Bell polynomials in combinatorial Hopf algebras

Ali Chouria

Quïlis

University of Rouen
Séminaire Lotharingien de Combinatoire (72nd)

March 25, 2014

Presentation

\checkmark Introduction

- The commutative partial multivariate Bell polynomials have been defined by E.T. Bell in 1934.
- given by :

$$
\begin{aligned}
& \quad B_{n, k}\left(a_{1}, a_{2}, \ldots\right)=\sum \frac{n!}{k_{1}!k_{2}!\ldots k_{n}!}\left(\frac{a_{1}}{1!}\right)^{k_{1}}\left(\frac{a_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{a_{n}}{n!}\right)^{k_{n}} \\
& \text { where } k_{1}+k_{2}+\cdots k_{n}=k \text { and } k_{1}+2 k_{2}+3 k_{3}+\cdots n k_{n}=n
\end{aligned}
$$

- Applications :
- Combinatorics : set partitions
- Analysis, Algebra : Lagrange inversion theorem, Faà di Bruno's formula
- Probabilities : Gibbs distributions.

Presentation

- Some of the simplest formulæ are related to the enumeration of combinatorial objects
- Stirling numbers of the first kind $s_{n, k}=\left[\begin{array}{l}n \\ k\end{array}\right]$ (A008275)
- count the number of permutations according to their number of cycles.

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=B_{n, k}(0!, 1!, 2!, \ldots)
$$

Presentation

- Some of the simplest formulæ are related to the enumeration of combinatorial objects
- Stirling numbers of the first kind $s_{n, k}=\left[\begin{array}{c}n \\ k\end{array}\right]$ (A008275)
- count the number of permutations according to their number of cycles.

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]=B_{n, k}(0!, 1!, 2!, \ldots)
$$

Example

- $s(4,2)=11$: the symmetric group on 4 objects has
- 3 permutations of the form $(* *)(* *)$: 2 orbits, each of size 2
- 8 permutations of the form $(* * *)(*)$: 1 orbit of size 3 and 1 orbit of size 3.

Présentation

- Stirling numbers of the second kind $S_{n, k}=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ (A106800)
- count the number of ways to partition a set of n objects into k non-empty subsets.

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=B_{n, k}(1,1, \ldots, 1)
$$

Présentation

- Stirling numbers of the second kind $S_{n, k}=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ (A106800)
- count the number of ways to partition a set of n objects into k non-empty subsets.

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=B_{n, k}(1,1, \ldots, 1)
$$

Example

- $S(4,2)=7$

Présentation

- Stirling numbers of the second kind $S_{n, k}=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ (A106800)
- count the number of ways to partition a set of n objects into k non-empty subsets.

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=B_{n, k}(1,1, \ldots, 1)
$$

Example

- $S(4,2)=7$
- Lah numbers, : $L(n, k)=\binom{n-1}{k-1} \frac{n!}{k!}$ (Sloane: A008297)
- count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets.

$$
L(n, k)=B_{n, k}(1!, 2!, \ldots,(n-k+1)!)
$$

Motivation

- Find the main identities from symmetric functions
- Give analogues of these formulæ in some Hopf algebras :
- The algebra of symmetric functions Sym ([33211] is a partition of the integer 10)
- The algebra of word symmetric functions WSym ($\{\{1,3\},\{4\}\{2,5\}\}$ is a set partition of $\{1,2,3,4,5\}$)
- The bi-indexed word algebra BWSym whose bases are indexed by set partitions into lists which can be constructed from a set partition by ordering each block.
$\{[3,1],[2]\} \sim\binom{321}{\{\{1,3\},\{2\}\}}$ set partitions into lists of $\{1,2,3\}$

Presentation

- The PhD thesis of M. Mihoubi present some applications of these polynomials and several examples
- Dominique Manchon et al. (Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras - 2014)
- various descriptions, commutative and noncommutative Bell polynomials
- construct commutative and noncommutative Bell polynomials and explain how they give rise to Faà di Bruno's Hopf algebras.

Outline

(1) Combinatorial Hopf algebras

2 Bell polynomials
3 Bell polynomials in combinatorial Hopf algebras
(4) Conclusion

Combinatorial Hopf algebras

\checkmark combinatorial objects:

- words : $\mathbb{C}<\mathbb{A}>$
- permutations : FQSym
- integer partitions : Sym
- compositions : QSym
- binary trees : PBT
- set compositions : WQSym
- set partitions : WSym
- set partitions in lists : BWSym

How do we define a combinatorial Hopf algebra?

Minimum requirements

- bases indexed by a combinatorial object
- has a product and a coproduct
- graded
- dimension of space of degree 0 is 1

How do we define a combinatorial Hopf algebra?

Minimum requirements

- bases indexed by a combinatorial object
- has a product and a coproduct
- graded
- dimension of space of degree 0 is 1

Additional conditions

- can be realized as subalgebras of a polynomial algebra with an infinite number of variables
- has distinguished basis which has positive product and coproduct structure coefficients
- related to representation theory

The algebra of symmetric functions : Sym

The algebra of symmetric functions

- The algebra of symmetric functions, $\operatorname{Sym}(\mathbb{X})$, is the space of the polynomials that are invariant under permutations of the variables
- bases indexed by partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0\right)$.

The algebra of symmetric functions : Sym

The algebra of symmetric functions

- The algebra of symmetric functions, $\operatorname{Sym}(\mathbb{X})$, is the space of the polynomials that are invariant under permutations of the variables
- bases indexed by partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0\right)$.
- Sym is generated by the monomials as a vector space
- Sym is generated as an algebra by :
(1) The power sum symmetric functions; $p_{n}(\mathbb{X})$ is defined by :

$$
p_{n}(\mathbb{X})=\sum_{i \geqslant 1} x_{i}^{n}
$$

(2) The nth complete symmetric functions; $h_{n}(\mathbb{X})$ the sum of all the monomials of degree n

The algebra of symmetric functions : Sym

Example

- for an alphabet $\mathbb{X}=\left\{x_{1}, x_{2}, x_{3}\right\}$

$$
\begin{gathered}
m_{21}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}+x_{3}^{2} x_{2} \\
h_{3}=m_{3}+m_{21}+m_{111} \\
=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+m_{21}+x_{1} x_{2} x_{3} .
\end{gathered}
$$

$$
\begin{aligned}
p_{21}= & p_{2} p_{1} \\
& =\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\left(x_{1}+x_{2}+x_{3}\right) \\
& =m_{3}+m_{21}
\end{aligned}
$$

Newton formula

- The generating function of the $h_{n}(\mathbb{X})$ is given by the Cauchy function :

$$
\sigma_{t}(\mathbb{X})=\sum_{n \geqslant 0} h_{n}(\mathbb{X}) t^{n}=\prod_{i \geqslant 1}\left(1-x_{i} t\right)^{-1}
$$

Newton formula

- The generating function of the $h_{n}(\mathbb{X})$ is given by the Cauchy function:

$$
\sigma_{t}(\mathbb{X})=\sum_{n \geqslant 0} h_{n}(\mathbb{X}) t^{n}=\prod_{i \geqslant 1}\left(1-x_{i} t\right)^{-1}
$$

Newton formula

These two free families of generators of Sym are linked by the Newton formula :

$$
\sigma_{t}(\mathbb{X})=\exp \left\{\sum_{n \geqslant 1} p_{n}(\mathbb{X}) \frac{t^{n}}{n}\right\}
$$

where $\mathbb{X}=\left\{x_{1}, x_{2}, \ldots\right\}$ is an infinite set of commuting variables

Transformations of alphabets

- let \mathbb{X}, \mathbb{Y} be two alphabets and $\alpha \in \mathbb{C}$
- the sum of two alphabets $\mathbb{X}+\mathbb{Y}$ is defined by :

$$
p_{n}(\mathbb{X}+\mathbb{Y})=p_{n}(\mathbb{X})+p_{n}(\mathbb{Y})
$$

or equivalently

$$
\sigma_{t}(\mathbb{X}+\mathbb{Y})=\sigma_{t}(\mathbb{X}) \sigma_{t}(\mathbb{Y})
$$

Transformations of alphabets

- let \mathbb{X}, \mathbb{Y} be two alphabets and $\alpha \in \mathbb{C}$
- the sum of two alphabets $\mathbb{X}+\mathbb{Y}$ is defined by :

$$
p_{n}(\mathbb{X}+\mathbb{Y})=p_{n}(\mathbb{X})+p_{n}(\mathbb{Y})
$$

or equivalently

$$
\sigma_{t}(\mathbb{X}+\mathbb{Y})=\sigma_{t}(\mathbb{X}) \sigma_{t}(\mathbb{Y})
$$

- the product of two alphabets :

$$
p_{n}(\mathbb{X} \mathbb{Y})=p_{n}(\mathbb{X}) p_{n}(\mathbb{Y})
$$

and

$$
\sigma_{t}(\alpha \mathbb{X})=\left[\sigma_{t}(\mathbb{X})\right]^{\alpha}
$$

eq

$$
p_{n}(\alpha \mathbb{X})=\alpha p_{n}(\mathbb{X})
$$

The algebra of word symmetric functions

Definition of WSym

Let \mathbb{A} be an alphabet.
$\checkmark \mathbb{C}<\mathbb{A}>=\{$ linear combinations of words with the concatenation product\}
\checkmark The algebra of word symmetric functions is a way to construct a noncommutative analogue of Sym.

The algebra of word symmetric functions

Definition of WSym

Let \mathbb{A} be an alphabet.
$\checkmark \mathbb{C}<\mathbb{A}>=\{$ linear combinations of words with the concatenation product\}
\checkmark The algebra of word symmetric functions is a way to construct a noncommutative analogue of Sym.

- its bases are indexed by set partitions
- power sum symmetric functions : $\Phi:=\left\{\Phi^{\pi}\right\}_{\pi}$:

$$
\Phi^{\pi}(\mathbb{A})=\sum_{w} a_{1} a_{2} \ldots a_{n} \text { where } i, j \in \pi_{k} \Rightarrow a_{i}=a_{j}
$$

- word monomial functions defined by $\Phi^{\pi}=\sum_{\pi \leq \pi^{\prime}} M_{\pi^{\prime}}$

Example

$$
\begin{aligned}
& \Phi\{1,3\}\{2\} \\
& \Phi\{1,4\}\{2,5,6\}\{3,7\}\{8\}=\Phi\{1,3\}\{2\}\{4,7\}\{5,8,9\}\{6,10\}\{11\} \\
& \Phi \\
& \Phi^{\{1,4\}\{2,5,6\}\{3,7\}}= M_{\{1,4\}\{2,5,6\}\{3,7\}}+M_{\{1,2,4,5,6\}\{3,7\}}+M_{\{1,3,4,7\}\{2,5,6\}} \\
&+M_{\{1,4\}\{2,3,5,6,7\}}+M_{\{1,2,3,4,5,6,7\}} .
\end{aligned}
$$

Outline

(1) Combinatorial Hopf algebras

(2) Bell polynomials
(3) Bell polynomials in combinatorial Hopf algebras
(4) Conclusion

Notations and background

\checkmark The Bell polynomials

- The (complete) Bell polynomials are usually defined on an infinite set of commuting variables $\left\{a_{1}, a_{2}, \ldots\right\}$ by the following generating function

$$
\sum_{n \geqslant 0} A_{n}\left(a_{1}, a_{2}, \ldots, a_{p}, \ldots\right) \frac{t^{n}}{n!}=\exp \left(\sum_{m \geqslant 1} a_{m} \frac{t^{m}}{m!}\right)
$$

where A_{n} is the number of partitions of a set of size n.

- The partial Bell polynomials are defined by

$$
\sum_{n \geqslant 0} B_{n, k}\left(a_{1}, a_{2}, \ldots, a_{p}, \ldots\right) \frac{t^{n}}{n!}=\frac{1}{k!}\left(\sum_{m \geqslant 0} a_{m} \frac{t^{m}}{m!}\right)^{k}
$$

where $B_{n, k}$ counts the number of partitions of a n-set into k blocks.

examples

Example

- Stirling number of :
the first kind : $\quad B_{n, k}(0!, 1!, 2!, \ldots)=\left[\begin{array}{l}n \\ k\end{array}\right]($ A008275 $)$
the second kind: $\quad B_{n, k}(1,1, \ldots)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ (A106800)

$$
B_{6,2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=6 x_{5} x_{1}+15 x_{4} x_{2}+10 x_{3}^{2}
$$

- 6 set partitions of 6 elements of the form $5+1$
- 15 set partitions of 6 elements of the form $4+2$
- 10 set partitions of 6 elements of the form $3+3$

Notations and background

remark

$$
A_{n}\left(a_{1}, a_{2}, \ldots, a_{n-k}, a_{n-k+1}\right)=\sum_{k=1}^{n} B_{n, k}\left(a_{1}, a_{2}, \ldots, a_{n-k}, a_{n-k+1}\right)
$$

is called the nth complete Bell polynomial

- Without loss of generality, we can assume $a_{1}=1$
- if $a_{1} \neq 0$,

$$
B_{n, k}\left(a_{1}, a_{2}, \ldots, a_{p}, \ldots\right)=a_{1}^{k} B_{n, k}\left(1, \frac{a_{2}}{a_{1}}, \ldots, \frac{a_{p}}{a_{1}}, \ldots\right)
$$

- if $a_{1}=0$ and $k \leqslant n$,

$$
B_{n, k}\left(0, a_{2}, \ldots, a_{p}, \ldots\right)=\frac{n!}{(n-k)!} B_{n, k}\left(a_{2}, \ldots, a_{p}, \ldots\right)
$$

- if $a_{1}=0$ and $n<k, B_{n, k}\left(0, a_{2}, \ldots, a_{p}, \ldots\right)=0$

Observation

- These polynomials are related to several combinatorial sequences which involve set partitions.

Observation

it seems natural to investigate analogous formulæ on Bell polynomials which involve combinatorial objects :

- partitions
- permutations
- set partitions in lists etc
in some combinatorial Hopf algebra with bases indexed by these objects.

Outline

(1) Combinatorial Hopf algebras

(2) Bell polynomials
(3) Bell polynomials in combinatorial Hopf algebras

- Bell polynomials in Sym (sum and product)
- Bell polynomials in the Faà di Bruno algebras
- Bell polynomials in WSym algebrasConclusion

Cauchy function

$\sigma_{t}(\mathbb{X})$ is the generating function of the $h_{n}(\mathbb{X})$

$$
\sigma_{t}(\mathbb{X})=\sum_{n \geqslant 0} h_{n}(\mathbb{X}) t^{n}
$$

remark

- several equalities on Bell polynomials can be proved by manipulating generating functions.
- they are easily proved using symmetric functions and virtual alphabets.

Bell polynomials and Cauchy function

- Consider \mathbb{X} a virtual alphabet satisfying $a_{i}=i!h_{i-1}(\mathbb{X})$ for any $i \geq 1$ and for simplicity, let $\widetilde{h}_{n}(\mathbb{X}):=n!h_{n}(\mathbb{X})$.
- One has :

$$
\begin{aligned}
\sum_{n \geqslant 0} B_{n, k}\left(a_{1}, a_{2}, \ldots\right) \frac{t^{n}}{n!} & =\frac{t^{k}}{k!}\left(\sum_{i \geqslant 1} \frac{a_{i}}{i!} t^{i-1}\right)^{k} \\
& =\frac{t^{k}}{k!}\left(\sum_{i \geqslant 0} h_{i}(\mathbb{X}) t^{i}\right)^{k} \\
& =\frac{t^{k}}{k!}\left(\sigma_{t}(\mathbb{X})\right)^{k} \\
& =\frac{t^{k}}{k!} \sigma_{t}(k \mathbb{X}) .
\end{aligned}
$$

Bell polynomials in terms of Cauchy function

for each $i, a_{i}=i!h_{i-1}(\mathbb{X})$

$$
\begin{aligned}
B_{n, k}\left(1,2!h_{1}, \ldots,(m+1)!h_{m}(\mathbb{X}), \ldots\right) & =\frac{n!}{k!} h_{n-k}(k \mathbb{X}) \\
& =\binom{n}{k} \widetilde{h}_{n-k}(k \mathbb{X})
\end{aligned}
$$

where $\widetilde{h}_{n-k}(k \mathbb{X}):=(n-k)!h_{n-k}(\mathbb{X})$

Bell polynomials in terms of Cauchy function

for each $i, a_{i}=i!h_{i-1}(\mathbb{X})$

$$
\begin{aligned}
B_{n, k}\left(1,2!h_{1}, \ldots,(m+1)!h_{m}(\mathbb{X}), \ldots\right) & =\frac{n!}{k!} h_{n-k}(k \mathbb{X}) \\
& =\binom{n}{k} \tilde{h}_{n-k}(k \mathbb{X})
\end{aligned}
$$

where $\widetilde{h}_{n-k}(k \mathbb{X}):=(n-k)!h_{n-k}(\mathbb{X})$

remark

In the sequel for any alphabet \mathbb{X}, we will denote by $B_{n, k}$ the symmetric function defined by :

$$
B_{n, k}(\mathbb{X}):=\binom{n}{k} \tilde{h}_{n-k}(k \mathbb{X}) .
$$

Examples

- Lah numbers (number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets) :
- Specialization $a_{i}=i!, \forall i$
- It implies $h_{i}(\mathbb{X})=1, \forall i$
- The generating function is given by :

$$
\begin{aligned}
\sigma_{t}(k \mathbb{X}) & =\left(\sum_{n \geqslant 0} h_{n}(\mathbb{X}) t^{n}\right)^{k} \\
& =\left(\sum_{n \geqslant 0} t^{n}\right)^{k}=\left(\frac{1}{1-x}\right)^{k}
\end{aligned}
$$

- with this specialization $\left(a_{i}=i!\right)$,

$$
B_{n, k}(1!, 2!, \ldots, m!, \ldots)=\binom{n-1}{k-1} \frac{n!}{k!}=L_{n, k}
$$

Sums of alphabets

As a consequence of

$$
h_{n}(\mathbb{X}+\mathbb{Y})=\sum_{i=0}^{n} h_{i}(\mathbb{X}) h_{n-i}(\mathbb{Y})
$$

we have

$$
\widetilde{h}_{n}\left(\left(k_{1}+k_{2}\right) \mathbb{X}\right)=\sum_{i=0}^{n}\binom{n}{i} \widetilde{h}_{i}\left(k_{1} \mathbb{X}\right) \tilde{h}_{n-i}\left(k_{2} \mathbb{X}\right)
$$

So that
$B_{n, k_{1}+k_{2}}(\mathbb{X})=\binom{n}{k_{1}+k_{2}} \tilde{h}_{n-k_{1}-k_{2}}\left(\left(k_{1}+k_{2}\right) \mathbb{X}\right)=\sum_{i=0}^{n} \tilde{h}_{i-k_{1}}\left(k_{1} \mathbb{X}\right) \tilde{h}_{n-k_{2}-i}\left(k_{2} \mathbb{X}\right)$.
Hence

$$
\binom{k_{1}+k_{2}}{k_{1}} B_{n, k_{1}+k_{2}}=\sum_{i=0}^{n}\binom{n}{i} B_{i, k_{1}} B_{n-i, k_{2}} .
$$

Sums of alphabets

- for two alphabets \mathbb{X} and \mathbb{Y}, we deduce that

$$
\begin{aligned}
B_{n-k, k}(\mathbb{X}+\mathbb{Y}) & =\frac{(n-k)!}{k!} h_{n-2 k}(k(\mathbb{X}+\mathbb{Y})) \\
& =\frac{(n-k)!}{k!} \sum_{i=0}^{n-2 k} h_{i}(k \mathbb{X}) h_{n-i-2 k}(k \mathbb{Y}) \\
& =\frac{(n-k)!}{k!} \sum_{i_{1}+i_{2}=n} h_{i_{1}-k}(k \mathbb{X}) h_{i_{2}-k}(k \mathbb{Y}) .
\end{aligned}
$$

Observation

$$
B_{n-k, k}(\mathbb{X}+\mathbb{Y})=\binom{n}{k}^{-1} \sum_{i_{1}+i_{2}=n}\binom{n}{i_{1}} B_{i_{1}, k}(\mathbb{X}) B_{i_{2}, k}(\mathbb{Y})
$$

Bell polynomials and binomial functions

- The partial binomial polynomials are known to be involved in interesting identities on binomial functions.
- In this section we want to prove the equality :

Bell polynomials and binomial polynomials

$$
B_{n, k}\left(1, \ldots, i f_{i-1}(a), \ldots\right)=\binom{n}{k} f_{n-k}(k a)
$$

$\forall n \leqslant k \leqslant 1$, where $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a binomial function satisfying
$\left\{\begin{array}{r}f_{0}(x)=1 \\ f_{n}(a+b)=\sum_{k=0}^{n}\binom{n}{k} f_{k}(a) f_{n-k}(b)\end{array}\right.$

- This last identity is nothing but the sum of two alphabets stated in terms of modified complete functions \widetilde{h}_{n}.

Bell polynomials and binomial functions

- With the specialization

$$
\widetilde{h}_{n}(\mathbb{A}):=f_{n}(a) \text { and } \widetilde{h}_{n}(\mathbb{B}):=f_{n}(b)
$$

- the last equality is equivalent to the classical

$$
\widetilde{h}_{n}(\mathbb{A}+\mathbb{B})=\sum_{k=0}^{n}\binom{n}{k} \widetilde{h}_{k}(\mathbb{A}) \widetilde{h}_{n-k}(\mathbb{B})
$$

- which is a direct consequence of $\sigma_{t}(\mathbb{A}+\mathbb{B})=\sigma_{t}(\mathbb{A}) \sigma_{t}(\mathbb{B})$

As a direct consequence of

$$
B_{n, k}\left(1,2!h_{1}, \ldots,(m+1)!h_{m}(\mathbb{X}), \ldots\right)=\binom{n}{k} \tilde{h}_{n-k}(k \mathbb{X})
$$

we obtain

$$
B_{n, k}\left(1, \ldots, i f_{i-1}(a), \ldots\right)=B_{n, k}(\mathbb{A})=\binom{n}{k} \tilde{h}_{n-k}(k \mathbb{A})=\binom{n}{k} f_{n-k}(k a) .
$$

Product of two alphabets

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be two sequences of numbers such that $a_{1}=b_{1}=1$ and $a_{-n}=b_{-n}=0$ for each $n \in \mathbb{N}, k=k_{1} k_{2}$.
- the following identity seems laborious to prove :

$$
\begin{aligned}
& B_{n, k}\left(\ldots, n!\sum_{\lambda \vdash n-1} \operatorname{det}\left|\frac{a_{\lambda_{i}-i+j+1}}{\left(\lambda_{i}-i+j+1\right)!}\right| \operatorname{det}\left|\frac{b_{\lambda_{i}-i+j+1}}{\left(\lambda_{i}-i+j+1\right)!}\right|, \ldots\right)= \\
& \frac{n!}{k!} \sum_{\lambda \vdash n-k}\left(k_{1}!k_{2}!\right)^{\ell(\lambda)} \operatorname{det}\left|\frac{B_{\lambda_{i}-i+j+k_{1}, k_{1}}\left(a_{1}, \ldots\right)}{\left(\lambda_{i}-i+j+k_{1}\right)!}\right| \operatorname{det}\left|\frac{B_{\lambda_{i}-i+j+k_{2}, k_{2}}\left(b_{1}, \ldots\right)}{\left(\lambda_{i}-i+j+k_{2}\right)!}\right| .
\end{aligned}
$$

Product of two alphabets

- Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be two sequences of numbers such that $a_{1}=b_{1}=1$ and $a_{-n}=b_{-n}=0$ for each $n \in \mathbb{N}, k=k_{1} k_{2}$.
- the following identity seems laborious to prove :

$$
\begin{aligned}
& B_{n, k}\left(\ldots, n!\sum_{\lambda \vdash n-1} \operatorname{det}\left|\frac{a_{\lambda_{i}-i+j+1}}{\left(\lambda_{i}-i+j+1\right)!}\right| \operatorname{det}\left|\frac{b_{\lambda_{i}-i+j+1}}{\left(\lambda_{i}-i+j+1\right)!}\right|, \ldots\right)= \\
& \frac{n!}{k!} \sum_{\lambda \vdash n-k}\left(k_{1}!k_{2}!\right)^{\ell(\lambda)} \operatorname{det}\left|\frac{B_{\lambda_{i}-i+j+k_{1}, k_{1}}\left(a_{1}, \ldots\right)}{\left(\lambda_{i}-i+j+k_{1}\right)!}\right| \operatorname{det}\left|\frac{B_{\lambda_{i}-i+j+k_{2}, k_{2}}\left(b_{1}, \ldots\right)}{\left(\lambda_{i}-i+j+k_{2}\right)!}\right| .
\end{aligned}
$$

Observation

But it looks rather simpler when we recognize

$$
B_{n, k}(\mathbb{X} \mathbb{Y})=\frac{n!}{k!} h_{n-k}(k \mathbb{X} \mathbb{Y})
$$

and apply $h_{n}(k \mathbb{X} \mathbb{Y})=\sum_{\lambda \vdash n} s_{\lambda}\left(k_{1} \mathbb{X}\right) s_{\lambda}\left(k_{2} \mathbb{Y}\right)$, where $s_{\lambda}=\operatorname{det}\left|h_{\lambda_{i}-i+j}\right|$.

Outline

(1) Combinatorial Hopf algebras

(2) Bell polynomials
(3) Bell polynomials in combinatorial Hopf algebras

- Bell polynomials in Sym (sum and product)
- Bell polynomials in the Faà di Bruno algebras
- Bell polynomials in WSym algebrasConclusion

specialization with the power sum functions p_{n}

Bell polynomials in Sym again

$$
\begin{gathered}
\sigma_{t}(\mathbb{X})=\sum_{n \geqslant 0} h_{n}(\mathbb{X}) t^{n}=\exp \left\{\sum_{n \geq 1} p_{n}(\mathbb{X}) \frac{t^{n}}{n}\right\} \\
\sum_{n \geqslant 0} A_{n}\left(a_{1}, a_{2}, \ldots, a_{p}, \ldots\right) \frac{t^{n}}{n!}=\exp \left(\sum_{m \geqslant 1} a_{m} \frac{t^{m}}{m!}\right)
\end{gathered}
$$

we can consider the complete Bell polynomials A_{n} as the complete functions $\widetilde{h}_{n}(\mathbb{X})$. Here we define
$A_{n}^{p}(\mathbb{X}):=\widetilde{h}_{n}(\mathbb{X})=A_{n}\left(0!p_{1}(\mathbb{X}), 1!p_{2}(\mathbb{X}), \ldots,(n-1)!p_{n}(\mathbb{X}), \ldots\right)$
$B_{n, k}^{p}=B_{n, k}\left(0!p_{1}(\mathbb{X}), 1!p_{2}(\mathbb{X}), \ldots,(n-1)!p_{n}(\mathbb{X}), \ldots\right)=n!\sum_{\substack{\lambda \vdash n \\ \# \lambda=k}} \frac{1}{z_{\lambda}} p^{\lambda}(\mathbb{X})$
where $z_{\lambda}=\prod_{i} m_{i}(\lambda)!i^{m_{i}(\lambda)}$.

Arbogast(1800) - Faà di Bruno formula

- Faà di Bruno formula can be expressed in terms of Bell polynomials

$$
\frac{d^{n}}{d t^{n}} f(g(t))=\sum_{k \geqslant 0} \sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n} \frac{n!}{z_{\lambda}} f^{(k)}(g(t)) \prod_{j=1}^{k} \frac{g^{\left(\lambda_{j}\right)}(t)}{\left(\lambda_{j}-1\right)!}
$$

- for $\sigma_{x}(\mathbb{X})=\exp \left\{\sum_{n \geq 1} \frac{g^{(n)}(t)}{n!} x^{n}\right\}$
- in other words, $p_{n}(\mathbb{X})=\frac{g^{(n)}(t)}{(n-1)!}$

We deduce

$$
n!\sum_{\lambda \vdash n} \frac{1}{z_{\lambda}} \prod_{j=1}^{k} \frac{g^{\left(\lambda_{j}\right)}(t)}{\left(\lambda_{j}-1\right)!}=B_{n, k}^{p}(\mathbb{X})
$$

so that

$$
\frac{d^{n}}{d t^{n}} f(g(t))=\sum_{k \geqslant 0} f^{(k)}(g(t)) B_{n, k}^{p}(\mathbb{X})
$$

Operation on alphabets

- set $h_{n}(\mathbb{X})=\frac{g^{(n+1)}(t)}{(n+1)!g^{\prime}(t)}$
- we obtain the equivalent expression

$$
\frac{d^{n}}{d t^{n}} f(g(t))=\sum_{k \geqslant 0}\left(g^{\prime}(t)\right)^{k} f^{(k)}(g(t)) B_{n, k}(\mathbb{X})
$$

- we define a new operation on alphabets :

$$
\sigma_{t}(\mathbb{X} \Delta \mathbb{Y}):=\left(\sigma_{t}(\mathbb{X}) \circ t \sigma_{t}(\mathbb{Y})\right)
$$

- assuming that $f(t)=\sigma_{t}(\mathbb{X})$ and $g(t)=t \sigma_{t}(\mathbb{Y})$
- we obtain :

$$
h_{n}(\mathbb{X} \diamond \mathbb{Y})=\sum_{k=1}^{n} \frac{k!}{n!} h_{k}(\mathbb{X}) B_{n, k}(\mathbb{Y})
$$

Faà di Bruno's algebra

- the operation \diamond does not define a coproduct which is compatible with the classical product in Sym.
- the relationship with Bell polynomials can be established by observing that, from the Faà di Bruno's composition given by :

$$
\sigma_{t}(\mathbb{X} \circ \mathbb{Y})=\sigma_{t}(\mathbb{Y}) \sigma_{t}(\mathbb{X} \diamond \mathbb{Y})
$$

we have

$$
h_{n}(\mathbb{X} \circ \mathbb{Y})=\sum_{k=0}^{n} \frac{(k+1)!}{(n+1)!} h_{k}(\mathbb{X}) B_{n+1, k+1}(\mathbb{Y})
$$

Faà di Bruno's algebra

- We define for each alphabet \mathbb{X} an alphabet $\mathbb{X}^{\langle-1\rangle}$ satisfying

$$
\sigma_{t}\left(\mathbb{X} \circ \mathbb{X}^{\langle-1\rangle}\right)=1
$$

We have

$$
h_{n}\left(\mathbb{X}^{\langle-1\rangle}\right)=\frac{h_{n}(-(n+1) \mathbb{X})}{n+1}=\frac{n!}{(2 n+1)!(n+1)} B_{2 n+1, n}(-\mathbb{X}) .
$$

Lagrange-Bürmann's formula

- set $\omega(t), \omega(0)=0$ and $\phi(t)$ such that $\omega(t)=t \phi(t \omega(t))$
- the classical Lagrange-Bürmann formula for any formal power series F :

$$
F(\omega(t))=F(0)+\left.\sum_{n \geq 0} \frac{d^{n-1}}{d u^{n-1}}\left[F^{\prime}(u)(\phi(u))^{m}\right]\right|_{u=0} \frac{t^{n}}{n!} .
$$

Remark that if we suppose $\mathcal{F}(t)=\sigma_{t}(\mathbb{X})$ and $\omega(t)=t \sigma_{t}(\mathbb{Y})$:

$$
\sigma_{t}(\mathbb{X} \diamond \mathbb{Y})=1+\left.\sum_{n \geq 1} \frac{d^{n-1}}{d u^{n-1}}\left[\sigma_{u}^{\prime}(\mathbb{X}) \sigma_{u}\left(-n \mathbb{Y}^{\langle-1\rangle}\right)\right]\right|_{\mid u=0} \frac{t^{n}}{n!}
$$

Lagrange-Bürmann formula

In other words,

$$
\begin{aligned}
h_{n}(\mathbb{X} \diamond \mathbb{Y}) & =\frac{1}{n} \sum_{i+j=n-1}(i+1) h_{i+1}(\mathbb{X}) h_{j}\left(-n \mathbb{Y}^{\langle-1\rangle}\right) \\
& =\frac{1}{n} \sum_{k=1}^{n} k h_{k}(\mathbb{X}) h_{n-k}\left(-n \mathbb{Y}^{\langle-1\rangle}\right)
\end{aligned}
$$

so that

$$
h_{n-k}\left(-n \mathbb{Y}^{\langle-1\rangle}\right)=\frac{(k-1)!}{(n-1)!} B_{n, k}(\mathbb{Y})
$$

as a consequence,

$$
B_{n, k}\left(1, h_{1}(2 \mathbb{X}), \ldots, m!h_{m}((m+1) \mathbb{X}), \ldots\right)=\frac{(n-1)!}{(k-1)!} h_{n-k}(n \mathbb{X})
$$

Bell polynomials of compositions of alphabets

- from the Cauchy series:

$$
\sigma_{t}(\mathbb{X} \diamond \mathbb{Y}):=\left(\sigma_{t}(\mathbb{X}) \circ t \sigma_{t}(\mathbb{Y})\right)
$$

- we give formulas involving Bell polynomials and composition of alphabets
($\binom{n}{k}^{-1} B_{n, k}(\mathbb{X} \diamond \mathbb{Y})=\sum_{i=1}^{n-k}\binom{i+k}{i}^{-1} B_{i+k, k}(\mathbb{X}) B_{n-k, i}(\mathbb{Y})$,
(2) $\binom{n+k}{n} B_{n, k}(\mathbb{X} \circ \mathbb{Y})=\sum_{i=0}^{n-k}\binom{n+k}{i+k} B_{i+k, k}(\mathbb{X} \diamond \mathbb{Y}) B_{n-i, k}(\mathbb{Y})$.

Outline

(1) Combinatorial Hopf algebras

(2) Bell polynomials
(3) Bell polynomials in combinatorial Hopf algebras

- Bell polynomials in Sym (sum and product)
- Bell polynomials in the Faà di Bruno algebras
- Bell polynomials in WSym algebrasConclusion

Bell polynomials in other Hopf algebras

- in the algebra of word symmetric functions, we obtain

$$
\mathcal{B}_{n, k}\left(S^{\{\{1\}\}}(\mathbb{A}), \ldots, S^{\{\{1, \ldots, m\}\}}(\mathbb{A}), \ldots\right)=\sum_{\substack{\nexists \pi=k \\ \pi=n}} S^{\pi}(\mathbb{A}) .
$$

- the bi-indexed word algebra BWSym

$$
\mathcal{B}_{n, k}\left(\mathcal{S}_{1}, \mathcal{S}_{12}+\mathcal{S}_{21}, \ldots, \sum_{\sigma \in \mathfrak{S}_{m}} \mathcal{S}_{\sigma}, \ldots\right)=\sum_{\substack{\text { flln } \\ \forall \hat{\Pi}=k}} \mathcal{S}_{\hat{\Pi}} .
$$

- the Hopf algebra \mathfrak{S} QSym
- denoting by C_{n} the set of the cycles of size n
- we obtain
$\mathcal{B}_{n, k}\left(M_{1}, M_{21}, M_{231}+M_{312}, \ldots, \sum_{\sigma \in C_{n}} M_{\{\{1,2, \ldots, m\}\}}, \ldots\right)=\sum_{\substack{\sigma \in \mathcal{E}_{n} \\ \# \text { supp }(\sigma)=k}} M_{\sigma}$.

Outline

(1) Combinatorial Hopf algebras

(2) Bell polynomials
(3) Bell polynomials in combinatorial Hopf algebras

4 Conclusion

Conclusion

- The algebra Sym can be used to encode equalities on Bell polynomials
- we inverstigate analogues of Bell polynomials in other combinatorial Hopf algebras
- WSym
- BWSym
- the Faà di Bruno's algebra
- express the r - Bell polynomials in combinatorial Hopf algebras (Sym).
- we use properties of symmetric functions to prove known identities about r-Bell polynomials as well as some new ones.
- Link : (1402.2960)

