An analogue of Schensted's bumping algorithm in affine type A

Thomas Gerber
Université de Tours

$72^{\text {ème }}$ Séminaire Lotharingien de Combinatoire
Lyon
March 24-26, 2014

Fock spaces representations of $\mathcal{U}_{q}\left(\widehat{\mathfrak{S L}_{e}}\right)$

Let $e \in \mathbb{Z}_{>1}, q$ an indeterminate.
$\mathcal{U}_{q}(\widehat{\mathfrak{s l}})=q$-deformation of the Lie algebra of affine type A.

- Generators $e_{i}, f_{i}, t_{i}^{ \pm 1}, \mathfrak{d}$ for $i=0 \ldots e-1$
- Some relations.

Fock spaces representations of $\mathcal{U}_{q}\left(\widehat{\mathfrak{S L}_{e}}\right)$

Let $e \in \mathbb{Z}_{>1}, q$ an indeterminate.
$\mathcal{U}_{q}(\widehat{\mathfrak{s l}})=q$-deformation of the Lie algebra of affine type A.

- Generators $e_{i}, f_{i}, t_{i}^{ \pm 1}, \mathfrak{d}$ for $i=0 \ldots e-1$
- Some relations.

Let $I \in \mathbb{Z}_{>0}$ and $\mathbf{s} \in \mathbb{Z}^{\prime}$.

$$
\mathcal{F}_{\mathbf{s}}=\bigoplus_{n \in \mathbb{Z}_{\geq 0}} \bigoplus_{\boldsymbol{\lambda} \vdash, n} \mathbb{C}(q)|\boldsymbol{\lambda}, \mathbf{s}\rangle
$$

Fock spaces representations of $\mathcal{U}_{q}\left(\widehat{\mathfrak{S L}_{e}}\right)$

Let $e \in \mathbb{Z}_{>1}, q$ an indeterminate.
$\mathcal{U}_{q}(\widehat{\mathfrak{s l}})=q$-deformation of the Lie algebra of affine type A.

- Generators $e_{i}, f_{i}, t_{i}^{ \pm 1}, \mathfrak{d}$ for $i=0 \ldots e-1$
- Some relations.

Let $I \in \mathbb{Z}_{>0}$ and $\mathbf{s} \in \mathbb{Z}^{\prime}$.

$$
\mathcal{F}_{\mathbf{s}}=\bigoplus_{n \in \mathbb{Z}_{\geq 0}} \bigoplus_{\boldsymbol{\lambda} \vdash, n} \mathbb{C}(q)|\boldsymbol{\lambda}, \mathbf{s}\rangle
$$

Theorem (Jimbo, Misra, Miwa, Okado 1991)
$\mathcal{F}_{\mathbf{s}}$ is an (integrable) $\mathcal{U}_{q}(\widehat{\mathfrak{s l}})$-module.

Charged I-partitions

Take $\mathbf{s}=(0,3,-2)$ and $\boldsymbol{\lambda}=(4.3,2.2,3)$

- Young diagram of $\boldsymbol{\lambda}$ with contents:

Charged I-partitions

Take $\mathbf{s}=(0,3,-2)$ and $\boldsymbol{\lambda}=(4.3,2.2,3)$

- Young diagram of $\boldsymbol{\lambda}$ with contents:

$$
|\boldsymbol{\lambda}, \mathbf{s}\rangle=\left(\begin{array}{|l|l|l|}
\hline & & \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline & \\
\hline & \\
& \\
\hline & \\
\hline & \\
\hline
\end{array}\right),
$$

Charged l-partitions

Take $\mathbf{s}=(0,3,-2)$ and $\boldsymbol{\lambda}=(4.3,2.2,3)$

- Young diagram of $\boldsymbol{\lambda}$ with contents:

Charged I-partitions

Take $\mathbf{s}=(0,3,-2)$ and $\boldsymbol{\lambda}=(4.3,2.2,3)$

- Young diagram of $\boldsymbol{\lambda}$ with contents:

$$
|\boldsymbol{\lambda}, \mathbf{s}\rangle=\left(\begin{array}{|c|c|c|c|}
\hline 0 & 1 & 2 & 3 \\
\hline-1 & 0 & 1 &
\end{array}, \begin{array}{|c|c|}
\hline 3 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline-2 & -1 & 0 \\
\hline
\end{array}\right)
$$

Charged I-partitions

Take $\mathbf{s}=(0,3,-2)$ and $\boldsymbol{\lambda}=(4.3,2.2,3)$

- Young diagram of $\boldsymbol{\lambda}$ with contents:

$$
|\boldsymbol{\lambda}, \mathbf{s}\rangle=\left(\begin{array}{|c|c|c|c|}
\hline 0 & 1 & 2 & 3 \\
\hline-1 & 0 & 1 &
\end{array}, \begin{array}{|c|c|}
\hline 3 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline-2 & -1 & 0 \\
\hline
\end{array}\right)
$$

- Symbol of $\boldsymbol{\lambda}$ of shape \mathbf{s} :

$$
\left(\begin{array}{lllllllll}
\ldots & -4 & -3 & -2 & & & & & \\
\ldots & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\ldots & -4 & -3 & -2 & -1 & 0 & & &
\end{array}\right)
$$

Charged l-partitions

Take $\mathbf{s}=(0,3,-2)$ and $\boldsymbol{\lambda}=(4.3,2.2,3)$

- Young diagram of $\boldsymbol{\lambda}$ with contents:

$$
|\boldsymbol{\lambda}, \mathbf{s}\rangle=\left(\begin{array}{|c|c|c|c|}
\hline 0 & 1 & 2 & 3 \\
\hline-1 & 0 & 1 &
\end{array}, \begin{array}{|c|c|}
\hline 3 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline-2 & -1 & 0 \\
\hline
\end{array}\right)
$$

- Symbol of $\boldsymbol{\lambda}$ of shape \mathbf{s} :

$$
\left(\begin{array}{lllllll}
-3 & -2 & & & & & \\
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
-3 & -2 & -1 & 0 & & &
\end{array}\right)
$$

Charged l-partitions

Take $\mathbf{s}=(0,3,-2)$ and $\boldsymbol{\lambda}=(4.3,2.2,3)$

- Young diagram of $\boldsymbol{\lambda}$ with contents:

$$
|\boldsymbol{\lambda}, \mathbf{s}\rangle=\left(\begin{array}{|c|c|c|c|}
\hline 0 & 1 & 2 & 3 \\
\hline-1 & 0 & 1 &
\end{array}, \begin{array}{|c|c|}
\hline 3 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline-2 & -1 & 0 \\
\hline
\end{array}\right)
$$

- Symbol of $\boldsymbol{\lambda}$ of shape \mathbf{s} :

$$
\left(\begin{array}{lllllll}
0 & 1 & & & & & \\
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 2 & 3 & & &
\end{array}\right)
$$

Charged l-partitions

Take $\mathbf{s}=(0,3,-2)$ and $\boldsymbol{\lambda}=(4.3,2.2,3)$

- Young diagram of $\boldsymbol{\lambda}$ with contents:

$$
|\boldsymbol{\lambda}, \mathbf{s}\rangle=\left(\begin{array}{|c|c|c|c|}
\hline 0 & 1 & 2 & 3 \\
\hline-1 & 0 & 1 &
\end{array}, \begin{array}{|c|c|}
\hline 3 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline-2 & -1 & 0 \\
\hline
\end{array}\right)
$$

- Symbol of $\boldsymbol{\lambda}$ of shape \mathbf{s} :

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{llllllll}
0 & 4 & & & & & \\
0 & 1 & 2 & 3 & 4 & 7 & 8 \\
0 & 1 & 5 & 7 & & &
\end{array}\right)
$$

Charged I-partitions

Take $\mathbf{s}=(0,3,-2)$ and $\boldsymbol{\lambda}=(4.3,2.2,3)$

- Young diagram of $\boldsymbol{\lambda}$ with contents:

$$
|\boldsymbol{\lambda}, \mathbf{s}\rangle=\left(\begin{array}{|l|l|l|l|}
\hline 0 & 1 & 2 & 3 \\
\hline-1 & 0 & 1 &
\end{array}, \begin{array}{|l|l|}
\hline 3 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline-2 & -1 & 0 \\
\hline
\end{array}\right)
$$

- Symbol of $\boldsymbol{\lambda}$ of shape \mathbf{s} :

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{llllllll}
0 & 4 & & & & & \\
0 & 1 & 2 & 3 & 4 & 7 & 8 \\
0 & 1 & 5 & 7 & & &
\end{array}\right)
$$

Definition

$\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})$ is semistandard if $s_{c} \leq s_{c+1}$ for all $c=1, \ldots, /$ and if the columns (resp. rows) of $\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})$ are non-decreasing (resp. increasing).

Crystal graphs

According to Kashiwara, $\mathcal{F}_{\mathbf{s}}$ has a crystal graph $B\left(\mathcal{F}_{\mathbf{s}}\right)$.

- Vertices $=$ all l-partitions.
- Edges of $B=$ directed arrows colored by $i \in\{0, \ldots e-1\}$.

Crystal graphs

According to Kashiwara, $\mathcal{F}_{\mathbf{s}}$ has a crystal graph $B\left(\mathcal{F}_{\mathbf{s}}\right)$.

- Vertices $=$ all l-partitions.
- Edges of $B=$ directed arrows colored by $i \in\{0, \ldots e-1\}$.

Properties

- $B\left(\mathcal{F}_{\mathbf{s}}\right)=\bigsqcup B$ (connected components).
- Each B has a unique vertex $\dot{\boldsymbol{\lambda}}$ with zero-indegree : the source vertex. We denote $B=B(\boldsymbol{\lambda}, \mathbf{s})$.
- Each $\boldsymbol{\lambda} \in B(\dot{\boldsymbol{\lambda}}, \mathbf{s})$ writes $\dot{\boldsymbol{\lambda}} \xrightarrow{i_{1}} \ldots \xrightarrow{i_{p}} \boldsymbol{\lambda}$
- \emptyset is always a source vertex.
- There is a natural graph isomorphism between $B(\dot{\lambda}, \mathbf{s})$ and $B(\emptyset, \mathbf{r})$ for some $\mathbf{r} \in \mathscr{S}_{e}$ where $\mathscr{S}_{e}=\left\{\mathbf{t} \in \mathbb{Z}^{\prime} \mid 0 \leq t_{d}-t_{c}<e\right.$ for $\left.c<d\right\}$.

An example

Take $e=3$,
$\mathbf{s}=(1,3)$ and $\boldsymbol{\lambda}=\left(1,1^{2}\right)$.
One can
compute
$B(\boldsymbol{\lambda}, \mathbf{s})$:

An example

Take $e=3$,
$\mathbf{s}=(1,3)$ and $\boldsymbol{\lambda}=\left(1,1^{2}\right)$.
One can
compute
$B(\boldsymbol{\lambda}, \mathbf{s})$:

This crystal graph is isomorphic to $B(\emptyset, \mathbf{r})$ with $\mathbf{r}=(0,1)$:

Notation

We write $|\boldsymbol{\lambda}, \mathbf{s}\rangle \sim|\boldsymbol{\nu}, \mathbf{t}\rangle$ if $B(\dot{\boldsymbol{\lambda}}, \mathbf{s}) \simeq B(\dot{\boldsymbol{\nu}}, \mathbf{t})$ and if $\boldsymbol{\lambda}$ and $\boldsymbol{\nu}$ appear at the same place in their respective crystal.

Notation

We write $|\boldsymbol{\lambda}, \mathbf{s}\rangle \sim|\boldsymbol{\nu}, \mathbf{t}\rangle$ if $B(\dot{\boldsymbol{\lambda}}, \mathbf{s}) \simeq B(\dot{\boldsymbol{\nu}}, \mathbf{t})$ and if $\boldsymbol{\lambda}$ and $\boldsymbol{\nu}$ appear at the same place in their respective crystal.

Problem: Give a combinatorial description of the relation \sim. In other terms, starting from arbitrary $|\boldsymbol{\lambda}, \mathbf{s}\rangle$, determine $\mathbf{r} \in \mathscr{S}_{e}$ and $\boldsymbol{\mu} \in B(\emptyset, \mathbf{r})$ such that $|\boldsymbol{\lambda}, \mathbf{s}\rangle \sim|\boldsymbol{\mu}, \mathbf{r}\rangle$.

Notation

We write $|\boldsymbol{\lambda}, \mathbf{s}\rangle \sim|\boldsymbol{\nu}, \mathbf{t}\rangle$ if $B(\dot{\boldsymbol{\lambda}}, \mathbf{s}) \simeq B(\dot{\boldsymbol{\nu}}, \mathbf{t})$ and if $\boldsymbol{\lambda}$ and $\boldsymbol{\nu}$ appear at the same place in their respective crystal.

Problem: Give a combinatorial description of the relation \sim.
In other terms, starting from arbitrary $|\boldsymbol{\lambda}, \mathbf{s}\rangle$, determine $\mathbf{r} \in \mathscr{S}_{e}$ and $\boldsymbol{\mu} \in B(\emptyset, \mathbf{r})$ such that $|\boldsymbol{\lambda}, \mathbf{s}\rangle \sim|\boldsymbol{\mu}, \mathbf{r}\rangle$.
\rightsquigarrow Interesting because only $B(\emptyset, \mathbf{r})$ has an explicit combinatorial description (Foda-Leclerc-Okado-Thibon-Welsh).
\rightsquigarrow Natural interpretations in terms of representations of the complex reflection group $G(I, 1, n)$ (Lascoux-Leclerc-Thibon, Ariki, Shan, Losev).

$1^{\text {st }}$ tool: the cyclage

For $\mathbf{s}=\left(s_{1}, \ldots, s_{l}\right)$ and $\boldsymbol{\lambda}=\left(\lambda^{1}, \ldots, \lambda^{\prime}\right)$, we define

$$
\xi(\mathbf{s})=\left(s_{l}-e, s_{1}, \ldots, s_{l-1}\right) \quad \text { and } \quad \xi(\lambda)=\left(\lambda^{\prime}, \lambda^{1}, \ldots, \lambda^{\prime-1}\right) .
$$

Example: Take $e=3, \mathbf{s}=(2,0,1)$ and $\boldsymbol{\lambda}=\left(3.2,1,4^{2}\right)$. Then

$$
\xi(\mathbf{s})=(-2,2,0) \quad \text { and } \quad \xi(\boldsymbol{\lambda})=\left(4^{2}, 3.2,1\right) .
$$

$1^{\text {st }}$ tool: the cyclage

For $\mathbf{s}=\left(s_{1}, \ldots, s_{l}\right)$ and $\boldsymbol{\lambda}=\left(\lambda^{1}, \ldots, \lambda^{\prime}\right)$, we define

$$
\xi(\mathbf{s})=\left(s_{l}-e, s_{1}, \ldots, s_{l-1}\right) \quad \text { and } \quad \xi(\lambda)=\left(\lambda^{\prime}, \lambda^{1}, \ldots, \lambda^{\prime-1}\right) .
$$

Example: Take $e=3, \mathbf{s}=(2,0,1)$ and $\boldsymbol{\lambda}=\left(3.2,1,4^{2}\right)$. Then

$$
\xi(\mathbf{s})=(-2,2,0) \quad \text { and } \quad \xi(\boldsymbol{\lambda})=\left(4^{2}, 3.2,1\right) .
$$

\rightsquigarrow Analogue of Lascoux and Schützenberger's cyclage for Young tableaux

$1^{\text {st }}$ tool: the cyclage

For $\mathbf{s}=\left(s_{1}, \ldots, s_{l}\right)$ and $\boldsymbol{\lambda}=\left(\lambda^{1}, \ldots, \lambda^{\prime}\right)$, we define

$$
\xi(\mathbf{s})=\left(s_{l}-e, s_{1}, \ldots, s_{l-1}\right) \quad \text { and } \quad \xi(\lambda)=\left(\lambda^{\prime}, \lambda^{1}, \ldots, \lambda^{\prime-1}\right) .
$$

Example: Take $e=3, \mathbf{s}=(2,0,1)$ and $\boldsymbol{\lambda}=\left(3.2,1,4^{2}\right)$. Then

$$
\xi(\mathbf{s})=(-2,2,0) \quad \text { and } \quad \xi(\boldsymbol{\lambda})=\left(4^{2}, 3.2,1\right) .
$$

\rightsquigarrow Analogue of Lascoux and Schützenberger's cyclage for Young tableaux

Proposition

$$
|\boldsymbol{\lambda}, \mathbf{s}\rangle \sim|\xi(\boldsymbol{\lambda}), \xi(\mathbf{s})\rangle .
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol. Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$.

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$$
\left(\begin{array}{ll}
4 & 5
\end{array}\right)
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$$
\left(\begin{array}{lll}
0 & 4 & 5
\end{array}\right)
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$$
\left(\begin{array}{lll}
0 & 4 & 5 \\
7 & &
\end{array}\right)
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$$
\left(\begin{array}{lll}
0 & 4 & 5 \\
5 & 7 &
\end{array}\right)
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$$
\left(\begin{array}{lll}
0 & 4 & 5 \\
2 & 5 & 7
\end{array}\right)
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$$
\left(\begin{array}{llll}
0 & 2 & 4 & 5 \\
1 & 5 & 7 &
\end{array}\right)
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$$
\left(\begin{array}{lllll}
0 & 1 & 2 & 4 & 5 \\
0 & 5 & 7 & &
\end{array}\right)
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right) .
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$$
\left(\begin{array}{lllll}
0 & 1 & 2 & 4 & 5 \\
0 & 5 & 7 & &
\end{array}\right)=\mathcal{S}(\boldsymbol{\nu}, \mathbf{t})
$$

$2^{\text {nd }}$ tool : the bumping algorithm for symbols

Aim: construct a semistandard symbol, starting from an arbitrary symbol.
Example: Let $\mathbf{s}=(2,0)$ and $\boldsymbol{\lambda}=\left(3.2,3^{2}\right)$

$$
\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s})=\left(\begin{array}{lllll}
0 & 4 & 5 & & \\
0 & 1 & 2 & 5 & 7
\end{array}\right)
$$

Reading of $\boldsymbol{\lambda}: w=54075210$. The bumping procedure gives

$$
\left(\begin{array}{lllll}
0 & 1 & 2 & 4 & 5 \\
0 & 5 & 7 & &
\end{array}\right)=\mathcal{S}(\boldsymbol{\nu}, \mathbf{t})
$$

Theorem (Kashiwara 90's)

$$
|\boldsymbol{\lambda}, \mathbf{s}\rangle \sim|\nu, \mathbf{t}\rangle .
$$

Denote RS : $|\boldsymbol{\lambda}, \mathbf{s}\rangle \longmapsto|\boldsymbol{\nu}, \mathbf{t}\rangle$.

There exists $M \in \mathbb{N}$ such that $|\boldsymbol{\nu}, \mathbf{t}\rangle=(\mathbf{R S} \circ \xi)^{M}(|\boldsymbol{\lambda}, \mathbf{s}\rangle)$ verifies:
(1) $\mathcal{S}(\boldsymbol{\nu}, \mathbf{t})$ is semistandard, and
(2) $\mathcal{S}(\xi(\boldsymbol{\nu}), \xi(\mathbf{t}))$ is semistandard.

There exists $M \in \mathbb{N}$ such that $|\boldsymbol{\nu}, \mathbf{t}\rangle=(\mathbf{R S} \circ \xi)^{M}(|\boldsymbol{\lambda}, \mathbf{s}\rangle)$ verifies:
(1) $\mathcal{S}(\boldsymbol{\nu}, \mathbf{t})$ is semistandard, and
(2) $\mathcal{S}(\xi(\boldsymbol{\nu}), \xi(\mathbf{t}))$ is semistandard.

Theorem (Foda-Leclerc-Okado-Thibon-Welsh 1999)

$|\boldsymbol{\nu}, \mathbf{t}\rangle \in B(\emptyset, \mathbf{t})$ except if $\boldsymbol{\nu}$ contains e parts of the same size $\alpha>0$ such that

$$
\left\{\alpha-a_{i}+s_{c_{i}} \bmod e ; i=1, \ldots, e\right\}=\{0, \ldots, e-1\}
$$

where $a_{i}=$ row fo the i-th part, and $c_{i}=$ component of the i-th part.

There exists $M \in \mathbb{N}$ such that $|\boldsymbol{\nu}, \mathbf{t}\rangle=(\mathbf{R S} \circ \xi)^{M}(|\boldsymbol{\lambda}, \mathbf{s}\rangle)$ verifies:
(1) $\mathcal{S}(\boldsymbol{\nu}, \mathbf{t})$ is semistandard, and
(2) $\mathcal{S}(\xi(\boldsymbol{\nu}), \xi(\mathbf{t}))$ is semistandard.

Theorem (Foda-Leclerc-Okado-Thibon-Welsh 1999)

$|\boldsymbol{\nu}, \mathbf{t}\rangle \in B(\emptyset, \mathbf{t})$ except if $\boldsymbol{\nu}$ contains e parts of the same size $\alpha>0$ such that

$$
\left\{\alpha-a_{i}+s_{c_{i}} \bmod e ; i=1, \ldots, e\right\}=\{0, \ldots, e-1\}
$$

where $a_{i}=$ row fo the i-th part, and $c_{i}=$ component of the i-th part.
\rightsquigarrow The numbers $\alpha-a_{i}+s_{c_{i}}$ are the contents of the rightmost boxes in the parts of size α.

There exists $M \in \mathbb{N}$ such that $|\boldsymbol{\nu}, \mathbf{t}\rangle=(\mathbf{R S} \circ \xi)^{M}(|\boldsymbol{\lambda}, \mathbf{s}\rangle)$ verifies:
(1) $\mathcal{S}(\nu, \mathbf{t})$ is semistandard, and
(2) $\mathcal{S}(\xi(\boldsymbol{\nu}), \xi(\mathbf{t}))$ is semistandard.

Theorem (Foda-Leclerc-Okado-Thibon-Welsh 1999)

$|\boldsymbol{\nu}, \mathbf{t}\rangle \in B(\emptyset, \mathbf{t})$ except if $\boldsymbol{\nu}$ contains e parts of the same size $\alpha>0$ such that

$$
\left\{\alpha-a_{i}+s_{c_{i}} \bmod e ; i=1, \ldots, e\right\}=\{0, \ldots, e-1\}
$$

where $a_{i}=$ row fo the i-th part, and $c_{i}=$ component of the i-th part.
\rightsquigarrow The numbers $\alpha-a_{i}+s_{c_{i}}$ are the contents of the rightmost boxes in the parts of size α.
\rightsquigarrow How to get rid of the "bad" parts?
$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.
$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.

5	6	7	8
4	5	6	7
3	4		
2			
1			

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} \cdot 2 \cdot 1^{2}, 3.2^{2} \cdot 1^{2}, 4.2^{3} \cdot 1\right)$.

5	6	7	8
4	5	6	7

| 6 | 7 | 8 |
| :--- | :--- | :--- |\quad| 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- |

3	4
2	
1	

3
2

5	6
4	

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} \cdot 2 \cdot 1^{2}, 3.2^{2} \cdot 1^{2}, 4.2^{3} \cdot 1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} \cdot 2 \cdot 1^{2}, 3.2^{2} \cdot 1^{2}, 4.2^{3} \cdot 1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} .2 .1^{2}, 3.2^{2} .1^{2}, 4.2^{3} .1\right)$.

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} \cdot 2 \cdot 1^{2}, 3.2^{2} \cdot 1^{2}, 4.2^{3} .1\right)$.
$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} \cdot 2 \cdot 1^{2}, 3.2^{2} \cdot 1^{2}, 4.2^{3} .1\right)$.

Theorem (G. 2013)

$$
|\boldsymbol{\nu}, \mathbf{t}\rangle \sim|\rho(\boldsymbol{\nu}), \xi(\mathbf{t})\rangle .
$$

$3^{\text {rd }}$ tool: The reduction isomorphism
Let $e=4, I=3, \mathbf{t}=(5,6,8)$, and $\boldsymbol{\nu}=\left(4^{2} \cdot 2 \cdot 1^{2}, 3.2^{2} \cdot 1^{2}, 4.2^{3} .1\right)$.

Theorem (G. 2013)

$$
|\boldsymbol{\nu}, \mathbf{t}\rangle \sim|\rho(\boldsymbol{\nu}), \xi(\mathbf{t})\rangle .
$$

\rightsquigarrow There exists $N \in \mathbb{N}$ such that $\left|\rho^{N}(\boldsymbol{\nu}), \xi^{N}(\mathbf{t})\right\rangle \in B\left(\emptyset, \xi^{N}(\mathbf{t})\right)$.

Analogy with the non-affine case

	Finite type A	Affine type A
Quantum group	$\mathcal{U}_{q}\left(\mathfrak{s l}_{e}\right)$	$\mathcal{U}_{q}\left(\widehat{\widehat{s l}_{e}}\right)$
Fock space	$\begin{aligned} & \text { Basis }=\text { Young } \\ & \text { tableaux } \end{aligned}$	Basis = charged l-partitions/symbols
Interesting connected component of the crystal	$\begin{gathered} \text { Vertices }= \\ \text { semistandard tableaux } \end{gathered}$	Vertices $=$ FLOTW symbols
Crystal isomorphisms	RS for tableaux	RS for symbols
		cyclage ξ
		reduction ρ
Equivalence relation expected	$\begin{gathered} \mathbf{T}_{1} \sim \mathbf{T}_{2} \text { iff } \\ \mathbf{R S}\left(\mathbf{T}_{1}\right)=\mathbf{R S}\left(\mathbf{T}_{2}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{\lambda}_{1} \sim \boldsymbol{\lambda}_{2} \text { iff } \\ \Phi\left(\boldsymbol{\lambda}_{1}\right)=\Phi\left(\boldsymbol{\lambda}_{2}\right) \text { where } \\ \Phi=\rho^{N} \circ(\mathbf{R S} \circ \xi)^{M} \end{gathered}$

