
The Fundamental Theorem of Asset Pricing

The subsequent theorem is one of the pillars supporting the modern theory
of Mathematical Finance.

Fundamental Theorem of Asset Pricing:

The following two statements are essentially equivalent for a model S of
a financial market:
(i) S does not allow for arbitrage (NA)
(ii) There exists a probability measure Q on the underlying probability space
(Ω,F , P), which is equivalent to P and under which the process is a martin-
gale (EMM).

We have formulated this theorem in vague terms which will be made pre-
cise in the sequel: we shall formulate versions of this theorem below which
use precise definitions and avoid the use of the word essentially above. In
fact, the challenge is precisely to turn this vague “meta-theorem” into sharp
mathematical results.

The story of this theorem started - like most of modern Mathematical Fi-
nance - with the work of F. Black, M. Scholes [3] and R. Merton [25]. These
authors consider a model S = (St)0≤t≤T of geometric Brownian motion pro-
posed by P. Samuelson [30], which today is widely known under the name of
Black–Scholes model. Presumably every reader of this article is familiar with
the by now wellknown technique to price options in this framework (compare
eqf04/003: Risk Neutral Pricing): one changes the underlying measure
P to an equivalent measure Q under which the discounted stock price process
is a martingale. Subsequently one prices options (and other derivatives) by
simply taking expectations with respect to this “risk neutral” or “martin-
gale” measure Q.

In fact, this technique was not the novel feature of [3] and [25]. It was
used by actuaries for some centuries and it was also used by L. Bachelier [2]
in 1900 who considered Brownian motion (which, of course, is a martingale)
as a model S = (St)0≤t≤T of a stock price process. In fact, the prices obtained
by Bachelier by this method were - at least for the empirical data considered
by Bachelier himself - very close to those derived from the celebrated Black–
Merton–Scholes formula (compare [34]).

The decisive novel feature of the Black–Merton–Scholes approach was the
argument which links this pricing technique with the notion of arbitrage: the
pay-off function of an option can be precisely replicated by trading dynam-
ically in the underlying stock. This idea, which is credited in footnote 3 of
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[3] to R. Merton, opened a completely new perspective on how to deal with
options, as it linked the pricing issue with the idea of hedging, i.e., dynami-
cally trading in the underlying asset.

The technique of replicating an option is completely absent in Bachelier’s
early work; apparently the idea of “spanning” a market by forming linear
combinations of primitive assets first appears in the Economics literature in
the classic paper by K. Arrow [1]. The mathematically delightful situation,
that the market is complete in the sense that all derivatives can be replicated,
occurs in the Black–Scholes model as well as in Bachelier’s original model
of Brownian motion (compare eqf04/008: Second Fundamental Asset
Pricing Theorem). Another example of a model in continuous time shar-
ing this property is the compensated Poisson process, as observed by J. Cox
and S. Ross [4]. Roughly speaking, these are the only models in continuous
time sharing this seducingly beautiful “martingale representation property”
(see [16] and [39] for a precise statement on the uniqueness of these families
of models).

Appealing as it might be, the consideration of “complete markets” as
above is somewhat dangerous from an economic point of view: the precise
replicability of options, which is a sound mathematical theorem in the frame-
work of the above models, may lead to the illusion that this is also true in
economic reality. But, of course, these models are far from matching reality
in a one-to-one manner. Rather they only highlight important aspects of
reality; therefore they should not be considered as ubiquitously appropriate.

For many purposes it is of crucial importance to put oneself into a more
general modeling framework.

When the merits as well as the limitations of the Black–Merton–Scholes
approach unfolded in the late 70’s, the investigations on the Fundamental
Theorem of Asset Pricing started. As J. Harrison and S. Pliska formulate it
in their classic paper [15]: “it was a desire to better understand their formula
which originally motivated our study,...”

The challenge was to obtain a deeper insight into the relation of the fol-
lowing two aspects: on the one side the methodology of pricing by taking
expectations with respect to a properly chosen “risk neutral” or “martingale”
measure Q; on the other hand the methodology of pricing by “no arbitrage”
considerations. Why, after all, do these two seemingly unrelated approaches
yield identical results in the Black–Merton–Scholes approach? Maybe even
more importantly: how far can this phenomenon be extended to more in-
volved models?

To the best of my knowledge the first one to take up these questions in a
systematic way was S. Ross ([29]; see also [4], [28], and [27]).
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He chose the following setting to formalize the situation: fix a topolog-
ical, ordered vector space (X, τ), modeling the possible cash flows (e.g. the
pay-off function of an option) at a fixed time horizon T . A good choice is,
e.g. X = Lp(Ω,F , P), where 1 ≤ p ≤ ∞ and (Ω,F , (Ft)0≤t≤T , P) is the under-
lying filtered probability space. The set of marketed assets M is a subspace
of X.

In the context of a stock price process S = (St)0≤t≤T as above, one
might think of M as all the outcomes of an initial investment x ∈ R plus
the result of subsequent trading according to a predictable trading strategy
H = (Ht)0≤t≤T . This yields (in discounted terms) an element

m = x +

∫ T

0

HtdSt (1)

in the set M of marketed claims. It is natural to price the above claim m
by setting π(m) = x, as this is the net investment necessary to finance the
above claim m.

For notational convenience we shall assume in the sequel that S is a one-
dimensional process. It is straightforward to generalize to the case of d risky
assets by assuming that S is R

d-valued and replacing the above integral by

m = x +

∫ T

0

d∑
i=1

H i
tdSi

t.

Some words of warning about the stochastic integral (1) seem necessary.
The precise admissibility conditions which should be imposed on the stochas-
tic integral (1), in order to make sense both mathematically as well as eco-
nomically, are a subtle issue. Much of the early literature on the Fundamental
Theorem of Asset Pricing struggled exactly with this question. An excellent
reference is [14]. In [29] S. Ross circumvented this problem by deliberately
leaving this issue aside and simply starting with the modeling assumption
that the subset M ⊆ X as well as a pricing operator π : M → R are given.

Let us now formalize the notion of arbitrage. In the above setting, we
say that the no arbitrage assumption is satisfied if, for m ∈ M , satisfying
m ≥ 0, P-a.s. and P[m > 0] > 0, we have π(m) > 0. In prose this means that
it is not possible to find a claim m ∈ M , which bears no risk (as m ≥ 0, P-
a.s.), yields some gain with strictly positive probability (as P[m > 0] > 0),
and such that its price π(m) is less than or equal to zero.

The question now arises whether it is possible to extend π : M → R to a
non-negative, continuous linear functional π∗ : X → R.

What does this have to do with the issue of martingale measures? This
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theme was developed in detail by M. Harrison and D. Kreps [14]. Sup-
pose that X = Lp(Ω,F , P) for some 1 ≤ p < ∞, that the price process
S = (St)0≤t≤T satisfies St ∈ X, for each 0 ≤ t ≤ T , and that M contains (at
least) the “simple integrals” on the process S = (St)0≤t≤T of the form

m = x +
n∑

i=1

Hi(Sti − Sti−1
). (2)

Here x ∈ R, 0 = t0 < t1 < · · · < tn = T and (Hi)
n
i=1 is a (say) bounded

process which is predictable, i.e. Hi is Fti−1
-measurable. The sums in (2)

are the Riemann sums corresponding to the stochastic integrals (1). The
Riemann sums (2) have a clear-cut economic interpretation (see [14]). In
(2) we do not have to bother about subtle convergence issues as only finite
sums are involved in the definition. It therefore is a traditional (minimal)
requirement that the Riemann sums of the form (2) are in the space M of
marketed claims; naturally, the price of a claim m of the form (2) should be
defined as π(m) = x.

Now suppose that the functional π, which is defined for the claims of
the form (2) can be extended to a continuous, non-negative functional π∗

defined on X = Lp(Ω,F , P). If such an extension π∗ exists, it is induced by
some function g ∈ Lq(Ω,F , P), where 1

p
+ 1

q
= 1. The non-negativity of π∗ is

tantamount to g ≥ 0, P-a.s., and the fact that π∗(1) = 1 shows that g is the
density of a probability measure Q with Radon–Nikodym derivative dQ

dP
= g.

If we can find such an extension π∗ of π, we thus find a probability measure
Q on (Ω,F , P) for which

π∗
( n∑

i=1

Hi(Sti − Sti−1
)
)

= EQ

[ n∑
i=1

Hi(Sti − Sti−1
)
]

for every bounded predictable process H = (Hi)
n
i=1 as above, which is tanta-

mount to (St)0≤t≤T being a martingale (see [14, Th. 2], or [11, Lemma 2.2.6]).
Summing up: in the case 1 ≤ p < ∞, finding a continuous, non-negative

extension π∗ : Lp(Ω,F , P) → R of π amounts to finding a P-absolutely con-
tinuous measure Q with dQ

dP
∈ Lq and such that (St)0≤t≤T is a martingale

under Q.
At this stage it becomes clear that in order to find such an extension π∗

of π, the Hahn–Banach theorem should come into play in some form, e.g., in
one of the versions of the separating hyperplane theorem.

In order to be able to do so, S. Ross assumes ([29, p. 472]) that “...we will
endow X with a strong enough topology to insure that the positive orthant
{x ∈ X|x > 0} is an open set,...”. In practice, the only infinite-dimensional
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ordered topological vector space X, such that the positive orthant has non-
empty interior, is X = L∞(Ω,F , P), endowed with the topology induced by
‖.‖∞.

Hence the two important cases, applying to S. Ross’ hypothesis, are when
either the probability space Ω is finite, so that X = Lp(Ω,F , P) simply is
finite dimensional and its topology does not depend on 1 ≤ p ≤ ∞, or if
(Ω,F , P) is infinite and X = L∞(Ω,F , P) equipped with the norm ‖.‖∞.

After these preparations we can identify the two convex sets to be sepa-
rated: let A = {m ∈ M : π(m) ≤ 0} and B be the interior of the positive
cone of X. Now make the easy, but crucial, observation: these sets are dis-
joint if and only if the no arbitrage condition is satisfied. As one always can
separate an open convex set from a disjoint convex set, we find a functional
π̃ which is strictly positive on B, while π̃ takes non-positive values on A.
By normalizing π̃, i.e., letting π∗ = π̃(1)−1π̃ we have thus found the desired
extension.

In summary, the first precise version of the Fundamental Theorem of
Asset Pricing is established in [29], the proof relying on the Hahn–Banach
theorem. There are, however, serious limitations: in the case of infinite
(Ω,F , P) the present result only applies to L∞(Ω,F , P) endowed with the
norm topology. In this case the continuous linear functional π∗ only is in
L∞(Ω,F , P)∗ and not necessarily in L1(Ω,F , P); in other words we cannot
be sure that π∗ is induced by a probability measure Q, as it may happen
that π∗ ∈ L∞(Ω,F , P)∗ also has a singular part.

Another drawback, which already appears in the case of finite-dimensional
Ω (in which case π∗ certainly is induced by some Q with dQ

dP
= g ∈ L1(Ω,F , P))

is the following: we cannot be sure that the function g is strictly positive P-
a.s. or, in other words, that Q is equivalent to P.

After this early work by S. Ross a major advance in the theory was
achieved between ’79 and ’81 by three seminal papers [14], [15], [24] by
M. Harrison, D. Kreps and S. Pliska. In particular, [14] is a landmark in
the field. It uses a similar setting as [29], namely an ordered topological
vector space (X, τ) and a linear functional π : M → R, where M is a linear
subspace of X. Again the question is whether there exists an extension of
π to a linear, continuous, strictly positive π∗ : X → R. This question is
related in [14] to the issue whether (M, π) is viable as a model of economic
equilibrium. Under proper assumptions on the convexity and continuity of
the preferences of agents this is shown to be equivalent to the extension dis-
cussed above.

The paper [14] also analyses the case when Ω is finite. Of course, only
processes S = (St)

T
t=0 indexed by finite, discrete time {0, 1, ..., T} make sense
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in this case. For this easier setting the following precise theorem was stated
and proved in the subsequent paper [15] by J. Harrison and S. Pliska:

Theorem 1. ([15, Th. 2. 7.]): Suppose the stochastic process S = (St)
T
t=0

is based on a finite, filtered, probability space (Ω,F , (Ft)
T
t=0, P). The market

model contains no arbitrage possibilities if and only if there is an equivalent
martingale measure for S.

The proof again relies on a (finite-dimensional version) of the Hahn–
Banach theorem plus an extra argument making sure to find a measure Q
which is equivalent to P. M. Harrison and S. Pliska thus have achieved a
precise version of the above meta-theorem in terms of equivalent martingale
measures which does not use the word “essentially”. Actually, the theme of
the Harrison–Pliska theorem goes back much further, to the work of A. Shi-
mony [35] and J. Kemeny [22] on symbolic logic in the tradition of R. Carnap,
B. de Finetti, and F. Ramsey. These authors showed that, in a setting with
only finitely many states of the world, a family of possible bets does not allow
(by taking linear combinations) for making a riskless profit (i.e. one certainly
does not lose but wins with strictly positive probability), if and only if there
is a probability measure Q on these finitely many states, which prices the
possible bets by taking conditional Q-expectations.

The restriction to finite Ω is very severe in applications: the flavor of
the theory, building on Black–Scholes–Merton, is precisely the concept of
continuous time. Of course, this involves infinite probability spaces (Ω,F , P).

Many interesting questions were formulated in the papers [14] and [15]
hinting on the difficulties to prove a version of the Fundamental Theorem of
Asset Pricing beyond the setting of finite probability spaces.

A major break-through in this direction was achieved by D. Kreps [24]: as
above, let M ⊆ X and a linear functional π : M → R be given. The typical
choice for X will now be X = Lp(Ω,F , P), for 1 ≤ p ≤ ∞, equipped with the
topology τ of convergence in norm, or, if X = L∞(Ω,F , P), equipped with
the Mackey topology τ induced by L1(Ω,F , P). This setting will make sure
that a continuous linear functional on (X, τ) will be induced by a measure
Q which is absolutely continuous with respect to P.

The no arbitrage assumption means that M0 := {m ∈ M : π(m) = 0}
intersects the positive orthant X+ of X only in {0}. In order to obtain an
extension of π to a continuous, linear functional π∗ : X → R we have to find
an element in (X, τ)∗ which separates the convex set M0 from the disjoint
convex set X+\{0}, i.e., the positive orthant of X with 0 deleted.

Easy examples show that, in general, this is not possible. In fact, this is
not much of a surprise (if X is infinite-dimensional) as we know that some
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topological condition is needed for the Hahn–Banach theorem to work.
It is always possible to separate a closed convex set from a disjoint compact

convex set by a continuous linear functional. In fact, one may even get strict
separation in this case. It is this version of the Hahn–Banach theorem which
D. Kreps eventually applies.

But how? After all, neither M0 nor X+\{0} are closed in (X, τ), let alone
compact.

Here is the ingenious construction of D. Kreps: define

A = M0 − X+ , (3)

where the bar denotes the closure with respect to the topology τ . We shall
require that A still satisfies

A ∩ X+ = {0}. (4)

This property is baptized as “no free lunch” by D. Kreps:

Definition 2. [24]: The financial market defined by (X, τ), M , and π admits
a free lunch if there are nets (mα)α∈I ∈ M0 and (hα)α∈I ∈ X+ such that

lim
α∈I

(mα − hα) = x (5)

for some x ∈ X+\{0}.
It is easy to verify that the negation of the above definition is tantamount

to the validity of (4).
The economic interpretation of the “no free lunch” condition is a sharp-

ening of the “no arbitrage condition”. If the latter is violated, we can simply
find an element x ∈ X+\{0} which also lies in M0. If the former fails, we
cannot quite guarantee this, but we can find x ∈ X+\{0} which can be ap-
proximated in the τ -topology by elements of the form mα − hα. The passage
from mα to mα −hα means that agents are allowed to “throw away money”,
i.e. to abandon a positive element hα ∈ X+. This combination of the “free
disposal” assumption with the possibility of passing to limits is crucial in
Kreps’ approach (3) as well as in most of the subsequent literature. It was
shown in [32, Ex. 3.3]; (compare also [33]) that the (seemingly ridiculous)
“free disposal” assumption cannot be dropped.

Definition (3) is tailor-made for the application of Hahn–Banach. If the
no free lunch condition (4) is satisfied, we may, for any h ∈ X+, separate the
τ -closed, convex set A from the one-point set {h} by an element πh ∈ (X, τ)∗.
As 0 ∈ A we may assume that πh|A ≤ 0 while πh(h) > 0. We thus have ob-
tained a non-negative (as −X+ ⊆ A), continuous linear functional πh which
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is strictly positive on a given h ∈ X+. Supposing that X+ is τ -separable
(which is the case in the above setting of Lp-spaces if (Ω,F , P) is countably
generated), fix a dense sequence (hn)∞n=1 and find strictly positive scalars
μn > 0 such that π∗ =

∑∞
n=1 μnπhn converges to a probability measure in

(X, τ)∗ = Lq(Ω,F , P), where 1
p

+ 1
q

= 1. This yields the desired extension π∗

of π which is strictly positive on X+\{0}.
We still have to specify the choice of (M0, π). The most basic choice is to

take for given S = (St)0≤t≤T the space generated by the “simple integrands”
(2) as proposed by J. Harrison and D. Kreps [14]. We thus may deduce from
Kreps’ arguments in [24] the following version of the Fundamental Theorem
of Asset pricing.

Theorem 3. Let (Ω,F , P) be countably generated and X = Lp(Ω,F , P) en-
dowed with the norm topology τ , if 1 ≤ p < ∞, or the Mackey topology
induced by L1(Ω,F , P), if p = ∞.

Let S = (St)0≤t≤T be a stochastic process taking values in X. Define
M0 ⊆ X to consist of the simple stochastic integrals

∑n
i=1 Hi(Sti − Sti−1

) as
in (2).

Then the “no free lunch” condition (3) is satisfied if and only if there is
a probability measure Q with dQ

dP
∈ Lq(Ω,F , P), where 1

p
+ 1

q
= 1, such that

(St)0≤t≤T is a Q-martingale.

This remarkable theorem of D. Kreps sets new standards. For the first
time, we have a mathematically precise statement of our meta-theorem ap-
plying to a general class of models in continuous time. There are still some
limitations, however.

When applying the theorem to the case 1 ≤ p < ∞ we find the require-
ment dQ

dP
∈ Lq(Ω,F , P) for some q > 1, which is not very pleasant. After

all, we want to know: what exactly corresponds (in terms of some no ar-
bitrage condition) to the existence of an equivalent martingale measure Q?
The q-moment condition is unnatural in most applications. In particular, it
is not invariant under equivalent changes of measures as is done often in the
applications.

The most interesting case of the above theorem is p = ∞. But in this
case the requirement St ∈ X = L∞(Ω,F , P) is unduly strong for most ap-
plications. In addition, for p = ∞ we run into the subtleties of the Mackey
topology τ (or the weak-star topology, which does not make much of a dif-
ference) on L∞(Ω,F , P). We shall discuss this issue below.

The “heroic period” of the development of the Fundamental Theorem of
Asset Pricing marked by S. Ross [29], Harrison–Kreps [14], Harrison–Pliska
[15] and D. Kreps [24], put the issue on safe mathematical grounds and
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brought some spectacular results. However, it still left many questions open;
quite a number of them were explicitly stated as open problems in these
papers.

Subsequently a rather extensive literature developed, answering these
problems and opening new perspectives. We cannot give a full account on
all of this literature and refer, e.g., to the monograph [11] for more extensive
information. We can give an outline.

As regards the situation for 1 ≤ p ≤ ∞ in Kreps’ theorem, this issue
was further developed by D. Duffie and C.F. Huang [12] and, in particu-
lar, by C. Stricker [36]. This author related the no free lunch condition
of D. Kreps to a theorem by J.A. Yan [37] obtained in the context of the
Bichteler–Dellacherie theorem on the characterisation of semi-martingales.
Using Yan’s theorem, Stricker gave a different proof of Kreps’ theorem which
does not need the assumption that (Ω,F , P) is countably generated.

A beautiful extension of the Harrison–Pliska theorem was obtained in
1990 by R. Dalang, A. Morton and W. Willinger [5]. They showed that, for
an R

d-valued process (St)
T
t=0 in finite discrete time, the no arbitrage condi-

tion is indeed equivalent to the existence of an equivalent martingale measure.
The proof is surprisingly tricky, at least for the case d ≥ 2. It is based on
the measurable selection theorem (the suggestion to use this theorem is ac-
knowledged to F. Delbaen). Different proofs of the Dalang–Morton–Willinger
theorem have been given in [31], [20], [26], [17], and [21].

A important question left unanswered by D. Kreps was whether one can,
in general, replace the use of nets (mα − hα)α∈I , indexed by α ranging in a
general ordered set I, simply by sequences (mn − hn)∞n=1. In the context of
continuous processes S = (St)0≤t≤T a positive answer was given by F. Del-
baen in [6], if one is willing to make the harmless modification to replace the
deterministic times 0 = t0 ≤ t1 ≤ · · · ≤ tn = T in (2) by stopping times
0 = τ0 ≤ τ1 ≤ · · · ≤ τn = T . A second case, where the answer to this ques-
tion is positive are processes S = (St)

∞
t=0 in infinite, discrete time as shown

in [32].
The Banach–Steinhaus theorem implies that, for a sequence (mn−hn)∞n=1

converging in L∞(Ω,F , P) with respect to the weak-star (or Mackey) topol-
ogy, the norms (||mn − hn||∞)∞n=1 remain bounded (“uniform boundedness
principle”). Therefore it follows that in the above two cases of continuous
processes S = (St)0≤t≤T or processes (St)

∞
t=0 in infinite, discrete time, the

“no free lunch” condition of D. Kreps can be equivalently replaced by the
“no free lunch with bounded risk” condition introduced in [32]: in (5) above
we additionally impose that (||mα−hα||∞)α∈I remains bounded. In this case
we have that there is a constant M > 0 such that mα ≥ −M, P-a.s. for each
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α ∈ I, which explains the wording “bounded risk”.

However, in the context of general semi-martingale models S = (St)0≤t≤T ,
a counter-example was given by F. Delbaen and the present author in ([7,
Ex. 7.8]) showing that the “no free lunch with bounded risk” condition does
not imply the existence of an equivalent martingale measure. Hence, in a
general setting and by only using simple integrals, there is no hope to get any
more precise information on the free lunch condition than the one provided
by Kreps’ theorem.

At this stage it became clear that, in order to obtain sharper results, one
has to go beyond the framework of simple integrals (2) and rather use general
stochastic integrals (1). After all, the simple integrals only are a technical
gimmick, analogous to step functions in measure theory. In virtually all the
applications, e.g., the replication strategy of an option in the Black–Scholes
model, one uses general integrals of the form (1).

General integrands pose a number of questions to be settled. First of
all, the integral (1) has to be mathematically well-defined. The theory of
stochastic calculus starting with K. Itô, and developed in particular by the
Strasbourg school of probability around P.-A. Meyer, provides very precise
information on this issue: there is a good integration theory for a given
stochastic process S = (St)0≤t≤T if and only if S is a semi-martingale (theo-
rem of Bichteler–Dellacherie).

Hence mathematical arguments lead to the model assumption that S has
to be a semi-martingale. But what about an economic justification of this
assumption? Fortunately the economic reasoning hints in the same direc-
tion. It was shown by F. Delbaen and the present author that, for a locally
bounded stochastic process S = (St)0≤t≤T , a very weak form of Kreps’ no
free lunch condition involving simple integrands (2), implies already that S
is a semi-martingale (see [7, Theorem 7.2], for a precise statement).

Hence it is natural to assume that the model S = (St)0≤t≤T of stock
prices is a semi-martingale so that the stochastic integral (2) makes sense
mathematically, for all S-integrable, predictable processes H = (Ht)0≤t≤T .
As pointed out, [14] and [15] impose in addition an admissibility condition
to rule out doubling strategies and similar schemes.

Definition 4. ([7, Def. 2.7]): An S-integrable predictable process H =
(Ht)0≤t≤T is called admissible if there is a constant M > 0 such that

∫ t

0

HudSu ≥ −M, a.s., for 0 ≤ t ≤ T. (6)
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The economic interpretation is that the economic agent, trading according
to the strategy, has to respect a finite credit line M .

Let us now sketch the approach of [7]. Define

K =
{∫ T

0

HtdSt : H admissible
}

(7)

which is a set of (equivalence classes of) random variables. Note that by (6)
the elements f ∈ K are uniformly bounded from below, i.e., f ≥ −M for
some M ≥ 0. On the other hand, there is no reason why the positive part
f+ should obey any boundedness or integrability assumption.

As a next step we “allow agents to throw away money” similarly as in
Kreps’ work [24]. Define

C = {g ∈ L∞(Ω,F , P) : g ≤ f for some f ∈ K}
= [K − L0

+(Ω,F , P)] ∩ L∞(Ω,F , P), (8)

where L0
+(Ω,F , P) denotes the set of non-negative measurable functions.

By construction, C consists of bounded random variables, so that we can
use the functional analytic duality theory between L∞ and L1. The difference
of the subsequent definition to Kreps’ approach is that it pertains to the norm
topology ‖.‖∞ rather than to the Mackey topology on L∞(Ω,F , P).

Definition 5. ([11, 2.8]): A locally bounded semi-martingale S = (St)0≤t≤T

satisfies the no free lunch with vanishing risk condition if

C̄ ∩ L∞
+ (Ω,F , P) = {0}, (9)

where C̄ denotes the ‖.‖∞-closure of C.

Here is the translation of (9) into prose: the process S fails the above
condition iff there is a function g ∈ L∞

+ (Ω,F , P) with P[g > 0] > 0 and a
sequence (fn)∞n=1 of the form

fn =

∫ T

0

Hn
t dSt,

where Hn are admissible integrands, such that

fn ≥ g − 1
n
, a.s. (10)

Hence the condition of no free lunch with vanishing risk is intermediate
between the (stronger) no free lunch condition of D. Kreps and the (weaker)
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no arbitrage condition. The latter would require that there is a non-negative
function g with P[g > 0] > 0 which is of the form

g =

∫ T

0

HtdSt,

for an admissible integrand H . Condition (10) does not quite guarantee this,
but something - at least from an economic point of view - very close: we can
uniformly approximate from below such a g by the outcomes fn of admissible
trading strategies.
The main result of F. Delbaen and the author [7] reads as follows.

Theorem 6. ([7, Corr. 1.2]): Let S = (St)0≤t≤T be a locally bounded real-
valued semi-martingale.

There is a probability measure Q on (Ω,F) which is equivalent to P and
under which S is a local martingale if and only if S satisfies the condition of
no free lunch with vanishing risk.

This is a mathematically precise theorem which, in my opinion, is quite
close to the vague “meta-theorem” at the beginning of this article. The dif-
ference to the intuitive “no arbitrage” idea is that the agent has to be willing
to sacrifice (at most) the quantity 1

n
in (10), where we may interpret 1

n
as,

say, 1 Cent.
The proof of the above theorem is rather longish and technical and a more

detailed discussion goes beyond the scope of the present article. To the best
of my knowledge, no essential simplification of this proof has been achieved
so far (compare [19]).

Mathematically speaking, the statement of the theorem looks very suspi-
cious at first glance: after all, the no free lunch with vanishing risk condition
pertains to the norm topology of L∞(Ω,F , P). Hence it seems that, when
applying the Hahn–Banach theorem, one can only obtain a linear functional
in L∞(Ω,F , P)∗, which is not necessarily of the form dQ

dP
∈ L1(Ω,F , P), as we

have seen in Ross’ work [29].
The reason why the above theorem nevertheless is true is a little miracle:

it turns out ([7, Th. 4.2]) that, under the assumption of no free lunch with
vanishing risk, the set C defined in (8) is automatically weak-star closed in
L∞(Ω,F , P). This pleasant fact is not only a crucial step in the proof of
the above theorem; maybe even more importantly, it also found other ap-
plications. For example, to find general existence results in the theory of
utility optimisation (eqf04/009: Expected utility maximization) it is
of crucial importance to have a closedness property of the set over which one
optimizes: for these applications the above result is very useful (see, e.g.,
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[23]).
Without going into the details of the proof let me point out the impor-

tance of certain elements in the set K. The admissibility rules out the use of
doubling strategies. The opposite of such a strategy can be called a suicide
strategy. It is the mathematical equivalent of making a bet at the roulette,
leaving it as well as all gains on the table as long as one keeps winning, and
wait until one loses for the first time. Such strategies, although admissible,
do not reflect economic efficiency. More precisely we define

Definition 7. : An admissible outcome
∫ T

0
HtdSt is called maximal if there

is no other admissible strategy H ′ such that
∫ T

0
H ′

tdSt ≥ ∫ T

0
HtdSt with

P[
∫ T

0
H ′

tdSt >
∫ T

0
HtdSt] > 0

In the proof of Theorem 6, these elements play a crucial role and the heart
of the proof consists in showing that every element in K is dominated by a
maximal element. But besides their mathematical relevance they also have
a clear economic interpretation. There is no use in implementing a strategy
that is not maximal as one can do better. Non-maximal elements can also
be seen as bubbles, see [18].

In Theorem 6 we only assert that S is a local martingale under Q. In
fact, this technical concept cannot be avoided in this setting. Indeed, fix
an S-integrable, predictable, admissible process H = (Ht)0≤t≤T as well as
a bounded, predictable, strictly positive process (kt)0≤t≤T . The subsequent
identity trivially holds true.

∫ t

0

HudSu =

∫ t

0

Hu

ku

dS̃u, 0 ≤ t ≤ T, (11)

where

S̃u =

∫ u

0

kvdSv, 0 ≤ u ≤ T. (12)

The message of (11) and (12) is that the class of processes obtained by
taking admissible stochastic integrals on S or S̃ simply coincide. An easy
interpretation of this rather trivial fact is that the possible investment op-
portunities do not depend on whether stock prices are denoted in Euros or
in Cents (this corresponds to taking kt ≡ 100 above).

But it may very well happen that S̃ is a martingale while S only is a local
martingale. In fact, the concept of local martingales may even be charac-
terized in these terms ([10, Proposition 2.5]): a semi-martingale S is a local
martingale if and only if there is a strictly positive, decreasing, predictable
process k such that S̃ defined in (12) is a martingale.
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Again we want to emphasize the role of the maximal elements. It turns
out, see [8] and [11], that if

∫ T

0
HtdSt is maximal, if and only if there is

an equivalent local martingale measure Q such that the process
∫ t

0
HudSu is

a martingale and not just a local martingale under Q. One can show, see
[9] and [11], that for a given sequence of maximal elements

∫ T

0
Hn

t dSt, one
can find one and the same equivalent local martingale measure Q such that
all the processes

∫ t

0
Hn

u dSu are Q-martingales. Another useful and related

characterisation, see [8] and [11], is that if a process Vt = x +
∫ t

0
HudSu

defines a maximal element
∫ T

0
HudSu and remains strictly positive, the whole

financial market can be rewritten in terms of V as a new numéraire without
losing the no-arbitrage properties. The change of numéraire and the use of
the maximal elements allows to introduce a numéraire invariant concept of
admissibility, see [9] for details. An important result in this paper is that the
sum of maximal elements is again a maximal element.

Theorem 6 above still contains one severe limitation of generality, namely
the local boundedness assumption on S. As long as we only deal with con-
tinuous processes S, this requirement is, of course, satisfied. But if one also
considers processes with jumps, in most applications it is natural to drop the
local boundedness assumption.

The case of general semi-martingales S (without any boundedness as-
sumption) was analyzed in [10]. Things become a little trickier as the concept
of local martingales has to be weakened even further: we refer to eqf04/007:
Equivalent Martingale Measure and Ramifications for a discussion of
the concept of sigma-martingales. This concept allows to formulate a result
pertaining to a perfectly general setting.

Theorem 8. ([7, Corr. 1.2]): Let S = (St)0≤t≤T be an R
d-valued semi-

martingale.
There is a probability measure Q on (Ω,F) which is equivalent to P and

under which S is a sigma-martingale if and only if S satisfies the condition
of no free lunch with vanishing risk with respect to admissible strategies.

One still may ask whether it is possible to formulate a version of the
fundamental theorem which does not rely on the concepts of local or sigma-,
but rather on “true” martingales.

This was achieved by J. Yan [38] by applying a clever change of numéraire
technique, (eqf04/010: Change of Numéraire compare also [13, Section
5]): let us suppose that (St)0≤t≤T is a positive semi-martingale, which is
natural if we model, e.g., prices of shares (while the previous setting of not
necessarily positive price processes also allows for the modeling of forwards,
futures etc.).
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Let us weaken the admissibility condition (6) above, by calling a pre-
dictable, S-integrable process allowable if

∫ t

0

HudSu ≥ −M(1 + St) a.s., for 0 ≤ t ≤ T. (13)

The economic idea underlying this notion is wellknown and allows for the
following interpretation: an agent holding M units of stock and bond may,
in addition, trade in S according to the trading strategy H satisfying (13);
she will then remain liquid during [0, T ].

By taking S + 1 as new numéraire and replacing admissible by allowable
trading strategies Yan obtains the following Theorem.

Theorem 9. ([38, Theorem 3.2]) Suppose that S is a positive semi-martingale.
There is a probability measure Q on (Ω,F) which is equivalent to P and un-
der which S is a martingale if and only if S satisfies the condition of no free
lunch with vanishing risk with respect to allowable trading strategies.

Walter Schachermayer
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