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Introduction
by Pavel Etingof

Igor Frenkel is one of the leading representation theorists and mathematical
physicists of our time. Inspired by the mathematical philosophy of Herman Weyl,
who recognized the central role of representation theory in mathematics and its
relevance to quantum physics, Frenkel made a number of foundational contribu-
tions at the juncture of these fields. A quintessential mathematical visionary and
romantic, he has rarely followed the present day fashion. Instead, he has striven to
get ahead of time and get a glimpse into the mathematics of the future – at least
a decade, no less. In this, he has followed the example of I. M. Gelfand, whose
approach to mathematics has always inspired him. He would often write several
foundational papers in a subject, and then leave it for the future generations to
be developed further. His ideas have sometimes been so bold and ambitious and
so much ahead of their time that they would not be fully appreciated even by his
students at the time of their formulation, and would produce a storm of activity
only a few years later. And, of course, as a result, many of his ideas are still waiting
for their time to go off.

This text is a modest attempt by Igor’s students and colleagues of various
generations to review his work, and to highlight how it has influenced in each case
the development of the corresponding field in subsequent years.

1. Representation theory of affine Lie algebras

by Alistair Savage and Anthony Licata

Among infinite-dimensional Lie algebras, it is the theory of affine Lie algebras
that is the richest and most well understood. Igor Frenkel’s contributions to this
subject are both numerous and diverse, and his are among the deepest and most
fundamental developments in the subject. These contributions began in his 1980
Yale University thesis, the core of which was later published in the paper [Fth].
In his thesis, Frenkel adapts the orbital theory of A. A. Kirillov to the setting of
affine Lie algebras, giving, in particular, a formula for the characters of irreducible
highest weight representations in terms of orbital integrals. The technical tools
required for Frenkel’s orbital theory include a tremendous amount of interesting
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mathematics, including “the Floquet theory of linear differential equations with
periodic coefficients, the theory of the heat equation on Lie groups, the theories
of Gaussian and Wiener measures, and of Brownian motion.” (Quote from the
MathSciNet review of [Fth].) Thus Frenkel’s thesis gives one of the early examples
of a central theme in the theory of affine Lie algebras, namely, the rich interaction
between their representation theory and the rest of mathematics.

A fundamental contribution of Frenkel to infinite-dimensional representation
theory came in his joint paper with Kac [FK80]. In this paper, the authors formally
introduced vertex operators into mathematics, and used them to give an explicit
construction of the basic level one irreducible representation of a simply-laced affine
Lie algebra. (A very similar construction was given independently around the
same time by Segal [S].) In important earlier work, Lepowsky-Wilson [LW] gave a

twisted construction of the basic representation for ŝl2, and this twisted construction
was then generalized to other types by Kac-Kazhdan-Lepowsky-Wilson [KKLW].
Vertex operators themselves had also been used earlier in the dual resonance models
of elementary particle physics. But it was the ground-breaking paper of Frenkel and
Kac that developed their rigorous mathematical foundation, and established a direct
link between vertex operators and affine Lie algebras. Thus began the mathematical
subject of vertex operator algebras, a subject which has had profound influence
on areas ranging from mathematical physics to the study of finite simple groups.
Frenkel also gave closely related spinor constructions of fundamental representations
of affine Lie algebras of other types in [FPro].

Another important example of Frenkel’s work at the interface of affine Lie al-
gebras and mathematical physics is his work on the boson-fermion correspondence
[Fre81]. In the course of establishing an isomorphism between two different re-
alizations of simply-laced affine Lie algebras, he realized that his result could be
reformulated in the language of quantum field theory, implying an equivalence of
physical models known to physicists as the boson-fermion correspondence. This
paper was the first on the connection between infinite dimensional Lie algebras and
2d conformal field theory. Also, in [FF85], Feingold and Frenkel obtained bosonic
and fermionic constructions of all classical affine Lie algebras. Further related but
independently important developments appeared in [Fre85] and in [Flr], where
Frenkel established what is now known as level-rank duality for representations of
affine Lie algebras of type A, and obtained upper bounds for root multiplicities for
hyperbolic Kac-Moody algebras applying the no-ghost theorem from physics. In
another paper with Feingold, [FF83], Frenkel suggested a relation between hyper-
bolic Kac-Moody algebras and Siegal modular forms, which was further studied in
the works of Borcherds and Gritsenko-Nikulin.

The relevance of affine Lie algebras and their representation theory was high-
lighted by Frenkel in his invited address, entitled “Beyond affine Lie algebras”, at
the 1986 ICM in Berkeley ([FBa]). Since then, his foundational work in and around
the subject of affine Lie algebras has been extremely influential in other areas, per-
haps most notably in vertex algebra theory, in the representation theory of quantum
groups, and in geometric representation theory and categorification. Frenkel’s work
on affine Lie algebras comprises his first major contributions to mathematics, and
the fundamental nature of this work has been repeatedly confirmed by the rele-
vance of affine Lie algebras and their representation theory in both mathematics
and mathematical physics.
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2. Quantum Knizhnik-Zamolodchikov equations

by Pavel Etingof

In 1984 Knizhnik and Zamolodchikov studied the correlation functions of the
Wess-Zumino-Witten (WZW) conformal field theory, and showed that they satisfy
a remarkable holonomic system of differential equations, now called the Knizhnik-
Zamolodchikov (KZ) equations. Soon afterwards Drinfeld and Kohno proved that
the monodromy representation of the braid group arising from the KZ equations is
given by the R-matrices of the corresponding quantum group, and Schechtman and
Varchenko found integral formulas for solutions of the KZ equations. At about the
same time, Tsuchiya and Kanie proposed a mathematically rigorous approach to
the WZW correlation functions, by using intertwining operators between a Verma
module over an affine Lie algebra and a (completed) tensor product of a Verma
module with an evaluation module:

Φ(z) : Mλ,k −→ Mμ,k⊗̂V (z).

Namely, they proved that highest matrix elements of products of such operators
(which are the holomorphic parts of the correlation functions of the WZW model)
satisfy the KZ equations. This construction can be used to derive the Drinfeld-
Kohno theorem, as it interprets the monodromy of the KZ equations in terms of
the exchange matrices for intertwining operators Φ(z), which are twist equivalent
(in an appropriate sense) to the R-matrices of the quantum group.

This set the stage for the pioneering paper by I. Frenkel and N. Reshetikhin
[FR], which was written in 1991 (see also the book [EFK] based on lectures by
I. Frenkel, which contains a detailed exposition of this work). In this ground-
breaking work, Frenkel and Reshetikhin proposed a q-deformation of the theory of
WZW correlation functions, KZ equations, and their monodromy, and, in effect,
started the subject of q-deformed conformal field theory, which remains hot up
to this day 1. Namely, they considered the intertwining operators Φ(z) for quan-
tum affine algebras, and showed that highest matrix elements of their products,
〈Φ1(z1)....Φn(zn)〉, satisfy a system of difference equations, which deform the KZ
equations; these equations are now called the quantum KZ equations. They also
showed that the monodromy of the quantum KZ equations is given by the exchange
matrices for the quantum intertwining operators, which are elliptic functions of z,
and suggested that such matrices should give rise to “elliptic quantum groups”.

This work had a strong influence on the development of representration theory
in the last 20 years, in several directions.

First of all, the quantum KZ equations arose in several physical contexts (e.g.,
form factors of F. Smirnov, or solvable lattice models considered by Jimbo, Miwa,
and their collaborators).

Also, Felder, Tarasov, and Varchenko, building on the work of Matsuo, gen-
eralized the Schectman-Varchenko work to the q-case, and found integral formulas
for solutions of the quantum KZ equations.

At about the same time, G. Felder proposed the notion of elliptic quantum
groups based on the dynamical Yang-Baxter equation, which is satisfied by the
exchange matrices. This theory was further developed by Felder, Tarasov, and
Varchenko, and also by Etingof-Varchenko, who proposed a theory of dynamical

1We note that q-deformation of some structures of conformal field theory, namely the vertex
operator construction of [FK80], was already considered in an earlier paper, [FJ88].
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quantum groups and dynamical Weyl groups (generalizing to the q-case the theory
of Casimir connections).

Another generalization of the quantum KZ equation, corresponding to Weyl
groups, was considered by Cherednik, and this generalization led to his proof of
Macdonald’s conjectures and to the discovery of double affine Hecke algebras, also
called Cherednik algebras, which are in the center of attention of representation
theorists in the past 15 years.

Yet another generalization is the theory of elliptic quantum KZ equations (or
quantum Knizhnik-Zamolodchikov-Bernard equations), which was developed in the
works of Etingof, Felder, Schiffmann, Tarasov, and Varchenko.

The paper [FR] also served as a motivation for Etingof, Schedler, and Schiff-
mann in their consruction of explicit quantization of all non-triangular Lie bialgebra
structures on simple Lie algebras (classified by Belavin and Drinfeld) and to Etingof
and Kazhdan in their work on quantization of Lie bialgebras associated to curves
with punctures.

Finally, the ideas of this paper played an important role in the work of Etingof
and Kirillov Jr. on the connection between Macdonald polynomials and quantum
groups, and their definition of affine Macdonald polynomials, and in a generalization
of this work by Etingof and Varchenko (the theory of traces of intertwining operators
for quantum groups). These structures and functions are now arising in algebraic
geometry (e.g. the work of A. Negut on integrals over affine Laumon spaces). Also,
quantum KZ equations and q-Casimir connections are expected to arise in the study
of quantum K-theory of quiver varieties.

3. Double loop groups

by Pavel Etingof

Around 1990, when the loop algebra/quantum group revolution of the 1980s
and early 1990s had reached its culmination, Igor Frenkel suggested that the next
important problem was to develop a theory of double loop algebras. More specifi-
cally, he proposed a philosophy of three levels in Lie theory (and thereby in math-
ematics in general), illustrated by the following diagram:

̂̂g Uq(ĝ) Eq,τ (g)

g

ĝ Uq(g)

In this diagram, the left downward arrows stand for affinization (taking loops),
and the right downward arrows stand for quantization (q-deformation). The first
level represents “classical” Lie theory, i.e., the structure and representation theory
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of complex semisimple Lie groups and Lie algebras. The second level represents
affine Lie algebras and quantum groups, i.e., structures arising in 2-dimensional con-
formal and 3-dimensional topological field theory. The connection between them,
depicted by the horizontal arrow, is the Drinfeld-Kohno theorem on the monodromy
of the KZ equations, which is a part of the Kazhdan-Lusztig equivalence of cate-
gories. Finally, the third level is supposed to represent double affine Lie algebras,
quantum affine algebras, and double (or elliptic) quantum groups. These three lev-
els are supposed to correspond to discrete subgroups of the complex plane of ranks
0,1,2, respectively, and higher levels are not supposed to exist in the same sense
because there are no discrete subgroups of C of rank > 2. 2

At the time this philosophy was formulated, there wasn’t much known about
the third level of the diagram. Specifically, while quantum affine algebras were
being actively studied, and Igor Frenkel’s work with Reshetikhin on quantum KZ
equations (subsequently developed by Felder, Tarasov, Varchenko, and others) shed
a lot of light on what elliptic quantum groups and the quantum Drinfeld-Kohno
theorem should be, the left lower corner of the diagram – the double loop algebras
– remained mysterious. Yet, Igor insisted that this corner is the most important
one, and that the study of double loops holds a key to the future of representation
theory.

To develop the theory of double loop groups following the parallel with ordinary
loop groups, one has to start with central extensions. This direction was taken up
in our joint paper [EtF], where we constructed the central extension of the group
of maps from a Riemann surface to a complex simple Lie group by the Jacobian of
this surface (i.e., for genus 1, by an elliptic curve), and showed that the coadjoint
orbits of this group correspond to principal G-bundles on the surface. This work
was continued in the paper [FrKh], which extends to the double loop case the
Mickelsson construction of the loop group extension by realizing the circle as a
boundary of a disk, and then realizing a union of two such disks as a boundary
of a ball. Namely, the circle is replaced by a complex curve (Riemann surface),
the disk by a complex surface, and the ball by a complex threefold; then a similar
formula exists, in the context of Leray’s residue theory instead of De Rham theory.
This work led to subsequent work by Khesin and Rosly on polar homology, as
well as to the work of Frenkel and Todorov on a complex version of Chern-Simons
theory, [FTo]. In this latter work, they start to develop the complex version of
knot theory, in which the role of the 3-sphere is played by a Calabi-Yau threefold,
and the role of the circle is played by a complex curve. In particular, these works
led to a definition of the holomorphic linking number between two complex curves
in a Calabi-Yau threefold, which is a complex analog of the classical Gauss linking
number, previously studied by Atiyah in the case of CP1.

In spite of this progress, however, it is still not clear what the representation
theory of central extensions of double loop groups should be like. Perhaps we don’t
yet have enough imagination to understand what kind of representations (or maybe
analogous but more sophisticated objects) we should consider, and this is a problem
for future generations of mathematicians.

2I must admit that initially I did not take this philosophy too seriously, and we used the
diagram in a Holiday party skit. However, with time it acquired quite a few concrete mathematical
incarnations, and, ironically, defined much of my own work.
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4. Vertex operator algebras

by John Duncan

The (normalised) elliptic modular invariant, denoted J(τ ), is the unique SL2(Z)-
invariant holomorphic function on the upper-half plane H with the property that
J(τ ) = q−1 + O(q) for q = e2πiτ . In the late 1970’s McKay and Thompson made
stunning observations relating the coefficients of the Fourier expansion

J(τ ) = q−1 +
∑
n>0

c(n)qn(1)

of J(τ ) to the dimensions of the irreducible representations of the (then conjectural)
Monster sporadic simple group. This led to the conjecture [Tho79b] that there is
a naturally defined infinite-dimensional representation

V = V−1 ⊕ V1 ⊕ V2 ⊕ · · ·(2)

for the Monster group with the property that dimVn = c(n). Consideration
[Tho79a] of the functions Tg(τ ) obtained by replacing dimVn = tr|Vn

e with tr|Vn
g

for g in the Monster led to the birth of monstrous moonshine and the monstrous
game of Conway–Norton [CN79]. Thus, for the elucidation of monstrous moon-
shine, it became an important problem to construct such a representation—a moon-
shine module for the monster—explicitly. Igor Frenkel’s pioneering work on vertex
representations of affine Lie algebras, such as appears in [FK80,Fre81,Fre85,
FF85], furnished important foundations for the work [FLM84,FLM85,FLM88]
that would eventually realise this goal.

In [Gri82] Griess constructed the Monster group explicitly as the automor-
phism group of a certain commutative non-associative finite-dimensional algebra,
thereby establishing its existence. The great insight of Frenkel–Lepowsky–Meurman
was to recognise this algebra as a natural analogue of a simple finite dimensional
complex Lie algebra g, viewed as a subalgebra of its affinization ĝ. Identifying
Griess’s algebra with (a quotient of) V1 they attached vertex operators to the el-
ements of this space and used them in [FLM84,FLM85] (see also [FLM88]) to
recover the Griess algebra structure. In this way the non-associativity of the finite-
dimensional Griess algebra was replaced with the associativity property of vertex
operators.

The Frenkel–Lepowsky–Meurman construction [FLM84,FLM85] of the moon-
shine module V utilised the Leech lattice in much the same way as the root lattice
of a Lie algebra of ADE type had been used to construct its basic representation
in [FK80], but an important twisting procedure was needed in order to ensure
the vanishing of the subspace V0 in (2). This procedure (realised in full detail in
[FLM88]) turned out to be the first rigorously constructed example of an orbifold
conformal field theory and thus represented a significant development for mathe-
matical physics.

Building upon the work of [FLM84,FLM85], Borcherds discovered a natural
way to attach vertex operators to all elements of V , and several other examples, in
[Bor86] and used this to define the notion of vertex algebra, which has subsequently
met many important applications in mathematics and mathematical physics. The
closely related notion of vertex operator algebra (VOA) was introduced in [FLM88].
A VOA comes equipped with a representation of the Virasoro algebra, and this hints
at the importance of VOAs in conformal field theory. The central charge of the
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Virasoro representation attached to a VOA is called its rank, and a VOA is called
self-dual if it has no irreducible modules other than itself. According to [FLM88]
the Monster group can be characterised (conjecturally) as the automorphism group
of the (conjecturally unique) self-dual VOA V � =

⊕
n∈Z

V �
n of rank 24 satisfying

V �
n = 0 for n < −1, V �

−1 � C and V �
0 = 0.

Important axiomatic foundations for the study of VOAs appeared in [FHL93]
and in [FZ92] Frenkel–Zhu established the importance of VOAs in the representa-
tion theory of affine Lie algebras and the Virasoro algebra, and the Wess–Zumino–
Witten model of mathematical physics. The notion of VOA was generalised and
applied—simultaneously—to the affine E8 Lie algebra and Chevalley’s exceptional
24-dimensional algebra (arising from triality for D4) in [FFR91].

The moonshine module V � exemplifies a close connection between VOAs and
modular forms. Frenkel conjectured (cf. [Zhu96]) that the graded dimensions
of irreducible modules over a rational VOA (being a VOA having finitely many
irreducible modules up to isomorphism) should span a representation of the modular
group SL2(Z). Y. Zhu added an important co-finiteness condition and subsequently
proved the modularity conjecture for VOAs in his Ph.D. thesis [Zhu90] which was
written under the supervision of Igor Frenkel. The subsequent article [Zhu96]
remains one of the most influential works in the VOA literature.

Frenkel–Jing–Wang gave a completely new VOA construction of the affine Lie
algebras of ADE type via the McKay correspondence in [FJW00b] and they de-
rived a quantum version of this construction in [FJW00a]. These works also furnish
vertex operator representations for classical and quantum toroidal algebras; related
work appears in [FJ88,FW01,FJW02].

The semi-infinite cohomology of infinite dimensional Lie algebras is an area of
research with important applications in string theory. In [FGZ] Frenkel–Garland–
Zuckerman established a profound connection between the semi-infinite cohomology
of the Virasoro algebra, introduced by Feigin [Fei84], and free bosonic string the-
ories. Later, Frenkel–Styrkas established VOA structures on the modified regular
representations of the Virasoro algebra and the affine Lie algebra of type Â1 and
computed their semi-infinite cohomology. Their work was extended to arbitrary
affine Lie algebras by M. Zhu in her Ph.D. thesis (see [Zhu08]) using the Knizhnik–
Zamolodchikov equations, and she also related this to earlier work [GMS01,AG02]
on chiral differential operators. VOA structures on modified regular representations
of the Virasoro algebra have been studied further using the Belavin–Polyakov–
Zamolodchikov equations in [FZ12]. Braided VOA structures were used to recover
the full quantum group SLq(2) from the semi-infinite cohomology of the Virasoro
algebra with values in a suitably constructed module in [FZ10]. Beyond further
demonstration of the importance of vertex operators in mathematics and mathe-
matical physics this work promises deep consequences for the geometric and string
theoretic understanding of quantum groups.

5. Three-dimensional quantum gravity

by John Duncan

The most powerful feature of monstrous moonshine is the fact that eachMcKay–
Thompson series Tg(τ ) =

∑
n(tr|V �

n
g)qn for g in the Monster group (where V � =⊕

n V
�
n is the moonshine module VOA) has the following genus zero property: that
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if Γg < PSL2(R) is the invariance group of Tg then Tg is a generator for the field
of Γg-invariant holomorphic functions on the upper-half plane H. This result was
proven by Borcherds in [Bor92] but a conceptual explanation of the phenomenon
is yet to be fully elucidated.

In [Wit07] Witten considered the genus one partition function of pure quantum
gravity in three dimensions and investigated possible connections with the Monster
group, and related work in [MW10] suggested that the genus one partition func-
tion of such a theory might be expressible as a sum over certain solid torus geome-
tries (which had appeared earlier in a string-theoretic setting [MS98,DMMV00]).
Frenkel observed that the partition function of a chiral version of this (conjectural)
quantum gravity theory (such as was considered in [LSS08]) should coincide with
a Poincaré series-like expression—called a Rademacher sum—for the elliptic mod-
ular invariant J(τ ) which was derived by Rademacher [Rad39] in 1939. He saw
the potential for this as a mechanism for explaining the genus zero property of
monstrous moonshine, and substantial progress towards this goal was achieved in
[DF11] where it was established that the Rademacher sum RΓ(τ ) attached to a
discrete group Γ < PSL2(R) has the genus zero property—i.e. is a generator for
the field of Γ-invariant functions on H—if and only if it is itself Γ-invariant. This
result indicates a strong connection between 3-dimensional quantum gravity and
monstrous moonshine, for it demonstrates than in the context of quantum grav-
ity, the modular invariance of (twisted) partition functions, necessary for physical
consistency, implies that they have the fundamental genus zero property.

The reformulation of the genus zero property obtained in [DF11] has already
found important applications in related areas. In particular, it was applied in
[CD11] to the moonshine-like phenomena observed by Eguchi–Oogui–Tachikawa
[EOT] relating the largest Mathieu group M24 to the elliptic genus of a K3 surface
and used there to obtain a uniform construction of the McKay–Thompson series
attached to M24 in terms of Rademacher sums. The very fact of this construction
elucidates the correct formulation of the genus zero property in the M24 case: The
graded trace functions arising from the conjectural M24-module underlying the
M24/K3 observation should coincide with the Rademacher sums attached to their
variance groups. In addition to this the result of [CD11] indicates an important
rôle for quantum gravity in the M24/K3 story. More applications of the approach
developed in [DF11] to moonshine both monstrous and otherwise can be expected,
[CDH12].

Finer properties of the Rademacher sums RΓ(τ ) were used to give a quantum
gravity partition function based characterisation (reformulated from [CMS04]) of
the functions of monstrous moonshine in [DF11], and observations were also made
relating the Rademacher sum construction to certain generalised Kac–Moody Lie
algebras closely related to those utilised by Borcherds in his proof of the moonshine
conjectures in [Bor92]. Motivated by this conjectures were formulated in [DF11]
which identify the Monster as the symmetry group of a certain distinguished chiral
3-dimensional quantum gravity and specify the rôle of Rademacher sums in recov-
ering the twisted partition functions of this theory and its second quantisation.
Beyond monstrous moonshine, the further elucidation of this conjectural quantum
gravity theory remains a fertile area for research that promises deep applications
in algebra, geometry and mathematical physics.
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6. Quaternionic analysis

by Matvei Libine

The history of quaternionic analysis began on 16 October 1843 when an Irish
physicist and mathematician William Rowan Hamilton (1805-1865) discovered the
algebra of quaternions H = R1⊕Ri⊕Rj⊕Rk. He was so excited by that discovery
that he carved the defining relations on a stone of Dublin’s Brougham Bridge. After
that W. R. Hamilton devoted the remaining years of his life developing the new
theory which he believed would have profound applications in physics. But one had
to wait another 90 years before von Rudolf Fueter [F1,F2] produced a key result
of quaternionic analysis, an exact quaternionic counterpart of the Cauchy integral
formula

f(w) =
1

2πi

∮
f(z) dz

z − w
.

Since then quaternionic analysis has generated a lot of interest among mathemati-
cians and physicists, many results were extended from complex analysis to quater-
nionic analysis. For example, there is a quaternionic analogue of the Poisson formula
for harmonic functions on H. The spaces of harmonic and (left or right) regular
functions are invariant under the conformal (fractional linear) action of the group
SL(2,H). There is a notion of the quaternionic cross-ratio which is very similar
to the complex cross-ratio. See, for example, [Su] for a contemporary review of
quaternionic analysis. There were also found many applications to physics (see, for
instance, [GT]).

Unfortunately, this promising parallel between complex and quaternionic anal-
ysis essentially ends here. The difficulty seems to be in the non-commutative nature
of quaternions. As a consequence, unlike the complex analytic case, the product or
composition of two quaternionic regular functions is almost never regular. Such dif-
ficulties have discouraged mathematicians from working with quaternionic regular
functions and developing a satisfactory theory of functions of quaternionic variable.

Igor Frenkel’s groundbreaking idea was to approach quaternionic analysis from
the point of view of representation theory of the conformal group SL(2,H) and
its Lie algebra sl(2,H). While some aspects of representation theory of compact
groups were used in quaternionic analysis before, using representation theory of
non-compact reductive Lie groups is entirely new. This approach has been proven
very fruitful and resulted in a series of fundamental papers [FL1,FL2,FL3] push-
ing further the parallel with complex analysis. In the course of developing this
rich and beautiful theory Igor Frenkel found some very striking connections be-
tween quaternionic analysis and some of the most fundamental objects of the four
dimensional classical and quantum field theories.

To give an example of such a connection between quaternionic analysis and
physics, let us recall that Feynman diagrams are a pictorial way of describing in-
tegrals predicting possible outcomes of interactions of subatomic particles in the
context of quantum field physics. As the number of variables which are being in-
tegrated out increases, the integrals become more and more difficult to compute.
But in the cases when the integrals can be computed, the accuracy of their pre-
diction is amazing. Many of these diagrams corresponding to real-world scenarios
result in integrals that are divergent in the mathematical sense. Physicists have a
collection of competing techniques called “renormalization” of Feynman integrals
which “cancel out the infinities” coming from different parts of the diagrams. After



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

10 J. DUNCAN ET AL.

renormalization, calculations using Feynman diagrams match experimental results
with very high accuracy. However, these renormalization techniques appear very
suspicious to mathematicians and attract criticism from physicists as well. For ex-
ample, do you get the same result if you apply a different technique? If the results
are different, how do you choose the “right” technique? Or, if the results are the
same, what is the reason for that? Most of these questions will be resolved if one
finds an intrinsic mathematical meaning of Feynman diagrams, most likely in the
context of representation theory3.

Feynman diagrams

In [FL1] Igor Frenkel found surprising representation-theoretic interpretations
of some of the two most fundamental Feynman diagrams. The left figure shows
the Feynman diagram for vacuum polarization which is responsible for the electric
charge renormalization. This diagram appears in the quaternionic analogue of the
Cauchy formula for the second order pole, which in turn can be related to the
Maxwell equations for the gauge potential:

−→∇ · −→B = 0
−→∇ · −→E = 0

−→∇ ×−→
B = ∂

−→
E
∂t

−→∇ ×−→
E = −∂

−→
B
∂t ,

where
−→
B and

−→
E are three-dimensional vector functions on R4 (called respectively

the magnetic and electric fields) and
−→∇ =

(
∂

∂x1 ,
∂

∂x2 ,
∂

∂x3

)
, as usual.

The right figure shows the one-loop Feynman diagram which expresses the
hyperbolic volume of an ideal tetrahedron, and is given by the dilogarithm function.
This diagram was identified with a projector onto the first irreducible component
of a certain representation H⊗H of SU(2, 2).

Ladder diagrams

Furthermore, Igor Frenkel has made a conjecture (which is still open) that
the so-called “ladder diagrams” correspond to projectors onto the other irreducible
components of that representationH⊗H of SU(2, 2) (see [FL1] for details). Finding
the relationship between ladder diagrams and representations would indicate how
the rest of Feynman diagrams relate to representation theory and be a significant
progress in four dimensional quantum field theory.

3A number of mathematicians already work on this problem of finding a mathematical in-
terpretation of Feynman diagrams, mostly in the setting of algebraic geometry. See [Ma] for a
summary and a list of references.
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7. Emergence of a new area – elliptic hypergeometric series

by Michael Schlosser

Many special functions which appear in (real-world) applications, such as the
trigonometric functions, the logarithm, and Bessel functions, can be expressed in
terms of hypergeometric functions. While early occurrences of hypergeometric se-
ries already date back to the work of Isaac Newton (who in 1669 discovered the sum
for an infinite binomial series), the systematic study of the hypergeometric function
(nowadays commonly known as the 2F1 series), was commenced by Carl Friedrich
Gauß by the end of the 18th century. The theory of “generalized hypergeometric
series” thence gradually developed. In 1840 Eduard Heine extended the hypergeo-
metric function to the basic (or q-)hypergeometric function. The latter originally
did not receive so much attention, the focus of special functions at that time (and in
particular in Germany) being laid on Carl Gustav Jacob Jacobi’s theory of elliptic
functions. Basic hypergeometric series attracted wider interest only in the 20th
century, due to important pioneering work done on the British isles (by Rogers,
Ramanujan, Jackson, Bailey, and Watson, among others). Basic hypergeometric
series have various applications in number theory, combinatorics, statistical and
mathematical physics.

The next important step was to extend the basic (or “trigonometric”) case to
the modular or elliptic case. Building on (1987) work of the Japanese statistical
physicists Date, Jimbo, Kuniba, Miwa and Okado [DJKMO] on the Yang–Baxter
equation –elliptic hypergeometric series first appeared there, as elliptic 6j symbols,
the elliptic solutions of the Yang–Baxter equation– Igor B. Frenkel and his coauthor
Vladimir G. Turaev [FT] were in 1997 the first to actually study elliptic 6j-symbols
as elliptic generalizations of q-hypergeometric series and to find transformation and
summation formulae satisfied by such series. In particular, by exploiting the tetra-
hedral symmetry of the elliptic 6j symbols, Frenkel and Turaev came across the
(now-called) 12V11 transformation (which is an elliptic extension of Bailey’s very-
well-poised 10φ9 transformation) and by specialization obtained the (now-called)

10V9 summation. These results, involving series satisfying modular invariance, are
deep and elegant and, from a higher point of view, lead to a much better under-
standing (of various phenomena such as “well-poised” and “balanced” series) of the
simpler basic case. The new theory beautifully combines the theories of theta (or
abelian) functions with the theory of basic hypergeometric series.

The findings of Frenkel and Turaev had big impact and truly initiated an
avalanche of further research in the area. Various researchers, first V. Spiridonov
and A. Zhedanov, then S.O. Warnaar and others (J.F. van Diejen, H. Rosengren,
E. Rains, etc.) joined their forces to build up a yet expanding theory of ellip-
tic hypergeometric series. The importance of this subject is reflected in the fact
that already the 2004 second edition of Gasper and Rahman’s (already classic)
textbook [GR] on basic hypergeometric series devotes a full chapter to elliptic hy-
pergeometric series. Moreover, at several occasions (special functions guru) Richard
Askey has suggested that elliptic hypergeometric functions will be the special func-
tions of the 21st century.

For further references, see the bibliography of elliptic hypergeometric functions on Hjalmar

Rosengren’s website http://www.math.chalmers.se/~hjalmar/bibliography.html

http://www.math.chalmers.se/~hjalmar/bibliography.html
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8. Representation theory of split real quantum groups
and modular doubles

by Ivan Ip

The quantum group Uq(g) defined in 1985 by Drinfeld and Jimbo for a real
q can be considered a quantum counterpart of the compact real form gc ⊂ g. In
particular, its representation theory is in complete parallel with the classical theory.
The finite dimensional representations form a braided tensor category which leads
for example to certain topological quantum field theories and categorifications.

It is natural to consider other real forms of g, most notably the split real form
gR ⊂ g, and to address the question about the q-deformation of its representations,
which makes sense only when |q| = 1. The starting point comes from Faddeev’s
notion of modular doubles [Fa], which are objects generated by pairs of commuting
quantum tori {u, v}, {ũ, ṽ} acting on L2(R) which are related by certain transcen-
dental relations. In the case when |q| = 1, the representation theory of the quantum
plane, a single pair of quantum tori represented by positive self-adjoint operators, is
closely related to a remarkable function called the quantum dilogarithm gb(x). Us-
ing this function, in the work with Hyun Kyu Kim [FK], Igor Frenkel showed that
the quantum Teichmüller space and also its universal version, constructed recently
by Kashaev [Ka], and independently by Fock and Chekhov [Fo,CheF], originate
from a tensor category of the representations of the modular double of the quantum
plane.

In the case for gR = sl(2,R), J. Teschner et al. [PT] have studied a very special
q-deformation of principal series of representations of the quantum group using the
modular double, and showed that a class of representations, represented by positive
operators, is closed under taking the tensor product. This has profound importance
in conformal field theories in physics, and in particular a new kind of topological
invariants is expected to be constructed from the tensor category structure. Igor
Frenkel has always been emphasizing the analogy between the representation the-
ory of compact and split real quantum group, and the relationship between their
classical counterpart. In a recent joint work with Ivan Ip [FI], Igor Frenkel gen-
eralized this special class of representations, which we called the positive principal
series representations, to higher rank Uq(sl(n,R)), and later was further generalized
to arbitrary quantum groups of all types [Ip1, Ip2]. This strongly indicates that
all the results for Uq(sl(2,R)) can be generalized and that one can envision future
perspectives for the positive representations of the split real quantum groups com-
parable to the past developments related to the finite dimensional representations
of the quantum group initiated by Drinfeld and Jimbo [F].

In particular, in the split real case, where the parameters are varying contin-
uously, Igor Frenkel proposed certain notion of “continuous” categorification and
geometrization of the quantum groups and their representations. In the past year
physicists have observed a remarkable relation between the Chern-Simons-Witten
theory for the split real group SL(2,R) and the N = 2 super-symmetric gauge the-
ory on a three-dimensional sphere [DGG,TY]. This work can be considered as a
first step towards a geometrization of the category of positive representations of the
modular double, generalizing the geometric construction of the finite dimensional
representations of Uq(g) discovered by Nakajima based on the gauge theory [Na].

One can also discuss the split real version of Kazhdan-Lusztig equivalence be-
tween the categories of highest weight representation of affine Lie algebras and
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quantum groups. In the compact case the explicit construction can be simplified
by considering an additional category of representations of W -algebra [Sty]. Al-
though in the split real case it is still an open problem to construct a principal
series of representations of the affine Lie algebra ĝR even for the case gR = sl(2,R),
the work of Igor Frenkel suggests that one can instead discuss the equivalence of
categories of representations of the modular double Uqq̃(gR) and the W -algebra
associated to gR.

9. Categorification

by Mikhail Khovanov

In 1994 Igor Frenkel and Louis Crane published the paper “Four dimensional
topological quantum field theory, Hopf categories, and the canonical bases”, ad-
vancing the idea that various structures related to quantum invariants of links and
3-manifolds should be just shadows of much richer structures controlling quantum
invariants of four-dimensional objects [CF]. They coined the term categorification
to denote this structural lifting and, in particular, conjectured that the quantum
group Uq(sl(2)) admits such a lifting. After 1994 Igor Frenkel continued to extend
these ideas and observed that Grothendieck groups of suitable singular blocks of
highest weight categories of the Lie algebra sl(n) can be identified with weight
spaces of the n-th tensor power of the sl(2) fundamental representation, where the
generators E and F of sl(2) act as translation functors. These insights resulted in
the joint paper [BFK], where the authors also constructed a commuting action of
the Temperley-Lieb algebra via Zuckerman functors and studied the Koszul dual
framework, with the categorification via the direct sum of maximal parabolic blocks
and the roles of projective and Zuckerman functors interchanged. Strongly influ-
enced by Igor’s revolutionary ideas about categorification and by our joint work,
at about the same time I categorified the Jones polynomial into a bigraded link
homology theory.

Several years later, Catharina Stroppel [St] proved the conjectures of [BFK],
establishing an amazing relation between the theory of highest weight categories and
low-dimensional topology, via knot homology. Joshua Sussan, Frenkel’s graduate
student at the time, generalized these constructions from sl(2) to sl(k), showing that
category O also controls some other link homology theories and proving Lusztig’s
positivity conjecture for tensor products in the sl(n) case.

In the joint paper [FKSt], Frenkel, Stroppel, and I extended some of the con-
structions from [BFK] to arbitrary tensor products of sl(2) representations and
revisited unpublished ideas of Igor Frenkel on categorification of Lie algebra and
quantum group representations via categories of Harish-Chandra modules. More re-
cently, Frenkel, Stroppel, and Sussan [FSS] investigated categorifications of Jones-
Wenzl projectors and 3j-symbols in the context of category O, explaining categori-
fication of rational functions in the spin network formulas. The new viewpoint on
highest weight categories, originating from Igor Frenkel’s ideas and work, has be-
come a fruitful and exciting area of research, with important contributions made by
Brundan, Chuang, Kleshchev, Mazorchuk, Rouquier, Webster, Zheng, and many
others.

Link homology has also emerged from categories of matrix factorizations (the
work of Khovanov and Rozansky), from derived categories of sheaves on quiver
varieties and on convolution varieties of affine Grassmannians (Kamnitzer-Cautis),
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and from Fukaya-Floer categories of quiver varieties (Seidel-Smith, Manolescu).
These appearances led to a series of conjectures and results on the existence of
equivalences between subcategories of these categories, uncovering a remarkable
unity and new connections between various structures of representation theory,
algebraic geometry and symplectic topology. Even when the subject was in its
infancy, this unity was one of the fundamental goals emphasized by Igor in his
conversations with students and colleagues.

Back in 1994, Crane and Frenkel conjectured [CF] that there exists a categori-
fication of quantum sl(2) at a root of unity, which should control categorification
of the Reshetikhin-Turaev-Witten invariants of 3-manifolds. Frenkel wrote notes
(never published) on structural constraints in direct sum decompositions of functors
in the desired categorification of quantum sl(2). The problem remained open for
several years; the major breakthrough came from Chuang and Rouquier, who ob-
tained fundamental results on higher categorical structures of sl(2) representations.
These were extended by Lauda to a categorification of the Lusztig’s idempotented
version of quantum sl(2) at generic q via a beautiful planar diagrammatical calculus.
Categorifications of quantum groups for other simple Lie algebras were developed
by Lauda, Khovanov, and Rouquier, while categorification of quantum sl(2) at a
root of unity remains an open problem. Ben Webster, in spectacular work related to
quantum group categorifications, categorified Reshetikhin-Turaev link and tangle
invariants for arbitrary simple Lie algebras and their irreducible representations.

In the late 90’s Igor Frenkel proposed a bold conjecture that the entire con-
formal field theory and vertex operator algebra theory can be categorified. He
suggested to start by categorifying boson-fermion correspondence and related ver-
tex operators. A couple of years later, Frenkel, Anton Malkin, and I spent several
months discussing this project, with modest success encapsulated in our unpub-
lished notes. The question of how to categorify vertex operators had a strong back-
ground presence in the series of papers by Frenkel, Naihuan Jing, and Weiqiang
Wang [FJW00a,FJW00b,FJW02], and in [FW01]. A very recent paper [CL]
of Cautis and Licata is a major advancement in this direction, realizing components
of vertex operators as functors acting in 2-representations of categorified Heisenberg
algebras and giving yet another confirmation of visionary and predictive power of
Igor Frenkel’s mathematical genius.

Multiple discussions with Igor Frenkel and his remarkable results, ideas, and
thoughts on categorification strongly influenced current researchers in the area.
Several former graduate students of Frenkel do full-time research in categorifica-
tion and related fields: Anthony Licata, Alistair Savage, Joshua Sussan, and myself.
Categorification has become a dynamic and exciting field, every year boasting more
and more connections to various areas and structures in mathematics and mathe-
matical physics. Its practitioners are grateful to Igor Frenkel for his vision which
created the subject.

10. Geometric representation theory

by Anthony Licata

Many of Igor Frenkel’s contributions to mathematics have come in the form
of foundational ideas introduced at the beginning of a new subject. In contrast,
Frenkel’s work in geometric representation theory began when the subject was al-
ready well developed. As a result, these contributions give some insight into both
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his ability to understand the deepest parts of others’ mathematics in his own terms
and also his gift for seeing the implications of this work for future mathematics.
Strikingly, some of Frenkel’s most important ideas in geometric representation the-
ory remain unpublished by him.

The seminal work of Beilinson-Bernstein and Brylinski-Kashiwara proving the
Kazhdan-Lusztig conjectures gave a geometric interpretation of many of the funda-
mental structures of Lie theory. By the late 1980s and early 1990s, subsequent work
of numerous mathematicians produced explicit geometric constructions of represen-
tations. In addition to the work of Beilinson-Berstein-Brylinski-Kashiwara, several
of these later constructions, including Lusztig’s geometric construction of the canon-
ical basis and Nakajima’s quiver variety constructions, had a profound impact on
Frenkel’s perspective on representation theory.

When Frenkel began working in the subject in the mid 1990s, he brought a
perspective which advocated the geometrization of all important structures in rep-
resentation theory: the more fundamental the structure, the more beautiful its
geometric realization. Moreover, and perhaps more importantly, he proposed that
geometric constructions be seen as source for new mathematics, via the principle
that these constructions lead to categorifications. In his proposal, vector spaces of
geometric origin – like cohomology or K-theory – would be upgraded to categories
of sheaves. Once realized geometrically, the symmetries of a vector space should lift
to symmetries at the level of categories of sheaves. This idea has had a tremendous
influence on the development of categorification in representation theory, breathing
new life into the foundational geometric constructions in the subject. Indeed, much
of the past decade’s work on categorification can be viewed as carrying out the
details of this broad vision.

Frenkel’s published work made direct contributions to geometric representa-
tion theory as well. In collaboration with Kirillov Jr. and Varchenko [FKV], he
gave a geometric interpretation of the Lusztig-Kashiwara canonical basis for ten-
sor products of sl(2)-representations in terms of the homology of local systems on
configuration spaces of points in a punctured disk. This construction is a geo-
metric analog of his work with Khovanov [FKh] on a graphical calculus for the
representation theory of sl(2), work which later influenced Khovanov’s categorifi-
cation of the Jones polynomial. He also wrote several articles on quiver varieties,
including joint papers with Malkin and Vybornov [FMV1,FMV2] and with Sav-
age [FS]. He worked with Jardim on quantum instantons [FJ], and with Khovanov
and Schiffmann [FKS] on homological realizations of Nakajima quiver varieties. He
also contributed to geometric constructions of non-integrable representations in the
paper [FFFR].

Quiver varieties of affine type play a prominent role in many of Frenkel’s papers
from this period. These are distinguished within quiver varieties by their indepen-
dent appearance as instanton moduli spaces in gauge theory. Frenkel’s emphasis on
quiver varieties of affine type in geometric representation theory is a legacy of his
early foundational work in the representation theory of affine Lie algebras, and the
gauge-theoretic origin of affine type quiver varieties was an important motivation
for his interest in the subject. More precisely, let g be a finite-dimensional sim-
ple simply-laced complex Lie algebra and let ĝ denote its affinization. Nakajima’s
construction produces integrable highest weight representations of ĝ from moduli
spaces of U(k)-instantons on the resolution of C2/Γ, where Γ is a finite subgroup
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of SL2(C) related to g by the McKay correspondence. In this construction, the
algebra is determined by the finite group Γ; the level of the action is determined
by the rank of the group U(k), but otherwise this instanton group has no direct
connection with the affine Lie algebra ĝ. Frenkel realized, however, that there
should also be a dual picture in which the representations of ĝ are realized directly
by G-instanton moduli spaces, where G the compact group whose complexification
has Lie algebra g. When both G = U(k) and Γ = Zn are type A, all the moduli
spaces involved in these constructions are Nakajima quiver varieties, and Frenkel’s
dual picture relates to the Nakajima construction via level-rank duality in affine
type A. (In fact, as is mentioned in the affine Lie algebras section of this text,
Frenkel discovered level-rank duality in an algebraic setting nearly twenty years
earlier.) As with many of his important ideas in geometric representation theory,
Frenkel did not publish anything himself about the relationships between represen-
tations of ĝ and G-instanton moduli spaces. However, his suggestion was both the
core of the author’s own thesis [L] and an essential part of the subsequent work of
Braverman-Finkelberg on the affine version of the geometric Satake correspondence
[BF].

The scope of Frenkel’s vision of geometric representation theory, which includes
ideas about current algebras and other fantastic mathematical objects, has yet to
be fully realized. We sincerely hope that it brings as much to the next stage of the
subject as it has to its development thus far.
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