AN EXTENSION OF A SUPERCONGRUENCE OF LONG AND RAMAKRISHNA

VICTOR J. W. GUO, JI-CAI LIU, AND MICHAEL J. SCHLOSSER

Abstract

We prove two supercongruences for specific truncated hypergeometric series. These include a uniparametric extension of a supercongruence that was recently established by Long and Ramakrishna. Our proofs involve special instances of various hypergeometric identities including Whipple's transformation and the Karlsson-Minton summation.

1. Introduction

Let $(a)_{n}=a(a+1) \cdots(a+n-1)$ denote the Pochhammer symbol. For complex numbers $a_{0}, a_{1}, \ldots, a_{r}$ and b_{1}, \ldots, b_{r}, the (generalized) hypergeometric series ${ }_{r+1} F_{r}$ is defined as

$$
{ }_{r+1} F_{r}\left[\begin{array}{cccc}
a_{0}, & a_{1}, & \ldots, & a_{r} \\
& b_{1}, & \ldots, & b_{r}
\end{array} ; z\right]=\sum_{k=0}^{\infty} \frac{\left(a_{0}\right)_{k}\left(a_{1}\right)_{k} \cdots\left(a_{r}\right)_{k}}{k!\left(b_{1}\right)_{k} \cdots\left(b_{r}\right)_{k}} z^{k} .
$$

Summation and transformation formulas for generalized hypergeometric series play an important part in the investigation of supercongruences. See, for instance, [5, 10, 12, 13, 16-18, 20]. In particular, Long and Ramakrishna [16, Theorems 3 and 2] proved the following two supercongruences:

$$
\sum_{k=0}^{p-1} \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3}} \equiv\left\{\begin{array}{lll}
-\Gamma_{p}\left(\frac{1}{4}\right)^{4} & \left(\bmod p^{3}\right), & \text { if } p \equiv 1 \tag{1.1}\\
-\frac{p^{2}}{16} \Gamma_{p}\left(\frac{1}{4}\right)^{4} & \left(\bmod p^{3}\right), & \text { if } p \equiv 3
\end{array} \quad(\bmod 4), ~ \$\right.
$$

and

$$
\sum_{k=0}^{p-1}(6 k+1) \frac{\left(\frac{1}{3}\right)_{k}^{6}}{k!^{6}} \equiv\left\{\begin{array}{lll}
-p \Gamma_{p}\left(\frac{1}{3}\right)^{9} & \left(\bmod p^{6}\right), & \text { if } p \equiv 1 \tag{1.2}\\
-\frac{10}{27} p^{4} \Gamma_{p}\left(\frac{1}{3}\right)^{9} & (\bmod 6)
\end{array}\right.
$$

where p is an odd prime and $\Gamma_{p}(x)$ is the p-adic Gamma function. The restriction of the supercongruence (1.1) modulo p^{2} was earlier established by Van Hamme [19, Equation (H.2)]. The supercongruence (1.2) is even stronger than a conjecture made by Van Hamme

[^0][19, Equation (D.2)] who asserted the corresponding supercongruence modulo p^{4} for $p \equiv 1$ $(\bmod 6)$. Long and Ramakrishna also mentioned that (1.2) does not hold modulo p^{7} in general.

The first purpose of this paper is to prove the following supercongruence. Note that the $r= \pm 1$ cases partially confirm the $d=5$ and $q \rightarrow 1$ case of [6, Conjectures 1 and 2].

Theorem 1. Let $r \leqslant 1$ be an odd integer coprime with 5 . Let p be a prime such that $p \equiv-\frac{r}{2}(\bmod 5)$ and $p \geqslant \frac{5-r}{2}$. Then

$$
\begin{equation*}
\sum_{k=0}^{p-1}(10 k+r) \frac{\left(\frac{r}{5}\right)_{k}^{5}}{k!^{5}} \equiv 0 \quad\left(\bmod p^{4}\right) \tag{1.3}
\end{equation*}
$$

Recently, the second author [14] established the following supercongruence related to (1.2):

$$
\sum_{k=0}^{p-1}(6 k-1) \frac{\left(-\frac{1}{3}\right)_{k}^{6}}{k!^{6}} \equiv\left\{\begin{array}{lll}
140 p^{4} \Gamma_{p}\left(\frac{2}{3}\right)^{9} & \left(\bmod p^{5}\right), & \text { if } p \equiv 1 \tag{1.4}\\
378 p \Gamma_{p}\left(\frac{2}{3}\right)^{9} & \left(\bmod p^{5}\right), & \text { if } p \equiv 5
\end{array}(\bmod 6),\right.
$$

where p is a prime.
The second purpose of this paper is to give the following common generalization of the second supercongruence in (1.2), restricted to modulo p^{5}, and the first supercongruence in (1.4).

Theorem 2. Let $r \leqslant 1$ be an integer coprime with 3 . Let p be a prime such that $p \equiv-r$ $(\bmod 3)$ and $p \geqslant 3-r$. Then

$$
\begin{align*}
\sum_{k=0}^{p-1}(6 k+r) \frac{\left(\frac{r}{3}\right)_{k}^{6}}{k!^{6}} \equiv & \frac{(-1)^{r+1} 80 r p^{4}}{81} \cdot \frac{\Gamma_{p}\left(1+\frac{r}{3}\right)^{2}}{\Gamma_{p}\left(1+\frac{2 r}{3}\right)^{3} \Gamma_{p}\left(1-\frac{r}{3}\right)^{4}} \\
& \times \sum_{k=0}^{1-r} \frac{(r-1)_{k}\left(\frac{r}{3}\right)_{k}^{3}}{(1)_{k}\left(\frac{2 r}{3}\right)_{k}^{3}} \quad\left(\bmod p^{5}\right) . \tag{1.5}
\end{align*}
$$

Letting $r=1$ and $r=-1$ in (1.5) and using (1.9) and (1.11), we arrive at the $p \equiv 5$ $(\bmod 6)$ case of (1.2) modulo p^{5} and the $p \equiv 1(\bmod 6)$ case of (1.4), respectively.

Our proof of Theorem 1 will require Whipple's well-poised ${ }_{7} F_{6}$ transformation formula (see [2, p. 28]):

$$
\begin{align*}
& { }_{7} F_{6}\left[\begin{array}{cccccc}
a, & 1+\frac{1}{2} a, & b, & c, & d, & e, \\
& \frac{1}{2} a, & 1+a-b, & 1+a-c, & 1+a-d, & 1+a-e, \\
& 1+a+n
\end{array}\right] \\
& =\frac{(a+1)_{n}(a-d-e+1)_{n}}{(a-d+1)_{n}(a-e+1)_{n}} 4_{3} F_{3}\left[\begin{array}{cccc}
1+a-b-c, & d, & e, & -n \\
d+e-a-n, & 1+a-b, & 1+a-c & ; 1
\end{array}\right], \tag{1.6}
\end{align*}
$$

where n is a non-negative integer, and Karlsson-Minton's summation formula (see, for example, [4, Equation (1.9.2)]):

$$
{ }_{r+1} F_{r}\left[\begin{array}{ccc}
-n, & b_{1}+m_{1}, & \ldots, \tag{1.7}\\
& b_{r}+m_{r} \\
& b_{1}, & \ldots, \\
& b_{r}
\end{array}\right]=0
$$

where n, m_{1}, \ldots, m_{r} are non-negative integers and $n>m_{1}+\cdots+m_{r}$. Our proof of Theorem 2 relies on a ${ }_{7} F_{6}$ transformation formula slightly different from Whipple's ${ }_{7} F_{6}$ transformation formula (1.6), obtained as a result from combining (1.6) with a ${ }_{4} F_{3}$ transformation formula. The transformation was already utilized by the second author to prove (1.4).

Furthermore, in order to prove Theorem 2, we require some properties of the p-adic Gamma function, collected in the following two lemmas.
Lemma 1. [3, Section 11.6] Suppose p is an odd prime and $x \in \mathbb{Z}_{p}$. Then

$$
\begin{align*}
& \Gamma_{p}(0)=1, \quad \Gamma_{p}(1)=-1 \tag{1.8}\\
& \Gamma_{p}(x) \Gamma_{p}(1-x)=(-1)^{a_{p}(x)} \tag{1.9}\\
& \Gamma_{p}(x) \equiv \Gamma_{p}(y) \quad(\bmod p) \quad \text { for } x \equiv y \quad(\bmod p), \tag{1.10}\\
& \frac{\Gamma_{p}(x+1)}{\Gamma_{p}(x)}= \begin{cases}-x & \text { if } v_{p}(x)=0 \\
-1 & \text { if } v_{p}(x)>0\end{cases} \tag{1.11}
\end{align*}
$$

where $a_{p}(x) \in\{1,2, \ldots, p\}$ with $x \equiv a_{p}(x)(\bmod p)$ and $v_{p}(\cdot)$ denotes the p-order.
Lemma 2. [16, Lemma 17, (4)] Let p be an odd prime. If $a \in \mathbb{Z}_{p}, n \in \mathbb{N}$ such that none of $a, a+1, \ldots, a+n-1$ are in $p \mathbb{Z}_{p}$, then

$$
\begin{equation*}
(a)_{n}=(-1)^{n} \frac{\Gamma_{p}(a+n)}{\Gamma_{p}(a)} \tag{1.12}
\end{equation*}
$$

In the following Sections 2 and 3, we give proofs of Theorems 1 and 2, respectively. The final Section 4 is devoted to a discussion and includes two conjectures.

2. Proof of Theorem 1

Motivated by the work of McCarthy and Osburn [17] and Mortenson [18], we take the following choice of parameters in (1.6). Let $a=\frac{r}{5}, b=\frac{r+5}{10}, c=\frac{r+3 p}{5}, d=\frac{r+3 i p}{5}, e=\frac{r-3 i p}{5}$, and $n=\frac{3 p-r}{5}$, where $i^{2}=-1$. Then we conclude that

$$
\begin{align*}
& { }_{6} F_{5}\left[\begin{array}{ccccc}
\frac{r}{5}, & 1+\frac{r}{10}, & \frac{r+3 p}{5}, & \frac{r+3 i p}{5}, & \frac{r-3 i p}{5}, \\
\frac{r}{10}, & 1-\frac{3 p}{5}, & 1-\frac{r-3 p}{5}, & 1+\frac{3 i p}{5}, & 1+\frac{3 p}{5}
\end{array}\right] \\
& =\frac{\left(1+\frac{r}{5}\right)_{\frac{3 p-r}{}}^{5}\left(1-\frac{r}{5}\right)_{\frac{3 p-r}{}}}{\left(1-\frac{3 i p}{5}\right)_{\frac{3 p-r}{}}\left(1+\frac{3 i p}{5}\right)_{\frac{3 p-r}{5}}{ }_{4} F_{3}\left[\begin{array}{cccc}
\frac{5-r-6 p}{10}, & \frac{r+3 i p}{5}, & \frac{r-3 i p}{5}, & \frac{r-3 p}{5} \\
\frac{2 r-3 p}{5}, & \frac{r+5}{10}, & \frac{5-3 p}{5} &
\end{array}\right],} 又 土 \text {, } \tag{2.1}
\end{align*}
$$

It is easy to see that, for $k \geqslant 0$ and any p-adic integer b,

$$
\begin{equation*}
(a+b p)_{k}(a-b p)_{k}(a+b i p)_{k}(a-b i p)_{k} \equiv(a)_{k}^{4} \quad\left(\bmod p^{4}\right) \tag{2.2}
\end{equation*}
$$

Hence, the left-hand side of (2.1) is congruent to

$$
\begin{aligned}
\sum_{k=0}^{\frac{3 p-r}{5}} \frac{\left(1+\frac{r}{10}\right)_{k}\left(\frac{r}{5}\right)_{k}^{5}}{\left(\frac{r}{10}\right)_{k}(1)_{k}^{5}} & =\frac{1}{r} \sum_{k=0}^{\frac{3 p-r}{5}}(10 k+r) \frac{\left(\frac{r}{5}\right)_{k}^{5}}{k!^{5}} \\
& \equiv \frac{1}{r} \sum_{k=0}^{p-1}(10 k+r) \frac{\left(\frac{r}{5}\right)_{k}^{5}}{k!^{5}} \quad\left(\bmod p^{4}\right)
\end{aligned}
$$

where we have used the fact that $\frac{\left(\frac{r}{5}\right)_{k}}{k!} \equiv 0(\bmod p)$ for $\frac{3 p-r}{5}<k \leqslant p-1$ (the condition $p \geqslant \frac{5-r}{2}$ in the theorem is to guarantee $\frac{3 p-r}{5} \leqslant p-1$). Since $\frac{3 p-r}{5} \geqslant \frac{2 p+r}{5}$, we have

$$
\begin{aligned}
\frac{\left(1+\frac{r}{5}\right)_{\frac{3 p-r}{5}}\left(1-\frac{r}{5}\right)_{\frac{3 p-r}{5}}}{\left(1-\frac{3 i p}{5}\right)_{\frac{3 p-r}{5}}\left(1+\frac{3 i p}{5}\right)_{\frac{3 p-r}{5}}} & =\frac{\left(1+\frac{r}{5}\right)_{\frac{3 p-r}{5}}\left(1-\frac{r}{5}\right)_{\frac{3 p-r}{5}}}{\prod_{j=1}^{\frac{3 p-r}{5}}\left(j^{2}+\frac{9 p^{2}}{25}\right)} \\
& \equiv 0 \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Finally, by the congruences

$$
\begin{equation*}
(a+b i p)_{k}(a-b i p)_{k} \equiv(a+b p)_{k}(a-b p)_{k} \equiv(a)_{k}^{2} \quad\left(\bmod p^{2}\right) \tag{2.3}
\end{equation*}
$$

for any p-adic integer b, we obtain

$$
\begin{aligned}
{ }_{4} F_{3}\left[\begin{array}{cccc}
\frac{5-r-6 p}{10}, & \frac{r+3 i p}{5}, & \frac{r-3 i p}{5}, & \frac{r-3 p}{5} \\
\frac{2 r-3 p}{5}, & \frac{r+5}{10}, & \frac{5-3 p}{5} &
\end{array}\right] & \equiv{ }_{4} F_{3}\left[\begin{array}{cccc}
\frac{5-r-6 p}{10}, & \frac{r}{5}, & \frac{r}{5}, & \frac{r-3 p}{5} \\
\frac{2 r-3 p}{5}, & \frac{r+5}{10}, & \frac{5-3 p}{5} &
\end{array}\right] \\
& \equiv{ }_{4} F_{3}\left[\begin{array}{cccc}
\frac{5-r-6 p}{10}, & \frac{r+p}{5}, & \frac{r-p}{5}, & \frac{r-3 p}{5} \\
\frac{2 r-3 p}{5}, & \frac{r+5}{10}, & \frac{5-3 p}{5} &
\end{array}\right] \\
& =0\left(\bmod p^{2}\right),
\end{aligned}
$$

where we have utilized Karlsson-Minton's summation (1.7) with $n=\frac{3 p-r}{5}, b_{1}=\frac{2 r-3 p}{5}$, $b_{2}=\frac{r+5}{10}, b_{3}=\frac{5-3 p}{5}, m_{1}=\frac{1-r}{2}, m_{2}=\frac{2 p+r-5}{10}$, and $m_{3}=\frac{2 p+r-5}{5}$ in the last step.

3. Proof of Theorem 2

We can verify (1.5) for $r=1$ and $p=2$ by hand. In what follows, we assume that p is an odd prime. Recall the following transformation formula [14, Equation (4.2)]:

$$
\begin{align*}
& { }_{7} F_{6}\left[\begin{array}{cccc}
t, & 1+\frac{t}{2}, & -n, & t-a, \\
\frac{t}{2}, & 1-b, & t-c, & 1-t-m+n+a+b+c \\
1+n, & 1+a, & 1+b, & 1+c, \\
\hline & 2 t+m-n-a-b-c
\end{array}\right] \\
& =\frac{(1+t)_{n}(a+b+2-m-t)_{n}(a+c+2-m-t)_{n}(b+c+2-m-t)_{n}}{(1+a)_{n}(1+b)_{n}(1+c)_{n}(a+b+c+1-m-2 t)_{n}} \\
& \\
& \times \frac{(a+b+1-m-t)(a+c+1-m-t)(b+c+1-m-t)}{(a+b+n+1-m-t)(a+c+n+1-m-t)(b+c+n+1-m-t)} \tag{3.1}\\
& \quad \times{ }_{4} F_{3}\left[\begin{array}{ccc}
-m, & -n, \quad a+b+c+1-m-2 t, & a+b+c+1+n-m-t \\
a+b+1-m-t, & a+c+1-m-t, & b+c+1-m-t
\end{array}\right] .
\end{align*}
$$

Let ζ be a fifth primitive root of unity. Setting $m=1-r, t=\frac{r}{3}, n=\frac{2 p-r}{3}, a=\frac{2 p \zeta}{3}$, $b=\frac{2 p \zeta^{2}}{3}$ and $c=\frac{2 p \zeta^{3}}{3}$ in (3.1) and using $1+\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}=0$, the left-hand side of (3.1) becomes

$$
\begin{aligned}
& { }_{7} F_{6}\left[\begin{array}{cccccc}
1+\frac{r}{6}, & \frac{r}{3}, & \frac{r-2 p}{3}, & \frac{r-2 p \zeta}{3}, & \frac{r-2 p \zeta^{2}}{3}, & \frac{r-2 p \zeta^{3}}{3}, \\
& \frac{r}{6}, & 1+\frac{r-2 p \zeta^{4}}{3}, & 1+\frac{2 p \zeta}{3}, & 1+\frac{2 p \zeta^{2}}{3}, & 1+\frac{2 p \zeta^{3}}{3},
\end{array}\right]+\frac{1+\frac{2 p \zeta^{4}}{3} ; 1}{} ; 1 \\
& \equiv \frac{1}{r} \sum_{k=0}^{\frac{2 p-r}{3}}(6 k+r) \frac{\left(\frac{r}{3}\right)_{k}^{6}}{k!^{6}}\left(\bmod p^{5}\right),
\end{aligned}
$$

where we have used the facts that none of the denominators in ${ }_{7} F_{6}$ contain a multiple of p (the condition $p \geqslant 3-r$ in the theorem is to guarantee $\frac{2 p-r}{3} \leqslant p-1$) and

$$
(u+v p)_{k}(u+v p \zeta)_{k}\left(u+v p \zeta^{2}\right)_{k}\left(u+v p \zeta^{3}\right)_{k}\left(u+v p \zeta^{4}\right)_{k} \equiv(u)_{k}^{5} \quad\left(\bmod p^{5}\right)
$$

Furthermore, for $\frac{2 p-r}{3}<k \leqslant p-1$ we have $\left(\frac{r}{3}\right)_{k} \equiv 0(\bmod p)$. Thus,

$$
\begin{align*}
& { }_{7} F_{6}\left[\begin{array}{ccccccc}
1+\frac{r}{6}, & \frac{r}{3}, & \frac{r-2 p}{3}, & \frac{r-2 p \zeta}{3}, & \frac{r-2 p \zeta^{2}}{3}, & \frac{r-2 p \zeta^{3}}{3}, & \frac{r-2 p \zeta^{4}}{3} \\
\frac{r}{6}, & 1+\frac{2 p}{3}, & 1+\frac{2 p \zeta}{3}, & 1+\frac{2 p \zeta^{2}}{3}, & 1+\frac{2 p \zeta^{3}}{3}, & 1+\frac{2 p \zeta^{4}}{3} ; 1
\end{array}\right] \\
& \equiv \frac{1}{r} \sum_{k=0}^{p-1}(6 k+r) \frac{\left(\frac{r}{3}\right)_{k}^{6}}{k!^{6}}\left(\bmod p^{5}\right) . \tag{3.2}
\end{align*}
$$

On the other hand, we determine the terminating hypergeometric series on the righthand side of (3.1) modulo p :

$$
\begin{align*}
& \frac{(a+b+1-m-t)(a+c+1-m-t)(b+c+1-m-t)}{(a+b+n+1-m-t)(a+c+n+1-m-t)(b+c+n+1-m-t)} \\
& \times{ }_{4} F_{3}\left[\begin{array}{cc}
-m, & -n, \quad a+b+c+1-m-2 t, \\
a+b+1-m-t, & a+c+1-m-t, \\
\equiv 8+c+1-n-m-t & b+1
\end{array}\right] \\
& \equiv 8 \sum_{k=0}^{1-r} \frac{(r-1)_{k}\left(\frac{r}{3}\right)_{k}^{3}}{(1)_{k}\left(\frac{2 r}{3}\right)_{k}^{3}} \quad(\bmod p) . \tag{3.3}
\end{align*}
$$

Moreover,

$$
\begin{align*}
& \frac{(1+t)_{n}(a+b+2-m-t)_{n}(a+c+2-m-t)_{n}(b+c+2-m-t)_{n}}{(1+a)_{n}(1+b)_{n}(1+c)_{n}(a+b+c+1-m-2 t)_{n}} \\
& =\frac{\left(1+\frac{r}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 r+2 p\left(\zeta+\zeta^{2}\right)}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 r+2 p\left(\zeta+\zeta^{3}\right)}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 r+2 p\left(\zeta^{2}+\zeta^{3}\right)}{3}\right)_{\frac{2 p-r}{3}}}{(-1)^{\frac{2 p-r}{3}}\left(1+\frac{2 p \zeta}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 p \zeta^{2}}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 p \zeta^{3}}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 p \zeta^{4}}{3}\right)_{\frac{2 p-r}{3}}} . \tag{3.4}
\end{align*}
$$

Note that

$$
\begin{equation*}
\left(1+\frac{r}{3}\right)_{\frac{2 p-r}{3}}=\frac{2 p}{3}\left(1+\frac{r}{3}\right)_{\frac{2 p-r-3}{3}} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(1+\frac{2 r+2 p\left(\zeta+\zeta^{2}\right)}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 r+2 p\left(\zeta+\zeta^{3}\right)}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 r+2 p\left(\zeta^{2}+\zeta^{3}\right)}{3}\right)_{\frac{2 p-r}{3}} \\
& =\frac{5 p^{3}}{27}\left(1+\frac{2 r+2 p\left(\zeta+\zeta^{2}\right)}{3}\right)_{\frac{p-2 r-3}{3}}\left(1+\frac{2 r+2 p\left(\zeta+\zeta^{3}\right)}{3}\right)_{\frac{p-2 r-3}{3}} \\
& \quad \times\left(1+\frac{2 r+2 p\left(\zeta^{2}+\zeta^{3}\right)}{3}\right)_{\frac{p-2 r-3}{3}}\left(\frac{3+p\left(2 \zeta+2 \zeta^{2}+1\right)}{3}\right)_{\frac{p+r}{3}} \\
& \quad \times\left(\frac{3+p\left(2 \zeta+2 \zeta^{3}+1\right)}{3}\right)_{\frac{p+r}{3}}\left(\frac{3+p\left(2 \zeta^{2}+2 \zeta^{3}+1\right)}{3}\right)_{\frac{p+r}{3}} \tag{3.6}
\end{align*}
$$

Combining (3.5) and (3.6), we arrive at

$$
\begin{align*}
& \frac{\left(1+\frac{r}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 r+2 p\left(\zeta+\zeta^{2}\right)}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 r+2 p\left(\zeta+\zeta^{3}\right)}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 r+2 p\left(\zeta^{2}+\zeta^{3}\right)}{3}\right)_{\frac{2 p-r}{3}}}{(-1)^{\frac{2 p-r}{3}}\left(1+\frac{2 p \zeta}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 p \zeta^{2}}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 p \zeta^{3}}{3}\right)_{\frac{2 p-r}{3}}\left(1+\frac{2 p \zeta^{4}}{3}\right)_{\frac{2 p-r}{3}}} \\
& \equiv \frac{(-1)^{\frac{2 p-r}{3}} 10 p^{4}}{81} \cdot \frac{\left(1+\frac{r}{3}\right)_{\frac{2 p-r-3}{3}}^{3}\left(1+\frac{2 r}{3}\right)_{\frac{p-2 r-3}{3}}^{3}(1)_{\frac{p+r}{3}}^{3}}{(1)_{\frac{2 p-r}{3}}^{4}}\left(\bmod p^{5}\right) .
\end{align*}
$$

It follows from (3.2)-(3.4) and (3.7) that

$$
\begin{align*}
\sum_{k=0}^{p-1}(6 k+r) \frac{\left(\frac{r}{3}\right)_{k}^{6}}{k!^{6}} \equiv & \frac{(-1)^{\frac{2 p-r}{3}} 80 r p^{4}}{81} \cdot \frac{\left(1+\frac{r}{3}\right)_{\frac{2 p-r-3}{3}}\left(1+\frac{2 r}{3}\right)_{\frac{p-2 r-3}{3}}^{3}(1)_{\frac{p+r}{3}}^{3}}{(1)_{\frac{2 p-r}{3}}^{4}} \\
& \times \sum_{k=0}^{1-r} \frac{(r-1)_{k}\left(\frac{r}{3}\right)_{k}^{3}}{(1)_{k}\left(\frac{2 r}{3}\right)_{k}^{3}} \quad\left(\bmod p^{5}\right) . \tag{3.8}
\end{align*}
$$

By Lemmas 1 and 2, we have

$$
\begin{align*}
& \frac{\left(1+\frac{r}{3}\right)_{\frac{2 p-r-3}{3}}\left(1+\frac{2 r}{3}\right)_{\frac{p-2 r-3}{3}}^{3}(1)_{\frac{p+r}{3}}^{3}}{(1)_{\frac{2 p-r}{4}}^{4}} \\
& \stackrel{(1.12)}{=} \frac{(-1)^{\frac{2 p-r}{3}+r} \Gamma_{p}\left(\frac{2 p}{3}\right) \Gamma_{p}\left(\frac{p}{3}\right)^{3} \Gamma_{p}\left(1+\frac{p+r}{3}\right)^{3} \Gamma_{p}(1)}{\Gamma_{p}\left(1+\frac{r}{3}\right) \Gamma_{p}\left(1+\frac{2 r}{3}\right)^{3} \Gamma_{p}\left(1+\frac{2 p-r}{3}\right)^{4}} \\
& \stackrel{(1.10)}{=} \frac{(-1)^{\frac{2 p-r}{3}+r} \Gamma_{p}(0)^{4} \Gamma_{p}\left(1+\frac{r}{3}\right)^{2} \Gamma_{p}(1)}{\Gamma_{p}\left(1+\frac{2 r}{3}\right)^{3} \Gamma_{p}\left(1-\frac{r}{3}\right)^{4}}(\bmod p) \\
& \stackrel{(1.8)}{=} \frac{(-1)^{\frac{2 p-r}{3}+r+1} \Gamma_{p}\left(1+\frac{r}{3}\right)^{2}}{\Gamma_{p}\left(1+\frac{2 r}{3}\right)^{3} \Gamma_{p}\left(1-\frac{r}{3}\right)^{4}} . \tag{3.9}
\end{align*}
$$

The proof of (1.5) then follows from (3.8) and (3.9).

4. Discussion

We know that many supercongruences have nice q-analogues (see [1, 6-9, 11, 15]). For example, we have the following conjectural q-analogue of (1.3): for the same p and r as in Theorem 1,

$$
\begin{equation*}
\sum_{k=0}^{p-1}[10 k+r] \frac{\left(q^{r} ; q^{5}\right)_{k}^{5}}{\left(q^{5} ; q^{5}\right)_{k}^{5}} q^{\frac{5(3-r) k}{2}} \equiv 0 \quad\left(\bmod [p]^{4}\right) \tag{4.1}
\end{equation*}
$$

where $[n]=1+q+\cdots+q^{n-1}$ is the q-integer and $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ denotes the q-shifted factorial.

Although there are q-analogues of Whipple's well-poised ${ }_{7} F_{6}$ transformation and of Karlsson-Minton's summation (see [4, Appendix (II.27) and (III.18)]), we are unable to give a proof of (4.1). This is because we only know a q-analogue of (2.3) (see [7, Lemma 1]) but do not know any q-analogues of (2.2). Besides, we do not know how to prove (4.1) by using the method of 'creative microscoping' devised in [9] either.

While in Theorem 2 we were able to provide a common generalization of the second supercongruence in (1.2) (restricted to modulo p^{5}) and the first supercongruence in (1.4), it appears to be rather difficult to extend Theorem 1 to a higher supercongruence involving the p-adic Gamma function in the spirit of Theorem 2, even in the special cases $r=1$ or $r=-1$.

We end our paper with two further conjectures for future research. Conjecture 1 concerns a stronger version of Theorem 2 and includes the second supercongruence in (1.2) as a special case. Conjecture 2 concerns a common generalization of the first supercongruence in (1.2) and the second supercongruence in (1.4).

Conjecture 1. The supercongruence (1.5) holds modulo p^{6} for any prime $p>3$.
Conjecture 2. Let $r \leqslant 1$ be an integer coprime with 3 . Let $p \geqslant 7$ be a prime such that $p \equiv r(\bmod 3)$ and $p \geqslant 3-2 r$. Then

$$
\begin{align*}
\sum_{k=0}^{p-1}(6 k+r) \frac{\left(\frac{r}{3}\right)_{k}^{6}}{k!^{6}} \equiv & \frac{(-1)^{r} 8 r p}{3} \cdot \frac{\Gamma_{p}\left(1+\frac{r}{3}\right)^{2}}{\Gamma_{p}\left(1+\frac{2 r}{3}\right)^{3} \Gamma_{p}\left(1-\frac{r}{3}\right)^{4}} \\
& \times \sum_{k=0}^{1-r} \frac{(r-1)_{k}\left(\frac{r}{3}\right)_{k}^{3}}{(1)_{k}\left(\frac{2 r}{3}\right)_{k}^{3}}\left(\bmod p^{6}\right) . \tag{4.2}
\end{align*}
$$

The $r=1$ case of Conjecture 1 was proved by Long and Ramakrishna [16].
We now explain the difficulties we encountered trying to prove Conjecture 1 for arbitrary integer r satisfying the conditions stated in Theorem 2. It is reasonable to follow the method successfully used by Long and Ramakrishna [16] to establish the desired modulo p^{6} supercongruence in the $r=1$ case.

Let ζ be a fifth primitive root of unity. Numerical calculation suggests

$$
{ }_{7} F_{6}\left[\begin{array}{cccccc}
1+\frac{r}{6}, & \frac{r}{3}, & \frac{r}{3}-x, & \frac{r}{3}-\zeta x, & \frac{r}{3}-\zeta^{2} x, & \frac{r}{3}-\zeta^{3} x, \tag{4.3}\\
& \frac{r}{3}, & 1+x, & 1+\zeta x, & 1+\zeta^{4} x, & 1+\zeta^{3} x, \\
& 1+\zeta^{4} x
\end{array} ; 1\right]_{\frac{2 p-r}{3}} \in p \mathbb{Z}_{p}\left[\left[x^{5}\right]\right]
$$

(the $\frac{2 p-r}{3}$ as a subindex of the ${ }_{7} F_{6}$ series means that the respective series is truncated and contains only its first $\frac{2 p-r}{3}+1$ terms, just as on the right-hand side of (4.4)). The case $r=1$ of this assertion was proved by Long and Ramakrishna in [16] using Bailey's ${ }_{9} F_{8}$ transformation. Letting $x=\frac{2 p}{3}$ in (4.3) (in which case the series gets naturally truncated from the top, due to the appearance of $\frac{r-2 p}{3}$, a negative integer, as an upper parameter),
we obtain

$$
\begin{align*}
& { }_{7} F_{6}\left[\begin{array}{ccccccc}
1+\frac{r}{6}, & \frac{r}{3}, & \frac{r-2 p}{3}, & \frac{r-2 p \zeta}{3}, & \frac{r-2 p \zeta^{2}}{3}, & \frac{r-2 p \zeta^{3}}{3}, & \frac{r-2 p \zeta^{4}}{3} \\
& \frac{r}{6}, & 1+\frac{2 p}{3}, & 1+\frac{2 p \zeta}{3}, & 1+\frac{2 p \zeta^{2}}{3}, & 1+\frac{2 p \zeta^{3}}{3}, & 1+\frac{2 p \zeta^{4}}{3} ; 1
\end{array}\right] \\
& \equiv \frac{1}{r} \sum_{k=0}^{\frac{2 p-r}{3}}(6 k+r) \frac{\left(\frac{r}{3}\right)_{k}^{6}}{k!^{6}} \quad\left(\bmod p^{6}\right) . \tag{4.4}
\end{align*}
$$

For $r=1$, the left-hand side of (4.4) is summable and reduces to a closed form (see [16, (4.6)]) which was shown by Long and Ramakrishna to be congruent to a product of p-adic Gamma functions modulo p^{6}.

For an arbitrary integer r satisfying the conditions in Theorem 2, the left-hand side of (4.4) is a multiple of a ${ }_{4} F_{3}$ series (see Equation (3.3) and (3.4)) instead of a product. Since, in our proof of Theorem 2, we show the right-hand side of (3.4) is a multiple of p^{4}, in order to determine the left-hand side of (4.4) modulo p^{6}, it would suffice to evaluate the left-hand side of (3.3) modulo p^{2} and show that it agrees with the right-has side of (3.3) (modulo p^{2}). However, putting $m=1-r, t=\frac{r}{3}, n=\frac{2 p-r}{3}, a=\frac{2 p \zeta}{3}, b=\frac{2 p \zeta^{2}}{3}$ and $c=\frac{2 p \zeta^{3}}{3}$ in (3.3), numerical calculation suggests that (3.3) (valid as a congruence modulo $p)$ is in general invalid as a congruence modulo p^{2}. (A counterexample is, for instance, $r=-1$ and $p=13$.) We can only deduce that the left-hand side of (3.3) is congruent to the following form modulo p^{2} :

$$
8 \sum_{k=0}^{1-r} \frac{(r-1)_{k}\left(\frac{r}{3}\right)_{k}^{3}}{(1)_{k}\left(\frac{2 r}{3}\right)_{k}^{3}}+p f(r)
$$

where $f(r)$ is not always divisible by p.
The proof of (4.3) in the case $r=1$ given by Long and Ramakrishna in [16] is rather involved. While it is feasible that one can establish its r-extension (4.3) using Bailey's ${ }_{9} F_{8}$ transformation as well, we find it hard to determine $f(r)$, quite in contrast to the case $r=1$. To conclude, we do not see how Long and Ramakrishna's method would extend to prove Conjecture 1.

Acknowledgment. The authors would like to thank Ling Long for helpful comments on this paper.

References

[1] M. El Bachraoui, On supercongruences for truncated sums of squares of basic hypergeometric series, Ramanujan J. 54 (2021), 415-426.
[2] W.N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics 32, Cambridge University Press, London, 1935.
[3] H. Cohen, Number Theory. Vol. II. Analytic and Modern Tools, Grad. Texts in Math., vol. 240, Springer, New York, 2007.
[4] G. Gasper, M. Rahman, Basic hypergeometric series, second edition, Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.
[5] V.J.W. Guo and J.-C. Liu, Some congruences related to a congruence of Van Hamme, Integral Transforms Spec. Funct. 31 (2020), 221-231.
[6] V.J.W. Guo and M.J. Schlosser, Some new q-congruences for truncated basic hypergeometric series, Symmetry 11 (2019), no. 2, Art. 268.
[7] V.J.W. Guo and M.J. Schlosser, A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, Israel J. Math. 240 (2020), 821-835.
[8] V.J.W. Guo and M.J. Schlosser, A family of q-supercongruences modulo the cube of a cyclotomic polynomial, Bull. Aust. Math. Soc. 105 (2022), 296-302.
[9] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[10] A. Jana and G. Kalita, Supercongruences for sums involving fourth power of some rising factorials, Proc. Indian Acad. Sci. Math. Sci. 130 (2020), Art. 59.
[11] L. Li and S.-D. Wang, Proof of a q-supercongruence conjectured by Guo and Schlosser, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114 (2020), Art. 190.
[12] J.-C. Liu, A p-adic supercongruence for truncated hypergeometric series ${ }_{7} F_{6}$, Results Math. 72 (2017), 2057-2066.
[13] J.-C. Liu, On Van Hamme's (A.2) and (H.2) supercongruences, J. Math. Anal. Appl. 471 (2019), 613-622.
[14] J.-C. Liu, Supercongruences arising from transformations of hypergeometric series, J. Math. Anal. Appl. 497 (2021), Art. 124915.
[15] J.-C. Liu and F. Petrov, Congruences on sums of q-binomial coefficients, Adv. Appl. Math. 116 (2020), Art. 102003.
[16] L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math. 290 (2016), 773-808.
[17] D. McCarthy and R. Osburn, A p-adic analogue of a formula of Ramanujan, Arch. Math. 91 (2008), 492-504.
[18] E. Mortenson, A p-adic supercongruence conjecture of van Hamme, Proc. Amer. Math. Soc. 136 (2008), 4321-4328.
[19] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York (1997), 223-236.
[20] C. Wang, Proof of a congruence concerning truncated hypergeometric series ${ }_{6} F_{5}$, preprint, 2018, arXiv:1812.10324.

School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's Republic of China

E-mail address: jwguo@hytc.edu.cn
Department of Mathematics, Wenzhou University, Wenzhou 325035, People's Republic of China

E-mail address: jcliu2016@gmail.com
Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

E-mail address: michael.schlosser@univie.ac.at

[^0]: 2010 Mathematics Subject Classification. Primary 33C20; Secondary 11A07, 11B65.
 Key words and phrases. hypergeometric series; supercongruences; p-adic Gamma function; Whipple's transformation, Karlsson-Minton's summation.

 The second author was partially supported by the National Natural Science Foundation of China (grant 12171370).

 The third author was partially supported by FWF Austrian Science Fund grant P 32305.

