = 1
n
∑n

i=1 δyi . Let q = 1
n
∑n

i=1 δ(xi,yi) ∈ Cpl(µ, ν). Fix a
cost function c. Then, q is optimal iff for each permutation σ ∈ S n it holds that∫

cdq =
1
n

n∑
i=1

c(xi, yi) ≤
1
n

n∑
i=1

c(xi, yσ(i)).

The necessity is obvious since otherwise we can easily construct a competitor by rerouting
the transport (x1 7→ yσ(1), x2 7→ yσ(2), ...). The sufficiency follows from Choquet’s theorem
as in Problem 4.(c) at the end of this section.

This observation leads us to the following definition.

Definition 1.17. A set Γ ⊆ X × Y is called c-cyclically monotone iff for all n ∈ N and for
all n-tuples (x1, y1), . . . , (xn, yn) ∈ Γ

n∑
i=1

c(xi, yi) ≤
n∑

i=1

c(xi, yσ(i)) for all σ ∈ S n. (1.1)

A coupling q ∈ P(X × Y) is called c-cyclically monotone iff it is concentrated on a c-
cyclically monotone set, i.e. there is a c-cyclically monotone set Γ such that q(Γ) = 1.

Observe that c-cyclical monotonicity is a pointwise definition. As we will see several
times during this course this often induces geometric constraints on Γ. Observe also that
the definition remains the same if in (1.1) we take only one fixed permutation (which is
not the identity): for instance the shift σ(i) = i + 1 mod n. Finally, note that in general a
c-cyclically monotone coupling need not have a c-cyclically monotone support. Recall that
the support of a measure q is defined as {x : q(U) > 0, for all neighbourhoods U of x}. If q
is a finite measure the support is the smallest closed set of full measure. We write supp(q)
for the support of q. If c is continuous a c-cyclically monotone coupling has a c-cyclically
monotone support.

Lemma 1.18 (Necessary condition for optimality). Let µ ∈ P(X), ν ∈ P(Y). Assume that
c is continuous and bounded from below such that c(x, y) ≤ a(x) + b(y) for a ∈ L1(µ), b ∈
L1(ν).1 If q∗ ∈ Cpl(µ, ν) is an optimal coupling (w.r.t. the cost function c), then supp(q∗) is
c-cyclically monotone (so in particular q∗ is c-cyclically monotone).

1Note that there is a small subtlety here since L1 is defined via equivalence classes of functions. The condition
a ∈ L1 should be interpreted as a is an integrable measurable function.
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Proof. Since for q ∈ Cpl(µ, ν) it holds that∫
c(x, y)dq(x, y) ≤

∫
a(x) + b(y)dq(x, y) = µ(a) + ν(b) < ∞,

it follows that c ∈ L1(q) for all q ∈ Cpl(µ, ν). In particular PK
c is finite.

We will argue by contradiction leveraging the observation from Example 1.16 to the
general case using the continuity of c.

Assume, there exists n > 1, σ ∈ S n and (x1, y1), . . . , (xn, yn) ∈ supp(q∗) such that
n∑

i=1

c(xi, yi) >
n∑

i=1

c(xi, yσ(i)).

By continuity of c there are neighbourhoods Ui of xi and V j of y j such that for all ui ∈

Ui, v j ∈ V j, 1 ≤ i, j ≤ n
n∑

i=1

c(ui, vi) >
n∑

i=1

c(ui, vσ(i)).

In the next step, we will use this property to construct a competitor q̄ of q∗ with strictly
lower transport cost. To this end, consider Ω = Πn

i=1Ui × Vi,mi = q∗(Ui × Vi) > 0 (since
(xi, yi) ∈ supp(q∗)), P =

⊗n
i=1

1
mi

q∗
|Ui×Vi

and define

q̄ = q∗ +
min j m j

n

n∑
i=1

(
(projUi

, projVσ(i)
)(P) − (projUi

, projVi
)(P)

)
.

Observe, that q̄ ∈ Cpl(µ, ν) and
∫

cdq̄ <
∫

cdq∗ by construction so that q∗ is not optimal.
�

We have already seen that the functional q 7→
∫

cdq in the Kantorovich optimization
problem (KP) is linear in the variable q so that the Kantorovich problem is a linear opti-
mization problem over the compact and convex set Cpl(µ, ν). As such there is a dual point
of view, a dual problem, which is very useful to pin down optimizers.

Let us first take an intuitive approach:

Example 1.19. We interpret the measure µ as the distribution of breweries and ν as the
distribution of pubs and supermarkets. Then, c(x, y) can be interpreted as the cost of trans-
porting a good (here beer) from the brewery at x to the pub at y. There is a dual economic
problem. Assume there is an agent who offers to do the transport for the brewers. They
charge a price ϕ(x) for picking up the goods at location x and charge a price ψ(y) to drop off

this good at location y. Then, this offer is competitive iff ϕ(x) + ψ(y) ≤ c(x, y). This leads
us to the following dual problem and a number of natural questions: Are there competitive
dual strategies? If yes, what are the best and what can we learn from them?

Definition 1.20 (Dual problem). For µ ∈ P(X), ν ∈ P(Y) the dual problem is to maximize∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y)

among all ϕ ∈ Cb(X), ψ ∈ Cb(Y) such that ϕ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y. We
denote the maximal value by DK

c := DK
c (µ, ν).

In the inequality ϕ(x) +ψ(y) ≤ c(x, y) one can also allow functions ϕ ∈ L1(µ), ψ ∈ L1(ν).
It is immediate that DK

c ≤ PK
c since for any candidates ϕ, ψ, q it follows from the marginal

constraint on q that∫
ϕdµ +

∫
ψdµ =

∫
(ϕ(x) + ψ(y))q(dx, dy) ≤

∫
cdq.

In fact the other inequality holds as well.
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Theorem 1.21 (Duality). Let µ ∈ P(X), ν ∈ P(Y) and c be continuous and bounded from
below. Assume that there exists a ∈ L1(µ), b ∈ L1(ν) s.t. c(x, y) ≤ a(x) + b(y). Then,

PK
c = inf

q∈Cpl(µ,ν)

∫
c dq = sup{µ(ϕ)+ν(ψ) : ϕ ∈ Cb(X), ψ ∈ Cb(Y), ϕ(x)+ψ(y) ≤ c(x, y)} = DK

c .

The previous theorem states that there is no duality gap in the Kantorovich problem
under the stated conditions. We will only give a sketch of a proof here. Below this theorem
will be a consequence of another result. However, this sketch can be made rigorous using
convex analysis, see [San15, Section 1.6.3]. Denote by

D(c) := {(ϕ, ψ) ∈ Cb(X) ×Cb(Y) : ϕ(x) + ψ(y) ≤ c(x, y)}

the set of admissible dual variables.

Sketch of proof of duality. As in Lemma 1.18 we obtain that PK
c is finite. Write

χ(q) =

0 if q ∈ Cpl(µ, ν)
∞ else.

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

µ(ϕ) + ν(ψ) −
∫

(ϕ(x) + ψ(y))dq(x, y).

Then, we can (formally) write assuming ′′ inf sup = sup inf “

inf
q∈Cpl(µ,ν)

∫
cdq = inf

q∈M(X×Y)

∫
cdq + χ(q)

= inf
q∈M(X×Y)

sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

∫
c(x, y) − ϕ(x) − ψ(y)dq + µ(ϕ) + ν(ψ)

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

inf
q∈M(X×Y)

∫
c(x, y) − ϕ(x) − ψ(y)dq + µ(ϕ) + ν(ψ)

Observe that

inf
q∈M(X×Y)

∫
c(x, y) − ϕ(x) − ψ(y)dq =

0 if (ϕ, ψ) ∈ D(c)
−∞ else

.

Hence, the claim follows. �

Remark 1.22. The duality result holds well beyond the case of continuous cost functions
c. Using standard approximation methods it is possible to deduce duality for l.s.c. cost
functions bounded from below. But the result holds even for Borel measurable cost func-
tions, see [BS11]. In the literature one often proves duality first and then derives c-cyclical
monotonicity of the optimizers as a corollary. To illustrate this, suppose that (ϕ, ψ) are
optimal for DK

c and q is optimal for PK
c . It follows that ϕ(x) + ψ(y) = c(x, y), q-a.s. It is

easy to check that Γ := {(x, y) : ϕ(x) + ψ(y) = c(x, y)} is c-cyclically monotone and so q
must likewise be c-cyclically monotone.

Given a candidate pair (ϕ, ψ) ∈ D(c) we can always improve it by replacing ϕ (which
satisfies ϕ(x) ≤ c(x, y) − ψ(y)) by

ϕ̃(x) := inf
y

c(x, y) − ψ(y).

Then, (ϕ̃, ψ) ∈ D(c) and since ϕ ≤ ϕ̃ it follows that µ(ϕ) ≤ µ(ϕ̃) so that the pair (ϕ̃, ψ)
yields a higher value in the dual problem. Note that ϕ̃ is the biggest function f such that
f (x) + ψ(y) ≤ c(x, y). Similarly, we can replace ψ by ψ̃ defined by

ψ̃(y) := inf
x

c(x, y) − ϕ̃(x)

producing an even better candidate for the dual problem. This motivates the following
definition:

Definition 1.23 (c-transform). Let c : X × Y → R be a Borel measurable cost function.
For a function ϕ : X → R we define its c-transform (also called c-conjugate function)
ϕc : Y→ R by

ϕc(y) := inf
x∈X

c(x, y) − ϕ(x).
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We define the c̄-transform of ψ : Y→ R by

ψc̄(x) := inf
y∈Y

c(x, y) − ψ(y).

We say a function ψ : Y → R is c-concave if ψ = ϕc for some ϕ and analogously for
c̄-concave functions. (If X = Y and c is symmetric the distinction between c and c̄ plays no
role and we will drop it.)

From the previous considerations it is clear that in the dual problem we can restrict to
pairs of c̄- and c-concave functions. One could go on trying to ”improve“ these functions,
however, we have the following result:

Lemma 1.24. Suppose that c is real valued. For any ϕ : X → R ∪ {−∞} it holds that
ϕcc̄ := (ϕc)c̄ ≥ ϕ. We have ϕcc̄ = ϕ iff ϕ is c̄-concave (i.p. for any ϕ : X → R it holds that
ϕcc̄c := ((ϕc)c̄)c = ϕc.); in general, ϕcc̄ is the smallest c̄-concave function larger than ϕ.

Proof. Exercise. �

Importantly, c-concave functions share many properties of convex (concave) functions.
Therefore, also the terminology is inspired by convex analysis.

Definition 1.25. Let ϕ : X→ R be c̄-concave. Its c̄-superdifferential is defined as

∂c̄ϕ = {(x, y) ∈ X × Y : ϕ(x) + ϕc(y) = c(x, y)}.

We also write ∂c̄ϕ(x) = {y : (x, y) ∈ ∂c̄ϕ}. Similarly, we define the c-superdifferential of a
c-concave function ψ : Y→ R.

Remark 1.26. We have y ∈ ∂c̄ϕ(x) iff ϕ(x) = c(x, y) − ϕc(y) and ϕ(z) ≤ c(z, y) − ϕc(y) for
all z ∈ X.

Example 1.27. All these examples will be ”symmetric“ so that we do not distinguish be-
tween c-concave and c̄-concave.

a) Let X = Y, c(x, y) = d(x, y) be a distance. Then ϕ is c-concave iff ϕ is 1-Lipschitz,
i.e. |ϕ(x) − ϕ(y)| ≤ |x − y|, and ϕc = −ϕ.

b) X = Y = Rn, c(x, y) = −x · y, the standard Euclidean inner product. Then, ϕ is
c-concave iff ϕ is concave and u.s.c. In particular, the c-superdifferential of ϕ is
precisely the classical superdifferential ∂ϕ of ϕ from convex analysis.

c) Put c(x, y) = 1
2 |x − y|2. Then, ϕ is c-concave iff ϕ̄(x) := |x|2

2 − ϕ(x) is convex and
l.s.c.

The following result is a crucial step towards an identification of the geometric structure
of optimal couplings. It links the geometric concept of c-cyclical monotonicity with the
property of c-concavity of functions that show up in the dual problem.

Proposition 1.28. Assume c is real valued. A non-empty set Γ ⊆ X × Y is c-cyclically
monotone iff Γ ⊆ ∂c̄ϕ for some c̄-concave function ϕ.

Proof. First observe that ∂c̄ϕ is c-cyclical monotone. Indeed, for any n ∈ N and tuples
(x1, y1), . . . , (xn, yn) ∈ ∂c̄ϕ it follows for σ ∈ S n by definition of c̄-concavity that

n∑
i=1

c(xi, yi) =

n∑
i=1

ϕ(xi) + ϕc(yi) =

n∑
i=1

ϕ(xi) + ϕc(yσ(i)) ≤
n∑

i=1

c(xi, yσ(i)).

To show the converse, we will explicitly construct a c̄-concave function ϕ with the desired
properties. To this end, fix (x0, y0) ∈ Γ. For x ∈ X set:2

ϕ(x) := inf{c(x, yn) − c(xn, yn) + c(xn, yn−1) − c(xn−1, yn−1) + . . .+

+ c(x1, y0) − c(x0, y0) : n ∈ N; (x1, y1), . . . , (xn, yn) ∈ Γ} (1.2)

2One can argue measurability via continuity of c or via c̄-concavity of ϕ. In general this is more difficult.
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Since c is real valued and Γ , ∅ we have ϕ < ∞. First note that ϕ is not identical −∞
since ϕ(x0) = 0. Indeed, by choosing n = 1, (x1, y1) = (x0, y0) in (1.2) we see ϕ(x0) ≤ 0.
However, the c-cyclical monotonicity of Γ implies that

c(x0, yn) − c(xn, yn) + c(xn, yn−1) − c(xn−1, yn−1) + . . . + c(x1, y0) − c(x0, y0) ≥ 0

so that ϕ(x0) ≥ 0. Next, writing

−ψ(y) := inf{ − c(xn, y) + c(xn, yn−1) − c(xn−1, yn−1) + . . .+

+ c(x1, y0) − c(x0, y0) : n ∈ N; (x1, y1), . . . , (xn, yn) ∈ Γ, yn = y}

we see that
ϕ(x) = inf

y∈Y
c(x, y) − ψ(y) = ψc̄(x).

(Observe, that ψ(y) > −∞ iff y ∈ projY(Γ), i.e. there is x ∈ X such that (x, y) ∈ Γ.)
To show that Γ ⊆ ∂c̄ϕ it is sufficient to show ϕ(x) + ϕc(y) ≥ c(x, y) on Γ since the

other inequality follows from c̄-concavity. Since ϕc = ψc̄c ≥ ψ (see Lemma 1.24) it is
enough to show ϕ(x) + ψ(y) ≥ c(x, y) on Γ. So pick ε > 0 and (x, y) ∈ Γ. Since ϕ = ψc̄

there is some ỹ ∈ projY(Γ) such that c(x, ỹ) − ψ(ỹ) < ϕ(x) + ε. From the definition of ψ it
follows that −ψ(y) ≤ −c(x, y) + c(x, ỹ) − ψ(ỹ) (estimating the inf with a particular choice
of tuples approximating −ψ(ỹ)). Together this gives −ψ(y) ≤ −c(x, y) + c(x, ỹ) − ψ(ỹ) <
−c(x, y) + ϕ(x) + ε. Since ε > 0 is arbitrary this proves the claim. �

This allows us to prove the following result, sometimes referred to as fundamental the-
orem of optimal transport, or characterization of optimizers, or monotonicity principle of
OT.

Theorem 1.29 (Fundamental theorem of OT; characterization of optimizers; monotonicity
principle of OT). Let c : X × Y → R be continuous and bounded from below such that
c(x, y) ≤ a(x) + b(y) for some a ∈ L1(µ), b ∈ L1(ν). Let q ∈ Cpl(µ, ν). Then the following
are equivalent:

i) q is an optimal coupling;
ii) the support supp(q) of q is c-cyclical monotone;

iii) there exists a c̄-concave function ϕ with ϕ ∨ 0 ∈ L1(µ) s.t. supp(q) ⊆ ∂c̄ϕ.

Proof. i)⇒ ii): This follows by Lemma 1.18.
ii)⇒ iii): By Proposition 1.28 there is a c̄-concave ϕ such that supp(q) ⊆ ∂c̄ϕ.Moreover,

from the construction it follows that (with the notation from the proof of Proposition 1.28)

ϕ(x) ≤ c(x, y0) − c(x0, y0) ≤ a(x) + b(y0) − c(x0, y0).

Hence, ϕ ∨ 0 ∈ L1(µ).
iii)⇒ i): Pick any q̃ ∈ Cpl(µ, ν). We will show that

∫
cdq ≤

∫
cdq̃. By construction of

ϕ it holds that

ϕ(x) + ϕc(y) = c(x, y), for all (x, y) ∈ supp(q)

ϕ(x) + ϕc(y) ≤ c(x, y), for all x ∈ X, y ∈ Y.

Hence, ∫
c(x, y)dq(x, y) =

∫
ϕ(x) + ϕc(y)dq(x, y) =

∫
ϕ(x)dµ(x) +

∫
ϕc(y)dν(y)

=

∫
ϕ(x) + ϕc(y)dq̃(x, y) ≤

∫
c(x, y)dq̃(x, y).

�

Remark 1.30. One can strengthen the result of Theorem 1.29. In fact, the support of any
optimal coupling q∗ ∈ Cpl(µ, ν) is contained in ∂c̄ϕ. Indeed, with q and ϕ as in Theorem
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1.29 we can argue∫
ϕ(x)dµ(x)+

∫
ϕc(y)dν(y) =

∫
ϕ(x) + ϕc(y)dq∗(x, y) ≤

∫
c(x, y)dq∗(x, y)

=

∫
c(x, y)dq(x, y) =

∫
ϕ(x) + ϕc(y)dq(x, y) =

∫
ϕ(x)dµ(x) +

∫
ϕc(y)dν(y),

so that equality holds throughout. By c̄-concavity of ϕ this immediately implies that ϕ(x)+

ϕc(y) = c(x, y) for q∗-a.e. (x, y), i.e. supp(q∗) ⊆ ∂c̄ϕ.

Remark 1.31. The crucial insight of Theorem 1.29 is that
optimality of a given coupling is solely a property of the geometry of its support

i.e. how the mass is exactly distributed over the support is of less importance (as long as
the marginals are matched). In particular, if q is optimal and q̃ another probability with
supp(q̃) ⊆ supp(q), then it is an optimal coupling between its own marginals. For instance,
a restriction of an optimal coupling is optimal between its marginals.

One can argue similarly for transport maps T . If there exists a c̄-concave function ϕ
such that for all x ∈ X it holds that T (x) ∈ ∂c̄ϕ(x), then for any µ ∈ P(X) the map T is
optimal between µ and T (µ) (up to integrability issues of the cost c w.r.t. µ and ν). Hence,
it makes sense to say that T is an optimal transport map without specifying any measure.

Another immediate consequence of the above theorem (see Problems 18-19) is that the
limit of a convergent sequence of optimizers (between their marginals) is an optimizer
(between its marginals). This is of course important for practical implementations.

Theorem 1.32 (Duality). Let c : X × Y→ R be continuous and bounded from below such
that c(x, y) ≤ a(x) + b(y) for some a ∈ L1(µ), b ∈ L1(ν). Then,

inf
q∈Cpl(µ,ν)

∫
cdq = sup{µ(ϕ) + ν(ψ)},

where the supremum runs over all ϕ ∈ L1(µ), ψ ∈ L1(ν) s.t. ϕ(x) + ψ(y) ≤ c(x, y). Further-
more, the supremum is attained for a pair (ϕ, ϕc) for some c̄-concave function ϕ.

Proof. ≥: This follows from the observation∫
ϕdµ +

∫
ψdν =

∫
(ϕ(x) + ψ(y))q(dx, dy) ≤

∫
cdq

valid for any admissible ϕ, ψ and q.
≤: Together with attainment this is a direct consequence of Theorem 1.29. �

Definition 1.33. A c̄-concave function ϕ such that the pair (ϕ, ϕc) is a maximizing pair for
the dual problem is called a c̄-concave Kantorovich potential, or Kantorovich potential, of
the measures µ, ν.

As mentioned in Remark 1.22 the duality for the optimal transport problem holds for
quite general cost functions (see Problem 8). However, the existence of primal or dual
optimizers is not guaranteed in general.

Example 1.34.

a) (Kantorovich-Rubinstein formula) Let X = Y, c(x, y) = d(x, y) a distance. Assume
that

∫
d(x, x0)µ(dx) < ∞, and the same for ν, for some (and then all) x0 ∈ X. Then:

inf
q∈Cpl(µ,ν)

∫
cdq = sup

ϕ is 1−Lipschitz

∫
ϕ(dµ − dν).

Note that the right hand side immediately implies that infq∈Cpl(µ,ν)
∫

cdq =: W1(µ, ν)
is a distance. Moreover, we can use this formula and extend this to non-probability
measures as well. In this case for any finite non-negative measure η it holds that
W1(µ + η, ν + η) = W1(µ, ν).
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b) X = Y, c(x, y) =

0 if x = y;
1 else .

Then,

inf
q∈Cpl(µ,ν)

∫
cdq = sup

0≤ϕ≤1

∫
ϕ(dµ − dν) = ‖µ − ν‖TV ,

where ‖µ − ν‖TV := supA∈B(X) |µ(A) − ν(A)|.

Similarly, the implication that optimal couplings are concentrated on c-cyclically mono-
tone sets is true in a remarkable generality. The reverse implication is more intricate. For
instance, there are transport plans concentrated on c-cyclically monotone sets which are
not optimal (see [AP03]). The proofs of these results go slightly beyond the scope of this
course. However, if c is real valued and Borel measurable there is a nice and comparably
short probabilistic argument (see [Bei12]) showing that transport plans concentrated on
c-cyclically monotone sets are optimal. The proof can be skipped on a first reading:

Theorem 1.35. Let c : X × Y → [0,∞) be a Borel measurable cost function and q ∈
Cpl(µ, ν) be concentrated on a c-cyclically monotone set Γ satisfying

∫
cdq < ∞. Then q is

optimal.

The key tool is the pointwise ergodic theorem (see e.g. [Kal02, Theorem 9.6]):

Theorem 1.36. Let (Z, κ) be a probability space and σ : Z → Z measure preserving, i.e.
σ(κ) = κ. Then, for every f ∈ L1(κ) the limit

f ∗ = lim
n

1
n

n−1∑
i=0

f ◦ σi (1.3)

exists almost surely and in L1(κ).

Ergodic theorems are powerful tools to obtain limit results. They can be interpreted as
generalizations of the law of large numbers for iid or mixing random variables. However
note that f ∗ need not be a constant in general which is why we will integrate (1.3) below.

Proof of Theorem 1.35. Let q, q̃ ∈ Cpl(µ, ν) be finite-cost transport plans with q(Γ) = 1.
We will show that

∫
cdq ≤

∫
cdq̃. Put Z = (X × Y)N and consider the shift mapping

σ : Z→ Z; (xi, yi)∞i=1 7→ (xi+1, yi+1)∞i=1.

Define the projections P,Q : Z→ X × Y by

P((xi, yi)∞i=1) = (x1, y1), Q((xi, yi)∞i=1) = (x1, y2).

We claim that there exists a measure κ on Z such that σ(κ) = κ, P(κ) = q, and Q(κ) = q̃.
Indeed, identify Z with the product

Y(1) × X(1) × Y(2) × X(2) × . . . ,

where Y(i),X(i) are copies of Y and X. Let (qy)y∈Y be a disintegration of q w.r.t. ν and (q̃x)x∈X

a disintegration of q̃ w.r.t. µ. Then, we let κ be the distribution of the Markov chain starting
according to ν and with transition kernel (qy)y∈Y to move from Y(i) to X(i) and transition
kernel (q̃x)x∈X to move from X(i) to Y(i+1).

Put f := c ◦ Q − c ◦ P ∈ L1(κ). We need to show that
∫

f dκ =
∫

cdq̃ −
∫

cdq ≥ 0.
Applying the ergodic theorem to f and integrating over (1.3) yields∫

f dκ =

∫
f ∗dκ =

∫
lim

n

1
n

n−1∑
i=0

f ◦ σidκ.

Unravelling the definition of f and σ this gives∫
cdq̃ −

∫
cdq =

∫ limn 1
n

n−1∑
i=0

c(xi, yi+1) − c(xi, yi)

 dκ((xi, yi)i). (1.4)

Hence, it suffices to show that the integrand on the r.h.s. is κ-a.s. non-negative. Observe
that κ(Γ × (X × Y)N) = q(Γ) = 1. Moreover, σ−n(Γ × (X × Y)N) = (X × Y)n × Γ × (X × Y)N
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so that ΓN =
⋂

n≥0 σ
−n(Γ × (X × Y)N). By σ-invariance of κ it follows that κ(ΓN) = 1 it is

sufficient to restrict to sequence (xi, yi)i ∈ ΓN. If c is bounded c-cyclical monotonicity of Γ

immediately implies that

lim inf
n

1
n

n∑
i=1

c(xi, yi+1) − c(xi, yi)

= lim inf
n

1
n

n−1∑
i=1

c(xi, yi+1) − c(xi, yi) + c(xn, y1) − c(xn, yn) + c(xn, yn+1) − c(xn, y1)

 ≥ 0

for any (xi, yi)i ∈ ΓN. In the general case fix (x0, y0) ∈ Γ. For (xi, yi)i≥1 ∈ ΓN we have by
cyclical monotonicity (thinking yn+2 = y0) that for any n using c ∈ [0,∞)

c(x0, y1) +

n∑
k=1

(c(xk, yk+1) − c(xk, yk)) + c(xn+1, y0) ≥ c(x0, y0) + c(xn+1, yn+1) ≥ 0.

Since c(x0, y1)/n→ 0 this implies that

lim inf
n

1
n

n∑
k=1

(c(xk, yk+1) − c(xk, yk)) +
c(xn+1, y0)

n
≥ 0. (1.5)

In particular, if we are able to show that lim infn
c(xn+1,y0)

n = 0 κ-a.s. equation (1.5) implies
the desired κ-a.s. positivity of the integrand in (1.4). To this end, put g((xi, yi)i) := c(x1, y0)
so that we have g ◦ σn = c(xn+1, y0). Since g is finitely valued g/n→ 0 in κ−measure and,
since σ is measure preserving, g ◦ σn/n → 0. Passing to a subsequence if necessary, the
convergence holds κ-a.s. concluding the proof. �

1.3. Uniqueness and existence of optimal transport maps. In the last section we have
seen that there is always an optimal coupling as soon as the cost function is l.s.c. and suffi-
ciently bounded. In Theorem 1.29 we have seen that optimal couplings are concentrated on
c-cyclical monotone sets. In this section we want to use this information to find conditions
under which the optimal coupling is induced by an optimal transport map. In particular, in
these cases the solutions to the Kantorovich problem and the Monge problem coincide and
we are sometimes able to deduce uniqueness of the optimal coupling.

Remark 1.37. The cost function must play a role in these questions! For instance, if X =

Y = R, µ and ν are arbitrary, but the supremum of the support of µ is smaller than the
infimum of the support of ν, and c(x, y) = |x − y|, then any coupling with these marginals
is optimal for the Kantorovich problem. On the other hand, the marginal measures must
also play a role in these questions! For instance, if now X = Y = R2, c(x, y) = |x − y|2,
µ = 1/2δ(0,−1) + 1/2δ(0,1) and ν = 1/2δ(−1,0) + 1/2δ(1,0), then any coupling with these
marginals is optimal for the Kantorovich problem. Hence we must pay attention to all the
data of the problem.

By Theorem 1.29 we know that an optimal coupling is concentrated on the superdiffer-
ential ∂c̄ϕ of a c̄-concave function ϕ. In particular, if we can show that for µ-a.e. x ∈ X the
set ∂c̄ϕ(x) is single-valued any optimal coupling q needs to be induced by a transport map.

Theorem 1.38 (Brenier, Rüschendorf). Let X = Y = Rn, c(x, y) = 1
2 |x − y|2. Assume

that µ, ν ∈ P(X) have finite second moment, i.e.
∫
|x|2dµ(x) +

∫
|x|2dν(x) < ∞. Moreover,

assume that µ � Leb.
Then, there is a unique optimal coupling q∗ ∈ Cpl(µ, ν). This optimizer is of the form

q∗ = (Id,∇ϕ̄)(µ) for some convex function ϕ̄ : X→ R.
Moreover, there exists a µ-a.e. unique map T of the form T = ∇ϕ̄ such that T (µ) = ν

and for any convex ϕ̃, the map T̃ = ∇ϕ̃ is optimal between µ and T̃ (µ).

Proof. The assumptions of Theorem 1.29 are satisfied with a(x) = b(x) = |x|2. Hence,
there exists a c-concave function ϕ such that supp(q) ⊆ ∂cϕ for any optimal coupling q.
By Example 1.27, the function ϕ̄(x) =

|x|2

2 − ϕ(x) is convex. Since a convex function is
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locally Lipschitz (on the set where it is finite) it is differentiable Leb-a.e. by Rademacher’s
theorem so that ∇ϕ̄(x) = x−∇ϕ(x) exists µ-a.e. Furthermore, on the set of differentiability
of ϕ̄ it holds that ∇ϕ̄(x) = y iff y ∈ ∂cϕ(x). Hence, any optimal coupling q is concentrated
on the graph of ∇ϕ̄.

This immediately implies that the optimal coupling is unique. Indeed, assume there are
two optimal couplings q1, q2 both concentrated on the graph of some maps T1,T2. Then,
q3 = 1

2 (q1 + q2) is optimal again by linearity of the Kantorovich problem. By the first part
of the theorem, q3 has to be concentrated on the graph of some function. By construction
it is concentrated on the union of the graphs of T1 and T2. This is only possible if T1 = T2
µ-a.s.

For the last statement, any ∇ϕ̄ with ∇ϕ̄(µ) = ν is optimal since the graph defines a
c-cyclical monotone set. By uniqueness, we can conclude. �

Remark 1.39 (Uniqueness). Observe, that we proved uniqueness by showing that any opti-
mal coupling has to satisfy a property which is not stable under convex combinations (here
being concentrated on the graph of a function). This is essentially the only way we can
prove uniqueness of optimal couplings.

Remark 1.40. One can relax the condition µ � Leb a little bit. From the proof it is clear
that it is sufficient to assume that µ does not charge the set of non-differentiability points
of convex functions. For instance it would be sufficient to assume that µ does not charge
any set of Hausdorff dimension less or equal than n − 1. We will refer to this property by
saying µ does not charge small sets.

Remark 1.41. The question of regularity of the optimal transport maps is an interesting
story in itself which goes way beyond the scope of this course. Obviously the least we
must assume is that the marginals have a convex support. If additionally µ and ν have
α−Hölder continuous densities then the optimal map is C1,α. If these densities are only
bounded from above and below, the optimal maps are only Cα for some α < 1.

In Brenier’s theorem we could show that ∂cϕ(x) is single-valued µ a.s. by playing ev-
erything back to convex functions. However, the two properties that we really needed are
the following: If ϕ is c-concave and (x, y) ∈ ∂cϕ then

• ϕ, c(·, y) are differentiable at x (µ-a.e.) with ∇ϕ(x) = ∇xc(x, y)
• ∇xc(x, ·) is invertible.

Assuming differentiability of ϕ and c the second part of the first item can be argued via
c-concavity (ϕ(x) = c(x, y)−ϕc(y), ϕ(z) ≤ c(z, y)−ϕc(y) all z ∈ X). If the second item holds,
then y = (∇xc(x, y))−1 (∇ϕ(x)) so that we can write down a map x 7→ y with (x, y) ∈ ∂cϕ
implying uniqueness as for Brenier’s result.

Let us consider two cases:
i) c(x, y) = h(x − y), with h superlinear and strictly convex (e.g. h(x) = |x|2/2)

ii) c(x, y) = h(|x − y|), with h strictly concave.
Let us start with i). Then, ∇xc(x, y) = ∇h(x − y) and ∇h is defined (a.e.) and invertible

with (∇h)−1 = ∇h∗ where h∗(y) = supx x · y − h(x) is the Legendre transform of h. This
means that ∇xc(x, y) = u ⇔ y = x − ∇h∗(u). Thus, if ϕ is c-concave and differentiable at
x, then

∂cϕ(x) = {x − ∇h∗(∇ϕ(x))}.
In this situation one can show that a c-concave function is locally Lipschitz on the interior
of the set where it is finite (short int(Dom(ϕ))). Then, Rademacher’s theorem implies that
ϕ is differentiable Leb-a.e. on int(Dom(ϕ)). Summarizing we obtain

Theorem 1.42 (Gangbo-McCann, [GM96]). Let X = Y = Rn, c(x, y) = h(x − y) where h
is superlinear, strictly convex and bounded from below. Let µ, ν ∈ P(X) with µ � Leb.
Assume that PK

c < ∞. Then, there exists a unique optimal coupling q∗. It is a Monge
coupling induced by a transport map of the form T (x) = x−∇h∗(∇ϕ(x)) for some c-concave
function ϕ.
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Furthermore, any map T of this form is optimal between µ and T (µ).

Let us turn to item ii) so c(x, y) = h(|x− y|) with h : R+ → R strictly concave and h ≥ 0.

Theorem 1.43 (Gangbo-McCann, [GM96]). Assume PK
c < ∞. Put µ0 = (µ − ν)+, ν0 =

(µ − ν)−, µ ∧ ν = µ − µ0 = ν − ν0. Then, there is a unique optimal coupling q∗. Write
q∗ = q∗d + q∗o with q∗d = q∗

|{(x,x):x∈Rd}
. Then, q∗d = (Id, Id)(µ ∧ ν) and q∗o is a Monge coupling

induced by a map T of the form T (x) = x − ∇h∗(∇ϕ(x)) µ-a.e. for some c-concave ϕ.

Remark 1.44. If µ, ν are two measures, then µ∧ν denotes their minimum (or common mass)
in the lattice sense: µ∧ν is a measure, µ∧ν(A) ≤ min{µ(A), ν(A)} for all measurable A, and
if ρ satisfies this then ρ(·) ≤ µ∧ ν(·). It can be checked that µ∧ ν(A) = infB{µ(B) + ν(A\B)}
with the inf running over the measurable subsets of A. If µ, ν have densities then so does
µ ∧ ν and its density is the pointwise minimum of these.

The crucial idea to prove the above theorem relies on the following observation. Wlog
we can assume c(x, x) = h(0) = 0. Then the strict concavity of h implies that c is a
metric with strict triangular inequality (Exercise!). Then, the common mass has to stay
put. Indeed, we have the following result:

Lemma 1.45. Let µ, ν ∈ P(X), c a metric on X. Let q ∈ Cpl(µ, ν), µ ∧ ν = µ − (µ − ν)+ =

ν − (ν − µ)+. Then, qd ≤ (Id, Id)(µ ∧ ν). If c satisfies the strict triangular inequality and q
is optimal for c, then there is equality.

Proof. Exercise. �

Arguing as in the convex case yields the result.

Example 1.46. (The one-dimensional case) Let X = Y = R, c(x, y) = h(y − x) for some
strictly convex h, e.g. h(r) = |r|p, p > 1, and assume that the Kantorovich problem is finite.
Pick a c-c.m. set Γ and (xi, yi) ∈ Γ for i = 1, 2. Wlog we can assume that y1 < y2. We want
to understand whether c-c.m. forces x1 ≤ x2 or x2 ≤ x1? Note that these are geometric
constraints on Γ.

Put a = y2 − y1 > 0. Setting

b = y1 − x1, d = y1 − x2

we have
b + a = y2 − x1, d + a = y2 − x2.

Since Γ is c-c.m., (1.1) with n = 2 implies

h(b) + h(d + a) ≤ h(b + a) + h(d)
⇔ h(d + a) − h(d) ≤ h(b + a) − h(b).

Since h is strictly convex and a > 0 the map x 7→ h(x + a) − h(x) is (strictly) increasing
implying b > d and hence x1 < x2.

Note that this property uniquely determines any coupling q living on Γ to be the quan-
tile coupling/monotone rearrangement between its marginals (see Problem 11). More pre-
cisely, if q has marginals µ and ν with cumulative distribution functions Fµ and Fν, then
we must have

q = (F−1
µ , F

−1
ν )(Leb|[0,1]).

Notice that in this one-dimensional case we essentially did not have to assume anything on
the marginal distributions to obtain uniqueness. However, if e.g. µ is atomless the optimizer
is of Monge type with an explicit description:

q = (F−1
µ , F

−1
ν )(Leb|[0,1]) = (id, F−1

ν ◦ Fµ)(µ).

Observe, that in the one-dimensional case we only considered cyclical monotonicity
using 2-cycles. A set Γ ⊆ X × Y satisfying (1.1) for n = 2 is called monotone set. In
dimension 1 monotonicity is equivalent to c-cyclical monotonicity for c(x, y) = h(x − y)
and h strictly convex. In higher dimensions this is not true any more. Furthermore, in
higher dimensions the optimizer(s) will typically depend on the function h.
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1.4. Wasserstein distance and interpolation of probability measures. For various ap-
plications of optimal transport a key object are the Kantorovich-Wasserstein distances Wp.
They inherit various geometric properties of the base space and induce an useful interpo-
lation of probability measures.

We consider a Polish space X with a compatible metric d and cost functions c(x, y) =

dp(x, y), p ≥ 1. We will consider product spaces Xn and denote by proji : Xn → X the
projection onto the i-th coordinate. Similarly, proji, j denotes the projection onto the i-th
and j-th coordinate.

We denote the set of probability measures with finite p-th moment by

Pp(X) =

{
µ ∈ P(X) :

∫
dp(x, x0)µ(dx) < ∞, for some, hence any x0 ∈ X

}
.

Definition 1.47. The Lp Wasserstein distance Wp is defined for µ, ν ∈ Pp(X) as

Wp(µ, ν) =

(
inf

q∈Cpl(µ,ν)

∫
dp(x, y)q(dx, dy)

) 1
p

=

(∫
dp(x, y)q∗(dx, dy)

) 1
p

for any optimal coupling q∗.

Let us show that Wp is in fact a distance. The most difficult part is the triangle inequality.
To show this we will rely on the following result.

Lemma 1.48 (Glueing lemma). Let X,Y,Z be three Polish spaces and q1 ∈ P(X×Y), q2 ∈

P(Y × Z) be two probability measures such that projY(q1) = projY(q2). Then there exists a
measure q3 ∈ P(X × Y × Z) such that

projX,Y(q3) = q1, and projY,Z(q3) = q2.

Proof. Use the disintegration theorem to write with µ(dy) = projY(q1)(dy) the measures
q1(dx, dy) = (q1)y(dx)µ(dy), q2(dy, dz) = (q2)y(dz)µ(dy) and conclude putting

q3(dx, dy, dz) = (q1)y(dx)µ(dy)(q2)y(dz).

�

This allows us to show that Wp are distances:

Theorem 1.49. Wp defines a distance on Pp(X).

Proof. Since d(x, y) = d(y, x) it follows that Wp(µ, ν) = Wp(ν, µ) and Wp(µ, µ) = 0. If
Wp(µ, ν) = 0 there is a coupling q∗ (note that dp is continuous and bounded from below
so that we have existence of optimal couplings) which is concentrated on the diagonal
{(x, x) : x ∈ X} since d(x, y) = 0 iff x = y. Hence, µ = ν.

It remains to show the triangle inequality. To this end, pick µ1, µ2, µ3 ∈ Pp(X) and let q1
be optimal between µ1 and µ2 and q2 be optimal between µ2 and µ3. By the gluing lemma
there exists a measure q3 ∈ P(X3) such that proj1,2(q3) = q1, proj2,3(q3) = q2. Moreover,
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proj1,3(q3) ∈ Cpl(µ1, µ3). Hence, it follows from the triangle inequality in Lp(q3) that

Wp(µ1, µ3) ≤
(∫

dp(x, z) proj1,3(q3)(dx, dz)
) 1

p

=

(∫
dp(x, z)q3(dx, dy, dz)

) 1
p

≤

(∫
(d(x, y) + d(y, z))p q3(dx, dy, dz)

) 1
p

≤

(∫
d(x, y)pq3(dx, dy, dz)

) 1
p

+

(∫
d(y, z)pq3(dx, dy, dz)

) 1
p

=

(∫
d(x, y)pq1(dx, dy)

) 1
p

+

(∫
d(y, z)pq2(dy, dz)

) 1
p

=Wp(µ1, µ2) + Wp(µ2, µ3).

Finally, we need to show that Wp is real valued. From the triangle inequality we obtain

Wp(µ, ν) ≤ Wp(µ, δx0 ) + Wp(ν, δx0 ) =

(∫
dp(x, x0)(dµ(x) + dν(x))

) 1
p

< ∞

by definition of Pp(X). �

Remark 1.50. From the Kantorovich-Rubinstein formula one can directly show that W1
defines a distance. On the other hand, observe that if X = R, d = | · |, then

Wp(µ, ν) =

(∫
R

|F−1
µ (x) − F−1

ν (x)|pdx
) 1

p

.

In general there is no closed form solution for this distance.

Example 1.51. Let µi = N(mi, σi) for i = 1, 2. If X ∼ µ1, then Y := (X−m1)(σ2/σ1)+m2 ∼

µ2. Now x 7→ (σ2/σ1)(x − m1) + m2 is increasing so it is optimal between µ1 and µ2 and
we can calculate W2(µ1, µ2)2, assuming m1 = m2 = 0 for simplicity:∫ ∣∣∣∣∣x(1 −

σ2

σ1
)
∣∣∣∣∣2 µ1(dx) = (1 −

σ2

σ1
)2σ2

1 = |σ1 − σ2|
2,

so in particular W2(µ1, µ2) = |σ1 − σ2| if µ1 and µ2 are centered.

Let us explore the connection between convergence in Wasserstein distance and weak
convergence:

Lemma 1.52. Suppose that the metric d is bounded. Then convergence in Wasserstein
distance, and weak convergence, coincide.

Proof. Evidently p plays here no role so take p = 1. Fix some x̄ ∈ X and observe that if
f : X → R is 1-Lipschitz w.r.t. d and f (x̄) = 0 then ‖ f ‖∞ ≤ supx,y d(x, y) < ∞. By the
Kantorovich-Rubinstein formula

W1(µ, ν) = sup
f 1−Lipschitz

∫
f d(µ − ν) = sup

f∈K

∫
f d(µ − ν),

with K being the set of 1-Lipschitz functions with value zero at x̄. By the Arzela-Ascoli
theorem K is uniformly continuous, and in fact compact for the supremum norm. It is then
easy to see that if µn → µ weakly, then W1(µn, µ) → 0. Conversely, if W1(µn, µ) → 0 then∫

f dµn →
∫

f dµ for all f Lipschitz, and then by an approximation argument (exercise),
for all f continuous and bounded. �

The question arises, as to what is the precise connection between weak convergence and
convergence in Wasserstein distance for unbounded metrics. The answer is:
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Theorem 1.53. Wp(µn, µ)→ 0 iff both µn → µ weakly and∫
dp(x, x0)dµn(x)→

∫
dp(x, x0)dµ(x),

for some x0 ∈ X.

For the proof we refer to e.g. [San15, Section 5]. We also stress that this result can be
strengthened by replacing the condition “

∫
dp(x, x0)dµn(x) →

∫
dp(x, x0)dµ(x) for some

x0 ∈ X” by “
∫

f (x)dµn(x) →
∫

f (x)dµ(x) for all f continuous such that | f (·)| ≤ C[1 +

dp(·, x0)]”. We also stress that if the metric d is complete, then also (Pp(X),Wp) is a
complete metric space.

To recap: the number Wp(µ, ν) measures the distance between µ and ν. Now we want
to take one step further and ask what is the optimal path from µ to ν? This leads us to a
time dependent problem. We restrict ourselves to the case of X = Y = Rn and will write
(Tt x)0≤t≤1 for the trajectory of x between time 0 and time 1. We will write C[Tt x] for the
associated cost of this trajectory.

Definition 1.54. The time-dependent Monge problem is given by

inf
{∫

C[Tt x]dµ(x),T0 = Id,T1(µ) = ν

}
, (1.6)

where the infimum runs over all continuous and piecewise C1 curves (Tt x)0≤t≤1 for µ almost
all x.

Observe, that (1.6) is compatible with (MP) for the cost c(x, y) (in the sense that the
optimizer are equivalent, i.e. each (Tt)t gives rise to an optimal T = T1 for (MP) and vice
versa) if for all x and y

c(x, y) = inf{C[(zt)0≤t≤1], z0 = x, z1 = y}. (1.7)

Example 1.55. Let p ≥ 1 and C[(zt)] =
∫ 1

0 |żt |
pdt, with żt denoting the time derivative of

the curve zt. Then, defining c(x, y) as in (1.7) yields the cost c(x, y) = |x− y|p. In fact, more
generally as a consequence of Jensen’s inequality it holds that if c : Rn → R is convex,
then

inf
{∫ 1

0
c(żt), z0 = x, z1 = y

}
= c(y − x).

This means that straight lines with constant speed are optimal.

Example 1.56. In the setting of the previous example, it is often useful to consider the
probabilistic notation: One minimizes over continuous-time stochastic processes {Zt}t∈[0,1]
with absolutely continuous paths such that Z0 ∼ µ and Z1 ∼ ν. The cost function is then

E
[∫ 1

0 |Żt |
pdt

]
.

Combining these observations with Theorem 1.42 we arrive at the following result.

Theorem 1.57. Let c(x, y) = h(y− x) for some superlinear and strictly convex h : Rn → R.

Let µ � Leb and let C[(zt)] =
∫ 1

0 h(żt)dt. Then, there is a unique ∇ϕ for some c-concave
function ϕ such that the solution to (1.6) is given by

Tt(x) = x − t∇h∗(∇ϕ(x)), 0 ≤ t ≤ 1.

Remark 1.58. Of course one can formulate also time dependent versions of (KP) in the
obvious way. For instance if a coupling q∗ is optimal for a static problem then qt defined
by (Id, Id +t(proj2 − proj1))(q∗) is a sensible time-denpendent version which can be shown
to be optimal for a suitable time-dependent problem if the cost functions are compatible as
above. We will not dive into this now.

We now want to focus on a very special case which is maybe the most important case
since it carries a lot of geometric information. We will consider now the case of X = Y = Rn

(you can also think of X being a Riemannian manifold) and c(x, y) = |x− y|2 (in case of the
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Riemannian manifold c(x, y) = d(x, y)2 where d denotes the geodesic distance). This leads
to a remarkable interpolation between probability measures which is called displacement
interpolation. It was invented by Robert McCann. We will discuss the special situation
where we can grant existence of optimal transport maps. However, this is not necessary for
the results which we present and with slightly more care one can formulate corresponding
results using couplings, see also Remark 1.64.

Assume that µ and ν do not charge small sets. By Theorem 1.38, there exists convex
function ϕ̄ such that ∇ϕ̄(µ) = ν (and ∇ϕ̄∗(ν) = µ where ϕ̄∗ is the Legendre dual of ϕ̄).
Define

ρt := [µ, ν]t := ((1 − t) Id +t∇ϕ̄)(µ), 0 ≤ t ≤ 1.

(Observe that ρt = Tt(µ) for the map Tt induced by Theorem 1.57. To see this recall the
functions ϕ and ϕ̄ appearing in in the proof of Theorem 1.38.)

Lemma 1.59. With notation and assumption as above there holds
(i) [µ, ν]0 = µ, [µ, ν]1 = ν;

(ii) W2(µ, µt) = tW2(µ, ν), i.e. the path [0, 1] 3 t 7→ µt is a geodesic between µ and ν
for the distance W2;

(iii) [µ, ν]t = [ν, µ]1−t;
(iv)

[[
µ, ν

]
t ,

[
µ, ν

]
t′
]

s =
[
µ, ν

]
(1−s)t+st′

(v) if µ � Leb (or ν � Leb by symmetry), then
[
µ, ν

]
t � Leb for all t ∈ (0, 1).

Proof. Item (i) is immediate. To show (ii) observe that (1 − t) Id +t∇ϕ̄ = ∇
(

(1−t)|·|2

2 + tϕ̄
)

is
the gradient of a convex function. Hence, it is the optimal transport map from µ to ρt by
Theorem 1.38. Then,

W2
2 (µ, ρt) =

∫
|x − ((1 − t)x + t∇ϕ̄(x)|2 µ(dx) = t2

∫
|x − ∇ϕ̄(x)|2 µ(dx) = t2W2

2 (µ, ν).

To show (iii) observe that

[µ, ν]t =((1 − t) Id +t∇ϕ̄)(µ) = ((1 − t) Id +t∇ϕ̄)(∇ϕ̄∗(ν))

= (((1 − t) Id +t∇ϕ̄) ◦ ∇ϕ̄∗) (ν) = ((1 − t)∇ϕ̄∗ + t Id)(ν)

Item (iv) is a direct computation. To show the last item (v) define

ϕ̄t(x) =
(1 − t)|x|2

2
+ tϕ̄(x)

so that ρt = ∇ϕ̄t(µ). Using µ � Leb it can be shown that ρt(A) = µ(∂ϕ̄∗t (A)) (e.g. [Vil03,
Lemma 4.6]). Then, it is sufficient to show that ϕ̄∗t is Leb-a.e. differentiable with Lipschitz
constant bounded from above since this implies that if A is a null set then ∂ϕ̄∗t (A) is also a
null set proving the claim. To this end, observe that

〈∇ϕ̄t(x) − ∇ϕ̄t(y), x − y〉 ≥ (1 − t)|x − y|2

so that by Cauchy-Schwarz

|∇ϕ̄t(x) − ∇ϕ̄t(y)| ≥ (1 − t)|x − y|. (1.8)

Hence, ϕ̄t is uniformly convex and its Legendre dual ϕ̄∗t is everywhere differentiable with
∇ϕ̄∗t = (∇ϕ̄t)−1 (e.g. [Roc97, Theorem 26.3]. In particular, ∇ϕ̄∗t is Lipschitz with constant
bounded by 1

1−t . This concludes the proof. �

Remark 1.60. Of course one can also consider displacement interpolation w.r.t. other cost
functions than c(x, y) = |x − y|2. For these interpolations one uses the maps from Theorem
1.57 and it is possible to derive corresponding properties. We will not pursue this direc-
tion but refer to e.g. [San15, Section 5]. However, for many applications the L2 case is
sufficient.

Remark 1.61. In dimension one, we have that [µ, ν]t is the measure whose quantile is equal
to (1 − t)F−1

µ + tF−1
ν .
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Observe that the displacement interpolation has a considerably different nature than
usual linear interpolation

(1 − t)µ + tν.
Since the measure are transported along curves in X this interpolation is able to capture
geometric properties of the base space. An important example is the convexity of function-
als on the space P2(X) w.r.t. displacement interpolation. This convexity is called displace-
ment convexity. For instance, this is useful to show uniqueness of minimizers to certain
functionals (in fact, this was the motivation to introduce this concept in [McC94]).

Definition 1.62 (Displacement convexity). Denote the the set of absolutely continuous
probability measures ρ � Leb by Pac(Rn).

(i) A subset P ⊆ Pac(Rn) is called displacement convex if it is closed under displace-
ment interpolation: for all µ, ν ∈ P, t ∈ [0, 1] also [µ, ν]t ∈ P.

(ii) A functional F : P → R is called displacement convex if for all µ, ν ∈ P and
t ∈ [0, 1] it holds that

F([µ, ν]t) ≤ (1 − t)F(µ) + tF(ν).

Example 1.63. Denote by Pm the set of all probability measures with mean m. Then, Pm

is displacement convex.

Remark 1.64. Note that if q∗ is the optimal coupling between µ and ν and et : X × X → X
is given by (x, y) 7→ (1 − t)x + ty then, q∗t := [µ, ν]t := et(q∗) is a geodecic in the sense of
Lemma 1.59 (ii). Also, the other items of Lemma 1.59 extend to this setup. However, note
that since the optimal coupling need not be unique this interpolation (potentially) depends
on the choice of coupling (e.g. if µ = 1

2 (δ(0,0) + δ(1,1)), ν = 1
2 (δ(1,0) + δ(0,1)) every coupling is

optimal, each leading to a different interpolant).
Still one can also talk about displacement convexity in this setup if one asks functionals

F to be convex for any possible interpolation.

There are three basic examples of displacement convex functionals:
a) internal energy: U(ρ) =

∫
Rn U(ρ(x))dx , where U : R+ → R ∪ {∞} is measurable,

ρ(dx) = ρ(x)dx ∈ Pac (if ρ < Pac thenU(ρ) = ∞);
b) potential energy: V(ρ) =

∫
Rn V(x)dρ(x), where V : Rn → R ∪ {∞} is measurable;

c) interaction energy:W(ρ) = 1
2

∫
Rn×Rn W(x−y)ρ(dx)ρ(dy), where W : Rn → R∪{∞}

is measurable.
Examples for functionals U that have been of major interest in the last years are U(ρ) =

ργ, for γ ≥ 1 and U(ρ) = ρ log ρ so thatU is the entropy. There is a general theorem grant-
ing displacement convexity of these functionals (or arbitrary sums of these functionals) for
which we refer to [Vil03, Theorem 5.15]. We only prove the easiest case:

Theorem 1.65 (Criteria for displacement convexity). Let P (e.g. ⊆ Pac) be a displacement
convex set on which V is well defined with values in Rn ∪ {∞}. Then, V is displacement
convex if V is convex. Conversely, ifV is displacement convex on P(Rd), then V is convex.

Proof. Assume that V is convex. We argue for the case that P ⊆ Pac, the general is similar
with a bit more notation/analysis. Let ρ0, ρ1 ∈ Pac and for t ∈ [0, 1] put ρt = [ρ0, ρ1]t =

Tt(ρ0) with Tt(x) = (1 − t) Id +t∇ϕ̄ for some convex function ϕ̄ =: T with T (ρ0) = ρ1.
Then,

V(ρt) =

∫
V(x)ρt(dx) =

∫
V(Tt(x))ρ0(dx)

=

∫
V((1 − t)x + tT (x))ρ0(dx) ≤

∫
(1 − t)V(x) + tV(T (x))ρ0(dx)

=

∫
(1 − t)V(x)ρ0(dx) + tV(x)T (ρ0)(dx) = (1 − t)V(ρ0) + tV(ρ1).

For the converse direction it is sufficient to consider the displacement interpolation between
two Dirac-measures δx and δy which directly yields the assertion. �
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Observe, that for this theorem to hold it is not necessary that we consider a map T of
the form ∇ϕ̄ for some convex ϕ̄. The important thing is that we transport along geodesics
on the base space (straight lines on Rn).

Also note that for the linear interpolation (1 − t)ρ0 + tρ1 we only get that ρ 7→ V(ρ) is
linear for any function V . In particular, we cannot capture any convexity properties of V .
For instance if V is strictly convex displacement convexity allows to argue the existence
of a unique minimizer of the functionalV (assume there are two, consider a displacement
interpolation and use the strict convexity of V to derive a contradiction).

Before closing this section we want to take another differentiable point of view on the
Kantorovich-Wasserstein distance W2. To this end, let us consider as above a family of
maps Tt such that the maps (t, x) 7→ Tt(x) and T−1

t (x) are Lipschitz on [0, 1] × K for all
compact K ⊆ Rn, and ρt := Tt(µ) defines a curve of probability measures connecting µ
and ρ1. Since Tt(x) is assumed to be locally Lipschitz we can associate a velocity field
v(t, x) = d

dt Tt(x) to these trajectories. We then have the following result:

Theorem 1.66. The curve ρt is a solution to the linear transport equation

∂tρt + ∇ · (vtρt) = 0, ρ0 = µ. (1.9)

Remark 1.67. The divergence operator ∇· is defined via duality
∫

f d∇ · m := −
∫
∇ f dm

where f is a smooth test function and m a vector valued measure (loosely speaking sth that
can be written as m(dx) = (m1(dx), . . . ,mn(dx))). Similarly, the time derivative ∂tρt should
be understood in a weak form. One can also show that ρt is unique but we do not show this
here.

Remark 1.68. Equation (1.9) is known in physics as the identity of conservation of mass
and also called continuity equation.

Proof. Disclaimer: We will be short on some analytical details since this is not the core of
this lecture.

Let f ∈ C∞c be a smooth test function. Then,
∫

f dρt =
∫

f ◦ Ttdµ. By assumption T−1
t

is continuous so that f ◦ Tt is compactly supported uniformly in 0 ≤ t ≤ 1, Lipschitz so
that for almost all x, t

d
dt

f ◦ Tt = (∇ f ◦ Tt) ·
dTt

dt
= (∇ f ◦ Tt) · (vt ◦ Tt).

Hence, for h > 0 we obtain
1
h

(∫
f dρt+h −

∫
f dρt

)
=

∫
f ◦ Tt+h(x) − f ◦ Tt(x)

h
µ(dx)

By the Lipschitz property the integrand is uniformly bounded and we can pass to the limit
to see that t 7→

∫
f dρt is differentiable for almost all t and we obtain

d
dt

∫
f dρt =

∫
(∇ f ◦ Tt) · (vt ◦ Tt)dµ =

∫
∇ f · vtdρt.

which is precisely our claim. �

As a next step we want to picture µ as a distribution of gas particles which are supposed
to move in space over the time interval [0, 1]. At time 1 they are distributed according to ν.
If they move along trajectories Tt x with velocity vt and distribution ρt at time t their kinetic
energy at time t is given by

Et =

∫
|vt |

2ρt(x)dx

and (ρt, vt) have to satisfy (1.9). To each pair (ρt, vt)t∈[0,1] we can associate the action

A(ρ, v) =

∫ 1

0

∫
|vt |

2ρt(x)dxdt.

This is the total effort needed to move particles around with the velocity field v. Then, the
natural question is what is the minimal action needed to move µ to ν? This leads us the
Benamou-Brenier minimization problem:
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Definition 1.69 (Benamou-Brenier minimization problem). Minimize A(ρ, v) among all
(ρ, v) = (ρt, vt)0≤t≤1 ∈ V(µ, ν) where V(µ, ν) consists of all (ρ, v) such that ρ ∈ C([0, 1],Pac(Rn)),
vt ∈ L2(dρt(x)dt), (ρ, v) satisfies the continuity equation (1.9) in a weak sense, and ρ0 =

µ, ρ1 = ν.

We have the following remarkable result:

Theorem 1.70 (Benamou-Brenier). For µ, ν ∈ Pac(Rn) ∩ P2(Rn) there holds

W2
2 (µ, ν) = inf

(ρ,v)∈V(µ,ν)
A(ρ, v).

We only give a sketch of the proof leaving aside all technical problems coming from
potential non-smoothness of candidates (ρ, v).

Sketch of the proof. We first show inf(ρ,v)∈V(µ,ν) A(ρ, v) ≥ W2
2 (µ, ν) = infT,T (µ)=ν

∫
|T (x) −

x|2µ(dx) since µ � Leb. If (ρ, v) is sufficiently smooth we can define Tt(x) as the solution
of dTt(x)

dt = vt(Tt(x)) with initial datum T0(x) = x. Since (ρ, v) solves the continuity equation
one can show that Tt(µ) = ρt (essentially as a consequence of uniqueness in Theorem 1.66
which we did not discuss). In particular,∫

|vt(x)|2dρt(x) =

∫
|vt(Tt(x))|2dρ0(x) =

∫ ∣∣∣∣∣ d
dt

Tt(x)
∣∣∣∣∣2 dρ0(x)

Integrating this equality in t and using Jensen’s inequality we obtain

A(ρ, v) =

∫ 1

0

∫
|vt(x)|2ρt(dx) =

∫ ∫ 1

0

∣∣∣∣∣ d
dt

Tt(x)
∣∣∣∣∣2 dt dρ0(x)

≥

∫ ∣∣∣∣∣∣
∫ 1

0

d
dt

Tt(x)dt

∣∣∣∣∣∣2 dρ0(x) =

∫
|T1(x) − T0(x)|2ρ0(dx)

=

∫
|T1(x) − x|2ρ0(dx).

Since, T1(µ) = ν we obtain A(ρ, v) ≥ W2
2 (µ, ν). Hence, inf(ρ,v)∈V(µ,ν) A(ρ, v) ≥ W2

2 (µ, ν).
To show the other inequality, we will explicitly construct a pair (ρ, v) attaining equality.

To this end, let T = ∇ϕ̄ be the optimal transport map transporting µ to ν. As above set

Tt(x) = (1 − t)x + t∇ϕ̄(x) =: ∇ϕ̄t(x), ρt := Tt(µ).

We can then define the velocity field (defined ρt almost everywhere) by

vt =

(
d
dt

Tt

)
◦ T−1

t = (T − Id) ◦ T−1
t .

Similarly, as for Theorem 1.66 one can see that (ρt, vt) solves the continuity equation (1.9).
Moreover, for any nonnegative measurable function Φ we have∫

Φ(vt)dρt =

∫
Φ(vt ◦ Tt)dρ0 =

∫
Φ(T − Id)dρ0.

This applies in particular to Φ(v) = |v|2, so that for any t we have∫
|vt(x)|2dρt(x) =

∫
|T (x) − x|2dρ0(x) = W2

2 (µ, ν),

which implies the result. �

Remark 1.71. The Benamou-Brenier formulation of W2 as least action functional is not
only physically pleasing but also much better suited for generalizations of the differential
point of view of W2 to singular spaces like for instance graphs (see below for remarks on
the usefulness of the differential point of view).

The attentive reader might have wondered as to what the continuous-time counterpart
to the dual problem ought to be. We only sketch here the result in the particular case of
quadratic costs:



22 JULIO BACKHOFF-VERAGUAS AND MARTIN HUESMANN

Lemma 1.72. We have

1
2

W2(µ, ν) = sup
∫

u(1, y)dν(y) −
∫

u(0, x)dµ(x), (1.10)

where the supremum runs over the (viscosity) solutions u to the quadratic Hamilton-Jacobi
Equation with free boundary conditions:

∂tu +
1
2
|∇xu|2 = 0.

Proof. By duality the problem at hand is

sup
ψ∈Cb(Rn)

∫
ψ(y)dν +

∫
ψc(x)dµ,

for c(·) = ‖ · ‖2/2. Given ψ bounded and differentiable define u(t, x) = infy{(1 − t)c
(

y−x
1−t

)
−

ψ(y)}. Remark that u(1, x) = −ψ(y) and u(0, x) = ψc(x). Suppose now that there is a unique
minimizer y(t, x) attaining the infimum for u(t, x). Then we leave it as an exercise to show

• u(·, ·) is differentiable,
• ∇xu(t, x) = −∇c

(
y(t,x)−x

1−t

)
,

• ∂tu(t, x) = −c
(

y(t,x)−x
1−t

)
+

y(t,x)−x
1−t · ∇c

(
y(t,x)−x

1−t

)
,

and to derive from this that −∂tu+c∗(−∇xu) = 0, where c∗ is the Fenchel (convex) conjugate
of c. Finally redefining u to −u finishes the proof. �

Remark 1.73. The proof is written in such a way that you can guess the dynamic dual prob-
lem when the cost function c is more general than the square one (though one still needs
convexity and super-linearity). To make these arguments rigorous, even in the quadratic
case, one must accept the fact that u in the proof need not be differentiable, and provide a
suitable interpretation for the Hamilton-Jacobi PDE.

1.5. Outlook. In this section, we will give a very short outlook to possible directions one
could take now, all of which we will not pursue in this lecture (e.g. see [San15, Vil03,
Vil09, AG13, Gal18, PC19]).

• Detailed study of displacement convexity leads to proofs of functional/geometric
inequalitiy like log-Sobolev inequality, Poincare-inequality, Brunn-Minkowski in-
equality...

• Benamou-Brenier formulation of W2 resembles the formulation of a Riemann-
ian distance leading to a formal interpretation of (P2(X),W2) as an infinite di-
mensional Riemannian manifold. Hence, one can study gradient flows of various
functionals on P2. This leads to gradient flow representation of PDEs such as heat
flow, porous medium equation or Fokker-Planck equations.

• The study of displacement convexity properties of entropy functionals leads to
synthetic notions of curvature and dimension and thereby to lower ”Ricci“-curvature
and upper ”dimension” bounds of metric measure spaces. These spaces share var-
ious properties with classical Riemannian manifolds.

• Building numerical solver (interesting in itself) for the optimal transport prob-
lem leads to entropic variants of the problems which in turn are linked to the
Schrödinger problem.

• The optimal transport problem is used in image analysis and machine learning for
example as a “loss function”.

• The optimal transport problem has various applications in the economic literature,
for example in the context of mechanism design.

• Multimarginal versions of the problem are very natural objects. In a similar note,
rather than displacement interpolation between two measures, one may be inter-
ested in finding barycenters of multiple measures.
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1.6. Exercises.

I: Basic Material

Problem 1. (Absolute Continuity)
Ist folgendes Wahr?:

Für alle Wahrscheinlichkeitsmaße µ und ν auf X bzw. Y , gilt

π ∈ Π(µ, ν)⇒ π � µ ⊗ ν,

das heißt, der unabhängige Transportplan dominiert (im Sinne von absoluter Stetigkeit
von Massen) jeden anderen Transportplan. Wenn nicht, muss es immer einen anderen
dominierenden Plan π∗ ∈ Π(µ, ν) geben?

Problem 2. (Formulae)
Sei X = Y = Rn und µ, ν absolut stetig bzgl. dem Lebuesguemass auf Rn, mit den

Dichten f bzw. g. Finden Sie eine (heuristische) Bedingung/Formel für T : X → Y , die
nur von f und g abhängt, so dass T (µ) = ν gilt (d.h. ν ist gleich dem Bildmass von µ unter
T ). Finden Sie Beispiele für die T (µ) = ν gilt aber wo die gefundene Bedingung/Formel
sinnlos ist.

Problem 3. (On the Monge Case)
Gegeben T 1,T 2 mit T 1(µ) = T 2(µ) = ν, und Tλ := λT 1 + (1 − λ)T 2 mit λ ∈ [0, 1], muss

immer Tλ(µ) = ν gelten? Ist zu erwarten, dass die Bedingung T (µ) = ν im Allgemeinen
“kompakt in T” ist?

Problem 4. (Discrete Case)
Seien X = {x1, . . . , xn}, Y = {y1, . . . , yn} und µ,ν die Uniformverteilungen auf X,Y . Zu

beweisen ist die folgende Behauptung: Für eine Kostenfunktion c auf X × Y haben das
Kantorovich-Transportproblem und das Monge-Transportproblem (zwischen µ und ν) den
selben Wert, und es gibt mindestens eine optimale Monge Transport Map. Beweisen Sie
dazu die folgenden Argumente:

a) Das Kantorovich-Problem lässt sich als Optimierungsproblem über Doppelstochastis-
che Matrizen (von Grösse n × n) schreiben. Die Monge Maps entprechen genau
den Permutationsmatrizen.

b) Beweisen Sie Problem 4 in [[Vil03]: Warm-up Exercises], nähmlich, dass die
Menge der extremalen Punkte der Menge der Doppelstochastische Matrizen gleich
der Menge der Permutationsmatrizen ist.

c) Choquets Theorem (wie in [[Vil03]: Warm-up Exercises, Problem 3]) sagt, dass
ein lineares Optimierungsproblem auf einer kompaten Menge von mindestens
einem extremalen Punkt der Menge gelöst wird. Nutzen Sie (ohne Beweis) diesen
Satz um unsere Behauptung zu beweisen.

II: Duality

Problem 5. (Approximation Argument)
Sei (X, d) ein metrischer Raum und c eine nicht-negative unterhalbstetige Abbildung.

Zu beweisen ist, die Existenz einer Folge {cn}n die wachsend nach c punktweise kon-
vergiert, wobei jede cn nicht-negativ, beschränkt und gleichmäßig Stetig ist. (Hinweis:
untersuchen Sie die Abbildung x 7→ infy∈X[c(y) + nd(x, y)]).

Problem 6. (... Continuation ...)
Mithilfe von Frage 5, beweisen Sie dass die Funktion π ∈ P(X) 7→

∫
cdπ unterhalbstetig

bezüglich schwache Konvergenz ist.
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Problem 7. (Duality Gap)
Wir zeigen dass für meßbare Kostenfunktionen, die den Wert +∞ aufnehmen durfen,

die Kantorovich Dualität scheitern kann. Sei X = Y = [0, 1], und µ = ν = λ die Lebesgue-
maße auf [0, 1]. Als Kostenfunktion wählen wir

c(x, y) =


+∞ falls x < y
1 falls x = y
0 falls x > y.

Dann gilt:

a) Die Funktion c ist meßbar und nicht unterhalbstetig.
b) Der Wert vom Kantorovich (primal) Problem zwischen µ, ν und mit Kosten c,

gleicht 1.
c) Der Wert vom entsprechenden dualen Problem, gleicht 0.

Problem 8. (Duality for l.s.c. costs)
Let µ and ν be probability measures on X and Y. Moreover, Let c : X×Y→ R be a l.s.c.

function that is bounded from below and such that there exists a ∈ L1(µ) and b ∈ L1(ν)
with c(x, y) ≤ a(x) + b(y) for all x, y. Prove that

inf
π∈Cpl(µ,ν)

∫
X×Y

cdπ = sup
ϕ∈L1(µ), ψ∈L1(ν)
ϕ(x)+ψ(y)≤c(x,y)

∫
X
ϕdµ +

∫
Y
ψdν,

leveraging on the known result for continuous costs.

Hint: You can use Baire’s theorem on semi-continuous functions which states that any
lower-semicontinuous function (on a Polish space) is the pointwise limit of an increasing
sequence of continuous functions (cf. Problem 5).

III: The One-Dimensional Case

Problem 9. (Distance Cost)
Seien A, B ⊆ R disjunkte Intervalle, und seien µ, ν ∈ P(R) mit supp(µ) ⊆ A und

supp(ν) ⊆ B. Als Kostenfunktion betrachten wir c(x, y) = |x − y|. Zu zeigen ist, dass
für das entsprechende Kantorovich Problem jedes π ∈ Π(µ, ν) optimal ist.

Problem 10. (One-Dimensional Segments)
Sei X = Y = [−1, 1] × [0, 1] ⊆ R2. Sei µ ∈ P(X) gegeben durch das ein-dimensionale

Lebesgue-Maß auf {(0, y) ∈ R2 : y ∈ [0, 1]}. Sei ν ∈ P(Y) gleich 1/2 dem ein-dimensionale
Lebesgue-Maß auf {(−1, y) ∈ R2 : y ∈ [0, 1]} plus 1/2 dem ein-dimensionale Lebesgue-
Maß auf {(1, y) ∈ R2 : y ∈ [0, 1]}. Wir betrachten das Transport Problem mit Kostenfunk-
tion c((x1, x2), (y1, y2)) = (x1 − y1)2 + (x2 − y2)2; also der quadratische Fall. Zu beweisen
ist:

a) Weder µ noch ν ist absolut stetig bezüglich des zweidimensionalen Lebesgue-
Maßes.

b) Es existiert eine Monge Transport Map von µ nach ν. Genau genommen existiert
eine Folge {T n}n∈N von solchen Maps, deren Kosten gegen 1 konvergieren.

c) Der Wert des Kantorovich Problems ist 1, und es gibt keine zulässige Monge
Map, die ebenfalls diesen Wert erreicht.

Problem 11. (Monotone Rearrangement)
Wir untersuchen ein Transport Problem auf R. Seien µ, ν ∈ P(R) mit Verteilungsfunk-

tionen Fµ, Fν. Als Kostenfunktion wählen wir c(x, y) = h(y − x) mit h : R → R+ strikt
konvex. Sei λ das Lebesgue-Maß auf [0, 1]. Zu zeigen ist:
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a) Definiert man die Pseudoinverse F−1
µ (x) := inf{t ∈ R : Fµ(t) ≥ x}, dann ist F−1

µ

wachsend, rechts-stetig und es gilt (F−1
µ )#λ = µ.

b) Man definiere πmon := (F−1
µ , F

−1
ν )#λ. Das heißt πmon entspricht der Verteilung

des Zufallsvektors (F−1
µ (U), F−1

ν (U)), wobei U eine uniform auf [0, 1]-verteilte
Zufallsvariable ist. Dann gilt πmon ∈ Π(µ, ν) und πmon((−∞, a] × (−∞, b]) =

min{Fµ(a), Fν(b)}.
c) Sei π ∈ Π(µ, ν), für das die folgende Eigenschaft gilt:

Wenn (x1, y1), (x2, y2) ∈ supp(π) mit x1 < x2, dann gilt auch y1 ≤ y2.
Dann muss π = πmon gelten. (Hinweis: Betrachen Sie die Mengen (−∞, a] ×
(−∞, b].)

d) Angenommen das Kantorovich Problem hat endlichen Wert, dann es hat eine
einzige eindeutige Lösung, nämlich πmon.

Bemerkung (nichts zu beweisen): Man nennt πmon die “quantile transform”,
“Monotone rearrangement” oder auch “Fréchet coupling”. Wenn h nur konvex ist,
dann ist auch πmon optimal, aber nicht mehr eindeutig (siehe Frage 1). Wenn µ
keine Atome hat, dann ist πmon von Monge-Art und explizit von der Tansport Map
T := F−1

ν ◦ Fµ induziert.

Problem 12. (Concave Cost)

a) Let h : R≥0 → R≥0 be a strictly concave function, set c(x, y) := h(|x − y|) and let µ
and ν be probability measures on R. Suppose π∗ ∈ Cpl(µ, ν) is an optimizer of

inf
π∈Cpl(µ,ν)

∫
R2

h(|x − y|)dπ(x, y).

Show that there exists a set Γ ⊆ R2 with π∗(Γ) = 1 such that for all pairs (x1, y1),
(x2, y2) ∈ Γ the “corresponding arches do not cross”, i.e. the intersection

[min{x1, y1},max{x1, y1}] ∩ [min{x2, y2},max{x2, y2}]

is either empty, a single point or equal to one of the two intervals.
b) We denote by δx the point mass in x ∈ R. Let µ = 1

2 (δ−9 + δ1), ν = 1
2 (δ−1 + δ9).

For each p ∈ (0, 1), identify all optimizer of

inf
π∈Cpl(µ,ν)

∫
R2
|x − y|pdπ(x, y)

and compute the minimal transport cost. What do you observe?

IV: Fundamental Theorem of Optimal Transport, c-transforms and c-cyclical monotonicity

Problem 13. (Example of monotonicity)
Let h be a strictly convex function, set c(x, y) := h(y − x) for all x, y ∈ R. Let Γ ⊆ R2.

Show that Γ is c-cyclically monotone if and only if

∀(x1, y1), (x2, y2) ∈ Γ : x1 < x2 ⇒ y1 ≤ y2.

Hint: Let h : R→ R be a strictly convex function and let ε > 0. There holds h(a + ε) −
h(a) < h(b + ε) − h(b) if and only if a < b.

Problem 14. (Properties of the c-transform)
The goal of this exercise is to prove Lemma 1.20 from the lecture. Let c : X × Y → R

and ϕ : X→ R ∪ {−∞} be functions.
a) Show that ϕcc̄ := (ϕc)c̄ ≥ ϕ.
b) Prove that ϕcc̄ = ϕ if and only if ϕ is c̄-concave.

Hint: Use that for any function ψ : Y → R ∪ {−∞} there holds ψc̄c ≥ ψ (the
proof is very similar to a)).
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c) Show that ϕcc̄ is the smallest c̄-concave function larger than ϕ, i.e. show that any
c̄-concave function ϕ′ : X→ R ∪ {−∞} with ϕ′ ≥ ϕ satisfies ϕ′ ≥ ϕcc̄.

Problem 15. (Examples of c-concave Functions)
Let c : X2 → R and ϕ : X→ R be functions.

a) Suppose c = d is a metric on X. Show that the following are equivalent:
(i) ϕ is c-concave.

(ii) ϕ is 1-Lipschitz, i.e. |ϕ(x) − ϕ(y)| ≤ d(x, y) for all x, y ∈ X.
(iii) ϕ satisfies ϕc = −ϕ.

b) Suppose X = Rn and c(x, y) := −x · y is the standard Euclidean inner product.
Prove that ϕ is c-concave if and only if ϕ is u.s.c. and concave. Moreover, show
that

∂cϕ(x) = {a ∈ Rn : ϕ(y) ≤ ϕ(x) + a · (y − x) for all y ∈ Rn}.

c) Suppose X = Rn and c(x, y) := 1
2 ‖x − y‖2. Show that ϕ is c-concave if and only if

the function ϕ̄(x) := ‖x‖2

2 − ϕ(x) is l.s.c. and convex.

Problem 16. (An Application)
Lösen Sie Problem 11.(d) mithilfe vom Fundamentaler Satz optimaler Transport (Hin-

weis: man versucht die strikt konkavität von der Kostenfunktion zu widersprechen, in dem
man die Negation der Eigenschaft von Problem 11.(c) annimmt).

Problem 17. (Conjugacy and Inverses)
Show by hand that if ϕ is convex and ∇ϕ exists and is invertible, then (∇ϕ)−1 = ∇ϕ∗,

with ϕ∗ the convex conjugate. Now obtain this type of result, using the fundamental theo-
rem of optimal transport under the assumption that µ, ν have a density.

Problem 18. (Stability of Optimizers)
Consider c be continuous and bounded. Let qn be optimal between its marginals for the

cost function c, and suppose qn → q. Then q is optimal between its marginals for the cost
function c.

Problem 19. (Stability (Continued))
Let c : X × Y → R be continuous and bounded from below. Moreover, let (µn)n∈N

and (νn)n∈N be sequences of probability measures that converge weakly to the probability
measures µ and ν and let (cn)n∈N be a sequence of continuous cost functions on X × Y that
converge uniformly to c. For each n ∈ N, we denote by πn an optimizer of cn w.r.t. µn and
νn. Suppose that

lim inf
n→∞

∫
X×Y

cndπn < +∞.

Prove that there exists subsequence of (πn)n∈N that converges weakly to an optimizer of

inf
π∈Cpl(µ,ν)

∫
X×Y

c(x, y)dπ(x, y).

V: Uniqueness, Wasserstein Distances and Time-Dependent Version of OT

Problem 20. (Gaussians)
Find explicitly the optimal map between µ = N(m1,Σ1) and ν = N(m2,Σ2) for the

quadratic cost function, as well as their W2 distance. Can you extend this to the case when
µ, ν ∈ {Law(AX + b)} where X has a fixed distribution and A ranges over a class of matrices
and b ranges over all vectors?

Problem 21. (Distance Functional)



STOCHASTIC MASS TRANSFER 27

We set P2(Rn) :=
{
µ ∈ P(Rn) :

∫
Rn ‖x‖2dµ(x) < +∞

}
. Fix µ ∈ P2(Rn) with µ � Leb and

define the functional Fµ : P2(Rn)→ R by

Fµ(ν) := inf
π∈Cpl(µ,ν)

∫
Rn×Rn

‖x − y‖2dπ(x, y).

Show that P2(Rn) is a convex set and that Fµ is strictly convex, i.e. for all ν , ν′ in P2(Rn)
and α ∈ (0, 1) there holds Fµ((1 − α)ν + αν′) < (1 − α)Fµ(ν) + αFµ(ν′).

Problem 22. (Relative compactness in Wasserstein space)
Show that if {µ}n is tight and

lim
C→∞

lim sup
n

∫
d(x,x0)≥C

d(x, x0)pµn(dx) = 0, (1.11)

then {µ}n is relatively compact in Wp. Find a sufficient condition for (1.11).

Problem 23. (Composition)
Show that the composition of optimal transport maps is in general not optimal. On the

other hand, show that the composition of the optimal transport map from [µ, ν]r to [µ, ν]s,
with the optimal map from [µ, ν]s to [µ, ν]t, is optimal from [µ, ν]r to [µ, ν]t (r < s < t).

Problem 24. (Interaction Energy)
Show that ρ 7→

∫ ∫
W(x − y)ρ(dx)ρ(dy) is displacement convex on P2(Rn) ∩ Pac(Rn) if

W : Rn → R is convex and lower bounded.

Problem 25. (Interpolation of Gaussian Distributions)
LetV ⊆ P(R) be the set of all Gaussian distributions on R, i.e.

V := {N(m, v) : m ∈ R, v > 0} .

a) Show thatV is not a convex set.
b) Prove thatV is displacement convex.

Problem 26. (Geometric Applications)
Let n ≥ 1 and λ be the Lebesgue measure on Rn. The internal energy F defined by

F (µ) :=

−
∫
Rn (ρ(x))1− 1

n dx µ � λ, ρ =
dµ
dλ

+∞ else

is displacement convex.
a) Deduce from the displacement convexity of F the Brunn-Minkowski inequality,

i.e. show that for all compact sets A, B ⊆ Rn there holds

λ(A)
1
n + λ(B)

1
n ≤ λ(A + B)

1
n

where A + B := {a + b : a ∈ A, b ∈ B} is the Minkowski sum of two sets.

Hint: You can use that if µ and ν have bounded densities w.r.t. λ, then [µ, ν]t

has a bounded density w.r.t. λ for all t ∈ [0, 1].
b) Let K ⊆ Rn be a compact and convex set. We define the surface area of K as the

differential rate of volume increase if we enlarge the set, i.e.

S (K) := lim sup
ε→0

λ({x ∈ Rn : ∃y ∈ K s.t. |x − y| ≤ ε}) − λ(K)
ε

Use a) to prove the isopermetric inequality

S (K) ≥ nλ(K)
n−1

n λ(B1)
1
n

where B1 denotes the ball with radius 1 around 0.
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c) Show that the ball B1 has the maximal volume among all compact convex bodies in
Rn that have the same surface area as B1. Similarly, show that B1 has the smallest
surface area among all compact convex bodies with the same volume.
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2. The martingale optimal transport problem

2.1. Motivation: A very quick primer in (robust) finance. In this section we motivate
the martingale optimal transport problem by the problem of worst case bounds in robust
finance. We start with a very quick review on finance. For a more detailed exposition of
mathematical finance (without robustness) we refer to [DS06] (the first two chapters give a
very nice and quick introduction without the technical subtleties from the general theory).

Let us assume we are in the following setup:
• we are given a risky asset S ≡ (S 0, . . . , S T ), seen as a canonical process on RT+1

(in general one could of course also consider continuous time processes).
• there are no trading cost, no interest rate,..
• a “derivative/option” is a financial security whose value/payoff is derived from the

evolution of S , i.e. a function of S . We write f (S ) = f ((S t)0≤t≤T ) = f (S 0, . . . , S T ).
The fundamental problem in mathematical finance is to find a fair price for f .

There are two important principles: Firstly,

f ≤ g ⇒ price( f ) ≤ price(g) if a ≥ 0⇒ price(a f ) = a · price( f ).

In short, price should be a linear operator on the space of all derivatives. In particular, if
we find g with f = g then price( f ) = price(g). Secondly, since there are no transaction
cost, the price for trading in S should be zero, i.e. price((H · S )T ) = 0 where H · S denotes
the gain or loss from trading in S using the strategy H; mathematically, H ·S is a stochastic
integral, e.g. in discrete time

(H · S )t :=
t−1∑
s=0

Hs(S s+1 − S s)

with Hs being Fs-measurable ((Fs)s being the natural filtration of S , namely Fs is the
information of S 0, S 1, . . . , S s).

We say that a probability measure P – modelling the evolution of S – satisfies the no
arbitrage condition, short NA, if

(H · S )T ≥ 0 P − a.s. ⇒ (H · S )T = 0 P − a.s.. (NA)

If two measures Q and P are equivalent, meaning that they have the same null-sets, we
write Q ∼ P. We say S is a Q-martingale if it is a martingale under Q w.r.t. its natural
filtration. This simply means that S is Q-integrable and that EQ[S t+1|Ft] = S t. There is the
important fundamental theorem of asset pricing (FTAP) connecting (NA) to the theory of
martingales.

Theorem 2.1 ([DMW90]). P satisfies NA⇔ there existsQ ∼ P such that S is aQ−martingale.

Note that the direction⇐ of the proof is straightforward since any nonnegative martin-
gale with mean zero is constant. The other direction is far less trivial.

Any measure Q as in Theorem 2.1 such that S is a Q-martingale is called a (equivalent)
martingale measure. Note that this reflects the intuitive idea that price should be a linear
operator.

The combination of the first and second principle on pricing derivatives leads to the
following superhedging result, which implies that the “maximal fair price” for a derivative
is given by the expectation against an equivalent martingale measure. Note that there might
be several fair prices attached to a prescribed evolution P of the asset model S .

Theorem 2.2. Let P satisfy (NA) and let f ∈ L1(P). Then

sup{EQ[ f ] : Q ∼ P,Q martingale measure} = inf{a : ∃H, a + (H · S )T ≥ f , P − a.s.},

where the process H on the r.h.s. is adapted to (Fs)s.

Similarly, the “minimal fair price” is given by

inf{EQ[ f ] : Q ∼ P,Q martingale measure} = sup{a : ∃H, a + (H · S )T ≤ f , P − a.s.}.
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We are usually interested in determining these extreme values, as they define a closed
interval containing all fair prices for the derivative f (S ).

As a next step we want to incorporate market data in order to reduce the size of the
potentially big set of martingale measures. Denote Ct,k = (S t − k)+ the payoff of a Eu-
ropean call option with strike k and maturity t. This is the typical example of a particu-
lar, frequently traded financial derivative. Hence we assume that these options are “liq-
uidly” traded and that the market gives us the price for these options, namely the function
(t, k) 7→ pt(k) is given:

price(Ct,k) = pt(k).
Let us fix t and check which properties the function k 7→ pt(k) should reasonably have:

(1) As the payoff is nonnegative pt ≥ 0.
(2) Take k1 < k2 and set k := (1 − λ)k1 + λk2 for some λ ∈ (0, 1). Then, it holds that

(1 − λ)Ct,k1 + λCt,k2 ≥ Ct,k.

Consequently, we have

(1 − λ)pt(k1) + λpt(k2) ≥ pt(k) = pt((1 − λ)k1 + λk2).

Hence pt is convex in k.
(3) Ct,0 = S t (stock prices are non-negative)⇒ pt(0) = S 0.
(4) For every value of S t it holds that limk→∞Ct,k = 0. Hence, limk→∞ pt(k) = 0.
(5) For k1 < k2 we have

0 ≤ Ct,k1 −Ct,k2 ≤ k2 − k1

and therefore
0 ≤ pt(k1) − pt(k2) ≤ k2 − k1,

so that pt is decreasing and convex with slope at least −1 (close to 0) and at most
0 (close to∞).

Interestingly, any function pt satisfying these five properties is induced by a measure in the
following sense:

Lemma 2.3 (Breeden-Litzenberger). Assume that k 7→ p(k) satisfies the properties (1)-(5)
as above. Then, there exists a unique probability µ on R+ s.t.

p(k) =

∫
(x − k)+µ(dx).

Moreover,

p(0) =

∫
xµ(dx)

µ((k,∞]) = −p′(k+),

where p′(k+) denotes the right derivative of p at k.

Proof. By convexity of p the right derivative exists. From (5) it is clear that |p′(0+)| ≤ 1
and allowing an atom at 0 the function p therefore defines a unique probability measure
on R+. Since conditions (3) and (4) above fix the boundary data the rest is straightforward,
e.g. by using calculus for Riemann-Stieltjes integrals. �

As a consequence of Lemma 2.3, if the prices at a given maturity t for call options/derivatives
with strike k for all k ≥ 0 are known, then there exists a unique measure µt such that for
every derivative with payoff f (S t) there holds

price( f ) =

∫
f dµt.

The reason is that we can approximate any such f via the functions Ct,k, i.e.

f ∼
n∑

i=1

Ct,ki .
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Alternatively, Lemma 2.3 implies that the knowledge of the prices for all call options
uniquely defines the distribution of S t, i.e. the 1-dimensional marginal distribution of the
stock price process S . Therefore, the prices for such options can be assumed to be known
and we can use these options for hedging. Inserting this into the superreplication result
yields:

Theorem 2.4 (Superhedging with market data). Assume that P satisfies (NA) and that all
call prices are given from market data for every maturity 0 ≤ t ≤ T. Denote the measures
given by Lemma 2.3 by µ1, . . . , µT . Then,

sup{EQ[ f ] : Q ∼ P,Q martingale measure, S i ∼Q µi}

= inf{a +

T∑
i=1

∫
ϕidµi : ∃H, a +

T∑
i=1

ϕi(S i) + (H · S )T ≥ f (S ) P − a.s.}.

This is a nice result but there is an apparent problem: Different models P lead to po-
tentially different martingale measures which will usually lead to different prices/price
bounds. This is the “model risk” associated to pricing f with a specific model P.

Summing up: While market data determines/restricts the distribution of the stock price
process S at fixed time instances, t = 0, 1, . . . ,T, we do not know how the stock price moves
from one time instance to the next.

In robust finance, one aims at estimates (prices, hedging strategies) that are indepen-
dent of the choice of the particular model (i.e. avoid fixing P) only assuming S to be a
martingale. This leads us to the following variant of the pricing problem

sup / inf{EQ[ f ] : Q martingale measure, S i ∼Q µi}. (2.1)

In analogy to (KP) we call this the martingale optimal transport problem. In the following
section we will analyse this problem in some detail looking again at the “basic” questions
of existence, duality (which has the interpretation of robust sub/superhedging) and charac-
terization of optimizers.

2.2. Existence, duality, and geometry of optimizers: discrete time. We want to analyze
(2.1) and focus for (notational) simplicity on the case of one period, namely T = 1 so
t ∈ {0, 1}. All the results that we present have multi-period versions, some of them are only
notational more complex, while some (e.g. geometry of optimizers) are on a technical as
well as on an intuitive level much more complex.

For comparison with the first chapter of these notes, we focus on the minimization
problem only, write

X = Y = R, µ := µ0 ∈ P1(R), ν := µ1 ∈ P1(R), c(·) := f (·),

so that the object of study becomes:

Pmg
c := Pmg

c (µ, ν) := inf
Q∈MT(µ,ν)

∫
c dQ, (MOT)

where MT(µ, ν) = {Q ∈ Cpl(µ, ν) : EQ[S 1|S 0] = S 0}.

Remark 2.5. Above we have used the probabilistic notation coming from math finance.
The reader should keep in mind that S = (x, y), S 0 = x and S 1 = y, in the notation of the
previous chapter. Similarly the condition EQ[S 1|S 0] = S 0 is equivalent to

∫
yQx(dy) = x

where Qx is the conditional distribution of y given x.

Remark 2.6. In the literature on MOT one often considers the maximization problem in-
stead of the minimization problem due to the relation to the superhedging result. Mathe-
matically this is of course equivalent and we chose to work with the minimization to make
it consistent with the rest of this lecture.

Definition 2.7. Any solution to (MOT) is called optimal martingale coupling or optimal
martingale transport.
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Remark 2.8. Due to the martingale constraint, there cannot be a Monge-type martingale
coupling (T (µ) = ν) unless µ = ν. The “best” one can hope for is that the optimal martin-
gale coupling is concentrated on the graph of two functions.

Remark 2.9. By a famous result of Strassen [Str65], there holds MT(µ, ν) , ∅ iff µ is in
convex order to ν, short µ �c ν, which by definition holds iff∫

f dµ ≤
∫

f dν

for all convex functions f : R→ R with linear growth.

Lemma 2.10. Assume that µ �c ν then MT(µ, ν) is compact w.r.t. the topology of weak
convergence (in fact, it is compact w.r.t. the 1-Wasserstein topology).

Proof. Since MT(µ, ν) ⊆ Cpl(µ, ν) it is sufficient to show that MT(µ, ν) is closed by Corol-
lary 1.13. Remark that Q ∈ Cpl(µ, ν) is a martingale iff

∫
g(x)(y − x) dQ(x, y) = 0 for

all g ∈ Cb(R). Let Qn → Q, each Qn ∈ MT(µ, ν). Then Qn → Q in the 1-Wasserstein
topology, as the marginals are fixed and each of them has a finite first moment. For this,
apply Theorem 1.53 with d((x, y), (x̄, ȳ)) = |x − x̄| + |y − ȳ| and p = 1. Since g(x)(y − x)
has at most linear growth we conclude by the discussion after Theorem 1.53 that Q is a
martingale.

The statement that MT(µ, ν) is in fact compact w.r.t. the 1-Wasserstein topology is simi-
lar proven. It suffices to observe that Cpl(µ, ν) is relatively compact w.r.t. the 1-Wasserstein
topology. This can be shown as above, or by invoking Problem 22. �

Corollary 2.11. Assume that c is l.s.c. and bounded from below. Then there exists an
optimal martingale coupling.

Proof. As for Theorem 1.14. �

Remark 2.12. If c is not l.s.c. in general there does not exist an optimal coupling. Lower
boundedness can be suitably relaxed.

This settles the problem of existence. Note that for these arguments neither the restric-
tion to a single period nor to dimension one are necessary. Next we turn to the question of
duality.

Theorem 2.13. Let c be l.s.c. and bounded from below. Assume that Pmg
c < ∞. Then,

Pmg
c = Dmg

c := Dmg
c (µ, ν) where

Dmg
c = sup

{∫
ϕdµ +

∫
ψdν : ∃ h s.t. ϕ(x) + ψ(y) + h(x)(y − x) ≤ c(x, y) ∀ x, y ∈ R

}
.

Remark 2.14. The dual problem can be interpreted as a robust subhedging problem of the
option with payoff c. In this sense, Theorem 2.13 is a robust version (i.e. independent of
the reference model P) of Theorem 2.4.

Mathematically, the term h(x)(y − x) can be understood as a Lagrange multiplier ac-
counting for the martingale constraint in the primal problem.

Theorem 2.13 will be derived from the following min-max theorem:

Theorem 2.15 (see e.g. [Str85, Thm. 45.8] or [AH96, Thm. 2.4.1]). Let K, L be convex
subsets of vector spaces H1 resp. H2, where H1 is locally convex, and let F : K × L → R
be given. If

(1) K is compact,
(2) F(·, y) is continuous and convex on K for every y ∈ L,
(3) F(x, ·) is concave on L for every x ∈ K

then
sup
y∈L

inf
x∈K

F(x, y) = inf
x∈K

sup
y∈L

F(x, y).
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Proof of Theorem 2.13. We first assume that c is continuous and bounded. We apply The-
orem 2.15 with K = Cpl(µ, ν), L = Cb(R) and F(Q, h) =

∫
c(x, y) − h(x)(y − x)dQ(x, y) for

h ∈ Cb(R). As justified in the proof of Lemma 2.10 the set K is 1-Wasserstein compact,
which is what we need since F(·, h) is 1-Wasserstein continuous. Now:

Pmg
c = inf

Q∈MT(µ,ν)

∫
cdQ

= inf
Q∈Cpl(µ,ν)

sup
h∈Cb(R)

∫
c(x, y) − h(x)(y − x)dQ(x, y)

Thm2.15
= sup

h∈Cb(R)
inf

Q∈Cpl(µ,ν)

∫
c(x, y) − h(x)(y − x)dQ(x, y)

Thm1.32
= sup

h∈Cb(R)
sup
ϕ,ψ

{∫
ϕdµ +

∫
ψdν | ∀x, y : ϕ(x) + ψ(y) ≤ c(x, y) − h(x)(y − x)

}
= Dmg

c .

In fact, observe that for any ϕ, ψ and h with ϕ(x) + ψ(y) + h(x)(y − x) ≤ c(x, y) and
Q ∈ MT(µ, ν), we obtain∫

ϕdµ + ψdν =

∫
ϕ(x) + ψ(y) + h(x)(y − x)dQ(x, y) ≤

∫
c(x, y)dQ(x, y)

and thus Pmg
c ≥ Dmg

c even if c is not continuous and bounded. Let us now suppose that c
is l.s.c. and bounded from below. Then there exists a sequence (cn)n∈N of continuous and
bounded functions such that cn ↑ c. As discussed, we have Pmg

c ≥ Dmg
c . Since cn ≤ c we

naturally have Dmg
cn ≤ Dmg

c . For each n pick qn ∈ MT(µ, ν) such that

Pmg
cn ≥

∫
cndqn −

1
n
.

Since MT(µ, ν) is compact, there exists q ∈ MT(µ, ν) and a subsequence still denoted by
(qn)n∈N that converges to q. Finally,

Pmg
c ≤

∫
cdq

mon.
conv.
= lim

n

∫
cndq = lim

n
lim

k

∫
cndqk

cn↑

≤ lim sup
∫

ckdqk

≤ lim sup
k

(
Pmg

ck +
1
k

)
= lim sup

k
Dmg

ck ≤ Dmg
c ,

showing that Pmg
c = Dmg

c . �

As the following example shows, opposed to Theorem 1.32 one cannot go beyond l.s.c.
cost functions c in Theorem 2.13:

Example 2.16. Let µ = ν = Leb|[0,1]. Then MT(µ, ν) = {Q̂} with Q̂ = (Id, Id)#µ. Let

c(x, y) = 1{x=y} =

1 x = y
0 else

.

Then Pmg
c = 1 and we claim that Dmg

c = 0. Indeed, let ϕ, ψ and h be Borel bounded s.t.
ϕ(x) +ψ(y) + h(x)(y− x) ≤ c(x, y) for all x, y ∈ [0, 1]. Then ϕ(x) +ψ(y) + h(x)(y− x) ≤ 0 for
all x , y. Fixing ε > 0, by Lusin’s theorem, there is a Borel set A ⊆ [0, 1] with µ(A) > 1−ε
s.t. ψ|A is continuous. Moreover, A can be chosen to be perfect (i.e., every point of A is a
limit point of A). Let x ∈ A and (xn)n ⊆ A with xn → x and xn , x. Then

ϕ(x) + ψ(xn) + h(x)(xn − x) ≤ 0

for all n ∈ N and thus ϕ(x) + ψ(x) ≤ 0. As ε > 0 is arbitrary, µ({x : ϕ(x) + ψ(x) ≤ 0}) = 1
and hence ∫

ϕdµ +

∫
ψdν =

∫
ϕ(x)dx +

∫
ψ(x)dx ≤ 0.

A different argument: Define T ε(x) = ε + x (mod 1), so that for any ε ∈ (0, 1) we have
T ε(x) , x, T ε(Leb|[0,1]) = Leb|[0,1], and T ε(x) − x is equal to ε on [0, 1 − ε] and equal to
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ε−1 on (1−ε, 1]. Hence ϕ(x)+ψ(T ε(x)) ≤ −h(x)[T ε(x)−x] and integrating w.r.t. Lebesgue
we get ∫

ϕdµ +

∫
ψdν =

∫
ϕ(x)dx +

∫
ψ(x)dx ≤

∫ 1

1−ε
hdx − ε

∫ 1

0
hdx→ 0.

In any case, a maximizing triplet is given by ϕ = ψ = h = 0.

The reason that duality fails in Example 2.16 it that the dual problem, as defined in
Theorem 2.13, is too restrictive. Financially speaking: In the dual problem we hedge
against scenarios not present in the primal problem! To see this, we need the following.

Definition 2.17. For a finite measure µ on R with
∫
|x|dµ < ∞ we define its potential

function uµ : R→ R by

uµ(y) :=
∫
|x − y|dµ.

Remark 2.18. The function y 7→ |x − y| is convex. If µ �c ν, then uµ(x) ≤ uν(x) for all
x ∈ R. In fact, the reverse is true as well (c.f. Lemma 2.3). It is possible to read off various
properties of µ from the behaviour of uµ, i.e. total mass, mean, atoms, etc. See Exercise
32.

Pick µ �c ν and assume that there exists a z ∈ R s.t. uµ(z) = uν(z). Then any Q ∈
MT(µ, ν) satisfies

uν(z) = EQ [ |S 1 − z| ] = EQ
[
EQ [ |S 1 − z| |S 0]

]
Jensen
≥ EQ

[
|EQ [S 1 − z |S 0] |

]
= EQ [ |S 0 − z| ] = uµ(z) = uν(z).

In particular, we get equality in Jensen’s inequality, and hence any Q ∈ MT(µ, ν) satisfies

Q(S 1 ≥ z | S 0 > z) = 1,
Q(S 1 ≤ z | S 0 < z) = 1,
Q(S 1 = z | S 0 = z) = 1 (if µ({z}) > 0 ).

In other words, z is a barrier for any martingale-transport plan between µ and ν, i.e. the
level z cannot be strictly crossed by any such martingale.

Remark 2.19. Note that a variant of this argument implies that it is sufficient to test convex
order against a single convex function which is nowhere flat, e.g.

√
1 + x2.

We set proj1 : R × R→ R, (x, y) 7→ x and proj2 : R × R→ R, (x, y) 7→ y.

Lemma 2.20. Let I be an open interval such that uµ = uν on ∂I. Set µI = µ|I . Pick
Q ∈ MT(µ, ν) and set νI = proj2(Q|I×R). Then νI is concentrated on Ī and does not depend
on Q. Moreover, uνI − uµI = 0 on R \ I and uνI − uµI = uν − uµ on I.

Proof. Pick Q ∈ MT(µ, ν) and apply the previous considerations to both z ∈ ∂I. Then

Q((I × I) ∪ (R \ I)2) = 1,

i.e. no mass of µ is transported from R \ I into I and the mass of µ in I is transported to
I. Hence µI �c νI and the rest follows from straightforward calculations with potential
functions, which are left as an exercise. �

Definition 2.21. Let µ and ν be finite measures on R with µ �c ν. The pair (µ, ν) is called
irreducible if I = {uµ < uν} is connected and µ(I) = µ(R). In this case, we denote by J the
set I ∪ {x ∈ ∂I : ν({x} > 0)}.

Theorem 2.22. Let µ, ν ∈ P(R) with µ �c ν. Let (Ik)1≤k≤N be the (disjoint) open compo-
nents of {uµ < uν} with N ∈ {0, 1, ...,∞}. Set I0 = R \

⋃
k≥1 Ik and µk = µ|Ik for k ≥ 0

s.t. µ =
∑

k≥0 µk. Then there exists a unique decomposition ν =
∑

k≥0 νk s.t. µ0 = ν0 and
µk �c νk for all k ≥ 1. Moreover, Ik = {uµk < uνk } and each Q ∈ MT(µ, ν) can be uniquely
decomposed as Q =

∑
k≥0 Qk with Qk ∈ MT(µk, νk) for all k ≥ 0.
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Proof. This is a rather direct consequence of Lemma 2.20. �

Corollary 2.23. The primal problem for MOT splits into (at most countably many) inde-
pendent MOT problems on each irreducible component. More precisely, let µ =

∑
k≥0 µk,

ν =
∑

k≥0 νk as in Theorem 2.22 leading for all Q ∈ MT(µ, ν) to a decomposition Q =∑
k≥0 Qk. Furthermore, let c be a cost function s.t. Pmg

c (µ, ν) < ∞. Then Q is optimal if and
only if Qk is optimal for the martingale transport between µk and νk for each k .

Remark 2.24. Corollary 2.23 implies that for the primal problem only the set

{(x, x) : x ∈ R} ∪
⋃
k≥1

(Ik × Jk)

is relevant (notation from Definition 2.21). One can show that B ⊆ R2 is MT(µ, ν)-polar,
i.e. Q(B) = 0 for all Q ∈ MT(µ, ν), if and only if

B ⊆ (Nµ × R) ∪ (R × Nν) ∪

{(x, x)} ∪
⋃
k≥1

(Ik × Jk)

c

(2.2)

where Nµ is a µ-null set and Nν is a ν-null set. Consequently, the constraint

ϕ(x) + ψ(y) + h(x)(y − x) ≤ c(x, y) for all x, y ∈ R (2.3)

is too strong in the sense that it considers regions which are not seen by the primal problem.
Instead one should replace ’for all x, y ∈ R’ by ’MT(µ, ν)-quasi surely’, i.e. (2.3) should
hold outside of MT(µ, ν) -polar sets. Put differently, we should consider the dual problem
on each irreducible component separately and patch together.

Theorem 2.25. Also the dual problem splits along irreducible components.

Proof. Rather technical. Therefore we omit it. �

Theorem 2.26. Let c : R2 → [0,∞) be Borel and µ �c ν. Then

Pmg
c = inf

Q∈MT(µ,ν)
EQ[c]

= sup
{∫ ∗

ϕdµ +

∫ ∗

ψdν | ∃h : ϕ(x) + ψ(y) + h(x)(y − x) ≤ c(x, y) MT(µ, ν)-q.s.
}

= Dmg
c .

Moreover, if Dmg
c < ∞, there exists a dual optimizer (ϕ, ψ, h).

Remark 2.27.
∫ ∗

indicates that there is a technical subtlety defining these integrals which
we omit.

Proof (Brutalist sketch). Prove the statement on each irreducible component for c l.s.c.,
and use Choquet’s capacity Theorem to extend it to c Borel. Use Theorem 2.25 to patch the
different components together. Arzela-Ascoli yields the existence of a dual optimizer. �

Theorem 2.28. Let c : R2 → [0,∞) be Borel, µ �c ν probability measures and suppose
that Pmg

c < ∞. Then there exists a Borel set Γ ⊆ R2 s.t.

(i) Q ∈ MT(µ, ν) is concentrated on Γ if and only if Q is optimal w.r.t. the cost function
c.

(ii) Let µ̄ �c ν̄ be probability measures on R. If Q̄ ∈ MT(µ̄, ν̄) is concentrated on Γ,
then Q̄ is optimal for the MOT problem between µ̄ and ν̄ w.r.t. the cost function c.

If (ϕ, ψ, h) is an optimizer of the dual problem (w.r.t. µ, ν) then we can take

Γ =
{
(x, y) ∈ R2 : ϕ(x) + ψ(y) + h(x)(y − x) = c(x, y)

}
∩

{(x, x) : x ∈ R} ∪
⋃
k≥1

Ik × Jk

 .
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Proof. (i): Let (ϕ, ψ, h) be an optimizer of the dual problem and pick Γ as above. For all
Q̃ ∈ MT(µ, ν) we get

EQ̃[c] ≥ EQ̃
[
ϕ(S 0) + ψ(S 1) + h(S 0)(S 1 − S 0)

]
= Dmg

c

with equality if and only if Q̃(Γ) = 1.
(ii): We show that the Γ-defining triplet (ϕ, ψ, h) is also a dual optimizer w.r.t. µ̄ and ν̄

from which the result follows as before. By Remark 2.24 it suffices to show that (µ̄, ν̄) has
”more” irreducible components than (µ, ν), i.e.

uµ(z) = uν(z)⇒ uµ̄(z) = uν̄(z)

for all z ∈ R. To this end, fix such a z ∈ R. Since Q̄ ∈ MT(µ̄, ν̄) is concentrated on
{(x, x) : x ∈ R} ∪

⋃
k≥1 Ik × Jk, it holds Q̄(S 1 ≥ z | S 0 > z) = 1 and hence

EQ̄
[
|S 1 − z|I{S 0>z}

]
= EQ̄

[
|S 0 − z|I{S 0>z}

]
.

The analogue statement is true for I{S 0<z} and thus uµ̄(z) = uν̄(z). �

Remark 2.29. For Γ as in the previous Theorem set Γx = {y ∈ R : (x, y) ∈ Γ}. W.l.o.g. we
will assume that the existence of y ∈ Γx with y < x yields the existence of y′ ∈ Γx with
y′ > x.

Definition 2.30. Let α be a finite measure on R×R with marginals α0 and α1 s.t.
∫
|x|dα1 <

∞. A measure α′ on R × R is called a competitor of α if it has marginals α0 and α1, and
for α0-a.e. x it holds ∫

yαx(dy) =

∫
yα′x(dy)

where (αx)x and (α′x)x are disintegrations of α and α′ w.r.t. α0.

Corollary 2.31. In the setup of Theorem 2.28 let α be a finite measure concentrated on Γ

with |supp(α)| < ∞. For any competitor α′ of α it holds∫
cdα ≤

∫
cdα′.

Proof. First assume that α is a martingale coupling, i.e.
∫

ydαx(y) = x. Then we have∫
cdα =

∫
ϕ(x) + ψ(y) + h(x)(y − x)dα(x, y)

=

∫
ϕ(x)dα0(x) +

∫
ψdα1(y) +

∫
h(x)

(∫
ydαx(y) − x

)
dα0(x)

=

∫
ϕ(x) + ψ(y) + h(x)(y − x)dα′(x, y)

≤

∫
cdα′

because the proof of Theorem 2.28 yields that α′ is concentrated on {(x, x) : x ∈ R} ∪⋃
k≥1 Ik × Jk. For the general case, we can pick a family (px(dy))x s.t.∫

y(αx(dy) + px(dy)) =

∫
y(α′x(dy) + px(dy)) = x

and then the result follows by considering

ᾱ(dx, dy) = (αx(dy) + px(dy))α0(dx) and
ᾱ′(dx, dy) = (α′x(dy) + px(dy))α0(dx).

�

Remark 2.32. A set Γ that satisfies the assertion of the last corollary is called finitely
monotone. Note that a finitely monotone set does not need to support any martingale (e.g.
Γ = {0, 1}).
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Example 2.33. Assume that cxyy < 0, e.g. c(x, y) = (y − x)3 or c(x, y) = g(x) f (y) with
g strictly decreasing and f strictly convex. Such cost functions are called generalized
Spence-Mirrlees cost functions. Pick Γ from Theorem 2.28. Then Γ contains no pairs
(x′, y′), (x, y+) and (x, y−) s.t. x < x′ and y− < y′ < y+.

To see this, let λ ∈ (0, 1) such that y′ = λy− + (1 − λ)y+ and set

α = δ(x′,y′) + λδ(x,y−) + (1 − λ)δ(x,y+)

α′ = δ(x,y′) + λδ(x′,y−) + (1 − λ)δ(x′,y+)

By contradiction, suppose that α is supported on Γ, and remark that α′ is a competitor of
α. However, since

y 7→ c(x, y) − c(x′, y) =

∫ x′

x
−cx(z, y)dz

is by assumption a strictly convex function, we get∫
cdα −

∫
cdα′

= c(x′, y′) − c(x, y′) +
[
λ
(
c(x, y−) − c(x′, y−)

)
+ (1 − λ)

(
c(x, y+) − c(x′, y+)

)]
> c(x′, y′) − c(x, y′) + c(x, y′) − c(x′, y′) = 0

which is a contradiction to the choice of Γ and Corollary 2.31.

Definition 2.34. A Borel subset of R2 that contains no pairs (x′, y′), (x, y+) and (x, y−) s.t.
x < x′ and y− < y′ < y+, is called left-monotone. A martingale transport giving measure 1
to a left-monotone set is called left-monotone.

Hence Example 2.33 shows that Γ from Theorem 2.28 is a left-monotone set if cxyy < 0.
In light of Theorem 2.28, as soon as Pmg

c < ∞we have that any optimal martingale transport
is left-monotone. Now we want to show that if µ � Leb, then there exists a unique left-
monotone transport which corresponds to (MOT) having a unique minimizer w.r.t. Spence-
Mirrlees cost-functions. To this end, we need the following lemma:

Lemma 2.35. Let k ∈ N, Γ ⊆ R2 and assume there exist uncountable many a ∈ R s.t.
|Γa| ≥ k, where Γa = {y : (a, y) ∈ Γ}. Then, there exists a ∈ R and b1 < ... < bk in Γa s.t. for
all ε > 0 one can find a′ > a and b′1 < ... < b′k in Γa′ with

max{|a − a′|, |b1 − b′1|, ..., |bk − b′k |} < ε.

Proof. This is a cardinality argument. Call A := {a : |Γa| ≥ k} and for a ∈ A choose
ba

1 < · · · < ba
k in Γa. Set ΓA = {(a, ba

1, . . . , b
a
k) : a ∈ A}. Call (a, ba

1, . . . , b
a
k) a right

accumulation point if there is A 3 an ↘ a with ban
i → ba

i for all i = 1, . . . , k. Call IA ⊆ ΓA

the complement in ΓA of the set of accumulation points. We leave it as an exercise to check
that IA is at most countable. It follows that there are uncountably many right accumulation
points in ΓA, and any such point serves to finish the proof. �

So assume there exist uncountable many a s.t. |Γa| ≥ 3 where Γ is a left-monotone set.
Pick a and y1 < y2 < y3 in Γa as in the lemma above. For ε < min{y2 − y1, y3 − y2} there
exists a′ > a and y′1 < y′2 < y′3 with

max{|a − a′|, |y1 − y′1|, |y2 − y′2|, |y3 − y′3|} < ε.

In particular, y′2 satisfies y1 < y′2 < y3 contradicting the left-monotone property of Γ.
Thus, if Γ is left-monotone, then there are at most countable many a with |Γa| > 2. As

a consequence, we have |Γa| ≤ 2 µ-a.s. for all µ � Leb. Define for T1(a) = the smallest
of the (at most) two elements in Γa, and T2(a) the largest one. Up to redefinition on a µ-
null set, these are Borel functions. (In reality we must apply here a so-called “measurable
selection theorem”, but this is beyond the scope of these notes.) Hence we obtained that any
left-monotone martingale coupling (resp. any minimizer of (MOT) w.r.t. Spence-Mirrlees
cost functions) is concentrated on the union of the graphs of the two measurable functions
T1 and T2. By a straightforward variant of Remark 1.39 we have uniqueness (Exercise!).
Since the existence of the derivative cxyy implies continuity, we also have existence. Notice
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that the specific structure of c did not play any role, similar to the convexity assumption in
1-dimensional optimal transport (c.f. Ex 1.46).

We can summarize the above discussion in the following proposition:

Proposition 2.36. Assume the generalized Spence-Mirrlees condition cxyy < 0, and that
Pmg

c < ∞. Then a martingale transport is optimal for Pmg
c iff it is left-monotone. In case

µ � Leb the minimizer is unique, and it is concentrated on the graph of two functions
T1,T2 satisfying

• T1(x) ≤ x ≤ T2(x);
• x < x′ implies T2(x) < T2(x′) and T1(x′) < (T1(x),T1(x′)).

Finally: the here described martingale couplings do not depend on the cost function c.

In fact we can say more about the case when µ has atoms, but we rather stop the dis-
cussion at this point. We leave it as an exercise to characterize optimizers in case of the
opposite Spence-Mirrlees condition: cxyy > 0. In this case optimizers are called right-
monotone martingales.

We provide, for the curious reader, a more general statement too:

Theorem 2.37. Let h ∈ C2(R), c(x, y) = h(y − x), and assume Pmg
c < ∞. If affine functions

intersect the graph of h′ in at most k points and Q ∈ MT(µ, ν) is optimal, then there exists
a disintegration (Qx)x s.t. for all x ∈ R at least one of the following is true:

(i) µ({x}) > 0.
(ii) | supp(Qx)| ≤ k.

Finally we remark that the important case of a cost function having a kink can be simi-
larly studied:

Example 2.38. Let c(x, y) = |x − y|. If µ possesses no atoms, then there exists a unique
optimal martingale coupling π concentrated on the graph of two non-decreasing functions
T1 and T2 such that T1(x) ≤ T2(x) concentrated on a set Γ not containing pairs (x′, y′),
(x, y+) and (x, y−) s.t. y− < y′ < y+ and either y′ ≤ x′ < x or x < x′ ≤ y′. The proof
is similar to the case of Spence-Mirrlees cost functions, but needs more combinatorial
arguments.

2.2.1. Martingale inequalities. Let us briefly describe an application closely related to
martingale OT, namely the subject of martingale inequalities. These are statements of the
form

For all martingales M in a given class C, we have E[F(M)] ≤ 0.
Of course the class C and the functional F have to be specified. Probably the most cele-
brated martingale inequality is Doob’s L2 inequality, which we state here for discrete time
square integrable martingales {Mt : t = 1, . . . , n}:

E

( sup
t=1,...,n

Mt

)2 ≤ 4E[M2
n]. (2.4)

Notice that the constant 4 in the r.h.s. is independent of n, so unsurprisingly an analogue
inequality holds in continuous time too.

We emphasize that (2.4) for n = 2 can be obtained directly from the identity (M1 ∨

M2)2 ≤ M2
1 + M2

2 . However for n > 2 this naive approach would give an n-dependent
constant, worsening as n increases. Instead, let us revisit the case n = 2 through the lens of
martingale OT, and more precisely, via the duality result presented in Theorem 2.13. We
take c(x, y) = −(x ∨ y)2 and µ, ν ∈ P2(R) with µ ≤c ν. Then

Pmg
c (µ, ν) = sup

{∫
ϕdµ +

∫
ψdν : (ϕ, ψ, h) s.t. ϕ(x) + ψ(y) + h(x)[y − x] ≤ −(x ∨ y)2

}
.

We now take as an educated guess ϕ ≡ 0, ψ(y) = −4y2 and h(x) = 4x. We have

−4y2 + 4x(y − x) = −4y2 + 4xy − 4x2,
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which equals both −(2x− y)2 − 3y2 and −(2y− x)2 − 3x2, and so it is in any case smaller or
equal than −(x ∨ y)2. Thus whenever M = (M0,M1) is a martingale and M1 ∼ µ,M2 ∼ ν,
we have

−E[(M1 ∨ M2)2] ≥ Pmg
c (µ, ν) ≥ −4E[M2

2].

Since µ, ν were otherwise arbitrary, we conclude (2.4) for n = 2. Emboldened by this
method, we first easily check, for n ∈ N, the following weak duality:

inf
{Mt}

n
t=1 martingale

Mi∼µi, i=1,...,n

E [c(M1, . . . ,Mn)] ≥ sup
ui∈Cb(R),i=1,...,n, ht∈Cb(Rt), t=1,...,n−1∑n

i=1 ui(xi)+
∑n−1

t=1 ht(x1,...,xt)(xt+1−xt)≤c(x1,...,xn)

n∑
i=1

∫
uidµi, (2.5)

where the µi are in increasing convex order so that in the l.h.s. we are optimizing over a
non-empty set. Similar to the case n = 2, we consider c(x1, . . . , xn) = −( max

s=1,...,n
xs)2 and

make an educated guess: ui ≡ 0 if i < n, un(y) = −4y2 and ht(x1, . . . , xt) = 4 max
s=1,...,t

xs. We

leave it as an exercise (see Problem 36) that these functions do define a feasible element
for the r.h.s. and then conclude (2.4).

Remark 2.39. In fact it is possible to obtain equality (and existence of optimizers for the
l.h.s.) in (2.5). See Section 2.2.2 for some details. We also stress that there are many
other martingale inequalities, and it is known that essentially for all these there is a duality
argument as in the above Doob L2 case.

We close by rephrasing the arguments above in terms of mathematical finance: We
considered as financial derivative C := −( max

s=1,...,n
Ms)2 and showed that the highest model-

free fair price for C, given data at time 1 and time n, is smaller than 4E[M2
n]. In order to do

this, we exhibited that the sum of the static derivatives ui ≡ 0 ( for i < n) and un = −4M2
n

with the outcome of the trading strategy ht = 4 max
s=1,...,t

Ms sub-replicates the derivative C.

2.2.2. Martingale OT in multiple periods. Fix n ∈ N and {µi}
n
i=1 ⊆ P1(R) in convex order.

The n-period martingale optimal transport problem with cost function c : Rn → R is given,
in probabilistic notation, by

inf
{Mt}

n
t=1 martingale

Mi∼µi, i=1,...,n

E [c(M1, . . . ,Mn)] ,

namely the l.h.s. of (2.5). In terms of martingale transport plans (measures), this reads
equivalently

inf
Q∈P(Rn) s.t. pi(Q)=µi, i=1,...,n,∫

(xk+1−xk)qx1 ,...,xk Q(dxk+1)=0,∀k=1,...,n−1

∫
c(x1, . . . , xn)Q(dx1, . . . , dxn). (2.6)

So if µn has finite first moment, then the minimization problem (2.6) runs over a W1-
compact set of probability measures in Rn (exercise) and hence it admits a minimizer as
long as c is lower semicontinuous and lower bounded by a function with linear growth. Un-
der these assumptions we obtain no-duality-gap in (2.5) by a minimax argument (exercise).
But more can be said: for instance if ν has a finite second moment, then the infimum runs
over a compact set w.r.t. the W2-topology on P2(Rn), and so on.

Let us finally remark that another possible Martingale OT problem in multiple periods
is given by

inf
{Mt}

n
t=1 martingale

M1∼µ, Mn∼ν

E [c(M1, . . . ,Mn)] ,

that is, here only initial and terminal marginals are fixed, although the cost function sees
the whole path. Here it is also possible to develop a theory, so that for instance we have
existence of minimizers and no duality gap. One elegant idea (not the simplest, though) is
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to begin with a martingale inequality! For instance Problem 36, related to the above Doob
L2 inequality, states that for all s1, . . . , sn ∈ R we have[

max
i=1,...,n

si

]2

≤ 4s2
n − 4

n−1∑
k=1

(
max

i=1,...,k
si

)
[sk+1 − sk].

This already shows that, denoting by ‖ · ‖∞ the sup norm in Rn, we have

Probability(‖M‖∞ ≥ K) ≤
4
∫

y2dν(y)

K2 ,

for all M participating in the above infimum. Hence if ν has a finite second moment we
can obtain from here that the set of laws of all M participating in that infimum is a compact
set w.r.t. the weak topology, and so on.

2.3. Existence, duality, and geometry of optimizers: continuous time. In this section
we want to sketch how one can build a continuous time theory for MOT in dimension 1
(higher dimensional run along similar lines, but are not only notationally more involved,
e.g. regarding irreducible components). Since there are no non-trivial Monge-type solu-
tions to discrete MOT, continuous time MOT necessarily has to be of diffusive nature.
Moreover, if (S 0, S 1) is a martingale under a measure q there is no obvious recipe to con-
struct a continuous martingale interpolating between Lawq(S 0) and Lawq(S 1) even less if
the 2-marginal restriction of the resulting martingale is supposed to give back the original
coupling.

Instead, we directly develop a continuous time theory. To this end, we recall the
Benamou-Brenier picture of the Kantorovich-Wasserstein distance W2 from Theorem 1.70

W2
2 (µ, ν) = inf

(ρ,v)∈V(µ,ν)

∫ 1

0

∫
|vt |

2ρt(x)dxdt.

In probabilistic terms this can be reformulated as

W2
2 (µ, ν) = inf

{
E

∫ 1

0
|Ẋt |

2dt : X0 ∼ µ, X1 ∼ ν

}
,

where the infimum runs over all random C1 curves (Xt)t∈[0,1] with derivative Ẋt at time
t. Since continuous martingales are typically only Hölder continuous there is no chance
to make sense of a time derivative of a martingale M. However, if M1 ∼ ν has second
moments then the quadratic variation of M, denoted by 〈M〉, is well defined (recall that
the quadratic variation is the unique increasing adapted process starting in 0 such that
t 7→ M2

t − 〈M〉t is a martingale). In particular, t 7→ 〈M〉t is non-decreasing and we can
associate its Lebesgue-Stieltjes measure by setting

∫ t
s d〈M〉u := 〈M〉t−〈M〉s. If d〈M〉t � dt

we denote its density w.r.t. dt by 〈Ṁ〉t, and interpret it as the speed of the martingale. If
d〈M〉t is not absolutely continuous w.r.t. dt we put 〈Ṁ〉t = ∞.

With this interpretation in mind we introduce the following martingale variant of the
Benamou-Brenier minimization problem:

Definition 2.40. Let µ, ν ∈ P(R) with µ �c ν. Then, we define

CBB(µ, ν) := inf
{
E

∫ 1

0
c(〈Ṁ〉t)dt : M martingale ,M0 ∼ µ,M1 ∼ ν

}
. (MOTBB)

This is a variant of the Benamou-Brenier formula considering the stochastic side of
the picture. Looking at the analytical part, we need to find a PDE of the evolution of the
marginals that replaces the continuity equation (1.9). To this end, let M be a solution to the
stochastic differential equation (SDE)

dMt = σ(t,Mt)dBt.

Let at = σ2
t and f ∈ C2

b(R). Then, it follows by Itô’s formula that

f (Mt) − f (M0) =

∫ t

0
f ′(Ms)dBs +

1
2

∫ t

0
f ′′(Ms)as(Ms)ds.
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Denoting the time t marginal of M by ρt we thus obtain by taking expectations (recalling
that

∫
·dBt is a martingale)∫

f dρt −

∫
f dρ0 =

1
2

∫ t

0

∫
f ′′(x)as(x)dρs(x)ds,

so that (ρ, a) satisfy the Fokker-Planck-equation (to be understood in a weak sense as for
(1.9))

∂tρt =
1
2

∆atρt.

This leads us to the following second version of a martingale Benamou-Brenier formula,
from an analytical PDE point of view:

Definition 2.41. Let µ, ν ∈ P(R) with µ �c ν. Then, we define

CFPE(µ, ν) := inf
{∫ 1

0

∫
c(at(x))ρt(dx)dt : ∂tρt =

1
2

∆atρt, ρ0 = µ, ρ1 = ν

}
. (FPE)

Remark 2.42. Both optimization problems (MOTBB) and (FPE) are closely linked via the
martingale problem in stochastic analysis. Indeed, the martingale problem associated to the
operator at∆ induces a curve of marginals (ρt)t solving the Fokker-Planck equation. Given
a pair (ρ, a) solving the Fokker-Plank equation, there is, by the superposition principle
[Tre16, Theorem 2.5], a continuous process M = (Mt)t∈[0,1] solving the martingale problem
associated to a∆ such that ρt = Law(Mt) for every t ∈ [0, 1].

As an important consequence of the last remark, any candidate for (FPE) induces
a candidate for the problem (MOTBB) with the same cost. Therefore, we obtain that
CBB(µ, ν) ≤ CFPE(µ, ν).

The other direction, i.e. CBB(µ, ν) ≥ CFPE(µ, ν), is in general not true. However, if
the cost function c is strictly convex, then it is possible to construct from an admissible
candidate for (MOTBB) an admissible candidate for (FPE) by conditioning (analytically
projecting) on the current value. In general, the so constructed candidate for (FPE) will
have lower cost than the candidate for (MOTBB) we started with. Putting these ideas into
rigorous formulas leads to the following result, for a proof of which we refer to [HT19,
Theorem 3.3].

Proposition 2.43. Assume that c is strictly convex and there are positive constants λ,Λ
such that λ|a|p ≤ c(a) ≤ Λ|a|p for some p ∈ (1,∞). Then, CBB(µ, ν) = CFPE(µ, ν).

Combining Proposition 2.43 with Remark 2.42 shows that in the situation of the last
Proposition it is sufficient to only solve either the stochastic or the analytical version of
the martingale Benamou-Brenier formulation since either of them induces a solution to the
other. We will first focus on the PDE/FPE version and show how optimizer are closely
related to the porous medium equation. We will use this information to explicitly construct
optimizer for a specific cost in the stochastic version of the problem.

Similar to discrete time the key to understand the optimizer is the dual problem. To
write it down, recall the Legendre transform c∗ of c is defined via c∗(u) = supa a · u − c(a).
We will also need to consider the following Hamilton-Jacobi-Bellman PDE

∂tϕ(t, x) = −c∗
(

1
2

∆ϕ(t, x)
)
. (HJB)

We say that ϕ(t, x) = ϕt(x) ∈ C1,2([0, 1] × R) is a solution to (HJB) if there is equality in
(HJB) and we say it is a supersolution if the inequalities ≤ holds for every t, x.

Theorem 2.44 (Duality). Let c be as in Proposition 2.43. Let µ, ν ∈ P(R) such that
CFPE(µ, ν) < ∞. Then,

CFPE(µ, ν) = sup
{∫

ϕ1(x)dν −
∫

ϕ0(x)dµ
}
,

where the supremum runs over all smooth supersolutions to (HJB). Moreover, the infimum
in (FPE) is in fact a minimum.
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Proof. We only show the easy part of the duality relation. The full result, including the
existence of an optimizer, follows by an application of the Fenchel-Rockafellar duality
result, see [HT19, Theorem 4.3].

Let ϕ be any supersolution to (HJB) and (ρ, a) be an admissable candidate for (FPE).
Then, we have the following chain of inequalities∫

R

ϕ(1, x)dρ1(x) −
∫
R

ϕ(0, x)dρ0(x) =

∫ 1

0

d
dt

∫
ϕtdρtdt

=

∫ 1

0

∫
R

(
∂tϕ(t, x) +

1
2

at(x)∆ϕ(t, x)
)

dρt(x)dt

≤

∫ 1

0

∫
R

(
−c∗(

1
2

∆ϕ(t, x)) +
1
2

at(x)∆ϕ
)

dρt(x)dt

≤

∫ 1

0

∫
R

c(at(x))dρt(x)dt. (2.7)

Minimizing over all possible pairs (ρ, a) yields that∫
R

ϕ(1, x)dρ1(x) −
∫
R

ϕ(0, x)dρ0(x) ≤ CFPE(µ, ν).

�

Remark 2.45. Observe that the set of solutions to the Fokker-Planck equation with fixed
initial and terminal law is a convex set (w.r.t. the usual linear convex combinations). There-
fore, the strict convexity of c implies directly the uniqueness of solutions to (FPE).

However, this does not imply that the solutions to (MOTBB) are unique as well, in the
sense that the laws of the corresponding stochastic processes are unique. The reason is that
there might be multiple solutions to the corresponding martingale problem. The question
of uniqueness to the martingale problem is closely linked to the regularity of the diffusion
coefficient a. In dimension one, Lipschitz continuity is sufficient to grant uniqueness in the
martingale problem.

As a consequence of duality we obtain the following sufficient optimality criterion:

Corollary 2.46. Let c be as above and assume that ϕ ∈ C1,2([0, 1] × R) solves (HJB). Put

at(x) := ∇c∗(
1
2

∆ϕ(t, x)). (2.8)

Let ρt be a solution to the Fokker-Planck equation w.r.t. a. Then, (ρt)t is a minimizer for
(FPE), i.e.

CFPE(ρ0, ρ1) =

∫ 1

0

∫
c(as)dρsds.

Proof. Observe, that a satisfies for every t, x the optimality condition in the Legendre trans-
form so that

c(at(x)) + c∗(
1
2

∆ϕt(x)) = at(x) ·
1
2

∆ϕt(x).

Going back to (2.7) we see that the first inequality is an equality since ϕ is assumed to be
a solution. The second inequality is an equality as well since a and 1

2 ∆ϕ are dual variables
for the Legendre transform. �

Example 2.47. Brownian motion is an optimizer to (FPE). Indeed, let µ ∈ P(R), X0 ∼ µ,
B be standard Brownian motion, ν = Law(X0 + B1), Mt = X0 + Bt s.t. M has diffusion
coefficient a(t, x) = 1. Then, for any cost function c as in the last Corollary, there is R ∈ R
such that a ≡ 1 = ∇c∗(R/2). In particular,

ϕ(t, x) := −t · c∗(R/2) +
1
2

Rx2

solves (HJB). Hence, M is optimal by Corollary 2.46.
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Remark 2.48. Combining (2.8) with (HJB) it is possible to write down an equation for the
optimal diffusion coefficient. Assume that c∗(u) = 2(u+)q, so that c(a) = ap/(p(2q)p/q) for
p and q satisfying 1/p + 1/q = 1. Then, one gets

∂ta(t, x) = −
1

2p
∆ap(t, x)
ap−2(t, x)

= −
1
2

(
a(t, x)∆a(t, x) + (p − 1)(∂xa(t, x))2

)
. (2.9)

Remark 2.49. To construct further examples using Corollary 2.42, resp. to advance this
theory further, it seems to be useful to connect (HJB) to the porous medium equation

∂tu(t, x) = −∆
1
2

c∗(u(t, x)). (PME)

Indeed, set u = 1
2 ∆ϕ and taking 1

2 ∆ on both sides of (HJB) yields (PME). In fact, (2.9) is
the so called pressure equation associated to the porous medium equation.

The advantage is that (PME) is very well studied and various results on existence,
uniqueness, regularity are available (see [Váz07]). However, for a natural class of cost
functions, namely c(a) = ap with p > 1, the known results to (PME) seem to be not
powerful enough to make this passage even more fruitful by e.g. providing an existence
and regularity theory for dual optimizer (leading to potential uniqueness statements for the
stochastic variant via the martingale problem). The problem is that for these examples the
Legendre transform is c∗(u) = (u+)q with q =

p
p−1 and u+ = u ∨ 0 which is not regular

enough at zero for classical results to be applicable. One needs to develop new theory to
resolve this issue, which is still open.

In the rest of this section we want to analyze optimizers for the stochastic variant of the
Benamou-Brenier picture for MOT for a particular cost function.

In Example 2.47, we have seen that Brownian motion is an optimizer for (MOTBB)
for any convex cost function c. This is of course only possible if µ and ν are related via
ν = µ∗γ, where ∗ denotes convolution and γ is a standard Gaussian measure. We now want
to construct a martingale which is “as close as possible” to Brownian motion in a natural
way. The prototypical example is the following:

Example 2.50 (Bass martingale). Let µ = δ0 and ν be arbitrary with mean 0, so that
µ �c ν. Recall that γ denotes a standard Gaussian. Let f be an increasing map such that
f (γ) = ν. This map exists, e.g. by Brenier’s Theorem. Let B ≡ (Bt)t∈[0,1] be a standard
Brownian motion with natural filtration (Ft)t∈[0,1]. Denote by Ps the heat semigroup, i.e.
Psg(x) = E[g(x + Bs)]. Define for t ∈ [0, 1]

Mt := E[ f (B1)|Ft] = E[ f (B1)|Bt] = ft(Bt) = P1−t f (Bt),

where the second equality follows by the Markov property and the third equality by inde-
pendence of increments of Brownian motion (B1 = Bt + B1 − Bt).

Observe that M1 = f (B1) ∼ ν and M0 = P1 f (0) = E[ f (B1)] =
∫

f (x)ν(dx) = 0 so that
M0 ∼ µ. In this way, we can construct martingales between a Dirac mass and any terminal
measure ν in convex order. To allow for more general initial measures, the only flexibility
that we have is to allow for a general starting measure α of Brownian motion.

So let us assume that B is a Brownian motion with initial law α so that B1 ∼ α∗γ. Then,
for any measure ν there is an increasing map f such that f (α ∗ γ) = ν (by Brenier’s result).
Then, we can define again

Mt := E[ f (B1)|Ft] = E[ f (B1)|Bt] = ft(Bt) = P1−t f (Bt),

with the difference that M0 = P1 f (B0) ∼ P1 f (α). Hence, for any α we get a potentially
different (note that f depends on α) initial measure P1 f (α).

We call the martingale M a standard stretched Brownian motion since in a certain sense
M tries to behave like Brownian motion but in a deformed/stretched geometry.

The question we aim to answer in the following is, whether for any pair µ �c ν there is
an α such that the resulting martingale M connects µ to ν?
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To answer this question we will identify the standard stretched Brownian motion as an
optimizer to (MOTBB) for a particular cost function. By construction a standard stretched
Brownian motion satisfies the SDE

dMt = σt(Mt)dBt

with σt = ∇ ft ◦ f −1
t . Writing a = σ2 and calculating various derivatives, one can see that a

satisfies (2.9) with p = 1/2. This leads us outside the case of strictly convex functions (and
p > 1). It suggest to consider the cost function c(a) =

√
a together with a maximization

problem. We introduce

CMBB := CMBB(µ, ν) := sup
{
E

∫ 1

0
σt(Mt)dt : Mt = M0 +

∫ t

0
σs(Ms)dBs,M0 ∼ µ,M1 ∼ ν

}
.

(MBB)

(Here the optimization runs over all sufficiently rich probability spaces supporting Brown-
ian motion B and a progressively measurable σ.)

Definition 2.51. Any optimizer to (MBB) is called stretched Brownian motion.

We have the following result clarifying the precise relation between stretched and stan-
dard stretched Brownian motion:

Theorem 2.52. A candidate martingale M∗ is an optimizer to (MBB) iff it is a standard
stretched Brownian motion on each irreducible component of (µ, ν). In particular, stretched
Brownian motion is a standard stretched Brownian motion in each irreducible component.

The key to prove this result is to link it to a discrete-time optimization problem in the
form of a weak optimal transport problem:

CWOT := CWOT (µ, ν) := sup


∫

µ(dx) sup
q∈Cpl(πx,γ)

∫
q(dm, db)m · b

 , (WT )

where the (first) supremum runs over all family of kernels (πx)x∈R s.t.
∫

yπx(dy) = x for all
x and

∫
µ(dx)πx(dy) = ν(dy). Note that the cost function is non-linear in the optimization

variable. Completing the square in (WT ) shows that

1 +

∫
y2dν(y) − 2CWOT = inf

{∫
µ(dx)W2

2 (πx, γ)
}
,

where the infimum runs over the same set of kernels (πx)x as above.

Theorem 2.53. Assume that µ, ν have second moments. The optimization problem (WT )
and (MBB) are equivalent. More precisely,

(1) CWOT = CMBB < ∞;
(2) (WT ) has a unique optimizer;
(3) (MBB) has a unique-in-law optimizer M∗;
(4) π∗ = Law(M∗1,M

∗
0) and M∗ = G(π∗) for some function G, i.e. M∗ can be explicitly

costructed from π∗.

Proof. Let M be feasible for (MBB). By Itô’s formula and the martingale property of M
we have

E
[∫ 1

0 σt dt
]

= E[M1 · B1 − M0 · B0] = E[M1 · (B1 − B0)] = E[ E[M1 · (B1 − B0) |M0] ].

Letting qx = law (M1, B1−B0 |M0 = x) we find qx ∈ Cpl(πx , γ) for πx = law (M1 |M0 = x)
and

E
[∫ 1

0 σt dt
]

=
∫
µ(dx)

∫
qx(dm, db) m · b.

From this we easily conclude CWOT ≥ CMBB.
Now let π be feasible for (WT ). For each x we can find F x(·) convex such that ∇F x(γ) =

πx. We now define Mx
t := E[∇F x(B1)|F B

t ] for a given standard Brownian motion on R
with Brownian filtration F B. Potentially enlarging our probability space we can assume
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the existence of a random variable X independent of the Brownian motion B with X ∼ µ.
We denote the filtration (on the potentially bigger probability space) by F . Since Mx

0 =∫
yπx(dy) = x and

∫
µ(dx)πx(dy) = ν(dy) we conclude that {MX

t }t∈[0,1] is a continuous
martingale from µ to ν. By construction∫
µ(dx) supq∈Cpl(πx,γ)

∫
q(dm, db) m · b =

∫
µ(dx)

∫
γ(db) b · ∇F x(b) = E

[
E

[
B1 · MX

1 |X
] ]
,

and the last term equals E[
∫ 1

0 σtdt] as before (σ can easily be computed from ∇F x). This
proves CWOT ≤ CMBB and hence CWOT = CMBB. The finiteness ∞ > CWOT follows from
m · b ≤ |m|2 + |b|2 and ν and γ having finite second moment.

To show that (WT ) is attained let us denote by (πn)n∈N (where πn(dx, dy) = πn
x(dy)µ(dy))

an optimizing sequence. The set MT(µ, ν) by Lemma 2.10. By [Bal00, Theorem 3.7]
we obtain the existence of a measurable kernel x 7→ πx ∈ P(R) and a subsequence, still
denoted by (πn)n, such that on a µ-full set

1
N

∑
n≤N π

n
x(dy)→ πx(dy),

with respect to weak convergence in P(R). In particular 1
N

∑
n≤N π

n → π in the weak
topology in P(R × R), where π(dx, dy) := µ(dx)πx(dy). Since MT(µ, ν) is closed, we have
that π ∈ MT(µ, ν). Finally,

CWOT = limn
∫
µ(dx) supq∈Cpl(πn

x ,γ)

∫
q(dm, db) m · b

= limN
∫
µ(dx) 1

N
∑

n≤N supq∈Cpl(πn
x ,γ)

∫
q(dm, db) m · b

≤ limN
∫
µ(dx) supq∈Cpl( 1

N
∑

n≤N π
n
x ,γ)

∫
q(dm, db) m · b

≤
∫
µ(dx) lim supN supq∈Cpl( 1

N
∑

n≤N π
n
x ,γ)

∫
q(dm, db) m · b

≤
∫
µ(dx) supq∈Cpl(πx,γ)

∫
q(dm, db) m · b ≤ CWOT .

The first inequality holds by concavity of η 7→ H(η) := supq∈Cpl(η,γ)

∫
q(dm, db) m · b w.r.t.

convex combinations of measures. The second inequality is Fatou’s lemma, noticing that
the integrand is bounded in L1(µ) (the bound equals the sum of the second moments of
µ and γ). The third inequality follows by weak convergence of the averaged kernel on a
µ-full set and upper semicontinuity of H(·). For uniqueness it suffices to notice that H(·)
is actually strictly concave, which is an easy consequence of Brenier’s Theorem. Hence,
(WT ) is attained and we denote the unique optimizer by π∗.

Taking π∗ we may build an optimizer M∗ for (MBB) as in the first part of the proof (as
the value of both problems agree).

We finally establish the uniqueness of optimizers for (MBB). Let M̃ be any such opti-
mizer. From the previous considerations, we deduce that the law of (M̃0, M̃1) is the unique
optimizer π∗ of (WT ). Conditioning on {M̃0 = x} we thus have that M̃ connects δx to π∗x.
It follows that µ(dx)-a.s. M̃ conditioned on {M̃0 = x} is optimal between these marginals.
Indeed,

sup
Nt=x+

∫ t
0 σs dBs,N1∼π

∗
x

E
[∫ 1

0 σt dt
]

= sup
q∈Cpl(π∗x,γ)

∫
q(dm, db) m · b , (2.10)

by the results obtained so far, since if M̃ conditioned on {M̃0 = x} was not optimal for the
l.h.s. it could not deliver the equality CWOT = CMBB. So it suffices to show that the l.h.s.
of (2.10) is uniquely attained. But any candidate martingale N with volatility σ satisfies
E[

∫ 1
0 σtdt] = E[N1B1] (since here we can assume B0 = 0). Hence, Brenier’s Theorem

implies that M̃1 = ∇F x(B1) on {M̃0 = x}, for a convex function F x. Since the optimal
transport map ∇F x is unique, and the martingale property determines uniquely the law of
M̃, we finally get M̃ = M∗ in law. �

Remark 2.54. The proof of Theorem 2.53 shows how to build the optimizer for (MBB) via
the following procedure, making the statement M∗ = G(π∗) in Theorem 2.53 (4) precise:

(1) Find the unique optimizer π∗ of (WT ).
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(2) Find convex functions F x such that ∇F x(γ) = π∗x.
(3) Define Mx

t := E[∇F x(B1)|Bt] = P1−t∇F x(Bt).
(4) Take X ∼ µ independent of B and let Mt := MX

t .

Remark 2.55. Observe also, that Theorem 2.53 implies that any standard stretched Brow-
nian motion is a stretched Brownian motion.

To show that any stretched Brownian motion is a standard stretched Brownian motion
on each irreducible component we need to argue that the (potentially) different maps F x

do in fact agree. One way to argue this is via combining the strong Markov property of
Brownian motion with a monotonicity principle for the weak transport problem. This is
slightly outside the scope of this lecture and we refer the interested reader to [BVBHK17].
There you can find also extensions/and limitations/challenges to higher dimensions.

2.4. Exercises.

Problem 27. (Convex order I)
For µ, ν ∈ P1(R), show that the following are equivalent:

(1) µ ≤c ν.
(2) µ and ν have the same mean and

∫
f dµ ≤

∫
f dν for all f non-negative, non-

decreasing, convex, and Lipschitz.
(3) µ and ν have the same mean and

∫
[x − t]+dµ(x) ≤

∫
[x − t]+dν(x) for all t.

Problem 28. (Convex order II)
Let µ = 1

n
∑n

i=1 δai and ν = 1
n
∑n

i=1 δbi , where {ai}i, {bi}i ⊆ R. Show that the following are
equivalent:

(1) µ ≤c ν.
(2)

∑n
i=1 ai =

∑n
i=1 bi, and for each k, the sum of the k largest a’s is less or equal than

the sum of the k largest b’s.
Hint: You may find (3) of Problem 27 useful.

Problem 29. (Convex order III)
Let θ be convex. Suppose x1 ≤ x2 . . .≤ xn and y1 ≤ y2 . . .≤ yn. Using the characterization

given in Problem 28 prove that
n∑

i=1

θ(xi − yi) = inf
σ permutation

n∑
i=1

θ(xi − yσ(i)).

Problem 30. (Martingale Couplings)
Let µ, ν ∈ P1(R) with µ ≤c ν.

a) Prove that the product coupling µ ⊗ ν is a martingale coupling of µ and ν if and
only if µ = δx for some x ∈ R.

b) Show that MT(µ, µ) = {(id, id)#µ}.
Hint: As a first step, show that for all convex ϕ ∈ L1(µ) and for any version

(πx)x∈R of the disintegration of π ∈ MT(µ, µ) w.r.t. the first component there holds∫
ϕ(y)dπx(y) = ϕ(x) for µ-a.e. x ∈ R.

Problem 31. (Quadratic Cost)
Let µ, ν ∈ P2(R) with µ ≤c ν. Show that any martingale coupling of µ and ν is a

minimizer of the martingale optimal transport problem

inf
π∈MT(µ,ν)

∫
R2
|x − y|2dπ(x, y).

Problem 32. (Potential Functions)
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We define the functional u : P1(R) → C(R), µ 7→ uµ where the continuous function
uµ : R→ R is defined as

uµ(x) :=
∫
R

|y − x|dµ(y).

a) Let µ ∈ P1(R) with mean m =
∫
R

ydµ(y) . Show that uµ is a non-negative convex
function that satisfies

lim
x→±∞

|uµ(x) − |x − m|| = 0.

b) Let m ∈ R and v a non-negative convex function that satisfies

lim
x→±∞

|v(x) − |x − m|| = 0.

Since v is convex, v is everywhere right-differentiable and the right-derivative v′+
is monotonously increasing. For all a < b in R we define

µ((a, b]) :=
1
2

(
v′+(b) − v′+(a)

)
.

Prove that µ ∈ P1(R) and that there holds uµ = v.
c) Let µ, ν ∈ P1(R). Show that µ �c ν if and only if uµ ≤ uν.

Hint: You can use that µ �c ν if the integral relation is satisfied for all convex
functions ϕ ∈ C2(R) that satisfy ϕ′′ = 0 outside of [−n, n] for some n ∈ N.

d) Let µ, ν ∈ P1(R). Show that µ = ν if and only if uµ = uν.

Problem 33. (Convex Envelope)
Let f : R → R be a continuous function that is bounded from below by an affine

function. The convex envelope of f is the function conv( f ) : R→ R defined as

(conv( f ))(x) := sup{ϕ(x) : ϕ convex, ϕ ≤ f }

for all x ∈ R.
a) Show that conv( f ) is the greatest convex function below f .
b) Let g be a continuous function with f ≤ g. Prove that conv( f ) ≤ conv(g).
c) Let g be a convex function with f ≥ g. Prove that conv(conv( f )−g) = conv( f −g).
d) Let x0 ∈ R such that f (x0) > (conv( f ))(x0). Show that conv( f ) is locally affine at

x0, i.e. there exists ε > 0 and a, b ∈ R such that

∀x ∈ [x0 − ε, x0 + ε] : (conv( f ))(x) = ax + b.

Problem 34. (Shadow)
Let µ, ν ∈ P1(R) with µ �c ν and µ′ a finite measure with µ′ ≤+ µ, i.e. µ − µ′ defines a

finite measure on R.
a) Let v : R→ R be defined as

v := uν − conv(uν − uµ).

Show that v is a non-negative and convex function with

lim
x→±∞

|v(x) − k|x − m|| = 0.

Hint: A function f : R → R is convex if and only if for all x0 ∈ R there exist
ε > 0 and a ∈ R with f (x) ≥ ax + f (x0) for all x ∈ [x0 − ε, x0 + ε].

b) By a), there exists a finite measure η such that uη := uν− conv(uν−uµ′ ). Prove that
the measure η satisfies

(i) µ′ ≤c η ≤+ ν and
(ii) for all finite measures η′ with µ′ ≤c η

′ ≤+ ν there holds η ≤c η
′.

Hint: Recall Remark 2.18.
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c) We denote the measure η in b) by Sν(µ′). Let µ′1 and µ′2 be two finite measures
with µ′1 + µ′2 = µ′. Show that

Sν(µ′) = Sν(µ′1) + Sν−S
ν(µ′1)(µ′2).

Remark: The measure Sν(µ′) is uniquely determined by the properties (i) and (ii). It is
called the shadow of µ in ν.

Problem 35. (Left-Monotone Coupling)
Let µ, ν ∈ P1(R) with µ ≤c ν. For all a ∈ R and Borel sets B ⊆ R we set

π((−∞, a] × B) := (Sν(µ|(−∞,a]))(B) (2.11)

where µ|(−∞,a] denotes the restriction of µ onto (−∞, a] and the shadow on the r.h.s. is
defined as in Problem 34.

a) Show that (2.11) uniquely defines a probability measure on R2 and that π is a
martingale coupling of µ and ν.

b) Prove that π is left-monotone, i.e. there exists a Borel set Γ ⊆ R2 with π(Γ) = 1
such that for all pairs (x, y−), (x, y+), (x′, y′) ∈ Γ there holds

x < x′, y− < y+ ⇒ y′ < (y−, y+).

Hint: Let ϕ be the density of the standard normal distribution. The function c
defined by c(x, y) := −

∫
R

1(−∞,x](u)ϕ(u)
√

1 + y2du satisfies cxyy < 0 and |c(x, y)| ≤
2 + |y|.

Problem 36. (Superhedging of the supremum squared)
Show that for all s1, . . . , sn ∈ R we have[

max
i=1,...,n

si

]2

≤ 4s2
n +

n−1∑
k=1

hk[sk+1 − sk],

with hk = −4 maxi=1,...,k si.

Problem 37. (Lipschitz martingale kernels)
Let q ∈ MT(µ, ν) and recall that qx stands for the conditional distribution of the second

variable given that the first is equal to x. Prove the equivalence of the following statements:
(1) ∀x, x̄ : W1(qx, qx̄) ≤ |x − x̄|;
(2) ∀x, x̄ : W1(qx, qx̄) = |x − x̄|;
(3) ∀x ≤ x̄,∀a : qx((−∞, a]) ≥ qx̄((−∞, a]).

We say that q has Lipschitz martingale kernels if these conditions hold.

Problem 38. (Standatrd stretched Brownian motion)
Let M be a standard stretched Brownian motion and define q = Law(M0,M1). Prove

that q has Lipschitz martingale kernels. (The same is valid for q = Law(Ms,Mt) if s ≤ t.)
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3. The Skorokhod embedding problem

In Subsection 2.1 we saw that the martingale optimal transport problem is closely con-
nected to finding model independent bounds on option prices. In Subsection 2.3 we have
looked at continuous time versions of the MOT problem. In this section, we consider an-
other possibility to obtain worst case bounds for option prices which however only works
for time-invariant derivatives, derivatives whose payoff is invariant under time-changes.
The key observation by David Hobson is that for these options the questions of worst case
bounds naturally relates to the Skorokhod embedding problem.

3.1. Motivation. Let us assume that we are in the following situation:
• stock prices evolve continuously in continuous time given by a continuous sto-

chastic process (S t)t≥0
• European call options with maturity at time 1 are liquidly traded with all possible

strikes so that the time-1-marginal is known to be µ1 =: ν, i.e. S 1 ∼ ν.

Example 3.1 (One-touch digital option, due to David Hobson [Hob98]). Denote the run-
ning maximum of the stock price process by

S̄ t := max
0≤s≤t

S s

and the first hitting time of the level L by

HL := inf{t ≥ 0 : S t ≥ L}.

Consider an option with payoff

G(S ) := 1{S t≥L for some t∈[0,1]} = 1{S̄ 1≥L} = 1{HL≤1}.

We are interested in price bounds for G, i.e.

sup
Q mg. meas. : S 1∼Q ν

EQ[G(S )].

Observe that for any K < L, there holds

1{HL≤1} ≤
(S 1 − K)+

L − K
+

(S HL − S 1)
L − K

1{HL≤1}. (3.1)

The second term on the RHS of (3.1) are gains from trading so that price
(

(S HL−S 1)
L−K 1{HL≤1}

)
=

0. In particular, we get for any admissable martingale measure Q

⇒ EQ[G(S )] ≤
EQ[(S 1 − K)+]

L − K
.

Since, the LHS does not depend on K < L we immediately obtain for any admissable
martingale measure Q (recalling the notation Ct,K from Subsection 2.1)

EQ[G(S )] ≤ inf
K<L

EQ[(S 1 − K)+]
L − K

= inf
K<L

price(C1,K)
L − K

. (3.2)

Question: Is (3.2) best possible? Otherwise said, is (3.1) the optimal superhedging strat-
egy?

To answer this question in the positive we need to do accomplish the following
Exercise: Find a martingale measure Q, such that S 1 ∼Q ν and

EQ[G(S )] = inf
K<L

price(C1,K)
L − K

.

Key observation: If (S t)t∈[0,1] is a continuous martingale, by the Theorem of Dambins-
Dubins-Schwarz, there is a time change (τt)t∈[0,1] of a Brownian Motion B such that S t =

Bτt .
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In particular, τ1 is a stopping time of Brownian Motion, such that Bτ1 ∼ ν. This means
that τ1 is a solution to the Skorokhod embedding problem (SEP):

Given ν ∈ P(R),
∫
|x|dν < ∞,

∫
xdν = 0 find a stopping time τ of

Brownian motion B such that Bτ ∼ ν and (Bt∧τ)t≥0 is uniformly integrable.

If τ is a solution to (SEP) we write τ solves SEP(ν). Here we implicitly assume that
B0 = 0, one could also consider SEP(µ, ν) for the variant where the Brownian motion starts
in a random variable B0 ∼ µ �c ν.

Remark 3.2. • The u.i condition is equivalent to requiring that τ is minimal, i.e. if ρ
is another stopping time such that Bρ ∼ ν and ρ ≤ τ then ρ = τ.

• The zero-mean assumption of ν is there so that we can work with Brownian motion
starting in 0. The problem is of course invariant under shifts by a constant m to
account for measures ν with mean m.

Let us continue with Example 3.1:
Given a solution τ to SEP(ν). Then S t := B t

1−t∧τ
is a continuous martingale with S 1 ∼ ν.

Moreover, {HL ≤ 1} = {S̄ 1 ≥ L} = {B̄τ ≥ L} is invariant under time changes! Thus, finding
a continuous martingale S with S 1 ∼ ν attaining the bound (3.2) is equivalent to finding a
solution to SEP(ν) attaining this bound. Let us try to do the latter so that we consider

sup
τ solves SEP(ν)

E[G(B·∧τ)]. (3.3)

To this end, we need to find structural constraints satisfied by any solution to (SEP) maxi-
mizing the left-hand side of (3.3):

For any stopping time τ such that (Bt∧τ)t≥0 is u.i. we have using the strong Markov
property in the first step

0 = E[(Bτ − L)1B̄τ≥L] = E(Bτ − K)1B̄τ≥L + (K − L)P(B̄τ ≥ L)

≤ E[(Bτ − K)1Bτ≥K] + (K − L)P(B̄τ ≥ L).

Consequently, we have denoting Cν(K) =
∫

(x − K)+ν(dx)

P(B̄τ ≥ L) ≤ inf
K<L

E[(Bτ − K)+]
L − K

if Bτ∼ν
= inf

K<L

Cν(K)
L − K

with equality if and only if

{Bτ > K} ⊆ {B̄τ ≥ L} ⊆ {Bτ ≥ K} (3.4)

Observe that (3.4) poses additional constraints on solutions to (SEP). These constraints are
satisfied by a special solution to (SEP) found by Azéma and Yor: Define the barycentre
function

ψν(x) =


1

ν([x,∞))

∫
[x,∞)

ydν(dy) , if x < inf{y : ν[y,∞) = 0}

x , if ν([x,∞)) = 0
Then ψν(x) ≥ x, ψν is non-decreasing and left continuous and it can be shown that

τAY := inf{t ≥ 0 : Bt ≤ ψ
−1
ν (B̄t)}

is a solution to SEP(ν). In particular, (3.4) is satisfied, we cannot improve on (3.4) and we
have:

Proposition 3.3. The Azéma-Yor solution to (SEP) maximizes P(B̄τ ≥ L) simultanuously
for all L among all (minimal) solutions to (SEP). Hence, it also maximizes E[ f (B̄τ)] for all
increasing f : R+ → R.

Remark 3.4. There are 20+ further solutions to SEP(ν), most have some kind of optimal-
ity property, many are related to robust finance via the “time-change” method of David
Hobson, e.g. the Root and Rost embedding which will be prominent in the next section.
Notably, most of these solutions use different techniques and methods. The goal of the
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Figure 2. The Azema-Yor solution as a first hitting time of a “barrier”
in the B̄ − B phase space.

following section is to understand the structure of these “extremal” solutions and to find
a unifying construction which also allows us to come up with new solutions with pre-
specified optimality properties (which then directly relate back to worst case bounds in
model-independent finance).

3.2. Mass transport approach to Skorokhod embedding. Throughout this section we
fix a measure ν ∈ P(R) satisfying V :=

∫
x2dν < ∞ and

∫
xdν = 0. The second moment

assumption on ν is not necessary but reduces technicalities. The goal of this section is to
introduce and analyse an optimal SEP which will allow us to construct solutions to SEP(ν)
with prescribed optimality properties in a systematic fashion.

In this section we will consider two probability spaces:

• The Wiener space (C0(R+),W) of functions starting in 0 equipped with the nat-
ural filtration (Ft)t as well as the augmented filtration F a (all null sets of W are
included in F a

0 ). The topology is given by uniform convergence on compact sets.
• Its extension C0(R+) = C0(R+) × [0, 1], W = W ⊗ Leb|[0,1] equipped with F , the

augmentation of (Ft ⊗ B([0, 1]))t≥0.

We consider the set of stopped path

S := {( f , s) : f ∈ C0[0, s], f (0) = 0}

together with a “cost funtion”
γ : S → R.

We note that S is a Polish space. One choice for a metric is given by (wlog s < t)

d(( f , s), (g, t)) = max{sup
u≤s
| f (u) − g(u)|, |s − t|, | f (s) − g(t)|}.

We also define the projection or restriction map

r : C0(R+) × R+ → S (ω, t) 7→ (ω|[0,t], t).
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Let us introduce a preliminary version of the optimal SEP:

inf{E[γ ◦ r((Bs)s≤τ, τ) : τ solves SEP(ν)} (OptSEPM)

Key intuition: SEP/(OptSEPM) is similar to a transport problem. More precisely the
(OptSEPM) is a Monge-type problem (cf. (MP)). Indeed, ω 7→ τ(ω) denotes a single
time to stop. Hence, τ indicates where in time and, hence, in space-time the path ω places
its proportion of mass of the Wiener measure W (for the Wiener measure this should not
be taken literally; however in case of a random walk it should).

To stress this point of view, we associate to a stopping time τ on (C0(R+),W) the mea-
sure

τ̄(dω, dt) := δτ(ω)(dt)W(dω).

Following our intuition we should think about this measure as a kind of coupling between
the Wiener measure W and the measure ν we want to embed (of course it is not a true
coupling). Then, just as in optimal transport, we should relax this problem to allow for
“general couplings”, that is

τ̄(dω, dt) = τ̄ω(dt)W(dω) τ̄ω ∈ P(R+).

To keep the stopping time nature of these measure we need to encode the optionality (in
case of stopping times, the property that {τ ≤ t} ∈ Ft} for all t ≥ 0).

Definition 3.5. Set M := {ξ ∈ P(C0(R+) × R+) : projC0(R+)(ξ) = W}. A measure ξ ∈ M is
called randomized stopping time, short ξ ∈ RST iff on C0(R+) the random time

ρ(ω, u) := inf{t ≥ 0 : ξω([0, t]) ≥ u}

defines an F -stopping time.

The following lemma shows that there is no loss in generality when restricting to a
special probability space in Definition 3.5.

Lemma 3.6. Let B be a Brownian Motion on some stochastic base (Ω,G, (Gt)t≥0,P). Let τ
be a G-stopping time and consider

ϕ : Ω→ C0(R+ × R+) , ω 7→ ((Bt(ω̄))t≥0, τ(ω̄)).

Then ξ := ϕ(P) ∈ RS T and for every γ : S → R we have∫
γ( f , s)r(ξ)(d( f , s)) = EP[γ((Bt)t≥0, τ)]. (3.5)

If Ω is sufficiently rich such that it supports a uniformly distributed random variable which
is G0-measurable, then for any ξ ∈ RS T we can find a G-stopping time τ on Ω such that
ξ = ϕ(P) and (3.5) holds.

Proof. Clearly ξ := ϕ(P) ∈ M. Write (ξω)ω∈C0(R+) for a disintegration wrt Wiener measure.
We need to show that ξω([0, t]) is F a

t -measurable. Let g : C(R+) → R be a measurable
function. If h = EW[g|F a

t ], writing Ga
t for the usual augmentation G, and nothing that

(Bt)t≥0 is also a Ga-Brownian motion, we have

EP[g((Bs)s≥0)|Ga
t ] = h((Br)r≥0), P − a.s.

It then follows that∫
g(ω)ξω([0, t])W(dω) = EP[g((Br)r≥0)1{τ≤t}]

= EP[EP[g((Br)r≥0)|Ga
t ]1{τ≤t}]

= EP[h((Br)r≥0)1{τ≤t}]

=

∫
h(ω)ξω([0, t])W(dω).
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Hence ξω([0, t]) is F a
t -measurable as required.

To prove the second part, we observe that by Definition 3.5, there exists an F̄ -stopping
time ρ′ representing ξ. Since ρ′ is F̄ -predictable, it follows that there exists an almost
surely equal (F 0

t × B([0, 1]))t≥0-stopping time ρ. Then we can define a random time on Ω

by ρ((Bs)s≥0,U), where B is the Brownian motion, and U the independent G0-measurable,
uniform random variable. Consider the map

ϕ̄ : Ω→ C0(R+) ω̄ 7→ ((Bt(ω̄)),Y(ω̄)).

Since ρ is a (F 0
t ×B([0, 1]))t≥0-stopping time and ϕ̄ is measurable from (Ω,Gt) to (C0(R+),F 0

t ×

B([0, 1])), ρ ◦ (B,Y) is a G-stopping time. �

We aim to show that the set of randomized stopping times embedding a given measure
ν is compact. We first show that RST is closed. We will use that a random variable Z is
F a

t -measurable iff for any measurable and bounded g there holds that E[Z(g−E[g|F a
t ]] = 0.

Lemma 3.7. ξ ∈ M is a randomized stopping time iff for all f ∈ Cb(R+) supported on [0, t]
for some t ≥ 0 and all g ∈ Cb(C0(R+))∫

f (s)(g − E[g|F a
t ])(ω) ξ(dω, ds) = 0. (3.6)

Proof. Let ξ ∈ RST with representation ρ as in Definition 3.5. Then the left-hand side of
(3.6) equals ∫ ∫

f (ρ(ω, u))du(g − E[g|F a
t ])(ω)W(dω),

which equals zero since ω 7→
∫

f (ρ(ω, u))du is F a
t -measurable by the optionality of ρ.

Conversely, we need to show that {ρ(ω, u) ≤ t} ∈ F t for all t ≥ 0 which holds iff
ω 7→ At(ω) :=

∫
1[0,t](ρ(ω, u))du is F a

t -measurable (since {(ω, u) : ρ(ω, u) ≤ t} = {(ω, u) :
u ≤ At(ω)}) which follows from (3.6) by a monotone class argument (so that we can test
with f = 1[0,t]). �

Corollary 3.8. RST is closed w.r.t. the weak topology induced by Cb(C0(R+) × R+).

Proof. This follows from (3.6) upon choosing a version of E[g|F a
t ] which is continuous

and bounded. A possible choice is (continuity then follows by dominated convergence):∫
g(ω|[0,t] ⊗ ω̃)W(dω̃),

where ⊗ denotes concatentation of paths defined via

ω|[0,t] ⊗ ω̃(s) =

ω(s) s ≤ t
ω(t) + ω̃(s − t) s > t

.

�

For ξ ∈ RS T and optional Y = Y(ω, t) = Yt(ω) ((ω, t) 7→ Yt(ω) is measurable w.r.t. the
optional σ-algebra which is generated by the right-continuous adapted processes) which
is bounded or positive we define Yξ as Y(ξ). Let ρ be the representation of ξ as in Def-
inition 3.5 and write Ȳt(ω, u) = Yt(ω) for the extended process. Then we have Yξ ∼ Ȳρ.
Specializing to Yt = t =: T (ω, t) we obtain that

EW̄[ρ] =

∫
T (ω, t)dξ(ω, t),

where T : C0(R+) × R+ → R+ denotes the projection (ω, t) 7→ t. Recall that we assumed∫
x2dν =: V < ∞.

Lemma 3.9. Let ξ ∈ RST with representation ρ and projection map T as above. Assume
that Bξ = ν, i.e. B̄ρ ∼ ν. Then, the following are equivalent:

(1)
∫

Tdξ = EW[ρ] < ∞
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(2)
∫

Tdξ = EW[ρ] = V
(3) (B̄ρ∧t)t≥0 is u.i.

Proof. This follows from optional stopping applied to (B2
t − t)t≥0. �

Definition 3.10. We define the set of randomized stopping times embedding a given mea-
sure ν by RST(ν) := {ξ ∈ RST : Bξ = ν,

∫
Tdξ = V}.

Proposition 3.11. RST(ν) , ∅ and compact w.r.t. the weak topology induced by Cb(C0(R+)×
R+).

Proof. RST(ν) , ∅ follows since the Azema-Yor embedding is in the set RST(ν). Since

Bξ = ν ⇔

∫
f (ω(t))ξ(dω, dt) =

∫
f (x)dν(x)

for all f ∈ Cb(R) the set RST(ν) is a closed subset of the closed set RST and it therefore
suffices to show tightness. Since projC0(R+)(ξ) = W for each ξ ∈ RST(ν) tightness follows
from Markov’s inequality and Lemma 3.9 via

ξ(t ≥ L) ≤
1
L

∫
Tdξ =

V
L

which can be made arbitrarily small by choosing L big enough. �

Finally we can state our relaxed optimization problem:

PSEP
γ := inf

ξ∈RST(ν)

∫
γ ◦ r dξ (OptSEP)

We remark that – just as (KP) and (MOT) – this is a linear optimization over a compact and
convex set. The following corollary is immediate.

Corollary 3.12. If γ : S → R is lower semicontinuous and bounded from below there
exists an optimizer.

Remark 3.13. • Both conditions on γ in Corollary 3.12 can be relaxed, e.g. it is
sufficient to require γ to be bounded from below in the sense that

γ( f , s) ≥ −a − b · s

for some constants a, b > 0 (since γ and γ̃ := γ + a + b · s ≥ 0 have the same
optimizers by Lemma 3.9).

• Using min-max arguments one can prove a duality theory for (OptSEP). Since
there is no direct route to a monotonicity principle nor a direct way to interprete it
as a subhedging result (however both is possible) we omit the statement.

Let us now turn to the geometry of optimizers. To this end, we start with the following
definition which you should compare with cyclical monotonicity for optimal transport.

Definition 3.14. Let γ : S → R be Borel-measurable.
(1) (( f , s), (g, t)) ∈ S × S is called stop-go-pair, short ( f , g) ∈ SG, if f (s) = g(t) and

for all stopping times σ of Brownian Motion B with 0 < E[σ] < ∞ (cf. Figure 3)

E[γ( f ⊗ (Bu)u≤σ, s + σ)] + γ(g, t) > γ( f , s) + E[γ(g ⊗ (Bu)u≤σ, t + σ)], (3.7)

where ⊗ denotes concatenation of paths as before.
(2) A set Γ ⊆ S is called γ−monotone if

SG ∩ (Γ< × Γ) = ∅,

where Γ< := {( f , s) ∈ S : ∃(g, t) ∈ Γ, t > s, g ≡ f on [0, s]} is the set of not-yet
stopped paths.

Theorem 3.15 (monotonicity principle for SEP). Let γ : S → R be Borel and ξ an
optimizer to (OptSEP) with representation ρ as before. Then, there exists a γ−monotone
set Γ ⊆ S such that

W̄[((B̄s)s≤ρ, ρ) ∈ Γ] = 1. (3.8)
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A sloppy way to read this theorem is that one cannot improve an optimizer by path-
wise modifications as given by (3.7), i.e. for any optimizer there is a set Γ on which it is
concentrated in the sense of (3.8) s.t. SG ∩ (Γ< × Γ) = ∅.

A proof of this result is outside the scope of this lecture. It relies on the dual theory to
(OptSEP) in combination with Choquet’s capacibility theorem together with a variant of
Lemma 1.18 adapted to the current setup (which requires some care due to the optionality
requirement for randomized stopping times).

Figure 3. The left hand side of (3.7) corresponds to averaging the func-
tion γ over the stopped paths on the left picture; the right hand side to
averaging the function γ over the stopped paths on the right picture.

As an application of this monotonicity principle we want to derive the Root embedding.
Similarly to the solution of Azéma and Yor the solution of Root is connected to model
independent finance. It is the extremal model for options on variance where the payoff

depends on the realized quadratic variation of the logarithm of the price process (e.g. see
[CW13]).

Theorem 3.16. Let h : R+ → R be strictly convex, γ(ω, t) = h(t) and assume that PSEP
γ <

∞. Then a minimizer of (OptSEP) exists and, moreover, for any minimizer τ̂, there exists
a barrier R such that

τ̂ = inf{t ≥ 0 : (t, Bt) ∈ R}.

In particular, the minimizer τ̂ is unique and a non-randomized stopping time.

Proof. Step 1. We first pick- by Corollary 3.12- a stopping time τ̂ which attains PSEP
γ . By

Theorem 3.15 there exists a set Γ ⊆ S such that ((Bs)s≤τ̂, τ̂) ∈ Γ almost surely, and such
that (Γ< × Γ) ∩ S G = ∅.

Step 2. Next, consider paths ( f , s), (g, t) ∈ S such that f (s) = g(t). We want to under-
stand when (( f , s), (g, t)) ∈ SG, i.e., under which conditions ( f , s) should be stopped and
Brownian motion should continue to go after (g, t). In the present case (3.7) amounts to

E[h(s + σ)] + h(t) > h(s) + E[h(t + σ)].

Thus, by strict convexity of h, (( f , s), (g, t) ∈ SG iff t < s. We define two barriers by

RCL := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, t ≤ s},

ROP := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, t < s}.

We claim that the hitting times of RCL and ROP are ordered and sandwich τ̂.
Fix (g, t) ∈ Γ. Then we have (t, g(t)) ∈ RCL. Suppose for contradiction that inf{s ∈

[0, t] : (s, g(s)) ∈ ROP} < t. Then there exists s < t such that ( f , s) := (g|[0,s], s) ∈ Γ< and
(s, f (s)) ∈ ROP. By definition of ROP, it follows that there exists another path (k, u) ∈ Γ

such that k(u) = f (s) and u < s. But then (( f , s), (k, u)) ∈ SG ∩ (Γ< × Γ) which cannot be
the case. Hence,

(g, t) ∈ Γ⇒ inf{s ∈ [0, t] : (s, g(s)) ∈ RCL} ≤ t ≤ inf{s ∈ [0, t] : (s, g(s)) ∈ ROP}.
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Step 3. Now consider (ω, u) ∈ C0(R+)×[0, 1] such that (g, t) = ((B̄s(ω, u))s≤τ̂(ω,u), τ̂(ω, u)) ∈
Γ. Then it follows immediately that:

τCL(ω) := inf{s : (s, Bs(ω)) ∈ RCL} ≤ τ̂(ω, u) ≤ inf{s : (s, Bs(ω)) ∈ ROP} =: τOP(ω).

We finally observe that τCL = τOP a.s. by the strong Markov property, and the fact that
one-dimensional Brownian motion immediately returns to its starting point.

Step 4. Uniqueness follows as in the previous section since we have showed that any
minimizer is a true stopping time and the hitting time of a barrier (cf. Remark 1.39). �

Remark 3.17. (1) The barrier in Theorem 3.16 is unique in the following sense. Call
the optimizer from Theorem 3.16 τRoot. If S is another barrier such that

τ′ = inf{t ≥ 0 : (t, Bt) ∈ S }

solves SEP(ν) then a.s.
τ′ = τRoot.

The argument due to Loynes goes as follows:
Suppose R and S are barriers both inducing (minimal) solutions to SEP(ν). W.l.o.g.
we can assume R and S are closed. Consider the barrier R ∪ S with hitting time
τR∪S . Let

A ⊆ ΩR := {x : (t, x) ∈ S ⇒ (t, x) ∈ R}

Then
P(BτR∪S ∈ A) ≤ P(BτR ∈ A) = ν(A).

Similarly, for

A′ ⊆ ΩS := {x : (t, x) ∈ R⇒ (t, x) ∈ S }

we have
P(BτR∪S ∈ A′) ≤ P(BτS ∈ A′) = ν(A′).

Since ν(ΩR ∪ ΩS ) = 1, τR∪S embeds ν. By minimality (cf. Remark 3.2(i)) of τR

and τS this implies τR = τS a.s.
(2) Theorem 3.16 is not constructive in the sense that there is no closed expression for

the barrier. However, there are PDE characterizations for the barrier, e.g. [CW13].
(3) Requiring the function h in Theorem 3.16 to be concave we can run (essentially)

the same argument to show Rost’s result, the existence of an inverse barrier R ⊆
R+ × R ((s, x) ∈ R, t ≤ s ⇒ (t, x) ∈ R) such that the first hitting time of R solves
SEP(ν). However, here one needs to be careful at time zero. Again the barrier is
unique by Loynes’s argument.

(4) All known solutions (and many more) to (OptSEP) can be derived by essentially
the same argument up to running a secondary optimization problem among all
optimizers (which are usually a compact set) to (OptSEP) (see below).
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(5) Considering γ( f , s) = c( f (0), f (s)) for a Spence-Mirrlees cost function c allows to
recover the left-monotone solution to (MOT). In fact, all known one-dimensional
solutions to (MOT) can be derived in this way, see [HS18]

(6) There is a variant of the monotonicity principle Theorem 3.15 which is necessary
and sufficient. However, its precise relation to Theorem 3.15 is not clear, see
[BNS19].

3.2.1. Secondary optimization and the Azéma-Yor embedding. In this section we want to
shortly indicate what we mean with secondary optimization and how to use this to derive
the Azéma-Yor embedding.

For γ : S → R write Optγ for the set of optimizers to (OptSEP). Consider another
function γ̃ : S → R. We call τ̂ ∈ Optγ a secondary optimizer/ minimizer if it solves

Pγ̃|γ = inf
τ∈Optγ

E[γ̃((Bs)s≤τ, τ)]. (OptSEP2)

Theorem 3.18. Let γ, γ̃ : S → R be lower semi continuous and bounded from below then
(OptSEP2) admits a minimizer.

Definition 3.19. (i) (( f , s), (g, t)) ∈ S ×S is a secondary stop-go-pair, written ( f , g) ∈
SG2, if and only if f (s) = g(t) and for any stopping time σ of Brownian Motion B
satisfying 0 < E[σ] < ∞

γ( f , s) + E[γ(g ⊕ (Bu)u≤σ, t + σ)] ≤ E[γ( f ⊕ (Bu)u≤σ, s + σ)] + γ(g, t), (3.9)

and if ”=” holds in (3.9) then

γ̃( f , s) + E[γ̃(g ⊕ (Bu)u≤σ, t + σ)] < E[γ̃( f ⊕ (Bu)u≤σ, s + σ)] + γ̃(g, t). (3.10)

(ii) Γ ⊆ S is called γ̃|γ-monotone if SG2 ∩ (Γ< × Γ) = ∅.

Theorem 3.20. Let γ, γ̃ : S → R be Borel. Suppose Pγ̃|γ < ∞ and that ξ is an optimizer
with representation ρ on C̄0(R+). Then there exists a γ̃|γ- monotone set Γ ⊆ S such that

W̄[((Bs)s≤ρ, ρ) ∈ Γ] = 1.

Figure 4. The stop-go pairs for the Azema-Yor embedding. On the
left,the blue path (g, t) is stopped, and the green path, ( f , s), is allowed
to continue; a possible continuation, h, being shown in red. On the right
hand side we see the effect of allowing g to go and stopping f : the max-
imum of g is increased, but the maximum of f stays the same.

Example 3.21. Azema-Yor embedding:
Pick

γ( f , s) = − f̄ = − max
0≤u≤s

f (u)

and
γ̃( f , s) = ϕ( f̄ ),
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for some ϕ : R+ → R bounded, strongly increasing and continuous. Then, it is possible to
show that (Exercise!)

{(( f , s), (g, t)) ∈ S × S , f (s) = g(t), ḡ < f̄ } ⊆ S G2.

From here the argument follows closely the proof of Theorem 3.16.We omit the details
(cf. Exercises).

3.3. Exercises.

Problem 39. (The Second Constraint)
Let µ, ν ∈ P2(R) with µ �c ν. Moreover, let B be a Brownian Motion and τ a F B-

stopping time such that Bτ ∼ ν.
a) Prove that E[τ] < +∞ if and only if (Bt∧τ)t≥0 is uniformly integrable, i.e. for all

ε > 0 it exists K ∈ N such that supt≥0 E[|Bτ∧t |1|Bt |≥K] < ε.
b) Show that if (Bt∧τ)t≥0 is uniformly integrable, τ is a minimal solution, i.e. for all

stopping times τ′ with τ′ ≤ τ a.s. and Bτ′ ∼ ν there holds τ′ = τ a.s.

Problem 40. (Embedding of Two Diracs)
Let µ, ν ∈ P1(R) with µ �c ν such there exists a < b in R such that supp(ν) = {a, b}.

a) Show that supp(µ) ⊆ [a, b].
b) Find a solution to SEP(µ, ν).
c) Show that there exists only one solution to SEP(µ, ν).

Problem 41. (Azéma-Yor Solution I)
Let n ∈ N, x1 < ... < xn in R and α1, ..., αn ∈ [0, 1] such that νn =

∑n
i=1 αixi is a centred

probability measure. Moreover, let X be a νn-distributed random variable. We define the
disrete time process (Yi)i=0,...,n−1 as

Y0 = 0 and Yi = E
[
X|1X=x1 , ...,1X=xi

]
for all 1 ≤ i ≤ n − 1.

a) Show that (Yi)i=0,...,n−1 is a martingale with Yn−1 ∼ νn.
b) For all 1 ≤ i ≤ n − 1 we set

bi := E [X|X , x1, ..., X , xi]

and b0 = 0. Prove that for all 1 ≤ i ≤ n − 1 there holds

Yi ∈

{Yi−1} Yi−1 < bi−1

{xi, bi} Yi−1 = bi−1
and xi ≤ bi−1 ≤ bi.

c) Let B be a standard Brownian Motion. Find uniformly integrable stopping times
τ1, ..., τn−1 such that

Bτ1+...+τi ∼ Yi

for all 1 ≤ i ≤ n − 1.
Hint: Recall Problem 40.

d) Show that τAY := τ1 + ... + τn−1 is a solution of SEP(νn) that satisfies

τAY = inf
{

t ≥ 0 : Bt ≤ ψ
−1
νn

(
sup
s≤t

Bs

)}
where the barycenter function ψνn is defined as in the lecture.

Problem 42. ((Randomized) Stopping Times)
Let B be a standard Brownian Motion.

a) Let ν1 := N(0, 2) be the normal distribution with mean 0 and variance 2. Find a
solution of SEP(ν1).
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b) Let α := P[supt≤1 |Bt | ≥ 1] and ν2 := α (δ−1 + δ1) + (1 − α) (δ−2 + δ2). Find a
stopping time that solves SEP(ν2).

c) Let ν2 be as in b). Find a randomized stopping time (different from your solution
in b)) that solves SEP(ν2).

Problem 43. (Left-Monotone Solution)
Let µ, ν ∈ P2(R) with µ �c ν and µ({x}) = 0 for all x ∈ R. Moreover, let πlm be the

left-monotone coupling of µ and ν (cf. Example 2.33)

a) We know from these lecture notes that there exists two Borel measurable maps T1,
T2 from R to R with

T1(x) ≤ x ≤ T2(x) for all x ∈ R and
πlm({(x,Ti(x)) : x ∈ R, i ∈ {1, 2}}) = 1.

(3.11)

Show that for µ-a.e. x, x′ ∈ R there holds

∀y ∈ R : x ≥ x′, y < (T1(x),T2(x)) ⇒ y < (T1(x′),T2(x′)). (3.12)

Hint: Recall that πlm is concentrated on a left-monotone set.
b) We can modify the maps T1 and T2 such that (3.11) is still satisfied and (3.12)

holds for all x, x′ ∈ R. Hence, the set R := {(x, y) ∈ R2 : y < (T1(x),T2(x))} is a
right-barrier in R. We define the stopping time

τlm := inf{t ≥ 0 : (−B0, Bt) ∈ R}.

Prove that τlm satisfies Law(B0, Bτlm ) = πlm.

Problem 44. (Azéma-Yor Solution II)
Let B be a standard Brownian motion and ν ∈ P2(R) a centred probability measure. We

want to show that there exists a solution τ to SEP(ν) that maximizes E
[
supr≤τ Br

]
among

all solutions to SEP(ν) and that is of the form

τ = inf
{

t ≥ 0 : Bt ≤ ψ

(
sup
r≤t

Bt

)}
(3.13)

for some increasing function ψ.

a) Let ϕ : R≥0 → R be a strictly increasing continuous function and define the cost
functions

γ(( f , s)) := − sup
r≤s

f (r) and

γ̃(( f , s)) = ϕ

(
sup
r≤s

f (r)
)

f (s)2.

Show that there exists a randomized stopping time τ that minimizes the secondary
optimization w.r.t. γ̃|γ (cf. OptSEP2).

b) Prove that the set of secondary stop-go pairs satisfies

SG2 ⊇

{
( f , s), (g, t) ∈ S × S : f (s) = g(t), sup

r≤s
f (r) > sup

r≤t
g(r)

}
.

c) Let Γ be a γ̃|γ-monotone set. We define

Rcl :=
{

(m, x) : ∃(g, t) ∈ Γ, sup
r≤t

g(r) ≤ m, g(t) = x
}

and

Rop :=
{

(m, x) : ∃(g, t) ∈ Γ, sup
r≤t

g(r) < m, g(t) = x
}
.

Let τcl and τop be the corresponding first hitting times. Prove that τcl ≤ τ ≤ τop.
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d) Show that there exists an increasing function such that

τcl = τop = inf
{

t ≥ 0 : Bt ≤ ψ

(
sup
r≤t

Bt

)}
a.s.

Hint: You can use that the distribution of supr≤t Br is absolutely continuous w.r.t.
the Lebesgue measure

e) Combine a)-d) with statements from the lecture to deduce that there exists a so-
lution to SEP(ν) that maximizes E

[
supr≤τ Br

]
among all solutions to SEP(ν) and

that is of the form (3.13).
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4. Causal Optimal Transport and AdaptedWeak Topologies

Considering for ε ≥ 0 the probability measures on R2:

Pε := 1/2 δ(ε,1) + 1/2 δ(−ε,−1), (4.1)

it is immediate that in the sense of weak convergence or Wasserstein distance

Pε → P0 = 1/2δ(0,1) + 1/2δ(0,−1) as ε→ 0.

This can be seen graphically in Figure 5, where also a transport map is depicted:

T

Figure 5. Depiction of stochastic processes with laws P0 and Pε, from
left to right. Map T sends the blue path on the left, to the blue path on
the right, and similarly for the red paths.

But now let us think of R2 = R × R as the path-space of all R-valued processes indexed
by the time-index set {1, 2}. This means that for (x, y) ∈ R2 we think of x as a position
at time 1 and y as a position at time 2. In this interpretation for ε > 0 the measure Pε

denotes the law of a stochastic process which is random at time 1 (being either ±ε), and
deterministic at time 2 (being equal to the sign of what happened at time 1). Contrast this
to µ0, the law of a stochastic process deterministic at time 1 (equal to zero) and random at
time 2 (being either ±1). From this perspective, the processes described for ε > 0 couldn’t
be more different than the process described for ε = 0 !

The reason for this dissonance between convergence of measures and convergence of
stochastic processes, is that the former largely ignores the time- or information-structure
which on the other hand is inherent to stochastic processes. Whereas for stochastic pro-
cesses we can talk about the arrow of time, mathematically encoded by filtrations, for mea-
sures there is in principle no preferred direction where time (the coordinates) is evolving.
To further illustrate the point, let us consider some examples coming from mathematical
finance/ stochastic optimization:

Example 4.1 (Optimal Stopping/Pricing of an american option). We revisit Pε,P0 as in
(4.1), and consider

v(P) := sup{EP[S τ] : τ ∈ {1, 2} is S 1-measurable}.

This is a so-called optimal stopping problem (τ is a stopping time). Alternatively, if S
is the value of a stock (perhaps compared to a benchmark, so that negative values make
sense), then v(P) is about finding the optimal time to sell it given the available information.
Clearly v(P0) = 0, since e.g. S is a P0-martingale. On the other hand, for Pε with ε > 0 we
may choose τ = 1 + 1S 1>0, so that v(Pε) ≥ 1/2[1 − ε] ∼ 1/2. We deduce that

v(Pε) 6→ v(P0).

Example 4.2 (Utility Maximization). Say U : R → R is strictly increasing and concave,
and consider

u(P) := max {EP[U(π(S 2 − S 1))] : π ∈ [−1, 1] is S 1-measurable} .

Let for ε ≥ 0

Pε :=
1
4

[δ(ε,1) + δ(ε,0) + δ(−ε,0) + δ(−ε,−1)],

so again Pε → P0 as ε → 0, in weak convergence or Wasserstein distance (see Figure 6).
By Jensen’s inequality we have u(P0) = U(0) since P0 is a martingale measure. On the
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other hand, taking for ε > 0 the strategy π∗ = sign(S 1), we derive by concavity of U

u(Pε) ≥
1
2

[U(1 − ε) + U(−ε)] ≥
1
2

[(1 − ε)U(1) + εU(0) + U(−ε)]

→ u(P0) +
1
2

(U(1) − U(0)) > u(P0)

as U is strictly increasing. Hence u(Pε) does not converge to u(P0). Observe that the strat-
egy π∗ precisely exploits the information at time 1 that the process S is going to experience
a large movement with 1/2 probability in a foreseeable (at time 1) upwards/downwards
direction, at least for ε > 0. For ε = 0 this peculiarity of π∗ is lost since the same large
movement of the process X can now occur in any (unforeseeable) direction.

Figure 6. Illustration for Example 4.2. Here external randomization is
needed for the green paths.

Example 4.3 (Super Hedging). If C(S 1, S 2) is an option, then super-replicating it at zero
cost under model Pmeans finding π = π(S 1) such that C ≤ π[S 2−S 1] (P-a.s.). A smoothed-
out version of this is to determine e.g.

w(P) := inf{EP[(C(S 1, S 2) − π[S 2 − S 1])+)] : π ∈ [−2, 2] is S 1-measureable }.

For simplicity we take C(S 1, S 2) = (S 2)+, and again consider Example (4.1). We see that
w(Pε) = 0 for all 0 < ε < 1/2, by taking π = (1 − ε)−11S 1>0. On the other hand

w(P0) = inf
π∈[−2,2]

1/2{(1 − π)+ + (π)+} = 1,

and so w(Pε) 6→ w(P0).

The above three examples illustrate that the failure of the conventional notions of con-
vergence of probability measures has the following serious negative consequence: most
problems in mathematical finance and in stochastic optimization will not behave in a stable
way. This is troubling, since it means that in practical terms we should not trust a specific
model P, as small deviations from it can produce very different conclusions/optimizers.

Overview: The purpose of this part of the course is to introduce a topology which is best
suited to remedy the aforementioned instability problem. It turns out that this topology
will be metrized by a transport-like distance. This will resemble very closely the definition
of Wasserstein distances, with one important difference: the set of couplings used in deter-
mining this transport distances will be required to fulfil a certain adaptability, or causality,
property. This leads us to study the more general problem of causal optimal transport.

4.1. Causal Transport in Discrete Time. (Xt)t (resp. (Yt)t) are Polish spaces where our
stochastic processes take their values. Also

X = ΠN
t=1Xt (resp. Y = ΠN

t=1Yt)

are the associated path-spaces of N-step Xt-valued (resp. Yt-valued) stochastic processes.
We denote by X the canonical (identity) process on X, and analogously for Y on Y. Simi-
larly, we denote by (X,Y) the canonical process on X × Y. In the latter space we consider
the natural filtrations F X and F Y for X and respectively Y . If q ∈ P(X × Y) then we
write qx and qy for the conditional probability given respectively X = x and Y = y respec-
tively. We convene that qx1,...,xt ,y1,...,yt is the conditional distribution under q of (xt+1, yt+1)
given (x1, . . . , xt, y1, . . . , yt), unless explicitly written otherwise. Similar conventions apply
to measures on X or Y.
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Definition 4.4. Let µ ∈ P(X), ν ∈ P(Y) be given. A coupling q ∈ Cpl(µ, ν) is called causal
(between µ and ν) if for any t ∈ {1, . . . ,N} and B ∈ F Yt , the mapping x ∈ X → qx(B) is
F Xt -measurable. The set of all such plans will be denoted

Cplc(µ, ν).

Remark 4.5. Another way to state the causality property is that, under q, for any t, the
random variable Yt is independent of Xt+1, . . . , XN given X1, . . . , Xt. Hence, for a causal
coupling, Y is F X-adapted modulo some randomness which is independent of X.

Along these lines, the following remark is illuminating:

Remark 4.6. If T : X → Y is an adapted measurable map then qT (dx, dy) := µ(dx)δT (x)(dy)
is causal (from µ to T (µ)). Adapted here should be understood as

T (x1, . . . , xN) = ( T1(x1),T2(x1, x2), . . . ,Tn(x1, . . . , xN) ),

with Tt : Πt
i=1Xi → Yt. It can be formalized, that causal couplings are mixtures/limits of

such qT .

Analogously, we will be interested in transport plans that are “causal in both directions”,
or bicausal in our terminology. Put e(x, y) = (y, x).

Definition 4.7. The set of all bicausal plans is explicitly given by

Cplbc(µ, ν) =
{
q ∈ Cplc(µ, ν) s.t. e(q) ∈ Cplc(ν, µ)

}
.

The following two optimization problems will play a major role in the rest of this Sec-
tion.

Definition 4.8. Given some Borel cost function c defined on X × Y and probability mea-
sures µ ∈ P(X), ν ∈ P(Y), the causal optimal transport problem is to find the minimal cost
at which they can be coupled in a causal way, i.e.

inf
q∈Cplc(µ,ν)

∫
cdq. (Pc)

Minimizing over the set Cplbc(µ, ν) defines the bicausal optimal transport problem

inf
q∈Cplbc(µ,ν)

∫
cdq. (Pbc)

The following proposition, especially part (3), shows that causal optimal transport cor-
responds to an optimal transport problem under additional linear constraints, just as mar-
tingale optimal transport. In particular the set of causal couplings is convex. Observe also
that it is non-empty, as the independent coupling µ ⊗ ν is causal (in fact bicausal).

Proposition 4.9. The following statements are equivalent:
(1) q is a causal coupling between the measures µ and ν.
(2) Decomposing q in terms of successive regular kernels

q(dx1, . . . , dxN , dy1, . . . , dyN) = q̄(dx1, dy1)qx1,y1 (dx2, dy2) . . . qx1,...,xN−1,y1,...,yN−1 (dxN , dyN), (4.2)

then q̄ ∈ Cpl(projX1
(µ), projY1

(ν)) and for t < N and q-almost all x1, . . . , xt, y1, . . . , yt

projΠt
j=1X j

(qx1,...,xt ,y1,...,yt ) = µx1,...,xt , (4.3)

and for ν-almost all y1, . . . , yt

qy1,...,yt (dyt+1) = νy1,...,yt (dyt+1). (4.4)

(3) q ∈ Cpl(µ, ν) and for all t ∈ {1, . . . ,N}, ht ∈ Cb(Πt
i=1Yi) and gt ∈ Cb(X) we have∫

ht(y1, . . . , yt)
{
gt(x1, . . . , xN) −

∫
gt(x1, . . . , xt, x̄t+1, . . . , x̄N)µx1,...,xt (dx̄t+1, . . . , dx̄N)

}
dq = 0.

(4) q ∈ Cpl(µ, ν) and for every bounded continuous F Y-adapted process H and each
bounded (µ,F X)-martingale M we have∫ ∑

t<N Ht(y1, . . . , yt) [Mt+1(x1, . . . , xt+1) − Mt(x1, . . . , xt)] dq = 0.
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Proof. STEP 1: Equivalence between Points 1 and 3:
Denote f h(x1, . . . , xN) :=

∫
ht(y1, . . . , yt)γx1,...,xN (dy1, . . . , dyt) with ht ∈ C(Rt). By defi-

nition γ ∈ Πc(µ, ν) if and only if for all t ≤ N and all such f h we have

f h(x1, . . . , xN) =
∫

f h(x1, . . . , xt, x̄t+1, . . . , x̄N)µx1,...,xt (dxt+1, . . . , dxN),

which is equivalent to the following:∫
g(x1, . . . , xN)

[
f h(x1, . . . , xN) −

∫
f h(x1, . . . , xt, xt+1, . . . , xN)µx1,...,xt (dxt+1, . . . , dxN)

]
dµ = 0,

for every function g ∈ Cb(RN) and for all t ≤ N. The fact we can take the g’s continuous
and not merely Borel bounded comes from the fact that µ is a Borel finite measure on a
Polish space. It is easy to see that the previous equation is equivalent to∫

f h(x1, . . . , xN)
[
g(x1, . . . , xN) −

∫
g(x1, . . . , xt, xt+1, . . . , xN)µx1,...,xt (dxt+1, . . . , dxN)

]
dµ = 0.

Finally, by the tower property of conditional expectations the latter is equivalent to:∫
ht(y1, . . . , yt)

[
gt(x1, . . . , xN) −

∫
gt(x1, . . . , xt, xt+1, . . . , xN)µx1,...,xt (dxt+1, . . . , dxN)

]
dγ = 0.

STEP 2: Equivalence between Points 1 and 2:
A γ ∈ Π(µ, ν), decomposed as in (4.2), is causal if and only of for any time t ≤ N,

γx1,...,xt ,y1,...,yt (dx1, . . . , dxN) = γx1,...,xt (dx1, . . . , dxN). Since the x-marginal of γ is µ, these
facts imply (4.3). On the other hand, the y-marginal of γ is ν, so (4.4) directly follows.

For the converse direction, it is enough to verify Point 3. for any t = 1, . . . ,N − 1. Since
the functions ht therein depend only on y1, . . . , yt, the latter can be computed as∫

ht(y1, . . . , yt)
[
gt(x1, . . . , xN) −

∫
gt(x1, . . . , xt, xt+1, . . . , xN)µx1,...,xt (dxt+1, . . . , dxN)

]
µx1,...,xN−1 (dxN) . . . µx1,...,xt (dxt+1)γx1,...,xt−1,y1,...,yt−1 (dxt, dyt) . . . γx1,y1 (dx2, dy2)γ̄(dx1, dy1),

which is zero as desired because of µx1,...,xN−1 (dxN) . . . µx1,...,xt (dxt+1) = µx1,...,xt (dxt+1, . . . , dxN)
(disintegration property).

STEP 3: Equivalence between Points 3 and 4:
Evidently in Point 3 we could have taken ht and gt Borel bounded, as STEP 1 sug-

gests. Choosing then gt = Mt+1 and ht = Ht for each t < N, and summing up, proves
Point 4 from Point 3. Conversely, given t, ht and gt we build Hs = ht1s≥t and Ms =∫

gt(x1, . . . , xs, xs+1, . . . , xN)µx1,...,xs (dxs+1, . . . , dxN) and conclude by telescopic sum on s.
�

Following the strategy from Section 2, the above Proposition 4.2 (3) allows us to derive
the existence of optimizers for Problem (Pc) as well as a dual problem (in fact two versions
of the dual problem). To this end, we introduce the following sets of functions

F :=


F : X ×Y → R s.t. F(x1, . . . , xN , y1, . . . , yN) =∑

t<N
ht(y1, . . . , yt)

[
gt(x1, . . . , xN) −

∫
gt(x1, . . . , xt, x̄t+1, . . . , x̄N)µx1,...,xt (dx̄t+1, . . . , dx̄N)

]
,

with ht ∈ Cb(Πt
i=1Yi), gt ∈ Cb(X) for all t < N

 , (4.5)

S :=


S : X ×Y → R s.t. S (x1, . . . , xN , y1, . . . , yN) =∑

t<N
Ht(y1, . . . , yt) [Mt+1(x1, . . . , xt+1) − Mt(x1, . . . , xt)] ,

with Ht ∈ Cb(Πt
i=1Yi),Mt ∈ Cb(Πt

i=1Xi) for all t < N, and with {Mt}t a µ-martingale

 . (4.6)

Then we have the following result on existence and duality:
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Theorem 4.10. Suppose that c : X×Y → R∪{+∞} is lower semicontinuous and bounded
from below. Then there is no duality gap

inf
q∈Cplc(µ,ν)

∫
cdq = sup

Φ∈Cb(X),Ψ∈Cb(Y),F∈F
Φ⊕Ψ≤c+F

[∫
Φdµ +

∫
Ψdν

]

= sup
Φ∈Cb(X),Ψ∈Cb(Y),S∈S

Φ⊕Ψ≤c+S

[∫
Φdµ +

∫
Ψdν

]

= sup
Ψ∈Cb(Y),F∈F

Ψ≤c+F

[∫
Ψdν

]
,

and the infimum on the l.h.s. (i.e. (Pc)) is attained.

The key to proving this result is the following lemma proving compactness of Cplc(µ, ν).

Lemma 4.11. Let B ⊆ P(Y) be a weakly compact set of measures, and µ ∈ P(X) be
given. Then the set Cplc(µ, B) := ∪ν∈B Cplc(µ, ν) is weakly compact. In particular the set
Cplc(µ, ν) is weakly compact.

Proof. Call τ and σ the Polish topologies of X and Y, respectively. Consider

X1 3 x1 7→ µx1 (dx2, . . . , dxN) ∈ P(ΠN
i=2Xi)

X1 × X2 3 (x1, x2) 7→ µx1,x2 (dx3, . . . , dxN) ∈ P(ΠN
i=3Xi)

...

ΠN−1
i=1 Xi 3 (x1, . . . , xN−1) 7→ µx1,...,xN−1 (dxN) ∈ P(XN),

for the regular conditional distributions of µ. We can view the collection of these N − 1
measurable mappings as a measurable function from X into a Polish space. By [Kec95,
Theorem 13.11], there is a stronger (finer)3 Polish topology on X, which we call τ̂, whose
Borel sets are the same as for τ, and such that the above mapping is continuous when the
domain space X is given the τ̂ topology. Let us denote by Σ1 the topology on P(X × Y)
generated by convergence w.r.t. τ × σ-continuous bounded functions, and Σ2 the topology
generated by convergence w.r.t. τ̂ × σ-continuous bounded functions. By Proposition 4.9
we know that causality can be tested by integration against functions of the form

h(y1, . . . , yt)
[
g(x1, . . . , xN) −

∫
g(x1, . . . , xt, x̄t+1, . . . , x̄N)µx1,...,xt (dx̄t+1, . . . , dx̄N)

]
,

for each t, h bounded σ-continuous and g bounded τ-continuous. Notice that the function
in brackets is then by definition also τ̂-continuous, so the overall expression is τ̂ × σ-
continuous. It follows that Cplc(µ, B) is Σ2-closed. On the other hand, Cplc(µ, B) is also
Σ2-tight, since as a Borel measure µ is still tight w.r.t. the stronger topology induced by
τ̂-continuous bounded functions (τ̂ is still Polish). Thus Cplc(µ, B) is Σ2-compact and in
particular also Σ1-compact. �

Proof of Theorem 4.10 . Existence follows from Lemma 4.11. By Proposition 4.9, (Pc) is
equal to

inf
q∈Cpl(µ,ν)

sup
F∈F

∫
[c + F]dq.

Going back to the proof of Lemma 4.11, there is a stronger topology under which Cpl(µ, ν)
is compact, q 7→

∫
Fdq is continuous for all F ∈ F, and q 7→

∫
cdq is lower semicontinu-

ous. As in the proof of Theorem 2.13 we may apply the minmax Theorem 2.15 obtaining
the equality between (Pc) and

sup
F∈F

inf
q∈Cpl(µ,ν)

∫
[c + F]dq.

3If τ and τ′ are two topologies on X s.t. τ ⊆ τ′ we say that τ′ is stronger/finer than τ.
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Applying the Kantorovich duality Theorem 1.21 to the inner infimum above we conclude

inf
q∈Cplc(µ,ν)

∫
cdq = sup

Φ∈Cb(X),Ψ∈Cb(Y),F∈F
Φ⊕Ψ≤c+F

[∫
Φdµ +

∫
Ψdν

]
.

Observe that Φ −
∫

Φdµ ∈ F, from which it is possible to eliminate Φ from the above
supremum. We leave the statement involving S as an exercise. �

4.2. Bicausal Transport in Discrete Time. Recall the set of bicausal transports

Cplbc(µ, ν) =
{
q ∈ Cplc(µ, ν) s.t. e(q) ∈ Cplc(ν, µ)

}
,

where e(x, y) = (y, x). We leave it as an exercise to the reader to find the analogue of
Theorem 4.10 in the bicausal case. We are interested here in finding the optimizer of the
bicausal transport problem (Pbc). Under certain conditions, this also leads to the optimizer
of (Pc). Recall (Pbc)

inf
q∈Cplbc(µ,ν)

∫
cdq.

It will useful to first consider the following “nested” problem:

infq1∈Cpl(projX1
(µ),projY1

(ν))

∫
q1(dx1, dy1) infq2∈Cpl(µx1 ,νy1 )

∫
q2(dx2, dy2) . . .

. . . infqN∈Cpl(µx1 ,...,xN−1 ,νy1 ,...,yN−1 )

∫
qN(dxN , dyN)c(x1, . . . , xN , y1, . . . , yN). (Dyn-Pbc)

The previous recursive problem is motivated by the following structure result, the proof of
which is analogous to the causal case, Proposition 4.9.

Proposition 4.12. Let µ ∈ P(X), ν ∈ P(Y).
If q ∈ Cplbc(µ, ν) is decomposed as in (4.2), then the following conditions on the kernels
hold:

(i) q̄ ∈ Cpl(projX1
(µ), projY1

(ν)), and
(ii) successively for t < N and for q-almost every x1, . . . , xt, y1, . . . , yt there holds

qx1,...,xt ,y1,...,yt (dxt+1, dyt+1) ∈ Cpl(µx1,...,xt (dxt+1), νy1,...,yt (dyt+1)).

Conversely, given regular kernels

q̄(dx1, dy1), qx1,y1 (dx2, dy2), . . . , qx1,...,xN−1,y1,...,yN−1 (dxN , dyN),

satisfying the properties (i)−(ii), the measure q constructed as in (4.2) belongs to Cplbc(µ, ν).

The recursion corresponding to (Dyn-Pbc) (starting from Vc
N := c) is:

Vc
t (x1, . . . , xt, y1, . . . , yt) =

infqt+1∈Cpl(µx1 ,...,xt ,νy1 ,...,yt )

∫
qt+1(dxt+1, dyt+1)Vc

t+1(x1, . . . , xt+1, y1, . . . , yt+1), (4.7)

and so we want to compare the values of (Dyn-Pbc), (Pbc) and

Vc
0 := infq1∈Cpl(projX1

(µ),projY1
(ν))

∫
Vc

1(x1, y1)q1(dx1, dy1).

Proposition 4.13. Given a Borel bounded from below cost function c, we have that the
nested problem (Dyn-Pbc) is well-defined, namely the successive integrals in (4.7) are well-
defined, and the values of (Dyn-Pbc), (Pbc) and Vc

0 coincide and hence the optimization
problems are equivalent.

We omit the proof, as it needs some aspects of the theory of measurable selections.

Remark 4.14. The equivalence between (Dyn-Pbc), (Pbc) and Vc
0 is called Dynamic Pro-

gramming Principle or DPP in short. The power of the DPP is that it reduces the computa-
tion of (Pbc) to solving a sequence of classical transport problems (see (4.7)). In fact, this
also suggests how to build an optimizer for (Pbc).

We now show how sometimes Problems (Pbc) and (Pc) are equivalent:
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Proposition 4.15. Assume that c has a separable structure

c(x1, . . . , xN , y1, . . . , yN) =
∑

t≤N
ct(xt, yt). (4.8)

Further suppose that the starting measure µ is the product of its marginals, i.e.

µ(dx1, . . . , dxN) = µ1(dx1) . . . µN(dxN). (4.9)

Then the values of (Pc) and (Pbc) coincide.

Proof. We only need to show that the value of the bicausal problem is less or equal than
that of the causal problem. Start with q ∈ Cplc(µ, ν) and decompose it as in (4.2). From
Proposition 4.9, we know that the following conditions (t < N) are satisfied by the kernels
q̄(dx1, dy1), qx1,y1 (dx2, dy2), up to qx1,...,xN−1,y1,...,yN−1 (dxN , dyN):

qx1,...,xt ,y1,...,yt (dxt+1,Yt+1) = µt+1(dxt+1) (4.10)

and ∫
x1,...,xt

qx1,...,xt ,y1,...,yt (Xt+1, dyt+1)qy1,...,yt (dx1, . . . , dxt) = νy1,...,yt (dyt+1) (4.11)

= qy1,...,yt (Xt+1, dyt+1)

We can rewrite (4.10) in the following way:∫
x1,...,xt

qx1,...,xt ,y1,...,yt (dxt+1,Yt+1)qy1,...,yt (dx1, . . . , dxt) = µt+1(dxt+1) (4.12)

= qy1,...,yt (dxt+1,Yt+1)

Therefore, we can construct a new plan q̃ as follows

q̃(dx1, . . . , dxN , dy1, . . . , dyN) = q̄(dx1, dy1)q̃y1 (dx2, dy2) . . . q̃y1,...,yN−1 (dxN , dyN),

with

q̃y1,...,yt (dxt+1, dyt+1) =
∫

x1,...,xt
qx1,...,xt ,y1,...,yt (dxt+1, dyt+1)qy1,...,yt (dx1, . . . , dxt). (4.13)

Due to (4.12) and (4.11), one can see that for any t < N each kernel

qy1,...,yt ∈ Cpl(µt+1(dxt+1), νy1,...,yt (dyt+1)).

Then, from Proposition (4.12), we know that q̃ ∈ Cplbc(µ, ν). By (4.13) and separability of
c we obtain

∫
cdq =

∫
cdq̃ so that

∫
q∈Cplbc(µ,ν

∫
cdq ≤

∫
q∈Cplc(µ,ν

∫
cdq proving the result. �

Remark 4.16. One can give examples showing that if either µ is not the product of its
marginals, or the cost function is not separable, then the causal-bicausal equality may fail
(Exercise).

4.2.1. The case of X = Y = RN . To finalize this part, we specialize the discussion to

Xt = Yt = R so that X = Y = RN .

We denote by
Fη(·) := η((−∞, ·]),

the usual cumulative distribution function of a probability measure η on the line, and by
F−1
η (u) its left-continuous generalized inverse, i.e.

F−1
η (u) = inf

{
y : Fη(y) ≥ u

}
.

Let us illustrate the DPP for N = 2:

Example 4.17. Take N = 2 and c = [x1 − y1]2 + [x2 − y2]2. Using the optimality of the
monotone coupling on the line we get:

Vc
1(x1, y1) := inf

q2∈Cpl(µx1 ,νy1 )

∫
q2(dx2, dy2)[x2 − y2]2

=
∫ 1

0

[
F−1
νy1

(u) − F−1
µx1

(u)
]2

du,
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so that Vc
0 is equal to

inf
q1∈Cpl(projX1

(µ),projY1
(ν))

{∫
x1,y1

q1(dx1, dy1)[x1 − y1]2 +
∫ 1

0

[
F−1
νy1

(u) − F−1
µx1

(u)
]2

du
}
.

To simplify notation, we denote Fη1 the cdf of projX1
(η) whenever η is a measure XN .

Definition 4.18. The increasing N-dimensional Knothe-Rosenblatt rearrangement4 of µ
and ν is defined as the law of the random vector (X∗1, . . . , X

∗
N ,Y

∗
1 , . . . ,Y

∗
N) where

X∗1 = F−1
µ1

(U1), Y∗1 = F−1
ν1

(U1), and inductively (4.14)

X∗t = F−1
µX∗1 ,...,X

∗
t−1

(Ut), Y∗t = F−1
νY∗1 ,...,Y

∗
t−1

(Ut), for t = 2, . . . ,N,

for U1, . . . ,UN independent and uniformly distributed random variables on [0, 1]. Addi-
tionally, if µ-a.s. all the conditional distributions of µ are atomless (e.g. if µ has a density),
then this rearrangement is induced by a (Monge) map

(x1, . . . , xN) 7→ T (x1, . . . , xN) := (T 1(x1),T 2(x2; x1), . . . ,T N(xN ; x1, . . . .xN−1)),

where

T 1(x1) := F−1
ν1
◦ Fµ1 (x1),

T t(xt; x1, . . . , xt−1) := F−1
νT1(x1),...,Tt−1(xt−1;x1 ,...,xt−2)

◦ Fµx1 ,...,xt−1
(xt), t ≥ 2. (4.15)

The intuition of the Knothe-Rosenblatt rearrangement is as follows: one first couples the
first marginals of µ and ν increasingly, then given this coupling one couples the conditional
distributions of µ and ν at “time 2 given time 1” likewise in increasing fashion, and so
forth. Observe that if the map T above was differentiable, then its Jacobian matrix would
be lower-triangular.

It is straightforward, but slightly tedious, to observe that the Knothe-Rosenblatt re-
arrangement is a bicausal coupling:

Remark 4.19. The Knothe-Rosenblatt rearrangement (4.14) (coinciding with (4.15) in the
atomless case) is always bicausal: for each bounded Borel g(·, ·) we may define

y1 7→ G(y1) :=
∫ 1

0 g(y1, F−1
νy1

(v))dv,

so that denoting X∗1 := F−1
µ1

(U1), Y∗1 := F−1
ν1

(U1) and Y∗2 := F−1
νF−1

ν1
(U1)

(U2), we get

E[ f (X∗1)g(Y∗1 ,Y
∗
2 )] =

∫ 1
0

∫ 1
0 f (F−1

µ1
(u1))g

(
F−1
ν1

(u1), F−1
νF−1

ν1
(u1)

(u2)
)
du2du1

=
∫ 1

0 f (F−1
µ1

(u1))G
(
F−1
ν1

(u1)
)

du1

= E[ E[ f (X∗1)|Y∗1 ] G(Y∗1 )]
= E[ E[ f (X∗1)|Y∗1 ] g(Y∗1 ,Y

∗
2 )].

Thus the law of X∗1 given (Y∗1 ,Y
∗
2 ), equals the law of X∗1 given Y∗1 . The same holds inverting

the roles of µ and ν and a similar argument applies to greater time indices.

It was observed in [CGS10] that in given situations the Knothe-Rosenblatt rearrange-
ment is a limit of Brenier maps:

Remark 4.20. Assume that both µ and ν are absolutely continuous, and consider the clas-
sical optimal transport problem between these measures under the cost function

cε :=
N∑

i=1

εi|xi − yi|
2.

As in Brenier’s theorem the aforementioned transport problem admits a unique optimizer
q∗ε for every ε > 0. Then as ε → 0 the couplings q∗ε converge to the Knothe-Rosenblatt
rearrangement between µ and ν. This is natural, since the εi weighs make it relatively
expensive to violate the bicausality property.

4The reader might find it in the literature by the name quantile transform or Knothe-Rosenblatt coupling.
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As may be suspected from its structure, or the previous remark, the Knothe-Rosenblatt
rearrangement plays a similar role as Brenier maps in the world of (bi)causal transport.

Definition 4.21. For two real functions f and g, we say that they are co-monotone if either
they are both increasing, or they are both decreasing, or one of them is constant (the other
being arbitrary).

Theorem 4.22. For each t = 1, . . . ,N − 2, all (x1, . . . , xt−1), (y1, . . . , yt−1), and u ∈ R,
suppose:

(a) the functions xt 7→ Fµx1 ,...,xt−1 ,xt
(u) and yt 7→ Fνy1 ,...,yt−1 ,yt

(u) are co-monotone.
Assume further that c(x1, . . . , xN , y1, . . . , yN) :=

∑
t≤N ct(xt−yt), where each ct is convex and

finite. Then the Knothe-Rosenblatt rearrangement (4.14) is optimal for (Pbc). Additionally,
if µ-a.s. all the conditional distributions of µ are atomless (e.g. if µ has a density), then this
rearrangement is induced by the Monge map determined by (4.15).

Corollary 4.23. Suppose µ and ν are Markovian (i.e. µx1,...,xt (dxt+1) = µxt (dxt+1) for all t,
and similarly for ν) and

∀t ∈ {1, . . . ,N1},∀a ∈ R : xt 7→ Fµxt (a) and yt 7→ Fνyt (a) are decreasing .

(We say that the transition kernels of µ and ν are increasing in first order stochastic domi-
nance.) Then Condition (a) from Theorem 4.22 holds.

Corollary 4.24. Suppose c(x1, . . . , xN , y1, . . . , yN) :=
∑

t≤N ct(xt − yt), where each ct is
convex and finite, and that µ is equal to the product of its one-dimensional marginals.
Then the Knothe-Rosenblatt rearrangement (4.14) is optimal for (Pc). Additionally, if all
the one-dimensional marginals of µ are atomless (e.g. if they have a density), then this
rearrangement is induced by the Monge map determined by (4.15).

Proof of Corollary 4.24. It follows immediately from Proposition 4.15, Theorem 4.22, and
the fact that Condition (a) therein is automatically fulfilled when µ has a product form. �

We will need the following technical lemma in order to prove Theorem 4.22:

Lemma 4.25. For any convex function c : R → R and any functions f , g : R → R which
are co-monotone, and for all pairs x ≤ x̄ and y ≤ ȳ, the following holds

c( f (x) − g(y)) + c( f (x̄) − g(ȳ)) − c( f (x̄) − g(y)) − c( f (x) − g(ȳ)) ≤ 0. (4.16)

Proof. It is known that any convex function has a monotone slope, meaning that for any
h ≥ 0 the function

c(z) − c(z − h)
h

,

is increasing in z. This implies, that for any z ≤ z̄

c(z) − c(z − h) ≤ c(z̄) − c(z̄ − h).

If both of the functions f and g are non decreasing, we take z = f (x̄)−g(ȳ), z̄ = f (x̄)−g(y),
and h = f (x̄) − f (x) ≥ 0 so that z ≤ z̄. For non increasing functions f and g, we write

c( f (x) − g(y)) = c((−g(y)) − (− f (x)),

and conclude as before. If either f or g is constant there is nothing to prove. �

Proof of Theorem 4.22 . We start with N = 2. From classical optimal transport it is known
that

inf
q2∈Cpl(µx1 ,νy1 )

∫
c2(x2 − y2)q2(dx2, dy2) =

∫
c2(F−1

µx1
(u2) − F−1

νy1
(u2))du2.

Consider the function

Vu2 (x1, y1) := c1(x1 − y1) + c2(F−1
µx1

(u2) − F−1
νy1

(u2)). (4.17)

For every fixed value u2, the function Vu2 (x1, y1) verifies the following L-superadditivity
inequality

Vu2 (x1, y1) + Vu2 (x̄1, ȳ1) − Vu2 (x̄1, y1) − Vu2 (x1, ȳ1) ≤ 0, (4.18)
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for any x1 ≤ x̄1 and y1 ≤ ȳ1. Equivalently

c1(x1 − y1) + c1(x̄1 − ȳ1) − c1(x̄1 − y1) − c1(x1 − ȳ1)+

c2(F−1
µx1

(u2) − F−1
νy1

(u2)) + c2(F−1
µx̄1

(u2) − F−1
νȳ1

(u2))−

c2(F−1
µx̄1

(u2) − F−1
νy1

(u2)) − c2(F−1
µx1

(u2) − F−1
νȳ1

(u2)) ≤ 0. (4.19)

Indeed, from Lemma 4.25 together with the stated Condition (a), one obtains the above
inequality. We now integrate (4.18) obtaining for the value function that

Vc
1(x1, y1) + Vc

1(x̄1, ȳ1) − Vc
1(x̄1, y1) − Vc

1(x1, ȳ1) ≤ 0. (4.20)

It can be seen (cf. Problem 4 on Exercise Sheet 2 [CSS76]) that Property (4.20) is enough
to guarantee the optimality of the monotone coupling when Vc

1 is the cost function. This
and the DPP proves the optimality of the Knothe-Rosenblatt rearrangement for N = 2.
Iterating our arguments for general N, we conclude. �

4.2.2. An application of the Knothe-Rosenblatt rearrangement. The Euclidean isoperi-
metric inequality states that among all subsets of RN with a given perimeter, the Euclidean
Ball has the largest volume. This can be proved, modulo technicalities, with the help of the
Knothe-Rosenblatt rearrangement. We follow [Vil09, Ch. 2]

Let µ and ν denote respect. the uniform probability meausures on a nice set Ω and on
the ball B, with |∂Ω| = |∂B| = N |B|. Let T be the Knothe-Rosenblatt map from µ to ν,
which we assume smooth enough. By the change of variables formula we have

1
|Ω|

= det(∇T (x))
1
|B|
.

Since ∇T is a triangular matrix (here we used the structure of T ), we have det(∇T (x)) =

Πiλi(x) and div(T )(x) =
∑

i λi(x), where {λi(x)}Ni=1 are the eigenvalues of ∇T (x). By the
arithmetic-geometric mean inequality, we have

[det(∇T (x))]1/N ≤
div(T )(x)

N

Hence we conclude 1
|Ω|1/N

≤
div(T )(x)
N |B|1/N . Integrating this w.r.t Lebesgue measure on Ω, and

using the divergence theorem, we have

|Ω|1−1/N ≤
1

N |B|1/N

∫
Ω

div(T )(x)dx =
1

N |B|1/N

∫
δΩ

(T · n̂)(x)Hn−1(dx),

where n̂ is the unit outer normal vector to ∂Ω andHn−1 denotes the surface measure on ∂Ω.
As T (x) ∈ B has norm bounded by 1 if follows that |T · n̂(x)| ≤ 1 so that we can conclude
|Ω|1−1/N ≤

|∂Ω|

N |B|1/N =
|∂B|

N |B|1/N = |B|1−1/N so that |Ω| ≤ |B|, as desired.

4.3. The weak adapted topology. Let us go back to the family of measures described in
(4.1), or for that matter, in any of the examples presented thereafter. We want to define a
topology on probability measures which

• takes explicit into account that information increases with time,
• guarantees the stability (ie. continuity) of the optimization problems described in

the examples.
Looking at the sequence in (4.1), we want this topology to preclude its convergence as
ε → 0. Intuitively, this topology should “remember” that the value S 2 = 1 came from
S 1 = ε and not from S 1 = −ε, and vice-versa. It is hence intuitive to identify for ε > 0

Pε := 1/2 δ(ε,1) + 1/2 δ(−ε,−1) with P̃ε := 1/2 δ(ε,δ1) + 1/2 δ(−ε,δ−1).

Observe that P̃ε is a probability measure on R × P(R), ie. P̃ε ∈ P(R × P(R)). Then clearly

P̃ε → ν̃ := 1/2δ(0,δ1) + 1/2δ(0,δ−1) as ε→ 0.

However the natural element in P(R × P(R)) which can be identified with P0 is

P̃0 := δ(0,1/2δ1+1/2δ−1),
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which is different from ν̃. Intuitively, the element ν̃ did remember in the limit the rela-
tionship between the observations at time 1 and 2, whereas P̃0 is oblivious of time 1. This
experiment suggest that we should endow P(R × R) with the topology inherited when we
identify it as a subset of P(R × P(R))!

Throughout this section we will only consider, for the sake of familiarity, the case of
stochastic processes on two time steps, corresponding to

N = 2, Xt = Yt, and X = Y = X1 × X2.

We will also write p1 := projX1
. Most arguments still work in the general case. (It is a

good exercise to convince yourself that in the case of N = 3 the right space to consider
is P(R × P(R × P(R))) reflecting a tree-like structure that takes the information flow into
account, see Remark 4.40.)

Definition 4.26. Let
J : P(X1 × X2) 7→ P(X1 × P(X2))

be defined by J(µ) = µ◦(x1 7→ (x1, µx1 ))−1. This is the embedding operator fromP(X1×X2)
to P(X1 × P(X2)).

Intuitively, one considers the first coordinate x1 as an X1-valued random variable and
µx1 as a P(X2)-valued random variable. Then J(µ) is just the joint law of these two random
variables under µ.

Definition 4.27. Let
I : P(X1 × P(X2)) 7→ P(X1 × X2)

be defined by the following condition: µ = I(P) iff

∀ f ∈ Cb(X1 × X2) :
∫
X1×X2

f (x1, x2)dµ(x1, x2) =

∫
X1×P(X2)

(∫
X2

f (x1, z)p(dz)
)

P(dx1, dp).

This is the intensity operator.

Intuitively, I takes a measure P ∈ P(X1 × P(X2)) and averages its second coordinate in
order to obtain I(P) ∈ P(X1 × X2). Remark that

I ◦ J(µ) = µ,

so I is just the left inverse of J. On the other hand, if P ∈ Range(J), then J ◦ I(P) = P.

Definition 4.28. The weak adapted topology on P(X1 × X2) is the relativization of the
weak topology on P(X1 × P(X2)) when we identify P(X1 × X2) with J(P(X1 × X2)) ⊆
P(X1 × P(X2)). Equivalently, the weak adapted topology on P(X1 × X2) is the coarsest
topology (ie. the weakest one) on the domain of J which makes J continuous when we equip
the target space P(X1 × P(X2)) with the weak topology.

Remark 4.29. A sequence {µn}n ⊆ P(X1×X2) converges to µ in the weak adapted topology,
if and only if for all F ∈ Cb(X1 × P(X2)) it holds∫

F(x1, (µn)x1 )µn(dx)→
∫

F(x1, µx1 )µ(dx).

Example 4.30. The discussion at the beginning of this subsection shows that, for the se-
quence in (4.1), we have Pε 6→ P0 in the weak adapted topology. Let us revisit Example
4.2 (see Figure 6 too). We have

I(Pε) =
1
2

[
δ(ε,1/2δ1+1/2δ0) + δ(−ε,1/2δ−1+1/2δ0)

]
,

which converges to ν̃ := 1
2
[
δ(0,1/2δ1+1/2δ0) + δ(0,1/2δ−1+1/2δ0)

]
. On the other hand

I(P0) = δ(0,1/4δ1+1/2δ0+1/4δ−1) , ν̃.

Since I(Pε) 6→ I(P0) we conclude that Pε 6→ P0 in the weak adapted topology.

The following result can be initially skipped. It will be useful in the applications, but
we refer to the appendix for its proof.
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Lemma 4.31. Let σ : R → [0, 1] any continuous and increasing function such that
limz→−∞ σ(z) = 0 and limz→∞ σ(z) = 1. Then {µn}n ⊆ P(X1 × X2) converges to µ in
the weak adapted topology if and only if for all h ∈ Cb(X1), g ∈ Cb(X2) it holds∫

h(x1)σ
(∫

g(z)(µn)x1 (dz)
)
µn(dx)→

∫
h(x1)σ

(∫
g(z)µx1 (dz)

)
µ(dx).

Second, we establish a crucial property of the embedding operator J. The message is
very important, as it provides a first evidence that the weak adapted topology is natural
(and not just some arbitrary strengthening of the usual weak topology). The result is non-
trivial, since in general J is not weakly-continuous.

Proposition 4.32. We have
(i) K ⊆ P(X1 × X2) is tight if and only if J(K) is tight (ie. relatively compact wrt. the

weak topology on P(X1 × P(X2))).
(ii) K ⊆ P(X1 × X2) is relatively compact in the weak adapted topology if and only if

K is tight and J(K) ⊆ Range(J).

Proof. In Lemma A.3 we show that K tight implies J(K) tight. Noting that I(J(K)) = K
and that I is continuous, we have that J(K) tight implies K tight.

If K is relatively compact in the weak adapted topology, then it must be tight, and
J(K) ⊆ Range(J) follows from definition of the relative topology on Range(J). For the
converse direction, denote K̃ the closure of K in the weak adapted topology. Notice that
J(K) is compact, since K tight implies J(K) tight. Since J is a homeomorphism into its
range (in the weak adapted topology), and J(K̃) ⊆ J(K), then K̃ must be compact in the
weak adapted topology. �

The study of compact sets is out of the scope of this lecture notes, needing the notion
of modulus of continuity by Eder. However, as an illustration, we can give the following
simple statement:

Lemma 4.33. Suppose X1 is sigma-compact and let K ⊆ P(X1 × X2) be weakly compact
(i.e. weakly closed and tight) and such that

{x1 7→ Px1 : P ∈ K} ⊆ C(X1;P(X2)) is equicontinuous, and {Px1 : P ∈ K} is tight for each x1.

Then K is compact in the adapted weak topology.

Proof. If (Pn)n ⊆ K, then there is a subsequence (which we relabel) such that Pn → Q
weakly and Q ∈ K. By tightness and sigma-compactness, we find an increasing sequence
(K1

m)m of compact sets in X1 such that p1(Pn)(K1
m) ≥ 1 − 1/m for all n, and ∪mK1

m = X1.
By Arzela-Ascoli Theorem, and a diagonalization argument, there is a subsequence (which
we relabel) and a continuous map x1 7→ f (x1) ∈ P(X1) such that x1 7→ (Pn)x1 converges
to f uniformly on each K1

m. Exercise: Check that f (x1) = Qx1 (p1(Q)-a.s. x1), and taking
F ∈ Cb(X1 × P(X2)) check that∫

F(x1, (Pn)x1 )Pn(dx)→
∫

F(x1,Qx1 )Q(dx).

By Remark 4.29 we conclude Pn → Q in weak adapted topology. �

4.3.1. Metrizing the weak adapted topology. We now turn to the question of how to metrize
the weak adapted topology.

Let Di be any bounded metric which is compatible (i.e. which induces) with the topol-
ogy on Xi, and is complete. Associated to D2 we may define a 1-Wasserstein distance on
P(X2) via

P(X2)2 3 (m, p) 7→ W1(m, p) := inf
q∈Cpl(p,m)

∫
X2

2

D2(z1, z2)q(dz1, dz2).

Remark 4.34. It can be seen that this metric induces the weak topology on P(X2), since
D2 is bounded. This can be obtained as a neat application of the Kantorovic-Rubinstein
theorem, see also Theorem 1.53.
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Accordingly, we can define a metric on X1 × P(X2) via

(X1 × P(X2))2 3 ((x1,m), (y1, p)) 7→ D̃((x1,m), (y1, p)) := D1(x1, y1) +W1(m, p).

This metric induces the product topology on X1 × P(X2).
Finally, we can define a metric (actually a Wasserstein distance) on P(X1 × P(X2)):

endowingX1×P(X2) with the bounded compatible metric D̃ we consider the 1-Wasserstein
distance

P(X1 × P(X2))2 3 (P,Q) 7→ W̃1(P,Q) := inf
q∈Cpl(P,Q)

∫
(X1×P(X2))2

D̃((x1,m), (y1, p))q(d(x1,m), d(y1, p))

= inf
q∈Cpl(P,Q)

∫
(X1×P(X2))2

{D1(x1, y1) +W1(m, p)} q(d(x1,m), d(y1, p)).

The following observation is crucial:

Remark 4.35. Applying the above formula to P = J(µ) and Q = J(ν) we obtain

W̃1(J(µ), J(ν)) = inf
q∈Cpl(p1(µ),p1(ν))

∫
(X1×P(X2))2

{
D1(x1, y1) +W1(µx1 , νy1 )

}
q(dx1, dy1).

The reason is that, if q ∈ Cpl(J(µ), J(ν)), then q(d(x1,m), d(y1, p)) = q̃(dx1, dy1)δµx1 ,νy1
(dm, dp),

where q̃ ∈ Cpl(p1(µ), p1(ν)) is the marginal of q in the (x1, y1) component. Indeed, the
measure J(µ) is supported on the graph of the function x1 7→ µx1 (resp. J(ν) on y1 7→ µy1 ),
which implies that q must be supported on the set {(x1, µx1 , y1, νy1 ) : x1, y1 ∈ X1}. All in all
we deduce that W̃(J(µ), J(ν)) is equal to the value of the bicausal transport problem (Pbc)
between µ and ν for the cost function c((x1, x2), (y1, y2)) = D1(x1, y1) + D2(x2, y2), thanks
to the dynamic programming principle and Proposition 4.13.

Definition 4.36. The function P(X1 × X2) × P(X1 × X2)→ R given by

(µ, ν) 7→ AW(µ, ν) := inf
q∈Cplbc(µ,ν)

∫
(X1×X2)2

{D1(x1, y1) + D2(x2, y2)} q(dx1, dx2, dy1, dy2)

is called the adapted Wasserstein distance.

Of course we first should check that the term distance is well-deserved:

Lemma 4.37. The adapted Wasserstein distanceAW defines a metric on P(X1 × X2).

Proof. Since the actual Wasserstein distance is bounded from above by AW, we have
AW(µ, ν) = 0 ⇐⇒ µ = ν. Since bicausality is a symmetric condition and the Di are
symmetric, AW(µ, ν) = AW(ν, µ). To finish the proof we just need to justify a “glueing
argument”(cf. Lemma 1.48) which then would conduce to the triangle inequality just like
for Wasserstein distances. Suppose q ∈ Cplbc(µ, ν) and q̃ ∈ Cplbc(ν, η). Exercise: find a
suitable element q̂ ∈ Cplbc(µ, η) built from q and q̃, and use it to complete the proof of the
triangle inequality. �

Proposition 4.38. The adapted Wasserstein distanceAW metrizes (ie. induces) the weak
adapted topology on P(X1 × X2).

Proof. If follows immediately from the definition of the weak adapted topology, the oper-
ator J, Remark 4.35 and Lemma 4.37. �

Remark 4.39. Unlike for Wasserstein spaces, it may happen that the metric space (P(X1 ×

X2),AW) is incomplete. (Exercise: Provide an example of such situation for Xt = R.)
Nevertheless, the weak adapted topology is Polish, ie. it is separable and there exist a
compatible complete metric inducing this topology. (Exercise: Prove that it is separable.)
It turns out that the complete metric space (P(X1 × P(X2)),W̃1) is the completion of
(P(X1 × X2),AW).



74 JULIO BACKHOFF-VERAGUAS AND MARTIN HUESMANN

Remark 4.40. The extension of the adapted Wasserstein distance to N > 2 and to un-
bounded metrics, is immediate:

P(X) × P(X) 7→ (µ, ν) 7→ AWp(µ, ν)p := inf
q∈Cplbc(µ,ν)

∫
X×X

 N∑
i=1

Di(xi, yi)p

 q(dx, dy).

As in the classical case, convergence inAWp is the same as convergence inAW (equiv.
in weak adapted topology) plus convergence of moments of order p. The definition of
the weak adapted topology is more cumbersone. In probabilistic notation, if X ∼ µ ∈
Pp(X), then the embedding J is defined as follows: Let Rµ

N := XN and recursively Rµ
t−1 :=

Law(Xt−1 , LawX1,...,Xt−1 (Rµ
t )). Then J(µ) := Rµ

1. The weak adapted topology is then the
initial topology of J, where the range space is given with the suitable Wasserstein (distance)
topology.

4.4. Applications. We illustrate here a few applications of the ideas developed so far. First
we recall another kind of optimal transport problem, the weak optimal transport that al-
ready featured in our discussion of stretched Brownian motion in (WT ), and show how the
weak adapted topology provides the correct framework to study such problems. Second,
we go back to our motivating examples and show that the adapted Wasserstein distances
provide the correct notion of closeness that can guarantee the stability of the various opti-
mization problem wrt. the reference model. It turns out that the language of weak optimal
transport is also useful here. We finally show a very different application where we use the
DPP of bicausal optimal transport to derive a celebrated functional inequality by Talagrand.

4.4.1. Weak optimal transport. In the classical optimal transport problem between the
marginals P ∈ P(X) and Q ∈ P(Y), a linear cost criterion is minimized:

Cpl(P,Q) 3 q 7→
∫

c(x, y)q(dx, dy).

Weak optimal transport is a generalization where certain kind of non-linear cost functions
are considered, namely

Cpl(P,Q) 3 q 7→
∫

C(x, qx)p1(q)(dx),

where

C : X × P(Y)→ R ∪ {+∞}.

Evidently, setting C(x,m) :=
∫
Y

c(x, y)m(dy) allows to consider classical optimal transport
as a special case of weak optimal transport (so the terminology is misleading: weak optimal
transport is the stronger one).

Using the tools from the previous parts we can easily obtain existence and duality for
weak optimal transport:

Theorem 4.41. Suppose that C : X × P(Y) → R ∪ {+∞} is lower bounded, measurable,
and for each x ∈ X the function m 7→ C(x,m) is convex and lower semicontinuous. Then

(1) the weak optimal transport problem

inf
{∫

C(x, qx)P(dx) : q ∈ Cpl(P,Q)
}

(WOT)

admits at least one minimizer;
(2) there is no duality gap:

value(WOT) = sup
ψ∈Cb(Y)

∫
ψ(y)Q(dy) −

∫
ϕ[ψ](x)P(dx),

where ϕ[ψ](x) := supm∈P(Y){
∫
ψ(y)m(dy) −C(x,m)}.
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Proof. Let Γ be the subset of P(X×P(Y)) such that M ∈ Γ iff I(M) ∈ Cpl(P,Q), where I is
the intensity operator of Definition 4.27. We first extend Problem (WOT) by considering

inf
{∫

C(x,m)M(dx, dm) : M ∈ Γ

}
. (WOText)

Clearly value(WOText) ≤ value(WOT), since J(q) ∈ Γ if q ∈ Cpl(P,Q). By Lemma A.3,
since I(Γ) is tight, then so is Γ. Since Γ is also easily seen to be closed, then it must
be weakly compact too. By the lower semicontinuity statement in Lemma 4.42 below,
which we may use since the first marginal of the elements in Γ is fixed and equals to P, we
conclude that Problem (WOText) admits an optimizer M. Let now q := I(M) ∈ Cpl(P,Q).
Then by Jensen inequality∫

X

C(x, qx)P(dx) =

∫
X

C
(
x,

∫
P(Y)

m Mx(dm)
)
P(dx)

≤

∫
CdM,

and we conclude that value(WOText) = value(WOT) and q is optimal for (WOT).
For duality, we assume for simplicity that Y is compact. We first rewrite (WOText) as

inf
M: p1(M)=P

sup
ψ∈Cb(Y)

∫
ψdQ +

∫ (
C(x,m) −

∫
ψ(y)m(dy)

)
M(dx, dm).

The functional in the inf sup is linear and continuous in ψ and convex and lower semicon-
tinuous in M, thanks to Lemma 4.42 below. The set {M : p1(M) = P} ⊆ P(X × P(Y)) is
compact, since it is tight and closed. By the minimax theorem we can exchange inf and
sup, which readily gives the desired result. �

In the previous proof we used the following result. Its proof can be skipped.

Lemma 4.42. Let A,B be Polish spaces. Suppose that F : A × B → R ∪ {+∞} is lower
bounded, measurable, and for each a ∈ A the function b 7→ F(a, b) is lower semicontinu-
ous. If (Mn)n ⊆ P(A × B) weakly converges to M, and p1(Mn) = µ for all n, then

lim inf
n

∫
FdMn ≥

∫
FdM.

Proof. By monotone convergence arguments, we may assume that F is bounded. By
[Str11, Lemma 9.1.4(ii)-(iii)] we may take a compatible metric D on B, such that U(B),
the space of bounded uniformly continuous functions, is separable. Observe then that
Lk(a, b) = infb̄{F(a, b̄) + kD(b, b̄)} increases pointwise to F as k → ∞, and since Lk is
D-Lipschitz in b, we have Lk(a, ·) ∈ U(B). Using this, we can derive∫

FdR = sup
L∈L

∫
LdR,

with R any Borel probability measure, and L the set of bounded functions L such that
L(·, b) is (analytically) measurable, L(a, ·) is continuous, and L ≤ F 5. All in all, this shows
that we may further assume that F is (analytically) measurable in the first variable and
uniformly continuous in the second one.

Consider the map A 3 a 7→ F(a, ·) ∈ U(B). The U(B) space is second countable (as a
separable metric space) and the previous map is (analytically) measurable. Moreover, there
exists A 3 a 7→ F̃(a, ·) ∈ U(B) Borel measurable, such that µ({a : F(a, ·) = F̃(a, ·)}) = 1.
We may apply [Kec95, Theorem 13.11], according to which there is a stronger Polish
topology on A which preserves the Borel sets (so also measurable functions) and such
that the map A 3 a 7→ F̃(a, ·) is continuous. As a consequence F̃ is easily seen jointly
continuous on A × B, with this stronger topology on the first variable and the original one

5Lk(·, b) is not necessarily Borel measurable, but only analytically measurable in general, by a measurable
selection argument. This technical fact poses no difficulty, and the reader may simply drop the term analytically
from this proof at no risk.
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on the second variable. We now prove that
∫

FdMn →
∫

FdM. By definition, if f : A→ R
is continuous in the new topology, it is also Borel in the original one. Assuming further
that such f is bounded, and taking g ∈ Cb(B), we deduce∫

f g dMn =

∫
f (x)µ(dx)

∫
g(m)p2(Mn)(dm)→

∫
f (x)µ(dx)

∫
g(m)p2(M)(dm) =

∫
f g dM.

As a consequence of [EK09, Proposition 4.6(b) (p.115)] we obtain that
∫

F̃dMn →
∫

F̃dM,
and conclude since

∫
F̃dR =

∫
FdR whenever p1(R) = µ. �

We remark that this is only the beginning of the story of weak optimal transport. For
instance, studying necessary and sufficient optimality conditions (in the same spirit of the
monotonicity principle), stability w.r.t. (P,Q), existence of dual optimizers, etc. are all
challenging subjects which are only partially understood.

We now collect a few applications of weak optimal, which hopefully provide the reader
with the impression of how useful this theory is. Equipped with a monotonicity principle,
the applications become even more remarkable.

Strassen’s Theorem on martingales. Let S = {S i : i = 0, 2} be a two-step martingale.
By Jensen’s inequality, we know that Law(S 1) ≤c Law(S 2) in the convex order. Strassen’s
Theorem provides us with the reverse implication. So let µ, ν ∈ RN be such that µ ≤c ν.
For simplicity we further assume that ν (hence also µ) has a compact support, and denote
by X its compact convex hull. We will show that there is a martingale S with first marginal
µ and second marginal ν.

Let X × P(X) 3 (x,m) 7→ C(x,m) be defined by C(x,m) = 0 if
∫

ym(dy) = x and
C(x,m) = +∞ otherwise. Consider the weak optimal transport problem with marginals
Q := µ, P := ν and cost functional C. If we can show that the value of this problem is zero,
and that the problem is attained, this immediately provides the desired martingale. Indeed,
we would get the existence of q ∈ Cpl(µ, ν) with x =

∫
yqx(dy) for µ-a.e. x.

First we observe that C fulfils the requirements of Theorem 4.41. By Point (1) therein,
we do obtain the existence of an optimal q. Towards applying Point (2) therein, we observe

ϕ[ψ](x) = sup
{∫

ψdm : x =

∫
ydm

}
.

Clearly ψ ≤ ϕ[ψ] and ϕ[ψ](·) is concave. Thus∫
ψdν −

∫
ϕ[ψ]dµ ≤

∫
ϕ[ψ]dν −

∫
ϕ[ψ]dµ ≤ 0,

by the convex order assumption. Hence the dual problem has value zero, and so does the
primal problem too.

The convex Kantorovic-Rubinstein formula. Now we let C(x,m) := |x −
∫

ym(dy)|, and
so consider the weak optimal transport problem

inf
{∫ ∣∣∣∣∣x − ∫

yqx(dy)
∣∣∣∣∣P(dx) : q ∈ Cpl(P,Q)

}
. (4.21)

First observe that if ϕ̃ is convex and 1-Lipschitz, and q ∈ Cpl(P,Q), then by Jensen’s
inequality: ∫ ∣∣∣∣∣x − ∫

yqx(dy)
∣∣∣∣∣P(dx) ≥

∫ [
ϕ̃(x) − ϕ̃

(∫
yqx(dy)

)]
P(dx)

≥

∫ [
ϕ̃(x) −

∫
ϕ̃(y)qx(dy)

]
P(dx)

=

∫
ϕ̃d(P − Q). (4.22)

Now let us assume for simplicity that both P,Q are supported in a convex compact subset
X of RN . We then readily get that C satisfies the hypotheses of Theorem 4.41. Towards
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applying duality (Point (2) therein), we compute

ϕ[ψ](x) = sup
m

{∫
ψdm −

∣∣∣∣∣x − ∫
ym(dy)

∣∣∣∣∣}

= sup
z

 sup
m:

∫
ym(dy)=z

∫
ψdm − |x − z|


= sup

z

{
ψ̃(z) − |x − z|

}
,

with ψ̃(z) := supm:
∫

ym(dy)=z

∫
ψdm. Clearly ψ̃ is a concave majorant of ψ, and so ϕ[ψ] is

also a majorant of ψ. But then (x, z) 7→ ψ̃(z) − |x − z| is jointly concave, and so ϕ[ψ] is
concave. Finally, it is clear that ϕ[ψ] is 1-Lipschitz. This all shows that the dual problem
to (4.24) is bounded from above by

sup
f concave, 1-Lip

∫
f d(Q − P) = sup

ϕ̃ convex, 1-Lip

∫
ϕ̃d(P − Q).

Since there is no duality gap, the above and (4.22) show

inf
{∫ ∣∣∣∣∣x − ∫

yqx(dy)
∣∣∣∣∣P(dx) : q ∈ Cpl(P,Q)

}
= sup

ϕ̃ convex, 1-Lip

∫
ϕ̃d(P − Q). (4.23)

This is the so-called convex Kantorovic-Rubinstein formula. We shall make use of this
identity in Section 4.4.2 below. Incidentally, one can derive Strassen’s theorem on martin-
gales from this identity too.

Brenier-Strassen Theorem. The existence of a Brenier map from µ to ν requires µ to
be a somewhat regular measure. On the other hand, for the existence of a martingale,
Strassen’s Theorem requires convex order but otherwise no regularity of the marginal mea-
sures. Hence, one could expect that if both ‘maps’ and ‘martingales’ are allowed, then no
conditions at all on µ or ν should be imposed. This is made precise by the Brenier-Strassen
theorem.

We consider here C(x,m) := |x −
∫

ym(dy)|2, leading to the weak optimal transport
problem

inf
{∫ ∣∣∣∣∣x − ∫

yqx(dy)
∣∣∣∣∣2 µ(dx) : q ∈ Cpl(µ, ν)

}
(4.24)

= inf
η≤cν

W2
2 (µ, η).

The equality holds, since for q ∈ Cpl(µ, ν) given, define T (x) :=
∫

yqx(dy), and re-
mark that T (µ) ≤c ν, since the coupling q̃ defined in duality by

∫
f (x, y)q̃(dx, dy) =∫

f (T (x), y)qx(dy)µ(dx) ∈ Cpl(T (µ), ν) is by construction a martingale coupling (alter-
natively use Jensen’s inequality to observe that

∫
ϕdT (µ) ≤

∫
ϕdν for all convex ϕ). More-

over, ∫ ∣∣∣∣∣x − ∫
yqx(dy)

∣∣∣∣∣2 µ(dx) =

∫
|x − T (x)|2 µ(dx).

Conversely, given any η ≤c ν there is a martingale π connecting η and ν so that the
optimal coupling for W2 can be extended using this martingale to a coupling between µ
and ν. Moreover, if T is optimal between µ and η it follows that

W2
2 (µ, η) =

∫
|x − T (x)|2µ(dx) =

∫ ∣∣∣∣∣x − ∫
yπT (x)(dy)

∣∣∣∣∣2 µ(dx).

Therefore, solving this optimization problem is in fact asking to find the optimal measure
η minimizing W2(µ, η) among all measures η ≤c ν.

Armed with a monotonicity principle for weak optimal transport it is possible to show
the following characterisation without any assumption on µ.
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Theorem 4.43. η∗ is optimal for (4.24) iff there exists a convex function ϕ with 1-Lipschitz
gradient ∇ϕ such that ∇ϕ(µ) = η∗.

4.4.2. Stability in stochastic optimization and mathematical finance. We revisit the moti-
vating examples of optimal stopping, utility maximization and superhedging, in the light
of what we have learnt about adapted weak topologies / adapted Wasserstein distances. For
the sake of concreteness we take N = 2 throughout, though the general case is not much
more difficult.

Optimal Stopping. Recall from Example 4.1 that weak convergence alone is not enough
for the continuity of the optimal value of an optimal stopping problem.

Write AC(X1 × X2) for the set of all two-step processes (Lt)2
t=1 which are adapted6,

bounded and satisfy that x 7→ Lt(x) is continuous for each t ∈ {1, 2}. Write vL(P) for the
corresponding value function, given that the process S follows the law P, i.e.

vL(P) := inf{EP[Lτ(S )] : τ ∈ {1, 2} is S 1-measurable}.

Definition 4.44. The optimal stopping topology is the coarsest topology which makes the
functions

P 7→ vL(P)

continuous for all (Lt)2
t=1 ∈ AC(X1 × X2).

Theorem 4.45. The optimal stopping topology is equal to the weak adapted topology.
In other words, Pn → P in the weak adapted topology iff vL(Pn) → vL(P) for all L ∈
AC(X1 × X2). Further, we have

|vL(P) − vL(Q)| ≤ inf
{∫

max{|L1(x1) − L1(y1)| , |L2(x1, x2) − L2(y1, y2)|}q(dx1, dx2, dy1, dy2)
}
,

(4.25)

where the infimum runs over q ∈ Cplbc(P,Q). In particular, if L is further K-Lipschitz with
respect to a metric D((x1, x2), (y1, y2)) = D1(x1, y1) + D2(x2, y2), then

|vL(P) − vL(Q)| ≤ 2KAW1(P,Q), (4.26)

withAW1 as in Definition 4.36.

The interest of the previous result is twofold. First of all, it gives another character-
ization of the weak adapted topology, and stresses its natural character, by showing its
equivalence with the more pedestrian optimal stopping topology. In particular, the weak
adapted topology cannot be really improved upon, as far as continuity/stability of optimal
stopping is concerned. And second, it provides quantitative upper bounds for the misspec-
ification of the reference model in optimal stopping problems.

Proof of Theorem 4.45. Without loss of generality vL(P) ≥ vL(Q). Fixing ε take τ which is
ε-optimal for vL(Q). Further let q ∈ Cplbc(P,Q) arbitrary.

For u ∈ [0, 1] define

σ(x1, u) := inf{t ∈ {1, 2} : q(τ(y1) ≤ t|x1) ≥ u}

= inf{t ∈ {1, 2} : q(τ(y1) ≤ t|x1, x2) ≥ u},

6Namely L1 : X1 → R and L2 : X1 × X2 → R.
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where equality holds since q is causal. We then have that∫
[0,1]

∫
Lσ(x1,u)(x1, x2)dqdu =

∫
[0,1]

∫
[L1(x1)1q(τ(y1)=1|x1,x2)≥u + L2(x1, x2)1q(τ(y1)=1|x1,x2)<u]dqdu

=

∫
[L1(x1)q(τ(y1) = 1|x1, x2) + L2(x1, x2)q(τ(y1) = 2|x1, x2)]dq

=

∫
[L1(x1)1τ(y1)=1 + L2(x1, x2)1τ(y1)=2]dq

=

∫
[Lτ(y1)(x1, x2)]dq.

As further σ(·, u) is x1-measurable for every fixed u ∈ [0, 1] we have

vL(P) ≤
∫

[0,1]

∫
Lσ(x1,u)(x1, x2)dqdu,

and therefore

vL(P) − vL(Q) ≤
∫

[Lτ(y1)(x1, x2) − Lτ(y1)(y1, y2)]dq + ε

≤

∫
max{|L1(x1) − L1(y1)| , |L2(x1, x2) − L2(y1, y2)|}dq + ε,

establishing Inequality (4.25). Then (4.26) follows easily, if L1, L2 are furthermore K-
Lipschitz.

We now prove that the weak adapted topology is finer than the optimal stopping topol-
ogy. We can metrize the latter by AW by taking Dt to be compatible bounded metrics.
Now assume that AW(Pn,P) → 0 and that qn ∈ Cpl(Pn,P) is less than 1/n away from
attaining the infimum for AW(Pn,P). Then qn → q weakly, where q ∈ Cpl(P,P) is
the identity coupling of P with itself. (A Monge coupling between qn and q is given by
qn ◦ (((x1, x2), (y1, y2)) 7→ ((x1, x2), (y1, y2), (y1, y2), (y1, y2)))−1.) Because

(x1, x2, y1, y2) 7→ max{|L1(x1) − L1(y1)| , |L2(x1, x2) − L2(y1, y2)|}

is a continuous bounded function, we get that∫
max{|L1(x1) − L1(y1)| , |L2(x1, x2) − L2(y1, y2)|}dqn

converges to ∫
max{|L1(x1) − L1(y1)| , |L2(x1, x2) − L2(y1, y2)|}dq = 0.

By (4.25), this finishes the argument.
We now prove that the optimal stopping topology is finer than the weak adapted topol-

ogy. We first remark that, denoting L̄ = −L, we have

−vL(P) =

∫
max

{
L̄1(x1) ,

∫
L̄2(x1, x̄2)Px1 (dx̄2)

}
p1(P)(dx1),

by a measurable selection argument (known as dynamic programming principle in this
context). We make now educated guesses for L̄. If f ∈ Cb(X1), h ∈ Cb(X2), with f non-
negative, we let L̄a

1 = 0, L̄a
2(x1, x2) = f (x1)h(x2), and Lb

1 = 0, L̄b
2(x1, x2) = f (x1)[h(x2) − 1].

Then

−vLa
(P) =

∫
f (x1) max

{
0 ,

∫
h(x̄2)Px1 (dx̄2)

}
p1(P)(dx1),

−vLb
(P) =

∫
f (x1) max

{
0 ,

∫
[h(x̄2) − 1]Px1 (dx̄2)

}
p1(P)(dx1).

If σ(z) := max{0,min{1, z}} then σ(z) = max{0, z} −max{0, z − 1}, and so

vLb
(P) − vLa

(P) =

∫
f (x1)σ

(∫
h(x̄2)Px1 (dx̄2)

)
p1(P)(dx1).
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Thus if Pn → P in the optimal stopping topology, we also have∫
f (x1)σ

(∫
h(x̄2)(Px1 )n(dx̄2)

)
p1(Pn)(dx1)→

∫
f (x1)σ

(∫
h(x̄2)Px1 (dx̄2)

)
p1(P)(dx1).

Asσ is a continuous and increasing function such that limz→−∞ σ(z) = 0 and limz→∞ σ(z) =

1, we conclude by Lemma 4.31 that Pn → P in the weak adapted topology. �

Utility Maximization. Recall from Example 4.2 that U : R → R is a strictly increasing
and concave, and that we had introduced (the one-dimensional version of)

u(P) := max {EP[U(π · (S 2 − S 1))] : π is S 1-measurable, ‖π‖ ≤ 1} .

We take Xt = Rk with Dt the metric obtained from the Euclidean norm, so definingAW1
per Definition 4.36.

Theorem 4.46. Suppose U is furthermore L-Lipschitz. Then

|u(P) − u(Q)| ≤ LAW1(P,Q).

Proof. Without loss of generality let us suppose that 0 ≤ u(P) − u(Q). Let π be a (1/n)
optimizer for u(P), meaning that u(P) ≤ EP[U(π(X2 − X1))] + 1/n. Consider now q ∈
Cplbc(P,Q) which is (1/n)-optimal forAW1(P,Q), meaning this time that∫

(|x1 − y1| + |x2 − y2|) q(dx1, dx2, dy1, dy2) ≤ AW1(P,Q) + 1/n.

We define

π̂(y1) :=
∫

π(x1)qy1 (dx1) =

∫
π(x1)qy1,y2 (dx1),

where equality occurs by causality. In particular π̂ is a feasible (usually sub-optimal) ele-
ment for the problem u(Q). Hence

−1/n + u(P) − u(Q) ≤
∫ [

U(π(x1)(x2 − x1)) − U(π̂(y1)(y2 − y1))
]
dq

=

∫ [
U(π(x1)(x2 − x1)) − U

(∫
π(x1)(y2 − y1)qy1,y2 (dx1, dx2)

)]
dq

≤

∫
[U(π(x1)(x2 − x1)) − U( π(x1)(y2 − y1) )] dq

≤ L
∫

(|x1 − y1| + |x2 − y2|) dq,

where the first inequality is by Jensen and the second one by the Lipschitz assumption plus
the boundedness of π. Hence

u(P) − u(Q) ≤ 1/n + L/n + LAW1(P,Q),

and we conclude sending n→ ∞. �

Observe that the key in the above argument was that we could project the adapted pro-
cess π into another close-by adapted process π̂ by means of a causal transport. Adaptedness
of π̂ would not be true, if we had used a non-causal transport.

Super-hedging. The setting is that of Example 4.3, but in the mutidimensional generaliza-
tion (as for utility maximization).

If C(S 1, S 2) is an option, then “super-replicating it at cost at most m under model P”
means finding π = π(S 1) such that C ≤ m + π[S 2 − S 1] (P-a.s.). A smoothed-out version of
it, under model Q rather than P, is to find some π̃ = π̃(S 1) such that EQ[(C(S 1, S 2) − m −
π̃[S 2 − S 1])+)] is as small as possible.

As in the previous part, we take Xt = Rk with Dt the metric obtained from the Euclidean
norm, so definingAW1 per Definition 4.36.
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Proposition 4.47. Suppose C is L-Lipschitz, and that C can be super-replicated at cost
at most m under model P by a bounded π = π(S 1). Then π̃ = π̃(S 1) exists such that
‖π̃‖∞ ≤ ‖π‖∞ and

EQ[(C(S 1, S 2) − m − π̃[S 2 − S 1])+)] ≤ (L + ‖π‖∞)AW1(P,Q). (4.27)

Proof. Take qn which is 1/n-optimal forAW1(P,Q) and define

π̃n(y1) :=
∫

π(x1)(qn)y1 (dx1) =

∫
π(x1)(qn)y1,y2 (dx1),

with equality by causality. Denote µn = (C(S )−m− π̃n[S 2 − S 1])(Q) and ν = (C(S )−m−
π[S 2 − S 1])(P). By definition 0 = EP[(C(S 1, S 2) − m − π[S 2 − S 1])+)]. As the function
ϕ̃ := [·]+ is convex and 1-Lipschitz, we have

EQ[(C(S 1, S 2) − m − π̃n[S 2 − S 1])+)] − EP[(C(S 1, S 2) − m − π[S 2 − S 1])+)] =

∫
ϕ̃d(µn − ν)

≤ dw(µn, ν),

as follows from the convex Kantorovic-Rubinstein formula of Equation (4.23), and where
dw(µn, ν) is the value of the weak transport problem with cost R × P(R) 3 (x,R) 7→∣∣∣x − ∫

yR(dy)
∣∣∣.

On the other hand, let (X,Y) ∼ qn and denote a(X) = C(X) − m − π(X1)[X2 − X1],
b(Y) = C(Y) − m − π̃n(Y1)[Y2 − Y1], so by definition

dw(µn, ν) ≤ Eqn

[∣∣∣b(Y) − Eqn [a(X)|b(Y)]
∣∣∣]

= Eqn

[∣∣∣Eqn [C(Y) −C(X)|Y] − Eqn [π̃n(Y1)[Y2 − Y1] − π(X1)[X2 − X1]|Y]
∣∣∣]

≤ Eqn [|C(Y) −C(X)|] + Eqn [|π(X1)[Y2 − Y1] − π(X1)[X2 − X1]|] ,

where we used the tower property and Jensen’s inequality. Hence

dw(µn, ν) ≤ (L + ‖π‖∞)Eqn [‖X − Y‖] ≤ (L + ‖π‖∞)(1/n +AW1(P,Q)),

and putting all together we find

EQ[(C(S 1, S 2) − m − π̃n[S 2 − S 1])+)] ≤ (L + ‖π‖∞)(1/n +AW1(P,Q)). (4.28)

Clearly ‖π̃n‖∞ ≤ ‖π‖∞, and in particular {π̃n}n is bounded in L2(Q). By Mazur’s Lemma
there is a sequence {π̂n}n and π̃ in the closed convex hull of {π̃n}n, such that π̂n → π̃ strongly
in L2(Q). Thus π̃ is S 1-measurable and ‖π̃‖∞ ≤ ‖π‖∞. An application of Fatou’s Lemma
and the convexity of [·]+, together with (4.28), yield

EQ[(C(S 1, S 2) − m − π̃[S 2 − S 1])+)] ≤ (L + ‖π‖∞)AW1(P,Q).

�

4.4.3. Stretched Brownian motion revisited. Recall the standard stretched Brownian mo-
tion from Example 2.50. We considered a Brownian motion B with B0 ∼ α, and an in-
creasing map f s.t. f (α ∗ γ) = ν. Then, the standard stretched Brownian motion is defined
as

Mt = E[ f (B1)|Ft] = ft(Bt) = P1−t(Bt),
where F denotes the natural Brownian filtration. We showed that stretched Brownian
motion is a standard stretched Brownian motion on each of its irreducible components.

Lemma 4.48. Let M be stretched Brownian motion. There holds

Law(B − B0,M) ∈ Cplbc(W,Law(M)).

Proof. Let us consider standard stretched Brownian first. Since Mt = ft(Bt) by construc-
tion, M is adapted to the Brownian filtration F . Hence, Law(B − B0,M) is causal. For
the converse causality, observe that {Bt+h − Bt, h ≥ 0} is independent of {Bs, s ≤ t}, so that
given {Ms, s ≤ t} it follows that {Bs − B0, s ≤ t} and {Ms, s ≤ 1} are independent.

The case of stretched Brownian motion follows from first conditioning on the value of
M0 and then following the reasoning above. �
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We claim that the stretched Brownian motion can be interpreted as an adapted projection
of Brownian motion onto the set of martingale laws with prescribed initial and terminal
marginal. Indeed, recall that stretched Brownian motion is the optimizer to

sup
{
E

∫ 1

0
σt(Mt)dt : Mt = M0 +

∫ t

0
σsdBs,M0 ∼ µ,M1 ∼ ν

}
. (4.29)

Pick any admissable martingale M and observe (as in the proof of Theorem 2.53) that by
integration by parts

E

[∫ 1

0
σtdt

]
= E[M1 · (B1 − B0)] = −

1
2
E[(M1 − (B1 − B0))2] +

1
2
EM2

1 +
1
2
E[(B1 − B0)2],

so that the optimization problem (4.29) is equivalent to (writing Mν
µ for the set of all con-

tinuous martingales with initial law µ and terminal law ν)

inf
q∈Cplbc(W,Law(M)),M∈Mν

µ

Eq[(M1 − (B1 − B0))2]. (4.30)

4.4.4. Existence of dynamic Cournot-Nash equilibria. We will define a notion of a game,
and its equilibrium solution, built on causal optimal transport. For that matter, we introduce
the “cost function”

F : X × Y × P(Y)→ R. (4.31)

Recall that X = ΠN
t=1Xt and Y = ΠN

t=1Yt. We fix η ∈ P(X) and K ⊆ P(Y).

Definition 4.49 (Cournot-Nash). A causal transport q̂ ∈ P(X × Y) with p1(q) = η and
p2(q) ∈ K is called dynamic Cournot-Nash equilibrium for a type-η population and action-
ambiguity set K, if

q̂ ∈ arg min
∫

X×Y
F(x, y, p2(q̂)) q(dx, dy), (4.32)

where minimization is done over causal transports q ∈ P(X × Y) with p1(q) = η and
p2(q) ∈ K.

Let us explain the game interpretation of Definition 4.49. We think of a continuum of
negligible players. Each player has at every time t = 1, . . . ,N a type ∈ Xt, so X is the state
space of types, and is private knowledge of the player. However, the distribution of types in
the population of player, namely η, is known and fixed in advance. A player must choose
at each time t an action/strategy in Yt, and so overall an element of Y must be chosen.
The cost to a player of type x of choosing action y depends on the decisions of the whole
population of players, and so if the distribution of actions in the population is described by
ν, then this cost is F(x, y, ν). Unique η, the distribution ν is not fixed in advance, but it must
belong to K. Finally, if we suppose that the type of a player is only revealed progressively
in time, so that the associated action cannot anticipate the future evolution of the type, this
forces the coupling of type and action to be causal. Clearly Equation (4.32) is a fixed-point
condition. It states: the joint distribution q̂ of types and actions should be cost minimizing,
given the implied action distribution ν := p2(q̂).

We fixW a metric compatible with weak convergence onP(Y), and denote Cplc(η,K) :=
∪ν∈KCplc(η, ν). We have

Proposition 4.50. Assume

• F is bounded and F (·, ·, ν) is continuos for each ν;
• For each K1 ⊆ X,K2 ⊆ Y compact, there is a constant ` such that

sup
x∈K1,y∈K2

|F(x, y, ν) − F(x, y, ν̄)| ≤ `W(ν, ν̄).

Then a dynamic Cournot-Nash equilibrium for a type-η population and action-ambiguity
set K exists.
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Proof. By Lemma 4.11, the set S := Cplc(η,K) is weakly compact. For q̃ ∈ S we define

Φ(q̃) := arg min
∫

X×Y
F(x, y, p2(q̃)) q(dx, dy),

where minimization is over q ∈ S . Clearly Φ(q̃) is a convex and compact set, and by
Theorem 4.10, it is also non-empty. One says that Φ is a convex-, nonempy-, compact-
valued correspondence. If we can prove the existence of q̂ ∈ S such that q̂ ∈ Φ(q̂), we
conclude the proof. This is the content of the celebrated Kakutani-Fan-Glicksberg fixed-
point Theorem (see [?, Corollary 17.55]). However we still need to verify one hypothesis:
that the graph of Φ is closed. So let q̃n → q̃, qn → q, and qn ∈ Φ(q̃n). The aim is to prove
that q ∈ Φ(q̃). Let m ∈ S arbitrary, so that by definition∫

X×Y
F(x, y, p2(q̃n)) qn(dx, dy) ≤

∫
X×Y

F(x, y, p2(q̃n)) m(dx, dy).

We only explain how to pass to the limit for the l.h.s. since convergence of the r.h.s. is
more direct. This clearly finishes the proof. For simplicity denote F̃n and F̃ as shorthand
for F(x, y, p2(q̃n)) and F(x, y, p2(q̃)). Then∫

F̃nqn −

∫
F̃dq =

∫
(F̃n − F̃)dqn +

∫
F̃d(qn − q).

The term
∫

F̃d(qn−q)→ 0 since F̃ is continuous and bounded. On the other hand, as (qn)n

is tight, for ε > 0 there are K1,K2 compact such that qn(K1 × K2) ≥ 1 − ε for all n. Thus∣∣∣∣∣∫ (F̃n − F̃)dqn

∣∣∣∣∣ ≤ ∫
|F̃n − F̃|dqn ≤ 2ε‖F‖∞ +

∫
K1×K2

|F̃n − F̃|dqn,

and by assumption
∫

K1×K2
|F̃n − F̃|dqn ≤ `W(p2(q̃n), p2(q̃)), which goes to zero. So∫

F̃nqn →
∫

F̃dq indeed. �

4.4.5. Talagrand functional inequality. If X is a Polish space, and µ, ν ∈ P(X), then the
relative entropy of µ with respect to ν is defined by

H(µ|ν) :=
∫

log
(

dµ
dν

)
dµ =

∫
log

(
dµ
dν

)
dµ
dν

dν

if µ � ν, and otherwise H(µ|ν) := +∞. Let us fix a compatible metric dX on X and use it
to define the p-Wasserstein distanceWX

p .

Definition 4.51. We say that ν ∈ Pp(X) satisfies (Talagrand’s transport-information)Tp(c)
inequality if

∀µ ∈ Pp(X) : WX
p (µ, ν) ≤

√
2cH(µ|ν).

We now prove that Tp(c) inequalities tensorize, by means of causal optimal transport
arguments. On X := XN we consider the `p metric

dX(x, y) =
p
√

dX(x1, y1)p + · · · + dX(xN , yN)p,

with associated p-Wasserstein distanceWX
p

Proposition 4.52. Suppose ν ∈ P(X) satisfies the Tp(c) inequality for some 1 ≤ p ≤ 2.
Then ν⊗N ∈ Pp(X) likewise satisfies the Tp(c) inequality, namely

∀µ̃ ∈ Pp(X) : WX
p (µ̃, ν⊗N) ≤

√
2cH(µ̃, ν⊗N).

For the proof we will need the decomposition property of the relative entropy. To this
end, note that for two Polish spaces A,B, a map T : A → B and P ∈ P(A) we can
disintegrate

P(dx) = Py(dx)T (P)(dy),

so that Py = P(·|T = y).
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Lemma 4.53. If A,B are Polish spaces, T : A → B Borel measurable, and P,Q ∈ P(A),
then using the notation from above

H(P|Q) = H(T (P)|T (Q)) +

∫
H(Py|Qy)dT (P)(y).

Proof. Wlog we can assume that P � Q (otherwise there is a set of positive T (P) measure
such that Py is not absolutely continuous wrt Qy so that both sides are infinite). Denote
ρ = dP/dQ, ρ̄ = dT (P)/dT (Q), and ρy = dPy/dQy. For any measurable f we obtain by
disintegration∫

f dµ =

∫
fρ(x)Py(dx)dT (P)(dy) =

∫
f (x)ρy(x)ρ̄(x)Py(dx)dT (P)(dy).

so that on the set {T = y} on which Py is concentrated there holds ρ(x) = ρy(x)ρ̄(y). Taking
logarithm and integrating wrt P(dx) = Py(dx)T (P)(dy) yields the result. �

Proof of Proposition 4.52. By Lemma 4.53, we find

H(µ̃|ν⊗N) = H(p1(µ̃)|ν) +

∫
H(µ̃2:N

x1
|ν⊗(N−1))p1(µ̃)(dx),

where µ̃2:N
x1

is shorthand for the distribution of x2, . . . , xN under µ̃ given x1. If we iterate
this argument N − 2 times, we find

H(µ̃|ν⊗N) = H(p1(µ̃)|ν) +

N−1∑
t=1

∫
H(µ̃x1,...,xt

|ν)µ̃(dx1, . . . , xt).

By assumption H(µ̃x1,...,xt
|ν) ≥ WX

p (µ̃x1,...,xt
, ν)2/(2c), and so

2cH(µ̃|ν⊗N) ≥ WX
p (p1(µ̃), ν)2 +

N−1∑
t=1

∫
WX

p (µ̃x1,...,xt , ν)2µ̃(dx1, . . . , xt).

Using that p/2 ≤ 1 and Jensen’s inequality we find

√
2cH(µ̃|ν⊗N) ≥

∫
WX

p (p1(µ̃), ν)2 +

N−1∑
t=1

WX
p (µ̃x1,...,xt

, ν)2


p/2

dµ̃


1/p

≥

∫ WX
p (p1(µ̃), ν)p +

N−1∑
t=1

WX
p (µ̃x1,...,xt

, ν)pdµ̃


1/p

,

where we also used that 2
√

a2
1 + · · · + a2

N ≥
p
√

ap
1 + · · · + ap

N if p ≤ 2. We now define de

bicausal transport problem (between µ̃ and ν⊗N) with cost function dp
X:

AWp(µ̃, ν⊗N)p := inf
q∈Cplbc(µ̃,ν⊗N )

∫ N∑
t=1

dX(xt, yt)pq(dx, dy),

which by the dynamic programming principle of Proposition 4.13 is equal to

WX
p (p1(µ̃), ν)p +

N−1∑
t=1

∫
WX

p (µ̃x1,...,xt
, ν)pµ̃(dx1, . . . , xt).

All in all √
2cH(µ̃|ν⊗N) ≥ AWp(µ̃, ν⊗N) ≥ Wp(µ̃, ν⊗N),

since the infimum forWp is computed over a larger set. �

Remark 4.54. The constant c appearing in Proposition 4.52 is independent of N, which im-
mediately suggests infinite-dimensional counterparts. The most renowed transport-information
inequalities areT1(c) andT2(c), the first of which is equivalent to the concentration of mea-
sure phenomenon. Talagrand’s original application concerned ν = γ1, the 1-dimensional
standard Gaussian distribution, for which the T2(1) inequality can be verified by calculus
arguments, and so by Proposition 4.52 the same holds for multidimensional Gaussians.
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4.5. Exercises.

Problem 45. (Bicausal Couplings)
Let µ, ν ∈ P1(R3) be defined as

µ :=
1
4

(
δ(−1,−1,−2) + δ(−1,−1,0) + δ(1,1,0) + δ(1,1,2)

)
and

ν :=
1
4

(
δ(0,−1,−2) + δ(0,−1,0) + δ(0,1,0) + δ(0,1,2)

)
.

a) Find a coupling of µ and ν that is causal but not bicausal.
b) Find a bicausal coupling of µ and ν that is not the product coupling.

Problem 46. (Causal Map)
Let N ≥ 1 and µ ∈ P(XN). For all 1 ≤ i ≤ N, let Ti : Xi → Y be a measureable map.

Moreover, we define

T : XN → YN

(x1, ..., xN) 7→ (T1(x1),T2(x1, x2), ...,Tn(x1, ..., xn)).

Show that (id,T )#µ is a causal coupling of µ and T#µ.

Problem 47. (Characterization of bicausal couplings)
Prove Proposition 4.12.

Problem 48. (On Proposition 4.15)
Let µ, ν ∈ P(R2) be defined as

µ :=
1

25
(
9δ(−1,−1) + 6δ(−1,1) + 6δ(1,−1) + 4δ(1,1)

)
and

ν :=
1
4

(
δ(−1,−1) + δ(−1,1) + δ(1,−1) + δ(1,1)

)
.

Moreover, we consider the cost function c(x1, x2, y1, y2) := 1(x1,x2),(y1,y2).

Show that the value of the causal transport problem is strictly smaller than the value of
the bicausal transport problem. Why does this not contradict Proposition 4.15?

Problem 49. (Stationary bicausal optimal transport)
Consider Xt = R = Yt for t ∈ N and X = RN = Y. Fix c : R×R→ [0,∞) and β ∈ [0, 1].

Given µ, ν ∈ P(RN) we define Cplbc(µ, ν) in the obvious way and consider

BOTc,β(µ, ν) := inf
q∈Cplbc(µ,ν)

∫ ∑
t∈N

βtc(xt, yt)

 q(dx, dy).

Justify that

BOTc,β(µ, ν) = inf
q∈Cpl(p1(µ),p1(ν))

∫
{c(x0, y0) + βBOTc,β(µx0 , νx0 )}q(dx0, dy0),

where µx0 denotes the law of (x1, x2, x3, . . . ) given x0 under µ and so for ν.

Problem 50. (Markov Property is not closed)
For N = 3 consider µε = 1/2δ(1,ε,1) + 1/2δ(−1,−ε,−1) for ε ≥ 0. Show that µε has the

Markov property if and only of ε > 0. Show as well that AW(µε, µ0) → 0 as ε →
0, so concluding that the Markov property is not closed under convergence in adapted
Wasserstein distance.

Problem 51. (Turning a Borel set into an open set)
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Let (X, τ) be a Polish space (i.e. separable and the topology τ is generated by some
complete metric) and A ⊆ X be a Borel measurable set. Define a stronger/finer topology τ̄
on X such that

• (X, τ̄) is still a Polish space, and
• A ∈ τ̄.
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Appendix A. Some useful measure theory

Theorem A.1 (Disintegration theorem). Let X,Y be Polish spaces, and let q be a finite
Borel measure on X×Y. Denote by µ and ν the marginals of q on the first and second factor
respectively. Then, there exist two measurable families of probability measures (qx)x∈X and
(qy)y∈Y such that

q(dx, dy) = qx(dy)µ(dx) = qy(dx)ν(dy).

For a proof we refer to e.g. Theorem 5.1.3 in [AGS08] or III-70 in [DM78].
Recall Definition 4.27 on the intensity operator I. With slight abuse of notation we still

call I the operator from P(P(Y)) to P(Y), obtained when we ignore the first coordinate of
X × P(Y) resp. X × Y. The following is a classical result which can be found in [Szn91,
p. 178, Ch. II].

Lemma A.2. A setA ⊆ P(P(Y)) is tight if and only if the set of its intensities I(A) is tight
in P(Y).

For our purposes, we need a refined form of Lemma A.2. Recall the embedding operator
J from Definition 4.26.

Lemma A.3. Π ⊆ P(X × Y) is tight if and only if J(Π) ⊆ P(X × P(Y)) is tight. Similarly,
Λ ∈ P(X × P(Y)) is tight if and only if I(Λ) ⊆ P(X × Y) is tight.

Proof. Say Γ is tight. Since continuous maps preserve relative compactness in Hausdorff
spaces, we immediately deduce tightness of I(Λ).

Say Π is tight. Then so are the sets ΠX ⊆ P(X) and ΠY ⊆ P(Y) consisting respectively of
the X- and Y-marginals of the elements in Π. Denote now respectively by ΠX

J ⊆ P(X) and
ΠY

J ⊆ P(P(Y)) the set of X- and P(Y)-marginals of the elements in J(Π). Clearly ΠX
J = ΠX.

By Lemma A.2, the set ΠY
J is tight in P(P(Y)) if and only if the set I(ΠY

J ) is tight in P(Y).
However, if m is equal to the P(Y)-marginal of J(π), then I(m) is equal to the Y-marginal
of π. It follows that I(ΠY

J ) ⊆ ΠY is tight and hence so is ΠY
J . Since the marginals of J(Π)

are tight, we conclude that J(Π) itself is tight. Conversely, if J(Π) is tight then I(J(Π)) = Π

is tight, by the first paragraph.
Finally, if I(Λ) is tight, then as in the previous paragraph, the set of X- and Y-marginals

of I(Λ) are tight, and then by Lemma A.2 the set of X- and P(Y)-marginals of Λ are tight.
We conclude that Λ is tight. �

Appendix B. Some useful analysis

We recall that a function f : X → (−∞,∞] defined on a topological space X is called
lower semicontinuous (lsc) if for each c ∈ R the set { f ≤ c} is closed. If the topology is
metrizable, then this notion is equivalent to the condition lim infxn→x f (xn) ≥ f (x).

Lemma B.1. Let X be a Polish space and f : X → (−∞,∞] be lsc and bounded from
below. Then

P(X) 3 µ 7→
∫

f dµ

is lsc w.r.t. the weak topology (and bounded from below).

Proof. Take d any metric compatible with the Polish topology, and put fn(x) = (infy( f (y)+

nd(x, y))) ∧ n. Then, fn ∈ Cb(X) (even Lipschitz), fn ≤ f and f ≤ lim inf fn (here we need
the lower bound and lsc of f ) so that f = supn fn. Hence, if µn → µ weakly,

lim inf
n

∫
f dµn ≥ sup

k
lim inf

n

∫
fkdµn = sup

k

∫
fkdµ =

∫
sup

k
fkdµ =

∫
f dµ.

�
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Appendix C. Pending proofs

Towards the proof of Lemma 4.31, we will need:

Lemma C.1. LetA be a Polish space. Then the family of functions{
P(A) 3 µ 7→ G

(∫
A

h1dµ, . . . ,
∫
A

hLdµ
)

:
L ∈ N,G ∈ Cb(RL)
(hi)i≤L ⊆ Cb(A)

}
(C.1)

is convergence determining for the weak topology on P(P(A)), that is, a sequence of prob-
ability measures (µn)n inP(P(A)) converges weakly to a probability measure µ ∈ P(P(A))
if and only if

∫
Fdµn →

∫
Fdµ for all F in (C.1).

This follows from the Stone-Weierstrass theorem in case of compact A and extends to
general Polish spaces e.g. via compactification.

Lemma C.2. Let A be a Polish space and σ : R → [0, 1] any continuous and increasing
function such that limz→−∞ σ(z) = 0 and limz→∞ σ(z) = 1. Then the family of functions{

P(A) 3 µ 7→ σ

(∫
A

hdµ
)

: h ∈ Cb(A)
}

(C.2)

is convergence determining for the weak topology on P(P(A)).

Proof. Let L, G, and (hi)i≤L as in (C.1). Moreover, let m ∈ R such that |hi| ≤ m for all
1 ≤ i ≤ L and define A := [−m,m]L. Then A ⊆ RL is compact and satisfies(∫

h1dµ, . . . ,
∫

hLdµ
)
∈ A for all µ ∈ P(A).

By the universal approximation result of Cybenko [Cyb89, Theorem 2], the setx 7→
m∑

i=1

uiσ(vi · x + wi) :
m ∈ N, (ui)i≤m ⊆ R,
(vi)i≤m ⊆ R

L, (wi)i≤m ⊆ R


is dense in C(A) w.r.t. the supremum norm. As a result, it is enough to replace G in (C.1)
by functions of the form x 7→

∑m
i=1 uiσ(vi · x + wi). Evaluating the latter function on the

vector x = (
∫

h1dµ, . . . ,
∫

hLdµ) yields
m∑

i=1

uiσ

 L∑
k=1

vk
i

∫
hkdµ + wi

 =

m∑
i=1

uiσ

 ∫
L+1∑

k=1

vk
i hk

 dµ


=

m∑
i=1

uiσ

(∫
h̄idµ

)
,

upon defining vL+1
i := wi, hL+1 := 1, and finally h̄i :=

∑L+1
k=1 vk

i hk for every i. The result
follows from Lemma C.1. �

Proof of Lemma 4.31. As Cb(X1) is convergence determining forP(X1), and {ν 7→ σ(
∫
X2

hdν) :
h ∈ Cb(X2)} is, by Lemma C.2, convergence determining forP(P(X2)), it follows e.g. from
[EK09, Proposition 4.6 (p.115)] that{

(x1, ν) 7→ h(x1)σ
(∫

g(x2)ν(dx2)
)

: h ∈ Cb(X1), g ∈ Cb(X2)
}
, (C.3)

is convergence determining for the weak topology on P(X1 × P(X2)). By definition of J
and the weak adapted topology, we conclude. �
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