On a septuple product identity

Robin Chapman
School of Mathematical Sciences
University of Exeter
EX4 4QE
UK
rjc@maths.exeter.ac.uk

For polynomials f and g in the variable n with integer coefficients let us define

$$
\Omega(f)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{f(n)}
$$

and

$$
\Omega(f, g)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{f(n)} x^{g(n)}
$$

In [1] Farkas and Kra state and prove the following identity

Theorem 1

$$
\begin{aligned}
& \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{2}\left(1-x q^{2 n-2}\right)\left(1-x^{-1} q^{2 n}\right)\left(1-x^{2} q^{4 n-2}\right) \\
\times & \left(1-x^{-2} q^{4 n-2}\right)\left(1-x^{2} q^{4 n-4}\right)\left(1-x^{-2} q^{4 n}\right) \\
=\quad & \Omega\left(5 n^{2}+n\right)\left(\Omega\left(5 n^{2}+3 n, 5 n+3\right)+\Omega\left(5 n^{2}-3 n, 5 n\right)\right) \\
- & \Omega\left(5 n^{2}+3 n\right)\left(\Omega\left(5 n^{2}+n, 5 n+2\right)+\Omega\left(5 n^{2}-n, 5 n+1\right)\right) .
\end{aligned}
$$

Their proof exploits identities involving theta functions. Foata and Han [2] gave a more elementary deduction of (1) from Jacobi's triple product formula and Watson's quintuple product formula. Here we give a still more elementary derivation just from Jacobi's triple product formula.

Let P denote the product on the of the identity in Theorem 1. First observe that we can rewrite P as

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{2}\left(1-x q^{2 n-2}\right)\left(1-x^{-1} q^{2 n}\right)\left(1-x^{2} q^{2 n-2}\right)\left(1-x^{-2} q^{2 n}\right) \tag{1}
\end{equation*}
$$

We now use Jacobi's triple product formula in the form

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)\left(1-x q^{2 n-2}\right)\left(1-x^{-1} q^{2 n}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} x^{k} q^{k^{2}-k} . \tag{2}
\end{equation*}
$$

We obtain (2) by replacing q by q^{2} and k by $-k$ in formula (1.1) of [2]. Replacing x by x^{2} in (2) gives

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)\left(1-x^{2} q^{2 n-2}\right)\left(1-x^{-2} q^{2 n}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} x^{2 k} q^{k^{2}-k} \tag{3}
\end{equation*}
$$

Multiplying (2) by (3) and using (1) gives

$$
P=\sum_{k, l=-\infty}^{\infty}(-1)^{k+l} x^{k+2 l} q^{k^{2}-k+l^{2}-l} .
$$

Thus

$$
P=\sum_{r=-\infty}^{\infty} a_{r}(q) x^{r}
$$

where

$$
a_{r}(q)=\sum_{k+2 l=r}(-1)^{k+l} q^{k^{2}-k+l^{2}-l}=\sum_{l=-\infty}^{\infty}(-1)^{r-l} q^{5 l^{2}-(4 r-1) l+r^{2}-r} .
$$

We now evaluate $a_{r}(q)$ by dividing into cases according to the residue of r modulo 5. If $r=5 m$ then

$$
5 l^{2}-(4 r-1) l+r^{2}-r=5(l-2 m)^{2}+(l-2 m)+5 m^{2}-3 m
$$

and so

$$
a_{5 m}(q)=(-1)^{m} q^{5 m^{2}-3 m} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{5 n^{2}+n}=(-1)^{m} q^{5 m^{2}-3 m} \Omega\left(5 n^{2}+n\right) .
$$

If $r=5 m+1$ then

$$
5 l^{2}-(4 r-1) l+r^{2}-r=5(2 m-l)^{2}+3(2 m-l)+5 m^{2}-m
$$

and so
$a_{5 m+1}(q)=-(-1)^{m} q^{5 m^{2}-m} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{5 n^{2}+3 n}=-(-1)^{m} q^{5 m^{2}-m} \Omega\left(5 n^{2}+3 n\right)$.
If $r=5 m+2$ then

$$
5 l^{2}-(4 r-1) l+r^{2}-r=5(l-2 m-1)^{2}+3(l-2 m-1)+5 m^{2}+m
$$

and so

$$
a_{5 m+2}(q)=-(-1)^{m} q^{5 m^{2}+m} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{5 n^{2}+3 n}=-(-1)^{m} q^{5 m^{2}+m} \Omega\left(5 n^{2}+3 n\right) .
$$

If $r=5 m+3$ then

$$
5 l^{2}-(4 r-1) l+r^{2}-r=5(2 m+1-l)^{2}+(2 m+1-l)+5 m^{2}+3 m
$$

and so

$$
a_{5 m+3}(q)=(-1)^{m} q^{5 m^{2}+3 m} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{5 n^{2}+n}=(-1)^{m} q^{5 m^{2}+3 m} \Omega\left(5 n^{2}+n\right) .
$$

If $r=5 m+4$ then

$$
5 l^{2}-(4 r-1) l+r^{2}-r=5(l-2 m-2)^{2}+5(l-2 m-2)+5 m^{2}+5 m+2
$$

and so

$$
a_{5 m+4}(q)=(-1)^{m} q^{5 m^{2}+5 m+2} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{5 n^{2}+5 n} .
$$

But in this sum the terms for $n=j$ and $n=-j-1$ cancel and so $a_{5 m+4}(q)=$ 0 . It follows that

$$
\begin{aligned}
P= & \Omega\left(5 n^{2}+n\right) \sum_{m=-\infty}^{\infty}(-1)^{m}\left(q^{5 m^{2}-3 m} x^{5 m}+q^{5 m^{2}+3 m} x^{5 m+3}\right) \\
& -\Omega\left(5 n^{2}+3 n\right) \sum_{m=-\infty}^{\infty}(-1)^{m}\left(q^{5 m^{2}-m} x^{5 m+1}+q^{5 m^{2}+m} x^{5 m+2}\right) \\
= & \Omega\left(5 n^{2}+n\right)\left(\Omega\left(5 n^{2}-3 n, 5 n\right)+\Omega\left(5 n^{2}+3 n, 5 n+3\right)\right) \\
& -\Omega\left(5 n^{2}+3 n\right)\left(\Omega\left(5 n^{2}-n, 5 n+1\right)+\Omega\left(5 n^{2}+n, 5 n+2\right)\right)
\end{aligned}
$$

which establishes Theorem 1.
Remark After submitting this manuscript, the author received a copy of [3] which contains a proof of an assertion equivalent to Theorem 1, using a similar method.

References

[1] H. M. Farkas \& I. Kra, 'On the quintuple product identity', Proc. Amer. Math. Soc. 27 (1999), 771-778.
[2] D. Foata \& G.-H. Han, 'The triple, quintuple and septuple product identities revisited', Séminaire Lotharingien de Combinatoire, B42o (1999), 12 pp .
[3] M. D. Hirschhorn, 'An identity of Ramanujan, and applications', Contemp. Math., to appear.

