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A DIRECT DECOMPOSITION OF 3-CONNECTED PLANAR GRAPHS

MANUEL BODIRSKY, CLEMENS GRÖPL, DANIEL JOHANNSEN, AND MIHYUN KANG

ABSTRACT. We present a decomposition strategy for c-nets, i. e., rooted 3-connected
planar maps. The decomposition yields an algebraic equation for the number of c-nets
with a given number of vertices and a given size of the outer face. The decomposition
also leads to a deterministic and polynomial time algorithmto sample c-netsuniformly
at random. Using rejection sampling, we can also sample isomorphism types of convex
polyhedra, i.e., 3-connected planar graphs, uniformly at random.

RÉSUMÉ. Nous proposons une stratégie de décomposition pour les cartes pointées 3-
connexes (c-réseaux). Cette décomposition permet d’obtenir une équation algébrique
pour le nombre dec-réseaux suivant le nombre de sommets et la taille de la faceextèrieure.
On en déduit un algorithme de complexité en temps polynomiale pour le tirage aléatoire
uniforme desc-réseaux. En utilisant une méthode à rejet, nous obtenons aussi un algo-
rithme de tirage aléatoire uniforme pour les graphes planaires 3-connexes.

1. INTRODUCTION

Three-connected planar graphs are in a one-to-one relationship to the edge-graphs of
convex polyhedra [24]. The enumeration of such graphs has a long history. Already Euler
attempted to find an exact formula for the number of isomorphism types of convex poly-
hedra [10], which is still unknown. However, since almost all such graphs have a trivial
automorphism group [3,27], and since all embeddings of sucha graph are equivalent (due
to Whitney; see e.g. [9]), theasymptoticbehavior of these numbers is the same as for the
number ofc-nets, i.e., three-connected planar maps with a distinguished directed edge at
the outer face. The exact and the asymptotic number of c-netsfor a given number of edges
was first computed by Tutte [26]. Mullin and Schellenberg [19] found exact formulas in
terms of vertices and faces. The algebraic equation derivedthere was analyzed by Ben-
der and Richmond in [2], who showed that the growth constant for the number of c-nets
depending on the number of vertices is16/27(17 + 7

√
7)

.
= 21.049042.

Other motivations to study c-nets come fromrandom samplingin theoretical computer
science1. The only known algorithm to sample labeled planar graphs uniformly at random
in polynomial time requires a sampling procedure for c-netsin its “inner loop” [4]. A
sampling procedure from [1, 22, 23] for planar maps with given numbers of vertices and
edges was applied for that step in [4], and the analysis showsthat this is the bottleneck
for the performance. Recently, the sampling procedure for c-nets was improved [13].
But still this approach applies rejection sampling, and therefore can only lead toexpected
polynomial time sampling procedures.

Key words and phrases.Random sampling, planar graphs, algorithms.
1In the literature often the word “generating” is used instead of “sampling”. We prefer “sampling”

because it is more specific.
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In this paper, we present a new decomposition strategy for the number of c-nets with
a given number of vertices and a given size of the outer face. We will formulate the
decomposition using the generating function for the numberof c-nets. The resulting
equations can be solved with the quadratic method [6,12], and the generating function for
the number of c-nets is algebraic of degree four, and therefore has an explicit description
with radicals. Using the computer algebra package GFUN [21], we compute a linear
differential equation with polynomial coefficients that describes the generating function.
From that we get a single-parameter recurrence for its coefficients that allows to compute
the number of c-nets with more than 100000 vertices within reasonable time. Following
the discussion in the forthcoming book of Flajolet and Sedgewick [12] we compute the
mentioned growth constant.

With the decomposition strategy we obtain the firstdeterministicpolynomial time sam-
pling procedure for c-nets. Together with the results in [4]we obtain the firstdetermin-
istic polynomial time sampling procedure for labeled planar graphs. Since almost all
3-connected graphs have a trivial automorphism group [3], this can also be used in a re-
jection sampling procedure to sample 3-connected planar graphs inexpectedpolynomial
time. The algorithm uses a recursive formula for c-nets onn vertices with a specified
size of the outer face. Our decomposition strategy is flexible enough to also control other
parameters of c-nets, for instance the total number of edges, faces, or the degrees of root
vertices, if needed. From a methodological point of view, the decomposition is interest-
ing, since it generalizes the well-known and classical approach of Tutte to count triangu-
lations [25]. This direct technique was never carried out for c-nets – yet it is particularly
suited for therecursive method for sampling(an early reference is [20]; see [8, 11] for
recent developments).

The fact that we can control the size of the outer face opens new applications for count-
ingunlabeledplanar graphs. The only approach in question to enumerate unlabeled planar
graphs exploits the connectivity structure, and was already proposed in [28]. As a first
step, we can use the result of the present paper to compute thenumber ofunlabeled rooted
2-connectedplanar graphs on a given number of edges. Moreover, using thesampling
procedure for c-nets with a specified size of the outer face, we obtain the first expected
polynomial time sampling procedure for unlabeled 2-connected planar graphs [5]. With
the sampling procedures for c-nets from [13] this is not possible.

Outline. The paper is organized as follows: We first introduce c-nets,and mention previ-
ous enumerative results. In Section 3, we describe the unique decomposition strategy for
c-nets, which directly translates into equations for the generating function for the number
of c-nets. In Section 4 we apply the quadratic method to derive a single algebraic equa-
tion of degree four that defines this generating function, and to derive a single parameter
recurrence. Section 5 uses the decomposition to sample c-nets uniformly at random.

2. PLANAR STRUCTURES AND C-NETS

A map is a graph embedded in the plane. Aplanar graphis a graph that has an em-
bedding in the plane. A graph isk-connectedif the graph stays connected after deleting
anyk vertices. By Whitney’s theorem (see e.g. [9]), all embeddings of 3-connected pla-
nar graphs are equivalent. Arooted mapis a map with a distinguished directed edgest
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FIGURE 1. A c-net onn + k + 3 vertices

(called the root edge) on the outer face. If we count rooted maps, we count them up to
isomorphisms that map the outer face to the outer face and theroot edge to the root edge.

A c-net is a rooted and 3-connected map on at least three vertices. Wedistinguish
betweenouter vertices which lie on the outer face, andinner vertices which do not lie
on the outer face. The outer vertices include the vertices ofthe rootst and are labeled
s, t, u1, . . . , uk in clockwise order starting with the root; see Figure 1.

Starting with Tutte’s pioneering work [26], many classes ofplanar maps were enumer-
ated. It is possible to compute the number of unrooted planarmaps onm edges [18,29,30].
For rootedmaps, the enumeration is easier. The formulas for 3-connected, 2-connected,
connected, and all rooted planar maps are related via a connectivity decomposition [26].
Mulling and Schellenberg [19] used a bijection between 3-connected rooted maps, i.e.,
c-nets, andquadrangulations, which can be further decomposed, to enumerate c-nets in
terms of edges and faces (by Euler’s formula, one can then also control the number of
vertices). The evaluation of their formula, however, involves the evaluation of a double
summation. In this paper, we present a single parameter recurrence that can be com-
puted much faster. Since the generating function is algebraic, it is straightforward to use
singularity analysis (an excellent exposition of which canbe found in the forthcoming
book of Flajolet and Sedgewick [12]) to reproduce the asymptotic results of Bender and
Richmond [2].

3. DECOMPOSITION

In this section we present a unique decomposition strategy for c-nets. Informally, the
idea is toremovethe root edge, and to describe the remaining graph in terms ofsmaller c-
nets. Tutte [25] applied this technique successfully tonear-triangulations, which general-
ize triangulations. The decomposition proposed by Tutte issimple: Either the graph with-
out the root edge is 3-connected, or it is decomposed at its 2-cuts into 3-connected com-
ponents. In either case the decomposition yields one or moresmaller near-triangulations.
The uniqueness of the decomposition is ensured by an important property of the simple
structure of near-triangulations: The components of a decomposition at a 2-cut are inde-
pendent, i.e., an arbitrary combination of near-triangulations can be composed to obtain a
near-triangulation.
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FIGURE 2. The basic case distinction: Every c-net (exceptK3) is either a
d-net, and an e-net, or an f-net.

The generalization of this decomposition to c-nets faces mainly two problems. First,
the objects resulting from the decomposition (i.e., the removal of the root edge) are not
necessarily c-nets. Second, the components induced by a 2-cut are in general not inde-
pendent as described before. We solve these problems by assigning distinct generating
functions to each type of component and by introducing a third case for the decomposi-
tion into dependent components. This leads us to the notionsof d-nets (one 3-connected
component), e-nets (there is a 2-cut that yields two dependent components) and f-nets
(there is a 2-cut that yields two independent components), which are depicted in Fig. 3.

In figures, we draw the root edgest as a directed edge. Edges that are added to the
graph are indicated as dotted lines. If a pair of vertices forms a 2-cut, we draw a dashed
circle around the two vertices. The set of inner vertices is represented by a closed line
with its size noted inside.

We formulate the decomposition in terms of generating functions. Letc(n, k) be the
number of all c-nets onn + 1 inner vertices andk + 2 outer vertices. For technical
reasons, we definedouble rootedc-nets where the root can be a double edge. In par-
ticular, the outer face of a double rooted c-net is bounded bythe rootst and another
single undirected edge. By definition ofc(n, k) the number of double rooted c-nets
on n + 1 inner and two outer vertices isc(n, 0). Since every double rooted c-net can
be identified with a simple c-net by removing the undirected edge, the number of c-
nets onn + 3 vertices in total isc(n) := c(n, 0). Furthermore, this operation trans-
formsk inner vertices into outer vertices, hencec(n, 0) =

∑n

k=1 c(n−k, k). Finally, let
C(t, u) :=

∑

n≥0

∑

k≥0 c(n, k)tnuk be the ordinary generating function for the number of
c-nets, and letC(t) :=

∑

n≥0 c(n)tn.

Decomposition of c-nets. If a c-net has only three vertices (s, t, and an inner vertex)
then it is theK3 with a double root and represents the only initial case of thewhole
decomposition. (The decomposition terminates trivially for negative values ofn or k.)
Now consider c-nets on at least four vertices. We distinguish three disjoint cases; they are
depicted in Fig. 2.

1. After removing the root edge, the remaining graph is stillthree-connected.
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FIGURE 3. The decomposition of d-nets.

2. The vertext is of degree three, and there is a 2-cut in the graph without the root
edge. (The two remaining neighbors oft necessarily form a 2-cut in the graph
without the root.)

3. The vertext is at least of degree four, and there is a 2-cut in the graph without the
root edge.

Now letD(n, k), E(n, k) andF (n, k) be the generating functions representing the c-nets
of the first, second and third case, with coefficientsd(n, k), e(n, k) and f(n, k). For
convenience we call these three different kind of c-netsd-nets, e-netsandf-nets. Then the
basic case distinction can be formulated as follows.

(1) C(t, u) = 1 + D(t, u) + E(t, u) + F (t, u) .

Decomposition of d-nets. Let G be a d-net, i.e.,G is a c-net which is 3-connected after
removing the rootst. The decomposition of d-nets is easy. Letv be the neighbor oft
(different froms) on the inner face that contains the rootst. There are two distinct cases,
depicted in Fig. 3.

1. The vertexv is the only vertex on the inner face ofst excepts andt.
Decomposition:Removest and choosesv as new root edge.
Result:A c-net with one inner vertex less and one outer vertex more thanG.

2. There is at least one other vertex thanv on the inner face ofst excepts andt.
Decomposition:Removest and insertsv as new root edge.
Result:A d-net with one inner vertex less and one outer vertex more thanG.

According to the case distinction the generating functionD(t, u) is the sum of the gen-
erating functionsC(t, u) andD(t, u) multiplied by t for the removed inner vertex and
divided byu for the additional outer vertex. From this we have to subtract C(t, 0) and
D(t, 0) (again multiplied byt and divided byu), since the resulting graph cannot be a
double rooted c-net.

(2) D(t, u) =
t

u
(C(t, u) + D(t, u)) − t

u
(C(t, 0) + D(t, 0)) .

With exception of the initial case every c-net with a double edges root is a d-net. Hence

(3) D(t, 0) = C(t, 0) − 1 .
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FIGURE 4. The decomposition of e-nets.

Decomposition of e-nets. Let G be an e-net, i.e.,G is a c-net andt is of degree3. The
two neighbors oft apart froms areu1 on the outer andv on the inner face and{v, u1}
forms a 2-cut onG withoutst. We now introduce the last two kinds of c-nets that appear
in the decomposition.e+ -nets(represented byE+(t, u)) are defined as e-nets where the
two neighbors (other thans) of t are connected by an edge, whereasf 0-nets(represented
by F 0(t, u)) are defined as f-nets whereu1 has to be one of the cut vertices. In the
decomposition of d-nets there are four distinct cases; theyare depicted in Fig. 4.

1. There is an edgevu1 in G.
Result:An e+-net with the same number of vertices likeG.

2. There is no edgevu1 andG without t is 3-connected.
Decomposition:Removet, insert the edgevu1 and insertsu1 as new root edge.
Result:A d-net with one outer vertex less thanG.

3. There is no edgevu1 andG without t has a 2-cut includingu1.
Decomposition:Removet, insertvu1 and insertsv as new root edge.
Result:An f 0-net with one inner vertex less thanG.

4. There is no edgevu1 andG without t has a 2-cut, whereu1 is no cut vertex.
Decomposition:Removet, insertvu1 and insertsu1 as new root edge.
Result:An f-net with one outer vertex less thanG.

The decomposition of e-nets yields the following equation where the four terms corre-
spond to the respective cases and the factorst andu account for the removed vertices.

(4) E(t, u) = E+(t, u) + u D(t, u) + t F 0(t, u) + u F (t, u) .

Decomposition of e+-nets. Next, letG be an e+-net, i.e., an e-net with an edgevu1. Again,
there are four distinct cases; they are depicted in Fig. 5.

1. The degrees ofv andu1 in G are both three.
Decomposition:Removet andu1, insert the edgevu2 (which cannot exist inG)
and insertsv as new root edge.
Result:An e-net with one inner and one outer vertex less thanG.

2. The degree ofv in G is three and the degree ofu1 in G is at least four.
Decomposition:Removet and insertsv as new root edge.
Result:An e-net with one inner vertex less thanG.
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FIGURE 5. The decomposition of e+-nets.

3. The degree ofv in G is at least four, andu1 is not a cut-vertex of any 2-cut inG
without t.
Decomposition:Removet and insertsu1 as new root edge.
Result:A c-net with one outer vertex less thanG.

4. The degree ofv in G is at least four, andu1 is a cut-vertex of a 2-cut inG withoutt.
Decomposition:Removet and insertsv as new root edge.
Result:An f 0-net with one inner vertex less thanG.

In the equation definingE(t, u) the four terms again correspond to the respective cases
and the factorst andu account for the removed vertices.

(5) E+(t, u) = tu E(t, u) + t E(t, u) + u C(t, u) + t F 0(t, u) .

Decomposition of f-nets and f 0-nets. Let G be an f-net, i.e.,G is a c-net where the de-
gree oft is at least four and which has a 2-cut after removingst. Because of planarity
there exists a unique 2-cutvuj+1 (0 ≤ j ≤ k − 1) that is closest tot (see Figure 6). As
introduced above,G is an f0-net if j = 0. G withoutv anduj+1 has two components, one
of which includest andi inner vertices and the other includess andn − i inner vertices.
Let Gt be the subgraph induced byv, uj+1 and the component containingt, and letGs

be the subgraph induced byv, uj+1 and the component containings. Note that the edge
vuj+1 might or might not be present inG.
Decomposition: If vuj+1 is not an edge ofG, then insert it into bothGt andGs. In-
sert tuj+1 as root edge intoGt. Add a new vertext′ to Gs, insert the edgesst′, t′v
andt′uj+1, and choosest′ to be the root edge ofGs.
Result: Gt is a d-net withi inner andj outer vertices.Gs is an e+-net withn − i inner
andk − j outer vertices. For given parametersi andj the choice whethervuj+1 is an
edge ofG, the choice ofGt and the choice ofGs are all independent, i.e., changing any
of these choices in an f-net yields a different f-net with thesame parameters.

The later two choices account for the product ofD(t, u) andE+(t, u) in the equation
definingF (t, u) while the first choice contributes a factor of two.

(6) F (t, u) = 2 D(t, u)E+(t, u) .
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FIGURE 6. The decomposition of f-nets and f0-nets.

The decomposition for f0-nets is the same, and since an f0-net is an f-net withj = 0, we
have

(7) F 0(t, u) = 2 D(t, 0)E+(t, u)

4. GENERATING FUNCTIONS

We now use the equations (1)–(7) to derive an algebraic equation and an explicit de-
scription forC(t, u) and forC(t) = C(t, 0). First, we eliminate the auxiliary generating
functionsD(t, u), D(t, 0), E(t, u), E+(t, u), F (t, u) andF 0(t, u) within the equations
in (1)–(7). The following list gives the order in which the functions can be eliminated,
together with the equations that are solved for the specific function.D(t, 0), (3); D(t, u),
(2); F (t, u), (6); F 0(t, u), (7); E(t, u), (4); E+(t, u), (5).

The modified equation (1) where all functions except forC(t, u) andC(t) are elimi-
nated is

0 =
r1 C(t, u)2 + r2 C(t)2 + r3 C(t, u) C(t) + r4 C(t, u) + r5 C(t) + r6

s1 C(t, u) + s2 C(t) + s3
, where(8)

r1(t, u) := 2tu + 2t2u + 2tu2 + 2t2u2 ,

r2(t, u) := 4t2 + 4t3 + 4t2u + 4t3u ,

r3(t, u) := − 4t2 − 4t3 − 2tu − 6t2u − 4t3u − 2tu2 − 2t2u2 ,

r4(t, u) := 2t + 2t2 + 4t3 − u + tu + 4t3u + u2 + tu2 − 2t2u2 ,

r5(t, u) := − 2t − 2t2 − 4t3 − 4tu − 2t2u − 4t3u + 2t2u2 ,

r6(t, u) := u + 2tu + 2t2u − tu2 ,

s1(t, u) := 2t2u + 2t2u2 ,

s2(t, u) := − 2t2 − 2t3 + 2tu − 2t2u − 2t3u − 2t2u2 , and

s3(t, u) := t + t2 + 2t3 − u − tu − t2u + 2t3u + tu2 .

We now look for a solutionC(t, u) of (8), such that the numerator equals zero for allt
andu and the denominator differs from zero. AsC(t, u) andC(t) are both of degree two
in (8), we can rewrite the equation as
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0 =
(

g1(t, u) C(t, u) + g2(t, u)
)2 − g3(t, u) , where(9)

g1(t, u) := 4tu(t+1)(u+1) ,

g2(t, u) := 2t+2t2+4t3−u+tu+4t3u+u2+tu2−2t2u2 − 2t(t+1)(u+1)(2t+u) C(t) ,

g3(t, u) := 4t4(u+1)2(4t2−4tu+u2+4t−4u+5)+2tu(u3−4u2−3u−2)+u2(u−1)2

+4t3(u4−5u3−9u2−u+2)+t2(5u4−10u3−15u2+4)

+ 4t2(t+1)2(u+1)2(2t−u)2 C(t)2 − 4t(t+1)(u+1)(4t2+4t3+8t4

−4tu−4t3u+8t4u−u2−5tu2−2t2u2−8t3u2+u3+tu3+2t2u3) C(t) .

Both C(t, u) andC(t) appear in (9), and we cannot solve directly for one of these
functions int andu only. Settingu = 0 we only yield the trivial equation0 = 0. Instead,
we apply the quadratic method due to Tutte [25], and follow the presentation in [15].
We assume that there exists a functionut := u(t) such thatg3(t, ut) = 0. Equation (9)
directly yields0 = g3(t, ut) = (g1 C + g2)

2(t, ut), hence0 = (g1 C + g2)(t, ut) and
then( ∂

∂u
g3)(t, ut) = ∂

∂u
(g1C + g2)

2(t, ut) =
(

2(g1C + g2)
∂
∂u

(g1C + g2)
)

(t, ut) = 0 holds
as well. We now have the following pair of simultaneous equations: 0 = g3(t, ut) and
0 = ( ∂

∂u
g3)(t, ut), depending onC(t), t andu. We eliminateu by calculating the resultant,

i.e., the Sylvester determinant, ofg3(t, ut) and( ∂
∂u

g3)(t, ut) with respect tou, and obtain
one polynomial inC := C(t) and t, the roots of which include the common roots of
g3(t, ut) and ( ∂

∂u
g3)(t, ut); see [12] for details on resultants and generating functions.

The resultant has several nontrivial factors, but only the following factorp(C, t) will be
relevant for us, as the other factors do not match the initialterms ofc(n).

p(C, t) = (8t3+72t4+264t5+504t6+528t7+288t8+64t9) C4

+ (12t2−228t3−988t4−1756t5−2032t6−1792t7−1024t8−256t9) C3

+ (6t+218t2+894t3+2190t4+3284t5+3120t6+2304t7+1344t8+384t9) C2

+ (1−43t−337t2−1021t3−1828t4−2404t5−2128t6−1344t7−768t8−256t9) C

+ (−1+36t+131t2+350t3+540t4+616t5+536t6+304t7+160t8+64t9) .

As the order ofp(C, t) as a polynomial inC is four, andp(C, t) = 0 yields four algebraic
solutions forC. Comparing initial coefficients, we find that the following is the explicit
form of the generating functionC(t).
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C(t) =
1

2q1(t)

(

q2(t) +
√

h(t) +
(

3q3(t) − h(t) +
q4(t)

√

h(t)

)
1

2

)

h(t) = q1(t)
(

(−1)
1

3 (q5(t) − q6(t))
1

3 − (q5(t) + q6(t))
1

3

)

(2

t

)
2

3

+ q3(t)

q1(t) = 12 t(1 + t)(1 + 2t)3

q2(t) = 3 (−3 + 63t + 124t2 + 128t3 + 128t4 + 64t5)

q3(t) = 3 (3 − 2126t + 1571t2 + 11800t3 + 9392t4 + 256t5 − 1024t6)

q4(t) = 54 (1 + 2681t − 46609t2 − 96397t3 + 48468t4 + 188304t5

+ 62016t6 − 63488t7 − 32768t8)

q5(t) = − 729 − 49113t− 61936t2 − 137856t3 + 6144t4 + 8192t5

q6(t) = (t − 1)
(

− 3

2
(32t + 17 − 7

√
7)(32t + 17 + 7

√
7)

)
3

2 .

An explicit form for C(t, u) can be obtained by solving equation (9) forC(t, u), and
substitutingC(t) by its explicit form.

Having the algebraic equation at hand, we can apply singularity analysis: The dominant
singularity lies in the exceptional set of the algebraic curve, and can be computed by
evaluating the resultantR of p(C, t) and ∂

∂C
p(C, t) with respect toC. The solutions fort

in the equationR = 0 can be computed symbolically with Mathematica, and the smallest
real solutiont0, where additionally the equationsp(C, t0) = 0 and ∂

∂C
p(C, t0) = 0 have a

simultaneous solution, is a dominant singularity ofC(t). In this way, it is easy to compute
the dominant singularity ofC(t), which is att0 = 1/32(7

√
7− 17)

.
= 0.047508 (that was

computed before from the equations of Mullin and Schellenberg; see [2]), and proves the
following.

Theorem 1 (essentially from [2]). The number of c-netsc(n) is in (1/t0)
n+o(n), where

1/t0 = 16/27(17 + 7
√

7)
.
= 21.049042.

Using the Maple package GFUN [21], the algebraic equationp(C, t) can be trans-
formed automatically into a linear differential equation with polynomial coefficients,
which in turn translates to a one parameter recurrence formula for cn. Using Horner’s
method and this formula we computed the value ofc(100000) in 100 seconds on a PC.
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Theorem 2. For the coefficientsc(n) of C(t) the following recursion holds.

c(0) = 1, c(1) = 1, c(2) = 7, c(3) = 73, c(4) = 879, c(5) = 11713,

c(6) = 167423, c(7) = 2519937, and forn ≥ 8 ,

c(n) =
(

(42147840 + 49975296(n−7) + 19267584(n−7)2 + 2408448(n−7)3) c(n−7)

+ (291529728 + 269461504(n−7) + 83615232(n−7)2 + 8692736(n−7)3) c(n−6)

+ (533308032 + 435701440(n−7) + 119431200(n−7)2 + 11026784(n−7)3) c(n−5)

+ (259749888 + 220560168(n−7) + 59988636(n−7)2 + 5361276(n−7)3) c(n−4)

+ (−45552288 − 9821452(n−7) + 1941468(n−7)2 + 418816(n−7)3) c(n−3)

+ (−16057320 − 11696062(n−7) − 2582841(n−7)2 − 180467(n−7)3) c(n−2)

+ (5063688 + 2370408(n−7) + 367734(n−7)2 + 18930(n−7)3) c(n−1)
)

/

(255024 + 99918(n−7) + 13041(n−7)2 + 567(n−7)3) .

5. SAMPLING

We now discuss how to use the presented decomposition to sample c-nets uniformly
at random. (As usual,̃O(·) denotes growth up to logarithmic factors.) Note that the
analysis of [13] applies to expected running time, whereas our bound is deterministic.
Moreover, they have parameters for vertices and faces, whereas we have parameters for
the number of vertices and the size of the outer face. Thus theresults are not directly
comparable. Their upper bound isO(n4) for n vertices, and reduces toO(n) if the ratio
of vertex number to face number is fixed to a constant. The worst case is attained for
triangulations.

Theorem 3. There exists a deterministic polynomial time algorithm to sample c-nets on
a given number of vertices and a given number of vertices on the outer face uniformly
at random. The algorithm runs iñO(n5) time andO(n3) space. If we allow a pre-
computation, the algorithm can sample a c-net inÕ(n2) time andO(n5) space.

Proof. The decomposition yields recursive counting functions forc-nets, d-nets, e-nets,
e+-nets, f-nets, and f0-nets. For alln, k ≥ 0:
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c(n, k) =

{

1 if n = k = 0 ,

d(n, k) + e(n, k) + f(n, k) else.

d(n, k) = c(n − 1, k + 1) + d(n − 1, k + 1) .

e(n, k) = e+(n, k) + d(n, k − 1) + f 0(n − 1, k) + f(n, k − 1) .

e+(n, k) = e(n − 1, k − 1) + e(n − 1, k) + c(n, k − 1) + f 0(n − 1, k) .

f(n, k) = 2
n

∑

i=0

k
∑

j=0

d(i, j)e+(n − i, k − j) .

f 0(n, k) = 2

n
∑

i=0

d(i, 0)e+(n − i, k) .

By induction on the lexicographically ordered pair(n, k), the decomposition reduces to
the initial case withinO(nk) steps of recursion. Hence we can evaluate the functions
using dynamic programming. The representation size of all computed numbers is lin-
ear, because it is bounded by the logarithm of the number of unlabeled c-nets, which is
O(2O(n)) according to Theorem 1. Note that the functionsd, e, e+, f , andf 0 are at most
as large asc according to their definitions. Since we employ a constant number of two-
dimensional tables, the total space requirement isO(n3). Concerning the running time,
each summation runs over at most two indices, and for each summand we have to perform
one multiplication withO(n) bit numbers. We assume anO(n logn log log n) multiplica-
tion algorithm (see e.g., [7]). Thus the running time for thecomputation of the values is
within Õ(n5).

The values in the dynamic programming tables can be used to make the correct proba-
bilistic decisions in a recursive construction of c-nets, which is essentially the inversion of
the presented decomposition – this method is standard and known as therecursive method
for sampling [8, 11, 20]. For each entry, we scan over all the entries from which it was
computed (there are at mostn2 of them). We compute partial sums in another pass over
these entries and build a balanced binary tree, where in eachinternal node the maximum
over its left-hand siblings is stored. This will takeO(n5) time in total, since we have
O(n2) table entries, each withO(n2) dependencies, and each tree node stores anO(n) bit
number. After that, when given a random number between 1 and the maximum (i. e., the
value of the entry for which the tree was built), we can find thecorresponding table entry
in one pass through the tree, while reading each bit of the random number only a constant
number of times, and hence inO(n) time. Then the procedure calls itself recursively.
In the case off andf 0, we have to trace back two separate lines, as the random sibling
corresponds to a choice of the summation indicesi (for f ), respectively(i, j) (for f 0) and
the actual summand is a product of two entries (e.g.,d(i, j) ande+(n−i, k−j) for f(n, k)
and(i, j)). Note that the sum of the bit lengths of both factors is linear in the bit length
of the entry. It follows that the total running time for generating the decomposition tree
is Õ(n2). If the decomposition tree is stored appropriately, we can output the sampled
random graph inO(n) time.
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It is not necessary to create the binary trees physically foreach entry of the tables.
Instead, we can just redo the computations from the preprocessing and stop if the partial
sum exceeds the random number. This way, the algorithm usesÕ(n5) time andO(n3)
space. �

To sample unlabeled, unrooted 3-connected planar graphs uniformly at random, we
apply rejection sampling. That is, we generate a c-net uniformly at random, but the re-
sulting graph is accepted only with a probability that is inverse proportional to the size
of the orbit of the root edge together with an incident face inthe automorphism group of
the graph. (It is well-known that the automorphism group of aplanar graph can be com-
puted efficiently, see e.g., [16].) If we do not output the graph, we restart the algorithm.
Clearly, the output of this procedure are uniform random samples from the class of all
3-connected planar graphs. Since a 3-connected planar graph has with high probability a
trivial automorphism group [3], the expected number of restarts is constant.

Corollary 1. Using rejection sampling, we can sample 3-connected planargraphs using
the algorithm of Theorem 3 in an expected constant number of rounds.

6. CONCLUSION

Our main structural result is a new decomposition of rooted 3-connected planar graphs,
which can easily be expressed in terms of recursive countingformulas, or equations for
their generating functions. We use these equations to derive an algebraic equation of
degree four that determines the generating function for thenumber of rooted 3-connected
planar graphs onn vertices. Here we apply computer algebra systems, and also derive a
single parameter recurrence formula, which allows to compute these numbers for much
largern than the previously known formulas of Mullin and Schellenberg [19].

The main algorithmic result is the first deterministic polynomial time algorithm to sam-
ple c-nets with a given number of vertices and a given size of the outer face uniformly at
random. Since the recurrences of the decomposition do not involve any subtractions, the
decomposition immediately translates into a sampling algorithm that produces a rooted
3-connected planar graph uniformly at random. The recursive counting formulas were im-
plemented by top-down dynamic programming in C++ using the GMP library for exact
arithmetic [14]. A table for small values ofn andk is given in Figure 7.

It is fairly straightforward to see that the decomposition can be refined to control more
parameters of the graph, e. g., the number of edges, or the degree of a root vertex [17].
Each parameter comes at the cost of another dimension in the tables and hence increases
the pre-computation time by a quadratic factor. The recursive counting formulas with an
additional parameter for the number for edges were also implemented, and we used the
numbers of Mullin and Schellenberg [19] to check both implementations.

The algorithm can be used to obtain a faster and now fully deterministic polynomial
time sampler for labeled planar graphs [4]. Also, using the rejection sampling method,
we obtain an expected polynomial time algorithm for 3-connected planar graphs (isomor-
phism types of convex polyhedra).
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c(n, k) 0 1 2 3 4 5 n = 6

0 1 1 7 73 879 11713 167423
1 1 6 56 640 8256 115456 1710592
2 1 16 208 2848 41216 624384 9812992
3 1 30 560 9440 156592 2613664 44169600
4 1 48 1240 25864 496944 9234368 169378560
5 1 70 2408 61712 1377600 28663040 574139904
6 1 96 4256 132480 3430528 80104448 1758695424
7 1 126 7008 261648 7826544 205083936 4944057984
8 1 160 10920 483080 16600944 487362496 12906193920
9 1 198 16280 843744 33111232 1086226944 31579350528

k = 10 1 240 23408 1406752 62659200 2289692416 72985375744

c(n, k) 7 8 9 n = 10

0 2519937 39458047 637446145 10561615871
1 26468352 423641088 6966960128 117148778496
2 158883840 2636197888 44640468992 769058340864
3 756712960 13136471040 230851792896 4102116843520
4 3095526912 56624998400 1039080697856 19147850612736
5 11259283200 218198045184 4201424145408 80643838062592
6 37158281984 765948707328 15534537453568 311681600004096
7 112834665216 2481031718144 53154302311936 1117907385569280
8 318621198720 7487670554880 169818439763968 3751908804540416
9 843790483712 21217661003264 510172604564480 11860405982539776

k = 10 2110406347008 56815355557376 1449735177678848 35506327812194304

FIGURE 7. A table ofc(n, k) for small c-nets on up to23 vertices. The
number of vertices on the outer face isk + 2. The total number of vertices
is n + k + 3.
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E-mail address: bodirsky@informatik.hu-berlin.de
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