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This is an expository paper on Kazhdan-Lusztig polynomials, and partic-
ularly on the recent result concerning their combinatorial invariance, based
on my lectures at the 49th Seminaire Lotharingien de Combinatoire. The
paper consists of three parts entitled: History; Problems; and Combina-
torial Invariance. In the first one we give the main definitions and facts
about the Bruhat order and graph, and about the Kazhdan-Lusztig and R-
polynomials. In the second one we present, as a sample, two results, one
on the R-polynomials and one on the Kazhdan-Lusztig polynomials, which
in the author’s opinion illustrate very well the rich combinatorics that hides
in these polynomials. Finally, in the third part, we explain the recent re-
sult that the Kazhdan-Lusztig and R-polynomials depend only on a certain
poset, and mention some open problems and conjectures related to this.

Most of the results in §1 hold for all Coxeter groups (see [31]) but in
order to keep the prerequisites to a minimum (in fact, essentially to zero)
this exposition concerns only the symmetric group.

I have tried to keep the presentation as close as possible to that of the
lectures that I have given, both in spirit and content. In particular, examples
and heuristic explanations are the main features of this exposition.

1 History

1.1 Pre-History (i.e., the symmetric group)

Let [n] = {1, . . . , n}, and

Sn = {σ : [n] → [n] : σ is a bijection}
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We write elements of Sn in three ways, namely:

• disjoint cycle form (e.g., σ = (7, 5, 2)(1, 3)) ;

• one-line notation (e.g., σ = 3714265); (Meaning that σ(1) = 3, σ(2) =
7, etc...)

• matrix (e.g.

σ =



0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0


).

There are two important subsets for this story:

S = {(1, 2), (2, 3), . . . , (n− 1, n)}

and
T = {(i, j) : 1 ≤ i < j ≤ n}.

Note that

σ(i, j) switches σ(i) and σ(j),

while

(i, j)σ switches i and j,

in the one-line notation of σ.
There are also two important statistics. For σ ∈ Sn let

inv(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|

(number inversions of σ, or length of σ, denoted l(σ)) and

D(σ) = {(i, i + 1) ∈ S : σ(i) > σ(i + 1)}(⇔ l(σ(i, i + 1)) < l(σ))

(descent set of σ ).
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1.2 Bruhat graph and Bruhat order

There are two main combinatorial objects related to Kazhdan-Lusztig and
R-polynomials.

The Bruhat graph of Sn is the directed graph B(Sn) having Sn as vertex
set and where

u → v

if and only if

there exist (i, j) ∈ T such that v = u(i, j) and l(v) > l(u)

(equivalently, such that v = u(i, j), i < j and u(i) < u(j)).
For example, the Bruhat graph of S3 is shown in Figure 1.
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Figure 1: The Bruhat graph of S3.

Note that this digraph is always acyclic.
The transitive closure of B(Sn) is the Bruhat order of Sn, denoted by ≤.
For example, the Bruhat order of S3 is shown in Figure 2.
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Figure 2: The Bruhat order of S3.

One immediate problem presents itself. Namely,

Given u, v ∈ Sn, how to decide if u and v are comparable?
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For v ∈ Sn and i, j ∈ [n] let

v[i, j]
def
= |{a ≤ i : v(a) ≥ j}|.

So v[i, j] is the rank of the principal submatrix of (the matrix notation
of) v with SE corner (i, j).

For example, let v = 7153264. Then v[3, 4] = 2 (see Figure 3).

1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0


Figure 3.

We then have the following result (see, e.g., [42, Chap. 1], or [28, §10.5])

Theorem 1 Let u, v ∈ Sn. Then u ≤ v if and only if u[i, j] ≤ v[i, j] for all
i, j ∈ [n].

We conclude this section by mentioning some important

Facts about Bruhat order

• Bruhat order is a graded poset and inv is its rank function;

• Bruhat order is Eulerian (i.e., µ(u, v) = (−1)l(v)−l(u) for every u, v);

• Bruhat order is shellable.

Proofs of the preceding results can be found in [7], [19], [26], [31], [46], or
[51].

Given u, v ∈ Sn we let

[u, v] = {a ∈ Sn : u ≤ a ≤ v},

l(u, v)
def
= l(v)− l(u), and write u � v if |[u, v]| = 2.
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1.3 Kazhdan-Lusztig and R-polynomials

We are now in a position to define Kazhdan-Lusztig and R-polynomials.
These polynomials (which can be defined for any Coxeter group) were intro-
duced by Kazhdan and Lusztig in [32] in order to construct representations
of the associated Hecke algebra, which is a deformation of the group algebra.
Namely, it is the free Z[q, q−1]-module H having {Tw}w∈Sn as a formal basis
and multiplication such that

TwTs =

{
Tws, if s 6∈ D(w),
qTws + (q − 1)T, if s ∈ D(w),

for all w ∈ W and s ∈ S (so, for q = 1, this is the multiplication of the
group algebra). (We refer the interested reader to [31, Chap. 7] for further
information about the Hecke algebra of a Coxeter group). The R-polynomials
are intimately related to the inversion of the basis elements in this algebra,
and are used to define the Kazhdan-Lusztig polynomials which in turn are
used to define the representations of the Hecke algebra (see [32]).

The Kazhdan-Lusztig polynomials have then found numerous and unex-
pected applications also in other areas of mathematics, including the rep-
resentation theory of semisimple algebraic groups (see, e.g., [1] and the ref-
erences cited there), the theory of Verma modules (see, e.g., [2], [16]), the
algebraic geometry and topology of Schubert varieties (see, e.g., [33], [36],
[3]), canonical bases ([27], [50]), and immanant inequalities ([30]). We say
something more precise about some of these applications in §2.1.

Despite the plethora of applications that they have, all these polynomials
can be defined using only the elementary notions introduced in §§1.1 and
1.2. This is the approach that suits our purposes best, and is the one that
we use.

In both cases we have “Theorem-Definitions”.

Theorem 2 There is a unique family of polynomials {Ru,v(q)}u,v∈Sn ⊆ Z[q]
satisfying the following conditions:

i) Ru,v(q) = 0 if u 6≤ v;

ii) Ru,v(q) = 1 if u = v;

iii) if s ∈ D(v) then

Ru,v(q) =

{
Rus,vs(q), if s ∈ D(u),
qRus,vs(q) + (q − 1)Ru,vs(q), if s 6∈ D(u).

(1)
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A proof of the preceding theorem can be found in [31, §7.5]. The poly-
nomials whose existence and uniqueness are guaranteed by Theorem 2 are
called the R-polynomials of Sn. Theorem 2 can be used to compute the poly-
nomials {Ru,v(q)}u,v∈W , by induction on l(v). In fact, if v 6= e it is possible to
find some s ∈ D(v), and then since l(vs) < l(v) we may assume by induction
that we have already computed all the R-polynomials appearing on the right
hand side of (1). Thus we may use part iii) of Theorem 2 as a recurrence
relation for the computation of the R-polynomials, using parts i) and ii) as
“initial conditions”. We illustrate this procedure with an example.

Example 3 Suppose that we want to compute R123,321(q) in S3. Choosing
s = (1, 2) ∈ D(321) we have from part iii) of Theorem 2 that

R123,321(q) = q R213,231(q) + (q − 1) R123,231(q).

Now choosing s = (2, 3) ∈ D(231) we obtain that

R213,231(q) = q R231,213(q) + (q − 1) R213,213(q) = q − 1,

and

R123,231(q) = q R132,213(q) + (q − 1) R123,213(q)

= (q − 1) R123,213(q)

by Theorem 2. Finally, choosing s = (1, 2) ∈ D(213) we get that

R123,213(q) = q R213,123(q) + (q − 1) R123,123(q) = q − 1

again by Theorem 2. Therefore we conclude that

R123,321(q) = q (q − 1) + (q − 1)3 = q3 − 2q2 + 2q − 1.

In the same way, the reader may want to compute as an exercise that

R123,132(q) = R123,213(q) = q − 1

and
R123,312(q) = R123,231(q) = q2 − 2q + 1.

Here are some easy properties of the R-polynomials, which the reader
might want to prove as an exercise, using Theorem 2, by induction on l(v).
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Easy Properties of R-polynomials

• Ru,v(q) is a monic polynomial of degree l(u, v).

• Ru,v(0) = (−1)l(u,v).

• ql(u,v)Ru,v(1/q) = (−1)l(u,v)Ru,v(q).

We now come to the definition of the Kazhdan-Lusztig polynomials. This
is again a “Theorem-Definition”.

Theorem 4 There exists a unique family of polynomials {Pu,v(q)}u,v∈Sn ⊆
Z[q] satisfying the following conditions:

i) Pu,v(q) = 0 if u 6≤ v;

ii) Pu,v(q) = 1 if u = v;

iii) deg(Pu,v(q)) < 1
2
l(u, v) if u < v;

iv)

ql(u,v) Pu,v

(
1

q

)
=

∑
u≤a≤v

Ru,a(q) Pa,v(q)

if u ≤ v.

The preceding theorem was first proved in [32] and a proof of it can also
be found in [31, §7.10]. The polynomials {Pu,v(q)}u,v∈Sn whose existence
and uniqueness are guaranteed by Theorem 4 are called the Kazhdan-Lusztig
polynomials of Sn.

Here is an easy property of the Kazhdan-Lusztig polynomials.

Easy Properties of KL-polynomials

• Pu,v(0) = 1.

To help the reader get a feeling for how one works with Theorem 4 we
provide the proof of this fact here.

We proceed by induction on l(u, v), the result being true by part ii) of
Theorem 4 if l(u, v) = 0. So let l(u, v) > 0. Then we conclude from parts iii)
and iv) of Theorem 4 that

0 =
∑

u≤a≤v

Ru,a(0)Pa,v(0).
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Using one of the easy facts about the R-polynomials and the induction hy-
pothesis we may rewrite this as

Pu,v(0) = −
∑

u<a≤v

(−1)l(u,a).

Now using one of the fundamental facts about Bruhat order we conclude
from this that

Pu,v(0) = −
∑

u<a≤v

µ(u, a) = µ(u, u) = 1,

as desired.
The proof of the preceding fact already shows that the Kazhdan-Lusztig

polynomials are considerably more subtle than the R-polynomials. In fact,
while for the latter ones one is able to deduce in a fairly straightforward
way their degree, leading term, and constant term, for the Kazhdan-Lusztig
polynomials we have had to use a more substantial result (the computation of
the Möbius function of Bruhat order) just to compute their constant term. In
fact, there are no known simple formulas, at present, to compute the leading
term and degree of Kazhdan-Lusztig polynomials.

Note that what we have proved implies in particular that:

Pu,v(q) = 1 if l(u, v) ≤ 2.

Once the R-polynomials have been computed, then Theorem 4 can be
used to compute recursively the polynomials {Pu,v(q)}u,v∈Sn , by induction on
l(u, v). In fact, by induction we may assume that we have already computed
the polynomials Pa,v(q) for all a ∈ [u, v], a 6= u. This, by part iv) of Theorem
4, means that we can compute

ql(u,v) Pu,v

(
1

q

)
− Pu,v(q) (2)

(recall that Ru,u(q) = 1 by part ii) of Theorem 2). However, by part iii) of
Theorem 4, the coefficient of qi in (2) is the same as the coefficient of qi in
−Pu,v(q) for all i = 0, . . . ,

⌊
1
2
(l(u, v)− 1)

⌋
(we assume that u < v for else

we already know Pu,v(q) by parts i) and ii) of Theorem 4) and thus we can
compute Pu,v(q) from (2). We illustrate this procedure with an example.
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Example 5 Let us compute P123,321(q). From part iv) we deduce that

q3 P123,321(q
−1)− P123,321(q) = R123,213(q) P213,321(q) + R123,132(q) P132,321(q)

+R123,231(q) P231,321(q) + R123,312(q) P312,321(q) + R123,321(q) P321,321(q).

But by parts ii) and iii) of Theorem 4 and what we have just observed we
know that Pu,321(q) = 1 for all u ∈ S3 \ {123}, hence we obtain that

q3 P123,321(q
−1)− P123,321(q) = R123,213(q) + R123,132(q) + R123,231(q)

+R123,312(q) + R123,321(q).

Assuming, as we are, that we have already computed the R-polynomials we
then get

q3 P123,321(q
−1)− P123,321(q) = (q − 1) + (q − 1) + (q − 1)2 + (q − 1)2

+(q3 − 2q2 + 2q − 1) = q3 − 1.

Now, since 1
2
(l(321)− l(123)) = 3

2
, we deduce from this, by part iii) of Theo-

rem 4, that
P123,321(q) = 1 .

It is natural to wonder if there is a direct way to compute the Kazhdan-
Lusztig polynomials of Sn. The following result allows one to compute the
KL-polynomials without having to compute the R-polynomials first.

Theorem 6 Let u, v ∈ Sn, u ≤ v, and s ∈ D(v). Then

Pu,v(q) = q1−cPus,vs(q) + qcPu,vs(q)−
∑

{z: s∈D(z)}

q
l(z,v)

2 µ(z, vs)Pu,z(q) (3)

where c = 1 if s ∈ D(u), and c = 0 otherwise, and µ(x, y) is the coefficient

of q
1
2
(l(x,y)−1) in Px,y(q) (so µ(x, y) = 0 if l(x, y) is even).

A proof of the preceding result can be found in [31, §7.11].
We conclude this section by mentioning a few more properties of KL and

R-polynomials.

More properties of KL and R-polynomials

• Ru,v = Ru−1,v−1 = Rw0v,w0u = Rvw0,uw0 = Rw0uw0,w0vw0 ,
(where w0 = n n− 1 . . . 3 2 1);

• Pu,v = Pu−1,v−1 = Pw0uw0,w0vw0 ;

• µ(u, v) = µ(w0v, w0u) = µ(vw0, uw0).

Proofs of these results can be found in [31, Prop. 7.6 and §7.13] and [11, §4].
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2 Problems

2.1 Motivations

Having seen how long and awkward the computation of the Kazhdan-Lusztig
and R-polynomials is one may very well wonder why one should bother to
compute them at all.

As mentioned in §1.3, Kazhdan-Lusztig polynomials play a prominent role
in several branches of mathematics including representation theory (see, e.g.,
[1], and the references cited there), and the algebraic geometry and topology
of Schubert varieties (see, e.g., [32], [33], and [3]).

Here are the main connections to Schubert varieties. For a permutation
v ∈ Sn+1 let Ωv be the Schubert cell indexed by v, and Ωv (Zariski closure)
be the corresponding Schubert variety (we refer the reader to, e.g., [42], [28],
or [3] for the definition of, and further information about, Schubert cells and
varieties). It is well known (and not hard to see) that Ωv =

⊎
u≤v Ωu so that

u ≤ v ⇔ Ωu ⊆ Ωv. (4)

Denote by IH∗(Ωv,C)Ωu the (middle perversity) local intersection cohomol-
ogy of Ωv at a (equivalently, any) point of Ωu. This is a graded vector
space, and we denote by IH i(Ωv,C)Ωu (i ∈ N) its graded pieces (we re-
fer the reader to, e.g., [29], or [35], for further information about intersection
(co)homology). The following result was first proved by Kazhdan and Lusztig
in [33, Theorem 4.3].

Theorem 7 Let u, v ∈ Sn+1, u ≤ v. Then

Pu,v(q) =
∑
i≥0

qi dimC(IH2i(Ωv,C)Ωu).

Note that it is known that dimC(IH i(Ωv,C)Ωu) = 0 if i ≡ 1 (mod 2).
Theorem 7 implies that the coefficients of Pu,v(q) are nonnegative for all

u, v ∈ Sn (something that Kazhdan and Lusztig had conjectured in [32]). No
combinatorial interpretation is known, in general, for these coefficients.

Here are two other connections between the Kazhdan-Lusztig polynomials
and the topology and algebraic geometry of Schubert varieties (see, e.g., [33],
and [3]).
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Corollary 8 Let v ∈ Sn. Then∑
u≤v

ql(u)Pu,v(q) =
∑
i≥0

dimC(IH2i(Ωv))q
i

Theorem 9 Let v ∈ Sn. Then the following are equivalent:

i) Pe,v(q) = 1;

ii) Ωv is smooth.

What about the R-polynomials? Do they have any connections to geometry?
The following result is a simple consequence of the main theorem in [20].

Theorem 10 Let F be a finite field of order q and u, v ∈ Sn. Then

Ru,v(q) = |Ωv ∩ Ω∗
u|

where Ω∗
v is the Shubert cell opposite to Ωv.

In their original paper Kazhdan and Lusztig also conjectured ([32, Conj.
1.5]) a very simple relationship between the values of the Kazhdan-Lusztig
polynomials Pu,v evaluated at 1 and multiplicities of Verma modules. This
important conjecture was proved in 1981 by Beilinson and Bernstein [2], and
by Brylinski and Kashiwara [16], and has then been generalized in various
different directions (see, e.g., [1, §4]). In all these conjectures, the values of
the polynomials at q = 1 compute important representation theoretic objects.

Therefore, one would know many interesting things if one knew the poly-
nomials. So, there is really just one problem, namely:

How to compute these polynomials?

I will give two examples of answers to this problem which, in my opinion,
illustrate well the rich combinatorics that hides in these polynomials. There
are many other results that could have been chosen (see, e.g., [5], [6], [4], [8],
[12], [13], [14], [18], [17], [20], [21], [24], [25], [34], [38], [40], [43], [45], [47],
[49], [52]), and my choice here is entirely subjective.
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2.2 R-polynomials and increasing subsequences

Let’s begin with the following easy observation.

Lemma 11 Let u, v ∈ Sn, u ≤ v. Then there exists a unique polynomial

R̃u,v(t) ∈ N[t] such that Ru,v(q) = q
l(v)−l(u)

2 R̃u,v(q
1
2 − q−

1
2 ).

Proof. Easy induction, using Theorem 2. 2

The combinatorics that we are about to describe relates to these R̃-
polynomials. As is usual in combinatorics, it is easier to explain things over
an example first.

Let u = 1234, and v = 4321. We compute the polynomial R̃u,v(q) as
follows. We first check (e.g., using Theorem 1) that u < v (if u 6≤ v then

R̃u,v(q)
def
= 0, if u = v then R̃u,v(q)

def
= 1, and we are done). If u < v then we

locate the largest integer that does not occupy the same position in both u
and v. In this case this is 4. We now look at the positions that this integer
occupies in u and v. In our case these are the first and fourth positions (it
can be proved from Theorem 1 that the position in u is always to the right of
the one in v because u < v). Next we find all the increasing subsequences in
u that start at the first position and end at the fourth position. In our case
there are four such subsequences, namely, 14, 124, 134, and 1234. We now
“rotate one step to the right” each one of these subsequences in u to obtain
4 new permutations u(1), u(2), u(3), u(4). In our case we have u(1) = 1234,
u(2) = 1234, u(3) = 1234, and u(4) = 1234 (where we have underlined, for
emphasis, the elements that we have “rotated” in each case). Then the

polynomial R̃u,v(q) is given by

R̃u,v(t) = tR̃u(1),v(t) + t2R̃u(2),v(t) + t2R̃u(3),v(t) + t3R̃u(4),v(t) , (5)

(where the exponent of the power of t that multiplies R̃u(i),v(q) is the number

of elements that have been “rotated” to obtain u(i), minus one). It is not
hard to see that this algorithm will eventually stop. For example, in our case
one obtains the diagram depicted in Figure 4, from which one then reads off

R̃1234,4321 = t2 + t4 + t4 + t6 + t4 = t6 + 3t4 + t2.
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What is going on?

For u, v ∈ Sn, u < v, let

δ = max{i : v−1(i) 6= u−1(i)}.

Then one has (see, e.g., [10]).

Lemma 12 Let u < v then v−1(δ) < u−1(δ).

Now let C(u, v) be the set of all the increasing subsequences of u that
begin at position v−1(δ) and end at position u−1(δ).

For example, let v = 7356142 and u = 1425736, then d = 7, u−1(7) = 5,
v−1(7) = 1 and

C(u, v) = {(1, 7), (1, 4, 7), (1, 2, 7), (1, 5, 7), (1, 2, 5, 7), (1, 4, 5, 7)}.

Interpret each element of C(u, v) as a cycle.
Then we have (see [10]):

Theorem 13 Let u, v ∈ Sn, u < v. Then

R̃u,v(q) =
∑

w∈C(u,v)

qk(w)−1R̃wu,v(q) (6)

where k(w)
def
= n− |{i ∈ [n] : w(i) = i}|.

Note that, unlike the original recursion given by Theorem 2, this recursion
does not “branch off” in two cases, and is therefore very easy to solve (see,
[10, Theorem 4.1]). Furthermore, it is much faster from a computational
point of view.
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2.3 Kazhdan-Lusztig polynomials and rooted trees

Let σ ∈ Sn. We say that σ is bigrassmannian if and only if |D(σ)| =
|D(σ−1)| = 1. Note that σ is bigrassmannian if and only if

σ = 12 . . . a b + 1 . . . c︸ ︷︷ ︸ a + 1 . . . b︸ ︷︷ ︸ c + 1 . . . n

for some 1 ≤ a ≤ b ≤ c ≤ n (i.e., if and only if σ is obtained from the identity
permutation by switching two “middle blocks”). Let

B(u) = {σ ≤ u : σ is bigrassmannian}.

The following result was proved by Lascoux and Schutzenberger in [39].

Theorem 14 Let u, v ∈ Sn. Then

u ≤ v ⇔ B(u) ⊆ B(v).

If σ ∈ B(u) let

d(σ, u)
def
= max{i ∈ N : 12 . . . a−i b+1 . . . c+i−1 a−i+1 . . . b c+i . . . n ≤ u}

Let v ∈ Sn. Say that v avoids 3412 if there are no indices 1 ≤ a < b <
c < d ≤ n such that

v(c) < v(d) < v(a) < v(b).

Suppose v avoids 3412.
Take the inversion table of vw0, and its nondecreasing rearrangement.

Example 15 Let v = 7541632. Then vw0 = 2361457 and I(vw0) = (1, 1, 3,
0, 0, 0, 0) so we get the partition

Associate to this partition a word in {(, )} by associating a

“(” to a vertical step

and a

“)” to a horizontal step
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as you follow its boundary from SW to NE.

Example 16 From the partition (1, 1, 3) we get the word

())(()

Now get a rooted tree by “matching the parentheses” (each vertex, except
the root, corresponds to a matching pair () and a vertex is a descendant of
another if and only if one pair is enclosed by another).

Example 17 For the word ))(())(())() we get

)) ( ()︸︷︷︸)︸ ︷︷ ︸ ( ()︸︷︷︸)︸ ︷︷ ︸ ()︸︷︷︸
and therefore

�@q qq q qq
Note that the leaves of the tree correspond to the corners of the partition,
and therefore to the nonzero values of I(vw0).

Now take the maximal elements of B(vw0). In our running example these
are B1 = 2341567 and B2 = 1263457. Their inversion tables correspond to
the maximal rectangles contained in λ(vw0), and therefore to the leaves of the
tree (equivalently, the value of the last descent minus its position corresponds
to a nonzero value of I(vw0) and conversely, in our running example we get
4− 3 and 6− 3).
Now label each leaf of the tree by

d(Bi, uw0)

Note that, since u ≤ v then B1, B2 ≤ vw0 ≤ uw0.
Let f : { edges of tree } → N be such that:

i) f increases weakly along any path from the root;

ii) the value of f at a final edge is less than or equal to the label of that leaf.

Let |f | =
∑

e∈E f(e). Then we have (Lascoux [37]):
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Theorem 18 Let u, v ∈ Sn, u ≤ v, and v be 3412-avoiding. Then

Pu,v(q) =
∑

f

q|f |

where the sum is over all such functions f .

We illustrate this theorem on an example.

Example 19 Let v = 7536421 and u = 5437621, then uw0 = 1267345 and
vw0 = 1246357. The inversion table of vw0 is I(vw0) = (0, 0, 1, 2, 0, 0, 0),
and its nondecreasing rearrangement (disregarding zeros) is (1, 2) so

λ(vw0) =

We get the word
()()

and therefore
�@q qq

Say that the leftmost leaf of the tree corresponds to the leftmost matching
pair in the word, and therefore to the leftmost corner of the partition. The
maximal elements of B(vw0) are B1 = 1245367 and B2 = 1236457. Their
inversion tables correspond to the maximal rectangles contained in λ(vw0):

so B1 corresponds to the leftmost leaf of the tree, and B2 to the rightmost
one (equivalently, computing the value of the last descent minus its position,
we get 5− 4 = 1 for B1 and 6− 4 = 2 for B2, so B1 corresponds to the value
1 of I(vw0), hence to the leftmost corner of the partition, so to the leftmost
leaf of the tree, and B2 to the other one). We now compute d(B1, uw0) and
d(B2, uw0). We have

1245367 ≤ 1267345

and for i = 1
1456237 6≤ 1267345

hence
d(B1, uw0) = 0.

16



Similarly
1236457 ≤ 1267345

and
1267345 ≤ 1267345

so
d(B2, uw0) = 1.

Associate to the leaves of the tree these integers:

�@q qq
0 1

(Recall that the leftmost leaf of the tree corresponds to B1, and the other one
to B2.) The possible functions f then are:

�@q qq
0 0 �@q qq

0 1

so
Pu,v = 1 + q.

The procedure described in the subsection can “a priori”, be applied to
any two permutations u, v ∈ Sn. It is an open problem to know for which
permutations u, v Theorem 18 still holds (i.e., the procedure gives Pu,v(q)).

3 Combinatorial Invariance

The main problem, namely:

How to compute these polynomials?

has many related and subproblems.
One of them was posed by G. Lusztig in the early 1980’s [41], and inde-

pendently by M. Dyer in 1987 ([22]).

Problem 20 Let u, v, σ, τ ∈ Sn be such that [u, v] ∼= [σ, τ ] (as posets). Then
Pu,v(q) = Pσ,τ (q).

17



Mathematicians have always had very different opinions on this problem.
Let’s stop for a moment and analyze what the problem is saying. The equality
of the polynomials is, by Theorem 7, a statement about the equality of certain
intersection cohomology vector spaces. The isomorphism of the posets is, by
equation (4), a statement that concerns exclusively the inclusion relations
between the Schubert subvarieties of Ωv and of Ωτ .

In effect, if the answer to the problem is yes, then this would mean that
you could go to some geometer and say “Please compute the intersection
homology of a Schubert variety”, and at her reply “which Schubert variety?”
you would say “Oh no..., sorry. I am not allowed to tell you that. I can
only tell you, among all the Schubert cells contained in this Schubert variety,
which pairs of cells touch each other, and in this case, which is the one of
largest dimension”. It is not unlikely that, at your reply, the geometer would
probably never talk to you again about mathematics. This is the reason,
essentially, why most geometers think that the answer to this problem is
no. Philosophically, it is thought that intersection homololgy is a deeper
property than adjacency of Schubert cells. Yet, as some geometers have told
me “There are many miracles that happen in Schubert varieties, and this
could be one of them. It would certainly be one of the most amazing”.

Being rational mathematicians, it is definitely natural to look at the evi-
dence known about this problem.

The answer is known to be yes if l(u, v) ≤ 4. In fact, we have already
seen that

Pu,v = 1 if l(u, v) ≤ 2,

and it can be proved that if l(u, v) = 3 then

Pu,v(q) =

{
1, if c(u, v) = 2,
1 + (c(u, v)− 3)q, otherwise,

where c(u, v) denotes the number of coatoms of [u, v]. Furthermore, it can
be shown that, if l(u, v) = 4, then

Pu,v = 1 + (
B2(u, v)

2
− c(u, v)− 4)q

where B2(u, v) equals the number of paths in the Bruhat graph of Sn from
u to v of length 2.

The answer is also known to be yes if the interval [u, v] is a lattice [11,
Theorem 6.3].

18



Theorem 21 Let u, v ∈ Sn, u ≤ v, be such that [u, v] is a lattice. Then
Ru,v(q) = (q − 1)l(v)−l(u) (equivalently, Pu,v(q) is the “toric h-vector” of
[u, v]∗).

Also the property “Pu,v = 1” is known to depend only on the poset [u, v].
Given u, v ∈ Sn, u ≤ v let

def(u, v)
def
= |{(i, j) ∈ T : u < u(i, j) ≤ v}|

(so this is the outdegree of u in the subgraph induced by the Bruhat graph
on [u, v]).

The following theorem is due to Carrell and Peterson [18, Theorem C].

Theorem 22 Let u, v ∈ Sn, u ≤ v. Then the following are equivalent:

i) Pu,v(q) = 1;

ii) Px,v(q) = 1 for all x ∈ [u, v];

iii) def(x, v) = l(v)− l(x) for all x ∈ [u, v].

This result suggests that the Kazhdan-Lusztig polynomials should depend
on the outdegrees of the directed graph induced by the Bruhat graph on the
interval. However, examples show that even if the property “the coefficient
of q in Pu,v is nonzero” depends only on these outdegrees, the dependence is
hard to guess.

3.1 Special matchings

Let’s go back at the beginning. Theorem 4 implies that the Kazhdan-Lusztig
polynomials {Px,y}x,y∈[u,v] depend only on the Bruhat interval [u, v] as a poset
if and only if this is true for the polynomials {Rx,y}x,y∈[u,v].
Since these polynomials are better understood (we know a combinatorial
interpretation for them, we know their degrees and leading term...), maybe
we should concentrate on them.
Let’s take a second look at the fundamental recursion satisfied by these poly-
nomials, namely Theorem 2. This shows that the answer would be yes if one
could somehow construct combinatorially, from the poset [u, v], the elements
us and vs.

Unfortunately, this is impossible even if u is the identity....
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Example 23 Let v = 4123 and u = 1234 (the identity). Then [u, v] is

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

q qq
qq

q q q
1243

1234

1423

4123

3124

2134

2143

1324

Figure 5: The interval [1234, 4123].

and v has only one descent: s = (1, 2). This choice gives the two elements

�@
@�

�@
@�q qqqqq q qc c

However, this pair is combinatorially indistinguishible from the pair

�@
@�

�@
@�q qqqqq q qcc

and there is no s ∈ S such that y = vs, x = us.

Actually, for any s ∈ D(v), the map x 7→ xs for x ∈ [e, v] is a complete
matching of the Hasse diagram of the poset [e, v]. So the natural question is:

Do these matchings x 7→ xs have any special property?

From known properties of the Bruhat order (see, e.g., [31]), one knows that:

if x � y and s ∈ S is such that xs 6= y then xs ≤ ys.

This motivates the following definition.
Let P be (any) poset, and M be a complete matching of the Hasse diagram
of P . For x ∈ P denote by M(x) the match of x.

Definition 24 We say that M is a special matching if, for all x, y ∈ P ,
such that M(x) 6= y, we have that

x � y ⇒ M(x) ≤ M(y).

Note that this implies, in particular, that if x�y and M(x)�x then M(y)�y
and M(y) � M(x), and dually that if x � y and M(y) � y then M(x) � x
and M(x) � M(y) (see Figures 8 and 9). This concept was first introduced
in [15].
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Example 25 Let P be a Boolean algebra of rank 3. Then the matching
shown in Figure 6 is special, while that shown in Figure 7 is not.

@
@

@
@

�
��

�q qqqqq q q
Figure 6: A special matching.

@
@�

@
@��
�q qqqqq q q

Figure 7: A matching that is not special.
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M(x)

⇒ �
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q q qq

M(x)

x

y

M(y)

Figure 8.

�@q qq
x

y

M(y)
⇒ �

�
@

@
q q qq
M(x)

x

y

M(y)

Figure 9.

�
@qq qq

M(x)

x

y

M(y)

Figure 10: This configuration is always allowed in a special matching.

�@ @
q q q qy

x

M(x)

M(y)

Figure 11: This configuration is never allowed in a special matching.
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3.2 Combinatorial invariance

The natural question now is:

Is any special matching of [e, v] of the form x 7→ xs for some s ∈ D(v) ?

Again, the answer is no!

Example 26 Let v = 4123. Then the poset [e, v] is shown in Figure 5, and
D(v) = {(1, 2)}, so the only matching of the form x 7→ xs is the one indicated
in Figure 12.

But this poset has two other special matchings, namely those shown in
Figure 13, and these are combinatorially indistinguishable from the first one!
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1324

Figure 12
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Figure 13

Nonetheless, remarkably, the following holds ([15, Theorem 5.2]).

Theorem 27 Let v ∈ Sn, and M be a special matching of [e, v]. Then

Ru,v(q) =

{
RM(u),M(v)(q), if M(u) � u,
qRM(u),M(v)(q) + (q − 1)Ru,M(v)(q), if M(u) � u,

(7)

for all u ∈ [e, v]. So the polynomials Rx,y(q)x,y∈[e,v] (and hence Px,y(q)x,y∈[e,v],

and hence the intersection homology of the Schubert variety Ωv ) depend only
on [e, v] as an abstract poset.

We conclude this section by illustrating Theorem 27 with an example.
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Figure 14: A lower interval in a symmetric group.

Example 28 Let P = [e, v] be the lower interval whose Hasse diagram is
depicted in Figure 14. (We ask the reader to trust the author on the fact that
this poset P is indeed the lower interval of a permutation v, we do not give
v since the point of the example is exactly to show how one can compute the
polynomials from the poset rather than from the permutation.) Identify, for
convenience, the elements of P with the integers from 1 to 18 as in Figure
14. According to Theorem 27, we need to find a special matching M of P .
Suppose M(1) = 2. Then this forces M(4) = 9. We have two possible choices
for M(3), namely 7 and 8. Suppose we choose M(3) = 7. Then these choices
force M = {{1, 2}, {3, 7}, {4, 9}, {5, 14}, {6, 12}, {8, 13}, {10, 15}, {11, 17},
{16, 18}}.

Applying Theorem 27 we obtain that

R1,18 = q RM(1),M(18) + (q − 1)R1,M(18) = qR2,16 + (q − 1)R1,16

(as well as R2,18 = R1,16, R3,18 = qR7,16 + (q − 1)R3,16, R4,18 = qR9,16 + (q −
1)R4,16, R5,18 = qR14,16 + (q − 1)R5,16 = (q − 1)R5,16, R6,18 = qR12,16 + (q −
1)R6,16, R7,18 = R3,16, R8,18 = qR13,16 + (q − 1)R8,16, and similarly R9,18 =
R4,16, R10,18 = (q − 1)R10,16, R11,18 = (q − 1)R11,16, R12,18 = R6,16, R13,18 =
R8,16, R14,18 = R5,16, R15,18 = R10,16, R16,18 = (q − 1)R16,16, R17,18 = R11,16).
We therefore need to compute the polynomials Ru,16 for all u ≤ 16. Since M
is not a special matching of [1, 16] (= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16}
we need to repeat the above procedure to find a special matching, N , of [1, 16].
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Suppose that N(1) = 3. This forces N(2) ∈ {7, 8}, and N(4) ∈ {5, 6}. Sup-
pose we choose N(2) = 7 and N(4) = 6 (with some of the other choices
we would have gotten stuck later on, however, it can be proved [15, Prop.
4.1], that there is always at least one right choice). Then these choices force
N = {{1, 3}, {2, 7}, {4, 6}, {5, 10}, {8, 13}, {9, 12}, {11, 16}}. Applying Theo-
rem 27 we get

R1,16 = q R3,11 + (q − 1)R1,11,

R2,16 = (q − 1)R2,11,

(as well as R3,16 = R1,11, R4,16 = (q − 1)R4,11, R5,16 = (q − 1)R5,11, R6,16 =
R4,11, R7,16 = R2,11, R8,16 = (q− 1)R8,11, R9,16 = (q− 1)R9,11, R10,16 = R5,11,
R11,16 = (q− 1)R11,11, R12,16 = R9,11, R13,16 = R8,11 ). We now need to com-
pute the polynomials Ru,11 for all u ∈ [1, 11] (= {1, 2, 3, 4, 5, 8, 9, 11}). We
need a special matching, L, of [1, 11]. One such is L = {{1, 2}, {3, 8}, {4, 9},
{5, 11}}. So by Theorem 27

R1,11 = (q − 1)R1,5,

R2,11 = R1,5,

R3,11 = (q − 1)R3,5,

(as well as R4,11 = (q−1)R4,5, R5,11 = (q−1)R5,5, R8,11 = R3,5, R9,11 = R4,5).
A special matching of [1, 5] (= {1, 3, 4, 5}) is {{1, 3}, {4, 5}} so from Theorem
27 we get

R1,5 = (q − 1)R1,4, R3,5 = R1,4, R4,5 = (q − 1)R4,4.

Finally, {{1, 4}} is a special matching of [1, 4] (= {1, 4}) and so again by
Theorem 27 we obtain R1,4 = (q−1)R1,1. Putting all these relations together
we then get

R1,18 = q R2,16 + (q − 1)R1,16

= q(q − 1)R2,11 + (q − 1)(q R3,11 + (q − 1)R1,11)

= q(q − 1)R1,5 + q(q − 1)2R3,5 + (q − 1)3R1,5

= q(q − 1)2R1,4 + q(q − 1)2R1,4 + (q − 1)4R1,4

= 2q(q − 1)3 + (q − 1)5,
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and similarly for all the other polynomials Ru,18. Clearly, in the same way we
may compute all the polynomials Ru,v for u, v ∈ P , u ≤ v. The computation
of the Kazhdan-Lusztig polynomials Pu,v for u, v ∈ P , u ≤ v, now proceeds
using Theorem 4 and induction on l(u, v), just as in Example 5.

3.3 Open Problems

There are several open problems raised by the definition of a special match-
ing. We mention in this section the most outstanding ones, in the author’s
opinion.

Problem 29 Which posets have special matchings?

We expect the answer to this question to be rather subtle. For exam-
ple. The Boolean algebra of rank 3 (also called a 3-crown) has three special
matchings, but the poset in Figure 15 (usually called a 4-crown) does not
have any special matchings.

@@@���
�� �� BB@@

@
@

B
B
�
�
�
�q qqqqq q q qq

Figure 15

Given a poset P that has a special matching, it is clear that one could
use Theorem 27 to define R-polynomials (and therefore Kazhdan-Lusztig
polynomials) for P . Of course, if P has more than one special matching then
this definition may turn out to depend on the choice of special matchings. A
natural problem is then the following.

Problem 30 For which posets does Theorem 27 give a definition that is
independent of the choice of special matching?

The answer to this problem is known to be yes if P is an Eulerian lattice
(see [15, Prop. 4.3]), in which case the corresponding “Kazhdan-Lusztig”
polynomial turns out to coincide with the toric h-vector of P .

It is well known (see, e.g., [31, §§7.14-7.15]) that the coefficient µ(u, v)
is often the most important one for the applications of Kazhdan-Lusztig
polynomials to representation theory. Based on numerical evidence, I feel
that the following may hold.
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Conjecture 31 Let u, v ∈ Sn, u ≤ v, be such that l(u, v) is odd. Then
µ(u, v) 6= 0 if and only if [u, v] does not have a special matching.

This conjecture has been verified for l(u, v) ≤ 5.
Since the statement in Theorem 27 makes sense verbatim for any Coxeter

group, one may conjecture the following.

Conjecture 32 Theorem 27 holds for any Coxeter group.

Finally, we conclude with a conjecture which has already been made in
[15].

Conjecture 33 Theorem 27 holds for any element u ∈ Sn (not just for u
equals the identity permutation).

In other words, I conjecture that if u, v ∈ Sn are such that [u, v] has a
special matching then

Ra,v = q1−cRM(a),M(v) + (q − qc)Ra,M(v)

for all a ∈ [u, v] and any special matching M of [u, v], where c
def
= 1 if M(a)�a

and c
def
= 0 if M(a) � a.

Of course, not all reasonable conjectures turn out to be true (see, e.g.,
[44]).

Note added in proof: Conjecture 32 has been proved for all doubly
laced Coxeter systems by F. Brenti, F. Caselli, M. Marietti, Special matchings
and Kazhdan-Lusztig polynomials for doubly laced Coxeter systems, preprint.
The second part of Theorem 27 has also been proved, independently, by F.
Du Cloux, Rigidity of Schubert closures and invariance of Kazhdan-Lusztig
polynomials, Advances in Math., to appear.
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Math., 182, Birkhäuser, Boston, MA, 2000.

[4] S. Billey, A. Postnikov, A root system description of pattern avoidance
with applications to G/B, preprint.

[5] S. Billey, G. Warrington, Kazhdan-Lusztig polynomials for 321-hexagon-
avoiding permutations, J. Algebraic Combin., 13 (2001), 111-136.

[6] S. Billey, G. Warrington, Maximal singular loci for Schubert varieties in
SL(n)/B, Trans. Amer. Math. Soc., to appear.

[7] A. Björner and M. Wachs, Bruhat order of Coxeter groups and shella-
bility, Advances in Math. 43 (1982), 87–100.

[8] B. D. Boe, Kazhdan-Lusztig polynonomials for Hermitian symmetric
spaces, Trans. Amer. Math. Soc. 309 (1988), 279–294.

[9] T. Braden, R. MacPherson, From moment graphs to intersection coho-
mology, Math. Ann., 321 (2001), 533-551.

[10] F. Brenti, Combinatorial properties of the Kazhdan-Lusztig R-
polynomials for Sn, Adv. in Math., 126 (1997), 21-51.

[11] F. Brenti, A combinatorial formula for Kazhdan-Lusztig polynomials,
Invent. Math., 118 (1994), 371-394.

[12] F. Brenti, Lattice paths and Kazhdan-Lusztig polynomials, J. Amer.
Math. Soc., 11 (1998), 229-259.

[13] F. Brenti, R. Simion, Explicit formulae for some Kazhdan-Lusztig poly-
nomials, J. Algebraic Combin., 11 (2000), 187-196.

[14] F. Brenti, Kazhdan-Lusztig and R-polynomials, Young’s lattice, and
Dyck partitions, Pacific J. Math., 207 (2002), 257-286.

[15] F. Brenti, A combinatorial construction for the Kazhdan-Lusztig
polynomials of the symmetric group, preprint, available at
http://www.mat.uniroma2.it/∼brenti/papers.htm

[16] J.-L. Brylinski, M. Kashiwara, Kazhdan-Lusztig conjecture and holo-
nomic system, Invent. Math. 64 (1981), 387-410.

27



[17] F. Caselli, Proof of two conjectures of Brenti-Simion on Kazhdan-Lusztig
polynomials, J. Algebraic Combin., to appear.

[18] J. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deod-
har, and rational smoothness of Schubert varieties, Algebraic groups and
their generalizations: classical methods (University Park, 1991), 53-61,
Proc. Sympos. Pure Math. 56, Amer. Math. Soc., Providence, 1994.

[19] V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter
group and determination of the relative Möbius function, Invent. Math.,
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