Growth diagrams and non-symmetric Cauchy identities over near staircases

Olga Azenhas, Aram Emami

CMUC, University of Coimbra
The 72nd Séminaire Lotharingien de Combinatoire
Lyon

March 25, 2014

- (Symmetric) Cauchy identity over rectangle shapes
- Non-symmetric Cauchy identities
- on staircases

- on truncated staircases

- on near staircases

Symmetric Cauchy identity

(Symmetric) Cauchy identity

$$
\begin{aligned}
\prod_{(i, j) \in[k] \times[m]}\left(1-x_{i} y_{j}\right)^{-1} & =\prod_{i=1}^{k} \prod_{j=1}^{m}\left(1-x_{i} y_{j}\right)^{-1} \\
& =\sum_{\nu^{+}} s_{\nu^{+}}\left(x_{1}, \ldots, x_{k}\right) s_{\nu^{+}}\left(y_{1}, \ldots, y_{m}\right)
\end{aligned}
$$

over all partitions ν^{+}of length $\leq \min \{k, m\}$.
Left hand side is symmetric in the variables x_{i} and y_{j} separately.

Symmetric Cauchy identity

(Symmetric) Cauchy identity

$$
\begin{aligned}
\prod_{(i, j) \in[k] \times[m]}\left(1-x_{i} y_{j}\right)^{-1} & =\prod_{i=1}^{k} \prod_{j=1}^{m}\left(1-x_{i} y_{j}\right)^{-1} \\
& =\sum_{\nu^{+}} s_{\nu^{+}}\left(x_{1}, \ldots, x_{k}\right) s_{\nu^{+}}\left(y_{1}, \ldots, y_{m}\right)
\end{aligned}
$$

over all partitions ν^{+}of length $\leq \min \{k, m\}$.
Left hand side is symmetric in the variables x_{i} and y_{j} separately.

Symmetric Cauchy identity

(Symmetric) Cauchy identity

$$
\begin{aligned}
\prod_{, j) \in[k] \times[m]}\left(1-x_{i} y_{j}\right)^{-1} & =\prod_{i=1}^{k} \prod_{j=1}^{m}\left(1-x_{i} y_{j}\right)^{-1} \\
& =\sum_{\nu^{+}} s_{\nu^{+}}\left(x_{1}, \ldots, x_{k}\right) s_{\nu^{+}}\left(y_{1}, \ldots, y_{m}\right)
\end{aligned}
$$

over all partitions ν^{+}of length $\leq \min \{k, m\}$.
Left hand side is symmetric in the variables x_{i} and y_{j} separately.

Bijective proof: D. E. Knuth. Pacific J. Math, 1970,

RSK: Robinson-Schensted-Knuth correspondence

- RSK correspondence
$\left\{\right.$ multisets of cells of $\left[\begin{array}{l}\| ⿻ \# \#\end{array}\right\} \rightarrow \biguplus_{\nu^{+} \in \mathbb{N}^{k}} \operatorname{SSY} T\left(\nu^{+}, k\right) \times \operatorname{SSY} T\left(\nu^{+}, m\right)$

$$
\left(\begin{array}{lll}
b_{1} & \cdots & b_{r} \\
a_{1} & \cdots & a_{r}
\end{array}\right) \rightarrow(F, G)
$$

- The multivariate generating function for the multisets of cells in (m^{k})

$$
\begin{aligned}
\prod_{(i, j) \in\left(m^{k}\right)}\left(1-x_{i} y_{j}\right)^{-1} & =\sum_{\nu^{+} \mathbb{N}^{k}} \sum_{(F, G) \in \operatorname{SSTY}\left(\nu^{+}, k\right) \times \operatorname{SSTY}\left(\nu^{+}, m\right)} x^{F} y^{G} \\
& =\sum_{\nu^{+} \mathbb{N}^{k}} s_{\nu^{+}}\left(x_{1}, \ldots, x_{k}\right) s_{\nu^{+}}\left(y_{1}, \ldots, y_{m}\right)
\end{aligned}
$$

- RSK correspondence gives an expansion of the Cauchy kernel in the basis of Schur polynomials.

Schur polynomial

$$
s_{\nu^{+}}=\sum_{T \in S S Y T_{n}\left(\nu^{+}\right)} x^{T}
$$

Non-symmetric Cauchy identity over staircases

Non-symmetric Cauchy identity over staircases A. Lascoux (2003)

$$
\prod_{i+j \leq n+1}\left(1-x_{i} y_{j}\right)^{-1}=\sum_{\nu \in \mathbb{N}^{n}} \widehat{\kappa}_{\nu}(x) \kappa_{\omega \nu}(y)
$$

The left hand side is no more symmetric on the variables x_{i} and y_{j}.

A. Lascoux (2003) RSK for bicrystals in type A.
A. M. Fu, A. Lascoux (2009) algebraic proof

Bases for $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$

- Linear bases for the ring of integer polynomials $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- Key polynomials $\left\{\kappa_{\nu}: \nu \in \mathbb{N}^{n}\right\}$ lift the Schur polynomials $s_{\nu^{+}}$

$$
\kappa_{\left(\nu_{n}, \ldots, \nu_{1}\right)}=s_{\nu^{+}}, \quad \nu_{n} \leq \ldots \leq \nu_{1}
$$

- Demazure atoms $\left\{\widehat{\kappa}_{\nu}: \nu \in \mathbb{N}^{n}\right\}$

Bases for $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$

- Linear bases for the ring of integer polynomials $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- Key polynomials $\left\{\kappa_{\nu}: \nu \in \mathbb{N}^{n}\right\}$ lift the Schur polynomials $s_{\nu^{+}}$

$$
\kappa_{\left(\nu_{n}, \ldots, \nu_{1}\right)}=s_{\nu^{+}}, \quad \nu_{n} \leq \ldots \leq \nu_{1}
$$

- Demazure atoms $\left\{\widehat{\kappa}_{\nu}: \nu \in \mathbb{N}^{n}\right\}$

$$
\kappa_{\nu}=\sum_{\beta \leq \nu} \widehat{\kappa}_{\beta} \quad s_{\nu^{+}}=\sum_{\nu \in \mathfrak{S}_{n} \nu^{+}} \widehat{\kappa}_{\nu}
$$

The Bruhat ordering on $\mathfrak{S}_{n} \nu$ is defined to be the transitive closure of the relations

$$
\left(\nu_{1}, \ldots, \nu_{i}, \ldots, \nu_{j}, \ldots, \nu_{n}\right)<\left(\nu_{1}, \ldots, \nu_{j}, \ldots, \nu_{i}, \ldots, \nu_{n}\right), \text { if } \nu_{j}<\nu_{i}
$$

Combinatorial structure of key polynomials

- Combinatorial rules for monomial expansions of the linear bases $\left\{\kappa_{\alpha}: \alpha \in \mathbb{N}^{n}\right\}$ and $\left\{\widehat{\kappa}_{\alpha}: \alpha \in \mathbb{N}^{n}\right\}$
- Lascoux-Schützenberger (late 80's)

$$
\begin{aligned}
\operatorname{SSY}_{n}(\lambda) & =\biguplus_{\alpha \in \mathfrak{S}_{n} \lambda}\left\{T \in S S Y T_{n}: K_{+}(T)=\operatorname{key}(\alpha)\right\} \\
\operatorname{key}(1,0,4,0,2) & =\begin{array}{llll}
5 \\
3 & 5 \\
1 & 3 & 3 & 3
\end{array}
\end{aligned}
$$

Combinatorial structure of key polynomials

- Combinatorial rules for monomial expansions of the linear bases $\left\{\kappa_{\alpha}: \alpha \in \mathbb{N}^{n}\right\}$ and $\left\{\widehat{\kappa}_{\alpha}: \alpha \in \mathbb{N}^{n}\right\}$
- Lascoux-Schützenberger (late 80's)

$$
\begin{aligned}
\operatorname{SSY}_{n}(\lambda) & =\biguplus_{\alpha \in \mathfrak{S}_{n} \lambda}\left\{T \in S S Y T_{n}: K_{+}(T)=\operatorname{key}(\alpha)\right\} \\
\operatorname{key}(1,0,4,0,2) & =\begin{array}{ll}
5 \\
3 & 5 \\
1 & 3
\end{array} 3
\end{aligned}
$$

- Kashiwara crystal bases (early 90's); Haglund, Haiman, Loehr (2005); Mason (2009)

$$
\begin{aligned}
& \hat{\kappa}_{\alpha}(x)=\sum_{T \in \hat{\mathfrak{B}}_{\alpha}} x^{T}=\sum_{K_{+}(T)=k e y(\alpha)} x^{T}=\sum_{s h(F)=\alpha} x^{F} \\
& \kappa_{\alpha}(x)=\sum_{T \in \mathfrak{B}_{\alpha}} x^{T}=\sum_{K_{+}(T) \leq \operatorname{key}(\alpha)} x^{T}=\sum_{\operatorname{sh}(F) \leq \alpha} x^{F} .
\end{aligned}
$$

SSAFs encode SSYTs with the right keys (Mason,2008)

A triangle of Robinson-Schensted-Knuth correspondences (Mason)

$$
\begin{aligned}
& (\widetilde{P}, \widetilde{Q}) \frac{\operatorname{sev}}{\rho}(F, G) \text { RSK } \\
& \operatorname{sh}(F)^{+}=\operatorname{sh}(G)^{+}=\operatorname{sh}(P)=\operatorname{sh}(Q)=\operatorname{sh}(\widetilde{P})=\operatorname{sh}(\widetilde{Q}) \\
& \operatorname{key}(F))=K_{+}(P), \operatorname{key}(\operatorname{sh}(G))=K_{+}(Q)
\end{aligned}
$$

RSK analogue restricted to truncated staircases

- RSK analogue for staircases

- RSK analogue for truncated staircases

Bijective proof

Bijective proof

$$
=\sum_{\nu \in \mathbb{N}^{k}} \widehat{\kappa}_{\nu}(x) \sum_{\substack{Q \in \mathfrak{B}_{\left(0^{n-k}, \omega \nu\right)} \\ \text { entries } \leq m}} y^{Q}
$$

$$
=\sum_{\nu \in \mathbb{N}^{k}} \widehat{\kappa}_{\nu}(x) \pi_{\sigma(\lambda, S E)} \kappa_{\left(\omega \nu, 0^{n-k}\right)}(y)(\text { Lacoux }, 2003)
$$

$$
=\sum_{\nu \in \mathbb{N}^{k}} \widehat{\kappa}_{\nu}(x) \kappa_{\left(0^{m-k}, \alpha\right)}(y)
$$

The action of Demazure operators π_{i} on key polynomials κ_{ν} can be realised via bubble sorting operators acting on ν, swapping entries i and $i+1$ in the weak composition ν, if $\nu_{i}>\nu_{i+1}$, and doing nothing, otherwise,

$$
\pi_{i} \kappa_{\alpha}= \begin{cases}\kappa_{s_{i} \alpha} & \text { if } \alpha_{i}>\alpha_{i+1} \\ \kappa_{\alpha} & \text { if } \alpha_{i} \leq \alpha_{i+1}\end{cases}
$$

$$
\sum_{\nu \in \mathbb{N}^{k}} \widehat{\kappa}_{\nu}(x) \pi_{\sigma(\lambda, S E)} \kappa_{\left(\omega \nu, 0^{n-k}\right)}(y)(\operatorname{Lascoux}, 2003)
$$

$$
\begin{aligned}
& 1 \leq k \leq m \leq n, \text { and } n-k \leq m-1, \\
& \sigma(\lambda, S E)=\left(s_{n-k} \cdots s_{1}\right) \cdots\left(s_{m-2} \cdots s_{k-(n+m)-1}\right)\left(s_{m-1} \ldots s_{k-n+m}\right) \cdots\left(s_{m-1} \cdots s_{k}\right)
\end{aligned}
$$

Non-symmetric Cauchy identity over near staircases

We want to give a bijective proof for the identity:

(Lascoux 2003)

- Look at the biggest staircase contained inside the near staircases

Algebraic proof (Lascoux, 2003)

$\lambda_{1}=$ red shape \cup green box \cup blue box $\lambda_{2}=$ red shape \cup green box $\lambda_{3}=$ red shape

$$
\begin{aligned}
F_{\lambda_{3}}=\prod_{(i, j) \in \lambda_{3}}\left(1-x_{i} y_{j}\right)^{-1}, \quad F_{\lambda_{2}}=\left(1-x_{r} y_{s}\right)^{-1} F_{\lambda_{3}}=\sum_{\nu \in \mathbb{N}^{n}} \widehat{\kappa}_{\nu}(x) \kappa_{\omega \nu}(y) . \\
\pi_{r} F_{\lambda_{2}}=\left(\pi_{r}\left(1-x_{r} y_{s}\right)^{-1}\right) F_{\lambda_{3}}=F_{\lambda_{2}}\left(1-x_{r+1} y_{s}\right)^{-1}=F_{\lambda_{1}} \\
F_{\lambda_{1}}=\sum_{\nu \in \mathbb{N}^{n}} \pi_{r} \widehat{\kappa}_{\nu}(x) \kappa_{\omega \nu}(y)=\sum_{\nu \in \mathbb{N}^{n}} \widehat{\kappa}_{\nu}(x) \pi_{n-r} \kappa_{\omega \nu}(y) .
\end{aligned}
$$

The operator π_{r} reproduce cells.

Biwords in a Ferrers shape

$$
w=\left(\begin{array}{lllllllllll}
1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 & 5 & 6 & 7 \\
3 & 4 & 2 & 6 & 3 & 4 & 4 & 3 & 4 & 1 & 1
\end{array}\right)
$$

The biword w in the Ferrers shape $\lambda=(7,6,5,5,3,2,1)$ is represented by putting a cross \times in the cell (i, j) of λ if $\binom{j}{i}$ is a biletter of w.

$$
\lambda=(7,6,5,5,3,2,1)
$$

$\left(\begin{array}{lllllll}1 & 1 & 3 & 3 & 4 & 5 & 5 \\ 3 & 4 & 3 & 4 & 4 & 3 & 4\end{array}\right)$

$\left(\begin{array}{lllllll}1 & 1 & 3 & 3 & 4 & 5 & 5 \\ 3 & 4 & 3 & 3 & 4 & 3 & 3\end{array}\right)$

Apply the crystal operator e_{r} as long as it is possible to the second row of the biword w.

$$
\binom{11223345567}{34263443411} \rightarrow\binom{11223345567}{34263343311}
$$

Growth diagram for the analogue of RSK

The shape of SSAF changes

$$
\begin{gathered}
(F, G) \longleftarrow(\tilde{F}, G) \\
\operatorname{sh}(F)=s_{r} \operatorname{sh}(\tilde{F})>\operatorname{sh}(\tilde{F})
\end{gathered}
$$

The shape of SSAF changes

$$
\begin{gathered}
(F, G) \longleftarrow(\tilde{F}, G) \\
\operatorname{sh}(F)=s_{r} \operatorname{sh}(\tilde{F})>\operatorname{sh}(\tilde{F}) \\
\operatorname{sh}(G) \leq \omega \operatorname{sh}(\tilde{F})=\omega s_{r} \operatorname{sh}(F) \\
\operatorname{sh}(G) \nsubseteq \omega \operatorname{sh}(F)
\end{gathered}
$$

RSK analogue restricted to near staircases

- RSK analogue for near staircases

Let $0 \leq p<n$ and $0<r_{1}<r_{2}<\cdots<r_{p} \leq n$.

$$
\begin{aligned}
\prod_{(i, j) \in \lambda}\left(1-x_{i} y_{j}\right)^{-1} & =\prod_{i+j \leq n+1}\left(1-x_{i} y_{j}\right)^{-1} \prod_{i=1}^{p}\left(1-x_{r_{i}+1} y_{n-r_{i}+1}\right)^{-1} \\
& =\sum_{(F, G) \in \mathcal{A}} x^{F} y^{G}+\sum_{z=1}^{p} \sum_{H_{z} \in\binom{[p]}{z}} \sum_{(F, G) \in \mathcal{A}_{z}^{H_{z}}} x^{F} y^{G}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\nu \in \mathbb{N}^{n}}\left(\pi_{r_{1}} \ldots \pi_{r_{\rho}} \widehat{\kappa}_{\nu}(x)\right) \kappa_{\omega \nu}(y)=\pi_{r_{1}}\left(\sum_{\nu \in \mathbb{N}^{n}} \pi_{r_{2}} \ldots \pi_{r_{p}} \widehat{\kappa}_{\nu}(x) \kappa_{\omega \nu}(y)\right) \\
& =\pi_{r_{1}}\left(\sum_{z=0}^{p-1} \sum_{H_{z} \in\binom{[2, p]}{z}} \sum_{(F, G) \in \mathcal{A}_{z}^{H_{z}}} x^{F} y^{G}\right) \\
& \left.=\sum_{z=0}^{p-1} \sum_{H_{z} \in\binom{[2, p]}{z}} \sum_{(F, G) \in \mathcal{A}_{z}^{H_{z}}} x^{F} y^{G}+\sum_{(F, G) \in \mathcal{A}_{z+1}^{H_{z+1}^{1}}} x^{F} y^{G}\right) \\
& =\sum_{z=0}^{p} \sum_{H_{z} \in\binom{[p]}{z}} \sum_{(F, G) \in \mathcal{A}_{z}^{H_{z}}} x^{F} y^{G} \\
& \pi_{r_{1}} \widehat{\kappa}_{\alpha}=\left\{\begin{array}{cl}
\widehat{\kappa}_{s_{r_{1}}}+\widehat{\kappa}_{\alpha} & \text { if } \alpha_{r}>\alpha_{r+1} \\
\widehat{\kappa}_{\alpha} & \text { if } \alpha_{r_{1}}=\alpha_{r_{1}+1} \\
0 & \text { if } \alpha_{r_{1}}<\alpha_{r_{1}+1}
\end{array} .\right.
\end{aligned}
$$

