Bijective proofs of character evaluations using trace forest of the jeu de taquin

Wenjie Fang
LIAFA, Université Paris Diderot

Séminaire Lotharingien de Combinatoire, Lyon, France 2014/03/25

Characters of the symmetric group

Irreducible characters of S_{n} are very useful in combinatorics.

- Combinatorial maps
- Limit form of partitions

■ etc...
There is also a beautiful combinatorial theory.
■ Standard Young tableaux, semi-standard tableaux

- Robinson-Schensted-Knuth correspondance

■ Jeu de taquin
■ Jucys-Murphy elements, contents
■ etc...

-3 -2 -2 -1 0 -1 0 1 0 1 2 3			
4			

A dual vision, expressed in contents

For each partition $\lambda \vdash n$, we have a character χ^{λ} of S_{n}. When evaluated on conjugacy classes indexed by $\mu \vdash n$, it is noted as χ_{μ}^{λ}. We denote $f^{\lambda}=\chi_{\left[1^{n}\right]}^{\lambda}$ its dimension.
We fix $\mu \vdash k$, and for $\lambda \vdash n$, we want to express the map:

$$
\lambda \mapsto \chi_{\left[\mu, 1^{n-k}\right]}^{\lambda} .
$$

They can be expressed as power sum of contents. $(\lambda \vdash n)$

$$
\begin{aligned}
n(n-1) \chi_{2,1^{n-2}}^{\lambda} & =2 f^{\lambda}\left(\sum_{w \in \lambda} c(w)\right) \\
n(n-1)(n-2) \chi_{3,1^{n-3}}^{\lambda} & =3 f^{\lambda}\left(\sum_{w \in \lambda}(c(w))^{2}+n(n-1) / 2\right) \\
n(n-1)(n-2)(n-3) \chi_{4,1^{n-4}}^{\lambda} & =4 f^{\lambda}\left(\sum_{w \in \lambda}(c(w))^{3}+(2 n-3) \sum_{w \in \lambda} c(w)\right)
\end{aligned}
$$

Previous work

$$
\begin{aligned}
n(n-1) \chi_{2,1^{n-2}}^{\lambda} & =2 f^{\lambda}\left(\sum_{w \in \lambda} c(w)\right) \\
n(n-1)(n-2) \chi_{3,1^{n-3}} & =3 f^{\lambda}\left(\sum_{w \in \lambda}(c(w))^{2}+n(n-1) / 2\right) \\
n(n-1)(n-2)(n-3) \chi_{4,1^{n-4}} & =4 f^{\lambda}\left(\sum_{w \in \lambda}(c(w))^{3}+(2 n-3) \sum_{w \in \lambda} c(w)\right)
\end{aligned}
$$

Much effort was devoted into such expressions.

- Frobenius in 1900 the first, then Ingram and others
- Diaconis and Greene for several cases (Jucys-Murphy elements)
- Kerov and Olshanski gave expression in shifted symmetric functions
- Corteel, Goupil and Schaeffer proved them always content sums
- Lassalle gave explicit expression (symmetric functions)

All algebraic. Can we do it combinatorially?

Standard Young tableaux

For $\lambda \vdash n$, a standard Young tableau (or SYT) is a row-and-column-increasing filling from 1 to n of its Young diagram.

6	12			
4	8	13		
3	7	10		
1	2	5	9	11

We denote $f^{\lambda}=\# S Y T$ of shape λ.

Skew tableaux

We can define SYT for skew shapes, i.e. a pair of partitions λ / ν with λ covering ν.

Here is an example for $(5,3,3,2) /(3,2)$.
We denote $f^{\lambda / \nu}=\# S Y T$ of shape λ / ν.

Murnaghan-Nakayama rule

The Murnaghan-Nakayama rull says that characters χ_{μ}^{λ} can be expressed in ribbon tableaux of shape λ and ribbon sizes μ.

2	5			
2	2	3		
2	2			
1	2	3		
1	1	1	1	4

Corollary

For $\lambda \vdash n$ and $\mu \vdash k, \chi_{\mu 1^{n-k}}^{\lambda}$ is a linear combination of $f^{\lambda / \nu}$ for partitions $\nu \vdash k$.

Computing $\chi_{\mu 1^{n-k}}^{\lambda}$ with fixed $\mu \Leftrightarrow$ Computing $f^{\lambda / \nu}$ with fixed ν

First attempt

We now try to prove the following combinatorially.

$$
n(n-1) \chi_{2,1^{n-2}}^{\lambda}=2 f^{\lambda}\left(\sum_{w \in \lambda} c(w)\right)
$$

According to Murnaghan-Nakayama rule, we have

$$
\chi_{2,1^{n-2}}^{\lambda}=f^{\lambda /(2)}-f^{\lambda /(1,1)}
$$

Because it is nearly standard, with two ways for the ribbon of size 2 . Now we need to compute the number of SYT in skew shape.

Jeu de taquin

6	12			
4	8	13		
3	7	10		
1	2	5	9	11

Jeu de taquin

6	$\mathbf{1 2}$		
4	8	13	
3	7	10	
1	2	5	9

Jeu de taquin

6	*		(12)	
4	8	13		
3	7	10		
1	2	5	9	11

Jeu de taquin

6	8		(12)	
4	*	13		
3	7	10		
1	2	5	9	11

Jeu de taquin

6	8		(12)	
4	*	13		
3	7	10		
1	2	5	9	11

Jeu de taquin

6	8		(12)	
4	7	13		
3	*	10		
1	2	5	9	11

Jeu de taquin

6	8		(12)	
4	7	13		
3	*	10		
1	2	5	9	11

Jeu de taquin

6	8		(12)	
4	7	13		
*	3	10		
1	2	5	9	11

Jeu de taquin

6	8		(12)	
4	7	13		
1	3	10		
*	2	5	9	11

Jeu de taquin

6	8		(12)	
4	7	12		
1	3	10		
	2	5	9	11

Skew-tableaux via jeu de taquin

The jeu de taquin gives a bijection between:

- (T, a, b), with T STY of shape λ, and $1 \leq a, b \leq n, a \neq b$,
- ($\left.T_{0}, T_{1}, a, b\right)$, with T_{0} a skew tableau of shape $\lambda / \mu, T_{1}$ a SYT of shape μ of entries 1,2 , and $1 \leq a, b \leq n, a \neq b$. μ can be (2) or $(1,1)$.
Just do two consecutive jeu de taquin on a then on b. This extends natually on more entries.

We have nearly finished!

What we want to prove:

$$
n(n-1) \chi_{2,1^{n-2}}^{\lambda}=2 f^{\lambda}\left(\sum_{w \in \lambda} c(w)\right)
$$

What we have in bijection:
■ ($T, a, b): f^{\lambda} \mathrm{SYT} T$
■ $\left(T_{0}, T_{1}, a, b\right): 1$ for $T_{1}=\square,-1$ for $T_{1}=\square \Rightarrow$ $n(n-1)\left(f^{\lambda /(2)-f^{\lambda /(1,1)}}\right)=n(n-1) \chi_{2,1^{n-2}}^{\lambda}$
We only need to count how many (a, b) give $T_{1}=\square$ or $T_{1}=\boxminus$.

Trace forest

2	8		
1	6	7	
	3	4	
		5	9
			10

Trace forest: union of all jeu de taquin paths.
Construction: for each cell, an arc pointing to \square

Effect of jeu de taquin

Lemma (Reformulation of Krattenthaler(1999))

Let c be a cell in a skew tableau T be a tableau, suppose that a jeu de taquin on the entry in c gives the tableau T_{a}.

T_{a} divides into two parts: any jeu de taquin acting on the red (resp. blue) part will give \square (resp. ${ }^{\text {日 }}$).

Proof: Case analysis

Thus finished the combinatorial proof

$$
n(n-1) \chi_{2,1^{n-2}}^{\lambda}=2 f^{\lambda}\left(\sum_{w \in \lambda} c(w)\right)
$$

$(T, a, b) \Leftrightarrow\left(T_{0}, T_{1}, a, b\right)$, with +1 for $T_{1}=\square,-1$ for $T_{1}=\boxminus$. For $a<b$, we look at (T, a, b) and (T, b, a). Two cases:

- a, b not on the same path

No total contribution.

Thus finished the combinatorial proof

$$
n(n-1) \chi_{2,1^{n-2}}^{\lambda}=2 f^{\lambda}\left(\sum_{w \in \lambda} c(w)\right)
$$

- a, b on the same path. Suppose b on (i, j).
- The path points to a horizontally. (There are i such a)

- The path points to a vertically. (There are j such a)

-1

-1

In total, $2 i-2 j=2 c(b)$.

Thus finished the combinatorial proof

$$
n(n-1) \chi_{2,1^{n-2}}^{\lambda}=2 f^{\lambda}\left(\sum_{w \in \lambda} c(w)\right)
$$

- a, b not on the same path \Rightarrow Contribution: 0

■ a, b on the same path \Rightarrow Contribution: $2 c(b)$
Therefore, in the bijection between (T, a, b) and $\left(T_{0}, T_{1}, a, b\right)$,
■ (T, a, b) : f^{λ} SYT T, each contributes $2 \sum_{b \in T} c(b)$, thus $2 f^{\lambda}\left(\sum_{w \in \lambda} c(w)\right)$
■ $\left(T_{0}, T_{1}, a, b\right): 1$ for $T_{1}=\square$ and -1 for $T_{1}=\boxminus \Rightarrow$ $n(n-1)\left(f^{\lambda /(2)-f^{\lambda /(1,1)}}\right)=n(n-1) \chi_{2,1^{n-2}}^{\lambda}$

Remarks

- Purely combinatorial
- Too complicated for other cases
- Computing $\chi_{\mu}^{\lambda} \Leftrightarrow$ Computing $f^{\lambda / \nu}$ for several ν

■ Works the same for any T and any trace forest
■ Works even for a subtree of the trace forest of T

- Relative content c_{a} for a cell $a: c_{a}(w)=c(w)-c(a)$
- Content powersum $c p_{a}^{\alpha}: c p_{a}^{(k)}(C)=\sum_{w \in C} c_{a}^{k-1}(w)$

Lemma

For a subtree S rooted at r of the trace forest of a tableau T, the number of pairs (a, b) in S such that $(T, a, b) \leftrightarrow\left(T_{0}, T_{1}, a, b\right)$ is with $T_{0}=\square$ is $G_{(2)}(S)=\frac{1}{2} c p_{r}^{(1,1)}(S)+c p_{r}^{(2)}(S)-\frac{1}{2} c p_{r}^{(1)}(S)=|S|(|S|-1) / 2+\sum_{w \in S} c_{r}(w)$.

Bootstrap

For a SYT T and a its entry, we note $C_{<}(a, T)\left(r e s p . C_{\vee}(a, T)\right)$ the tree on the right (resp. below) of T_{a}.

Compute $f^{\lambda /(3)} \Leftrightarrow$ Compute $G_{(3)}(T)=\sum_{a \in T} G_{(2)}\left(C_{<}(a, T)\right)$.

Inductive method

Direct computation impossible.
The tree structure reminds induction. For a subtree S in trace forest, let $S_{<}$and S_{\vee} be its subtrees on the right and above.
For a function f on a subtree F in the trace forest, its inductive form is $(\Delta f)(S)=f(S)-f\left(S_{<}\right)-f\left(S_{\vee}\right)$.

Lemma

For two functions f, g on binary trees with $f(\varnothing)=g(\varnothing)=0$, $\Delta f=\Delta g \Rightarrow f=g$.

Inductive form

For a subtree S in trace forest rooted at r and a partition α, we define

$$
<^{(\alpha)}(S)=c p_{r}^{\alpha}\left(S_{<}\right), \quad \vee^{(\alpha)}(S)=c p_{r}^{\alpha}\left(S_{\vee}\right) .
$$

Lemma

For any partition $\alpha, \Delta c p_{r}^{\alpha}$ is a polynomial in some $<^{(\nu)}$ and $\vee^{(\nu)}$.
To compute a function f (formed by $c p_{r}^{\alpha}$), we only need to know Δf.

Computing the inductive form

$$
\Delta G_{(3)}(S)=\sum_{a \in S} G_{(2)}\left(C_{<}(a, S)\right)-\sum_{a \in S_{<}} G_{(2)}\left(C_{<}\left(a, S_{<}\right)\right)-\sum_{a \in S_{\vee}} G_{(2)}\left(C_{<}\left(a, S_{\vee}\right)\right)
$$

We break the first sum in 3 cases: a is root, $a \in S_{<}, a \in S_{\vee}$. In each case we know exactly $C_{<}(a, S)$.
Only nasty part: sums of $c p_{r}^{\alpha}\left(C_{<}\left(a, S_{<}\right)\right)$and $c p_{r}^{\alpha}\left(C_{<}\left(a, S_{\vee}\right)\right)$.

Miracles

Miracle 1: these sums sum up to $<^{(\nu)}(S)$ and $\vee^{(\nu)}(S)$.
Miracle 2: the final result is Δf for some f combination of $c p^{\alpha}$.

$$
G_{(3)}=\frac{1}{6} c p^{(1,1,1)}+c p^{(2,1)}+c p^{(3)}-c p^{(1,1)}-2 c p^{(2)}+\frac{5}{6} c p^{(1)}
$$

With some tricks it leads to

$$
(n)_{3} \chi_{\left(3,1^{n-3}\right)}^{\lambda} / f^{\lambda}=3 c p^{(3)}(\lambda)-\frac{3}{2} c p^{(1,1)}(\lambda)+\frac{3}{2} c p^{(1)}(\lambda)=3 \sum_{w \in \lambda}(c(w))^{2}-3\binom{n}{2} .
$$

We can define $G_{(4)}(T)=\sum_{a \in T} G_{(3)}\left(C_{<}(a, T)\right)$, and it leads to

$$
(n)_{4} \chi_{\left(4,1^{n-4}\right)}^{\lambda} / f^{\lambda}=4 \sum_{w \in \lambda}(c(w))^{3}+4(2 n-3) \sum_{w \in \lambda} c(w)
$$

Nasty computation, but entirely automatic.

How to explain?

Totally no clue. Any idea?

Thank you for your attention!

