Bijective proofs of character evaluations using trace forest of the jeu de taquin

Wenjie Fang

LIAFA, Université Paris Diderot

Séminaire Lotharingien de Combinatoire, Lyon, France 2014/03/25

LIAFA. Université Paris Diderot

Wenjie Fang

Characters of the symmetric group

Irreducible characters of ${\cal S}_n$ are very useful in combinatorics.

- Combinatorial maps
- Limit form of partitions
- etc...

There is also a beautiful combinatorial theory.

- Standard Young tableaux, semi-standard tableaux
- Robinson-Schensted-Knuth correspondance
- Jeu de taquin
- Jucys-Murphy elements, contents

etc...

A dual vision, expressed in contents

For each partition $\lambda \vdash n$, we have a character χ^{λ} of S_n . When evaluated on conjugacy classes indexed by $\mu \vdash n$, it is noted as χ^{λ}_{μ} . We denote $f^{\lambda} = \chi^{\lambda}_{[1^n]}$ its dimension. We fix $\mu \vdash k$, and for $\lambda \vdash n$, we want to express the map:

$$\lambda \mapsto \chi^{\lambda}_{[\mu, 1^{n-k}]}.$$

They can be expressed as power sum of contents. $(\lambda \vdash n)$

$$\begin{split} n(n-1)\chi_{2,1^{n-2}}^{\lambda} &= 2f^{\lambda}\left(\sum_{w\in\lambda}c(w)\right)\\ n(n-1)(n-2)\chi_{3,1^{n-3}}^{\lambda} &= 3f^{\lambda}\left(\sum_{w\in\lambda}(c(w))^{2} + n(n-1)/2\right)\\ n(n-1)(n-2)(n-3)\chi_{4,1^{n-4}}^{\lambda} &= 4f^{\lambda}\left(\sum_{w\in\lambda}(c(w))^{3} + (2n-3)\sum_{w\in\lambda}c(w)\right) \end{split}$$

Bijective proofs of character evaluations using trace forest of the jeu de taquin

Introduction			
Previous	work		

$$\begin{split} n(n-1)\chi_{2,1^{n-2}}^{\lambda} &= 2f^{\lambda}\left(\sum_{w\in\lambda}c(w)\right)\\ n(n-1)(n-2)\chi_{3,1^{n-3}}^{\lambda} &= 3f^{\lambda}\left(\sum_{w\in\lambda}(c(w))^{2} + n(n-1)/2\right)\\ n(n-1)(n-2)(n-3)\chi_{4,1^{n-4}}^{\lambda} &= 4f^{\lambda}\left(\sum_{w\in\lambda}(c(w))^{3} + (2n-3)\sum_{w\in\lambda}c(w)\right) \end{split}$$

Much effort was devoted into such expressions.

- Frobenius in 1900 the first, then Ingram and others
- Diaconis and Greene for several cases (Jucys-Murphy elements)
- Kerov and Olshanski gave expression in shifted symmetric functions

LIAFA. Université Paris Diderot

- Corteel, Goupil and Schaeffer proved them always content sums
- Lassalle gave explicit expression (symmetric functions)

All algebraic. Can we do it **combinatorially**?

For $\lambda \vdash n$, a standard Young tableau (or SYT) is a row-and-column-increasing filling from 1 to n of its Young diagram.

6	12			
4	8	13		
3	7	10		
1	2	5	9	11

We denote $f^{\lambda} = \#SYT$ of shape λ .

Wenjie Fang

Bijective proofs of character evaluations using trace forest of the jeu de taquin

LIAFA, Université Paris Diderot

	About tableaux		
Skew tal	oleaux		

We can define SYT for *skew shapes*, i.e. a pair of partitions λ/ν with λ covering ν .

LIAFA. Université Paris Diderot

Here is an example for (5,3,3,2)/(3,2). We denote $f^{\lambda/\nu} = \#SYT$ of shape λ/ν .

Wenjie Fang

Murnaghan-Nakayama rule				
	le	le		

The Murnaghan-Nakayama rull says that characters χ^{λ}_{μ} can be expressed in *ribbon tableaux* of shape λ and ribbon sizes μ .

Corollary

For $\lambda \vdash n$ and $\mu \vdash k$, $\chi^{\lambda}_{\mu 1^{n-k}}$ is a linear combination of $f^{\lambda/\nu}$ for partitions $\nu \vdash k$.

Computing $\chi^{\lambda}_{\mu 1^{n-k}}$ with fixed $\mu \Leftrightarrow \mbox{Computing } f^{\lambda/\nu}$ with fixed ν

LIAFA. Université Paris Diderot

		Case of transposition	
First atte	mpt		

We now try to prove the following combinatorially.

$$n(n-1)\chi_{2,1^{n-2}}^{\lambda} = 2f^{\lambda}\left(\sum_{w\in\lambda} c(w)\right)$$

According to Murnaghan-Nakayama rule, we have

$$\chi^{\lambda}_{2,1^{n-2}} = f^{\lambda/(2)} - f^{\lambda/(1,1)}$$

Because it is nearly standard, with two ways for the ribbon of size 2. Now we need to compute the number of SYT in skew shape.

		Case of transposition	
Jeu de t	aquin		

6	12			
4	8	13		
3	7	10		
1	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ○ ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Case of transposition		
Jeu de taquin				

6	12			
4	8	13		
3	7	10		
1	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ○ ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Case of transposition	
Jeu de t	aquin		

6	*		(1	2)
4	8	13		
3	7	10		
1	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ○ ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Case of transposition	
Jeu de t	aquin		

6	8	(12)		
4	*	13		
3	7	10		
1	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ○ ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Case of transposition	
Jeu de t	aquin		

6	8	(12)		
4	*	13		
3	7	10		
1	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ○ ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Case of transposition	
Jeu de t	aquin		

6	8	(12)		
4	7	13		
3	*	10		
1	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ○ ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Case of transposition	
Jeu de t	aquin		

6	8	(12)		
4	7	13		
3	*	10		
1	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ○ ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Case of transposition	
Jeu de t	aquin		

6	8	(12)		
4	7	13		
*	3	10		
1	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ○ ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Case of transposition	
Jeu de t	aquin		

6	8	(12)		
4	7	13		
1	3	10		
*	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ○ ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Case of transposition	
Jeu de t	aquin		

6	8		(1	2)
4	7	12		
1	3	10		
	2	5	9	11

◆ロ → ◆母 → ◆目 → ◆目 → ○ ● ○ ● ●

Bijective proofs of character evaluations using trace forest of the jeu de taquin

Skew-tableaux via jeu de taquin

The jeu de taquin gives a bijection between:

- (T, a, b), with T STY of shape λ , and $1 \le a, b \le n$, $a \ne b$,
- (T_0, T_1, a, b) , with T_0 a skew tableau of shape λ/μ , T_1 a SYT of shape μ of entries 1, 2, and $1 \le a, b \le n$, $a \ne b$. μ can be (2) or (1, 1).

Just do two consecutive jeu de taquin on \boldsymbol{a} then on $\boldsymbol{b}.$ This extends natually on more entries.

What we want to prove:

$$n(n-1)\chi_{2,1^{n-2}}^{\lambda} = 2f^{\lambda}\left(\sum_{w\in\lambda} c(w)\right).$$

_

What we have in bijection:

• (T, a, b): f^{λ} SYT T

•
$$(T_0, T_1, a, b)$$
: 1 for $T_1 = \Box , -1$ for $T_1 = \Box$
 $n(n-1)(f^{\lambda/(2)-f^{\lambda/(1,1)}}) = n(n-1)\chi_{2,1^{n-2}}^{\lambda}$

We only need to count how many (a, b) give $T_1 = \Box$ or $T_1 = \Box$.

		Trace forest	
Trace for	orest		

Trace forest: union of all jeu de taquin paths. Construction: for each cell, an arc pointing to

LIAFA, Université Paris Diderot

Bijective proofs of character evaluations using trace forest of the jeu de taquin

Effect of jeu de taquin

Lemma (Reformulation of Krattenthaler(1999))

Let c be a cell in a skew tableau T be a tableau, suppose that a jeu de taquin on the entry in c gives the tableau T_a .

 T_a divides into two parts: any jeu de taquin acting on the red (resp. blue) part will give \square (resp. \square).

Proof: Case analysis

$$n(n-1)\chi_{2,1^{n-2}}^{\lambda} = 2f^{\lambda}\left(\sum_{w\in\lambda} c(w)\right).$$

 $(T, a, b) \Leftrightarrow (T_0, T_1, a, b)$, with +1 for $T_1 = \Box \Box$, -1 for $T_1 = \Box$. For a < b, we look at (T, a, b) and (T, b, a). Two cases:

• a, b not on the same path

No total contribution.

LIAFA. Université Paris Diderot

Wenjie Fang

Thus finished the combinatorial proof

$$n(n-1)\chi_{2,1^{n-2}}^{\lambda} = 2f^{\lambda}\left(\sum_{w\in\lambda} c(w)\right).$$

• a, b on the same path. Suppose b on (i, j).

• The path points to a horizontally. (There are i such a)

LIAFA, Université Paris Diderot

Bijective proofs of character evaluations using trace forest of the jeu de taquin

$$n(n-1)\chi_{2,1^{n-2}}^{\lambda} = 2f^{\lambda}\left(\sum_{w\in\lambda} c(w)\right).$$

- a, b not on the same path \Rightarrow Contribution: 0
- a, b on the same path \Rightarrow Contribution: 2c(b)

Therefore, in the bijection between (T, a, b) and (T_0, T_1, a, b) ,

• (T, a, b): f^{λ} SYT T, each contributes $2\sum_{b \in T} c(b)$, thus $2f^{\lambda}\left(\sum_{w \in \lambda} c(w)\right)$

•
$$(T_0, T_1, a, b)$$
: 1 for $T_1 = \Box$ and -1 for $T_1 = \Box \Rightarrow n(n-1)(f^{\lambda/(2)-f^{\lambda/(1,1)}}) = n(n-1)\chi_{2,1^{n-2}}^{\lambda}$

LIAFA, Université Paris Diderot

Bijective proofs of character evaluations using trace forest of the jeu de taquin

		Inductive method
Remarks		

- Purely combinatorial
- Too complicated for other cases
- Computing $\chi^{\lambda}_{\mu} \Leftrightarrow$ Computing $f^{\lambda/\nu}$ for several ν
- \blacksquare Works the same for any T and any trace forest
- \blacksquare Works even for a subtree of the trace forest of T

• Relative content c_a for a cell a: $c_a(w) = c(w) - c(a)$

Content powersum
$$cp_a^{\alpha}$$
: $cp_a^{(k)}(C) = \sum_{w \in C} c_a^{k-1}(w)$

Lemma

Wenjie Fang

For a subtree S rooted at r of the trace forest of a tableau T, the number of pairs (a,b) in S such that $(T,a,b) \leftrightarrow (T_0,T_1,a,b)$ is with $T_0 = \Box \Box$ is

$$G_{(2)}(S) = \frac{1}{2}cp_r^{(1,1)}(S) + cp_r^{(2)}(S) - \frac{1}{2}cp_r^{(1)}(S) = |S|(|S|-1)/2 + \sum_{w \in S} c_r(w).$$

LIAFA, Université Paris Diderot

		Inductive method
Bootstrap		

For a SYT T and a its entry, we note $C_{\leq}(a,T)$ (resp. $C_{\vee}(a,T)$) the tree on the right (resp. below) of T_a .

Compute $f^{\lambda/(3)} \Leftrightarrow$ Compute $G_{(3)}(T) = \sum_{a \in T} G_{(2)}(C_{<}(a,T)).$

LIAFA, Université Paris Diderot

Bijective proofs of character evaluations using trace forest of the jeu de taquin

			Inductive method
Inductiv	e method		

Direct computation impossible.

The tree structure reminds induction. For a subtree S in trace forest, let $S_{<}$ and S_{\vee} be its subtrees on the right and above.

For a function f on a subtree F in the trace forest, its *inductive form* is $(\Delta f)(S) = f(S) - f(S_{<}) - f(S_{\vee})$.

Lemma

Wenjie Fang

For two functions f, g on binary trees with $f(\emptyset) = g(\emptyset) = 0$, $\Delta f = \Delta g \Rightarrow f = g$.

LIAFA, Université Paris Diderot

			Inductive method
Inductive	e form		

For a subtree S in trace forest rooted at r and a partition $\alpha,$ we define

$$<^{(\alpha)}(S) = cp_r^{\alpha}(S_{\leq}), \quad \lor^{(\alpha)}(S) = cp_r^{\alpha}(S_{\vee}).$$

Lemma

For any partition α , $\Delta c p_r^{\alpha}$ is a polynomial in some $<^{(\nu)}$ and $\vee^{(\nu)}$.

To compute a function f (formed by cp_r^{α}), we only need to know Δf .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computing the inductive form

$$\Delta G_{(3)}(S) = \sum_{a \in S} G_{(2)}(C_{<}(a,S)) - \sum_{a \in S_{<}} G_{(2)}(C_{<}(a,S_{<})) - \sum_{a \in S_{\vee}} G_{(2)}(C_{<}(a,S_{\vee})) - \sum_{a \in S_{\vee}} G_{(2)}(C_{<}(a,S_{\vee}))$$

We break the first sum in 3 cases: a is root, $a \in S_{<}$, $a \in S_{\vee}$. In each case we know exactly $C_{<}(a, S)$. Only nasty part: sums of $cp_r^{\alpha}(C_{<}(a, S_{<}))$ and $cp_r^{\alpha}(C_{<}(a, S_{\vee}))$.

LIAFA, Université Paris Diderot

Bijective proofs of character evaluations using trace forest of the jeu de taquin

	Case of transposition	Inductive method
Miracles		

Miracle 1: these sums sum up to $<^{(\nu)}(S)$ and $\vee^{(\nu)}(S)$. Miracle 2: the final result is Δf for some f combination of cp^{α} .

$$G_{(3)} = \frac{1}{6}cp^{(1,1,1)} + cp^{(2,1)} + cp^{(3)} - cp^{(1,1)} - 2cp^{(2)} + \frac{5}{6}cp^{(1)}$$

With some tricks it leads to

$$(n)_{3}\chi^{\lambda}_{(3,1^{n-3})}/f^{\lambda} = 3cp^{(3)}(\lambda) - \frac{3}{2}cp^{(1,1)}(\lambda) + \frac{3}{2}cp^{(1)}(\lambda) = 3\sum_{w\in\lambda}(c(w))^{2} - 3\binom{n}{2}$$

We can define $G_{(4)}(T) = \sum_{a \in T} G_{(3)}(C_{<}(a,T)),$ and it leads to

$$(n)_4 \chi^{\lambda}_{(4,1^{n-4})} / f^{\lambda} = 4 \sum_{w \in \lambda} (c(w))^3 + 4(2n-3) \sum_{w \in \lambda} c(w)$$

Nasty computation, but entirely automatic.

Bijective proofs of character evaluations using trace forest of the jeu de taquin

			Inductive method
How to	explain?		

Totally no clue. Any idea?

> ・ロト ・部ト ・ヨト ・ヨト LIAFA. Université Paris Diderot

э

		Inductive method

Thank you for your attention!

Wenjie Fang Bijective proofs of character evaluations using trace forest of the jeu de taquin LIAFA, Université Paris Diderot

► 4 Ξ ►