An analogue of Schensted's bumping algorithm in affine type *A*

Thomas Gerber

Université de Tours

72^{ème} Séminaire Lotharingien de Combinatoire Lyon March 24-26, 2014

Fock spaces representations of $\mathcal{U}_q(\widehat{\mathfrak{sl}_e})$

Let $e \in \mathbb{Z}_{>1}$, q an indeterminate.

 $\mathcal{U}_q(\widehat{\mathfrak{sl}_e}) = q$ -deformation of the Lie algebra of affine type A.

- Generators e_i , f_i , $t_i^{\pm 1}$, ϑ for $i = 0 \dots e 1$
- Some relations.

Fock spaces representations of $\mathcal{U}_q(\widehat{\mathfrak{sl}_e})$

Let $e \in \mathbb{Z}_{>1}$, q an indeterminate.

 $\mathcal{U}_q(\widehat{\mathfrak{sl}_e}) = q$ -deformation of the Lie algebra of affine type A.

- Generators e_i , f_i , $t_i^{\pm 1}$, \mathfrak{d} for $i = 0 \dots e 1$
- Some relations.

Let $I \in \mathbb{Z}_{>0}$ and $\mathbf{s} \in \mathbb{Z}^{I}$.

$$\mathcal{F}_{\mathsf{s}} = igoplus_{n \in \mathbb{Z}_{\geq 0}} igoplus_{\lambda \vdash_l n} \mathbb{C}(q) |\lambda, \mathsf{s}\rangle$$

Fock spaces representations of $\mathcal{U}_q(\widehat{\mathfrak{sl}_e})$

Let $e \in \mathbb{Z}_{>1}$, q an indeterminate.

 $\mathcal{U}_q(\widehat{\mathfrak{sl}_e}) = q$ -deformation of the Lie algebra of affine type A.

- Generators e_i , f_i , $t_i^{\pm 1}$, ϑ for $i = 0 \dots e 1$
- Some relations.

Let
$$I \in \mathbb{Z}_{>0}$$
 and $\mathbf{s} \in \mathbb{Z}^{I}$.

$$\mathcal{F}_{\mathsf{s}} = igoplus_{n \in \mathbb{Z}_{\geq 0}} igoplus_{\lambda \vdash_{I} n} \mathbb{C}(q) |\lambda, \mathsf{s}
angle$$

Theorem (Jimbo, Misra, Miwa, Okado 1991) \mathcal{F}_{s} is an (integrable) $\mathcal{U}_{q}(\widehat{\mathfrak{sl}_{e}})$ -module.

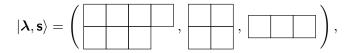
Take
$$\mathbf{s} = (0, 3, -2)$$
 and $\boldsymbol{\lambda} = (4.3, 2.2, 3)$

• Young diagram of λ with contents:

A (10) × (10) × (10)

Take
$$\mathbf{s} = (0, 3, -2)$$
 and $\boldsymbol{\lambda} = (4.3, 2.2, 3)$

• Young diagram of λ with contents:

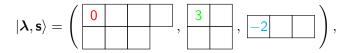


→ 3 → 4 3

< 🗇 🕨

Take $\mathbf{s} = (\mathbf{0}, \mathbf{3}, -2)$ and $\boldsymbol{\lambda} = (4.3, 2.2, 3)$

• Young diagram of λ with contents:



(4) (3) (4) (4) (4)

< 67 ▶

Take
$$\mathbf{s} = (0, 3, -2)$$
 and $\boldsymbol{\lambda} = (4.3, 2.2, 3)$

• Young diagram of λ with contents:

A (10) × (10) × (10)

Take $\mathbf{s} = (\mathbf{0}, \mathbf{3}, -2)$ and $\boldsymbol{\lambda} = (4.3, 2.2, 3)$

• Young diagram of λ with contents:

$$|\boldsymbol{\lambda}, \mathbf{s}\rangle = \left(\begin{array}{c|c|c} 0 & 1 & 2 & 3 \\ \hline -1 & 0 & 1 \end{array}, \begin{array}{c|c|c} 3 & 4 \\ \hline 2 & 3 \end{array}, \begin{array}{c|c|c} -2 & -1 & 0 \\ \hline 2 & -1 & 0 \end{array}\right),$$

• Symbol of λ of shape s:

$$\begin{pmatrix} \dots & -4 & -3 & -2 \\ \dots & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \dots & -4 & -3 & -2 & -1 & 0 & \end{pmatrix}$$

Thomas Gerber (Tours)

■ト ■ つへで SLC 72 3 / 11

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Take
$$\mathbf{s}=(0,3,-2)$$
 and $oldsymbol{\lambda}=(4.3,2.2,3)$

• Young diagram of λ with contents:

$$|\boldsymbol{\lambda}, \mathbf{s}\rangle = \left(\begin{array}{c|c|c} 0 & 1 & 2 & 3 \\ \hline -1 & 0 & 1 \end{array}, \begin{array}{c|c|c} 3 & 4 \\ \hline 2 & 3 \end{array}, \begin{array}{c|c|c} -2 & -1 & 0 \\ \hline 2 & -1 & 0 \end{array}\right),$$

• Symbol of λ of shape s:

$$\begin{pmatrix} -3 & -2 & & \\ -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ -3 & -2 & -1 & 0 & & \end{pmatrix}$$

(日) (同) (三) (三)

Take
$$\mathbf{s}=(0,3,-2)$$
 and $oldsymbol{\lambda}=(4.3,2.2,3)$

• Young diagram of λ with contents:

$$|\boldsymbol{\lambda}, \mathbf{s}\rangle = \left(\begin{array}{c|c|c} 0 & 1 & 2 & 3 \\ \hline -1 & 0 & 1 \end{array}, \begin{array}{c|c|c} 3 & 4 \\ \hline 2 & 3 \end{array}, \begin{array}{c|c|c} -2 & -1 & 0 \\ \hline 2 & -1 & 0 \end{array}\right),$$

• Symbol of λ of shape s:

$$\begin{pmatrix} 0 & 1 & & & \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 2 & 3 & & & \end{pmatrix}$$

(4) (5) (4) (5)

Take
$$\mathbf{s} = (0, 3, -2)$$
 and $\boldsymbol{\lambda} = (4.3, 2.2, 3)$

• Young diagram of λ with contents:

$$|\boldsymbol{\lambda}, \mathbf{s}\rangle = \left(\begin{array}{c|c|c} 0 & 1 & 2 & 3 \\ \hline -1 & 0 & 1 \end{array}, \begin{array}{c|c|c} 3 & 4 \\ \hline 2 & 3 \end{array}, \begin{array}{c|c|c} -2 & -1 & 0 \\ \hline 2 & -1 & 0 \end{array}\right),$$

• Symbol of λ of shape s:

$$\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s}) = \begin{pmatrix} 0 & 4 & & \\ 0 & 1 & 2 & 3 & 4 & 7 & 8 \\ 0 & 1 & 5 & 7 & & \end{pmatrix}$$

Thomas Gerber (Tours)

SLC 72 3 / 11

∃ > 4

Take
$$\mathbf{s} = (0, 3, -2)$$
 and $\boldsymbol{\lambda} = (4.3, 2.2, 3)$

• Young diagram of λ with contents:

• Symbol of λ of shape s:

$$\mathcal{S}(\boldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & & \ 0 & 1 & 2 & 3 & 4 & 7 & 8 \ 0 & 1 & 5 & 7 & & \ \end{pmatrix}$$

Definition

 $S(\lambda, \mathbf{s})$ is semistandard if $s_c \leq s_{c+1}$ for all c = 1, ..., l and if the columns (resp. rows) of $S(\lambda, \mathbf{s})$ are non-decreasing (resp. increasing).

Thomas Gerber (Tours)

SLC 72 3 / 11

< ロ > < 同 > < 回 > < 回 > < 回

Crystal graphs

According to Kashiwara, \mathcal{F}_s has a *crystal graph* $B(\mathcal{F}_s)$.

- Vertices = all *I*-partitions.
- Edges of B = directed arrows colored by $i \in \{0, \dots e 1\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Crystal graphs

According to Kashiwara, \mathcal{F}_s has a *crystal graph* $B(\mathcal{F}_s)$.

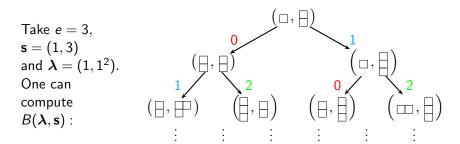
- Vertices = all *I*-partitions.
- Edges of B = directed arrows colored by $i \in \{0, \dots e 1\}$.

Properties

- $B(\mathcal{F}_{s}) = \bigsqcup B$ (connected components).
- Each B has a unique vertex $\hat{\boldsymbol{\lambda}}$ with zero-indegree : the source vertex. We denote $B = B(\hat{\boldsymbol{\lambda}}, \mathbf{s})$.
- Each $\lambda \in B(\stackrel{\bullet}{\lambda}, \mathbf{s})$ writes $\stackrel{\bullet}{\lambda} \stackrel{i_1}{\longrightarrow} \ldots \stackrel{i_p}{\longrightarrow} \lambda$
- Ø is always a source vertex.
- There is a natural graph isomorphism between B(λ, s) and B(Ø, r) for some r ∈ S_e where S_e = {t ∈ Z^l | 0 ≤ t_d − t_c < e for c < d}.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

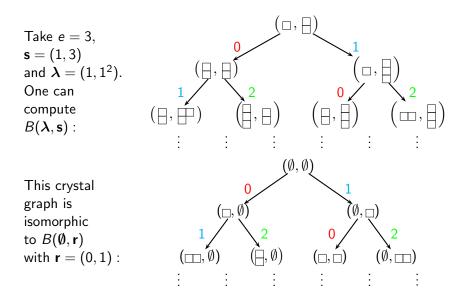
An example



E ► E つへで SLC 72 5 / 11

イロト イヨト イヨト イヨト

An example



SLC 72 5 / 11

▲□ ► ▲ □ ► ▲ □

Notation

We write $|\lambda, \mathbf{s}\rangle \sim |\nu, \mathbf{t}\rangle$ if $B(\dot{\lambda}, \mathbf{s}) \simeq B(\dot{\nu}, \mathbf{t})$ and if λ and ν appear at the same place in their respective crystal.

Notation

We write $|\lambda, \mathbf{s}\rangle \sim |\nu, \mathbf{t}\rangle$ if $B(\dot{\lambda}, \mathbf{s}) \simeq B(\dot{\nu}, \mathbf{t})$ and if λ and ν appear at the same place in their respective crystal.

Problem: Give a combinatorial description of the relation \sim .

In other terms, starting from arbitrary $|\lambda, \mathbf{s}\rangle$, determine $\mathbf{r} \in \mathscr{S}_e$ and $\mu \in B(\emptyset, \mathbf{r})$ such that $|\lambda, \mathbf{s}\rangle \sim |\mu, \mathbf{r}\rangle$.

Notation

We write $|\lambda, \mathbf{s}\rangle \sim |\nu, \mathbf{t}\rangle$ if $B(\dot{\lambda}, \mathbf{s}) \simeq B(\dot{\nu}, \mathbf{t})$ and if λ and ν appear at the same place in their respective crystal.

Problem: Give a combinatorial description of the relation \sim .

In other terms, starting from arbitrary $|\lambda, \mathbf{s}\rangle$, determine $\mathbf{r} \in \mathscr{S}_e$ and $\mu \in B(\emptyset, \mathbf{r})$ such that $|\lambda, \mathbf{s}\rangle \sim |\mu, \mathbf{r}\rangle$.

→ Interesting because only $B(\emptyset, \mathbf{r})$ has an explicit combinatorial description (Foda-Leclerc-Okado-Thibon-Welsh).

 \rightsquigarrow Natural interpretations in terms of representations of the complex reflection group G(l, 1, n) (Lascoux-Leclerc-Thibon, Ariki, Shan, Losev).

イロト 不得下 イヨト イヨト 二日

1st tool: the cyclage

For
$$\mathbf{s} = (s_1, \dots, s_l)$$
 and $\boldsymbol{\lambda} = (\lambda^1, \dots, \lambda^l)$, we define
 $\xi(\mathbf{s}) = (s_l - e, s_1, \dots, s_{l-1})$ and $\xi(\boldsymbol{\lambda}) = (\lambda^l, \lambda^1, \dots, \lambda^{l-1}).$

Example: Take e = 3, $\mathbf{s} = (2, 0, 1)$ and $\boldsymbol{\lambda} = (3.2, 1, 4^2)$. Then

$$\xi(\mathbf{s}) = (-2, 2, 0)$$
 and $\xi(\boldsymbol{\lambda}) = (4^2, 3.2, 1).$

1st tool: the cyclage

For
$$\mathbf{s} = (s_1, \dots, s_l)$$
 and $\boldsymbol{\lambda} = (\lambda^1, \dots, \lambda^l)$, we define
 $\xi(\mathbf{s}) = (s_l - e, s_1, \dots, s_{l-1})$ and $\xi(\boldsymbol{\lambda}) = (\lambda^l, \lambda^1, \dots, \lambda^{l-1})$.

Example: Take e = 3, s = (2, 0, 1) and $\lambda = (3.2, 1, 4^2)$. Then

$$\xi(\mathbf{s}) = (-2, 2, 0)$$
 and $\xi(\boldsymbol{\lambda}) = (4^2, 3.2, 1).$

→ Analogue of Lascoux and Schützenberger's cyclage for Young tableaux

・ 同 ト ・ ヨ ト ・ ヨ ト

1st tool: the cyclage

For
$$\mathbf{s} = (s_1, \dots, s_l)$$
 and $\boldsymbol{\lambda} = (\lambda^1, \dots, \lambda^l)$, we define
 $\xi(\mathbf{s}) = (s_l - e, s_1, \dots, s_{l-1})$ and $\xi(\boldsymbol{\lambda}) = (\lambda^l, \lambda^1, \dots, \lambda^{l-1}).$

Example: Take e = 3, $\mathbf{s} = (2, 0, 1)$ and $\boldsymbol{\lambda} = (3.2, 1, 4^2)$. Then

$$\xi(\mathbf{s}) = (-2, 2, 0)$$
 and $\xi(\boldsymbol{\lambda}) = (4^2, 3.2, 1).$

→ Analogue of Lascoux and Schützenberger's cyclage for Young tableaux

Proposition

$$|\boldsymbol{\lambda}, \mathbf{s}\rangle \sim |\xi(\boldsymbol{\lambda}), \xi(\mathbf{s})\rangle.$$

(人間) トイヨト イヨト

Thomas Gerber (Tours)

Generalising RSK to affine type A

E ► E - つへで SLC 72 8 / 11

(日) (同) (三) (三)

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda},\mathbf{s})=egin{pmatrix} 0&4&5&\ 0&1&2&5&7 \end{pmatrix}.$$

Reading of λ : w = 54075210.

A (10) A (10)

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda},\mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

(5)

- 4 週 ト - 4 三 ト - 4 三 ト

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda},\mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

(4 5)

- 4 同下 4 ヨト 4 ヨト

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

$$\begin{pmatrix} 0 & 4 & 5 \end{pmatrix}$$

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

$$\begin{pmatrix} 0 & 4 & 5 \\ 7 & & \end{pmatrix}$$

イロト 人間ト イヨト イヨト

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

$$\begin{pmatrix} 0 & 4 & 5 \\ 5 & 7 & \end{pmatrix}$$

イロト 人間ト イヨト イヨト

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

$$\begin{pmatrix} 0 & 4 & 5 \\ 2 & 5 & 7 \end{pmatrix}$$

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

$$\begin{pmatrix} 0 & 2 & 4 & 5 \\ 1 & 5 & 7 \end{pmatrix}$$

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

$$\begin{pmatrix} 0 & 1 & 2 & 4 & 5 \\ 0 & 5 & 7 & & \end{pmatrix}$$

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

$$\begin{pmatrix} 0 & 1 & 2 & 4 & 5 \\ 0 & 5 & 7 & \end{pmatrix} = \mathcal{S}(\boldsymbol{\nu}, \mathbf{t})$$

Aim: construct a semistandard symbol, starting from an arbitrary symbol. **Example:** Let s = (2,0) and $\lambda = (3.2, 3^2)$

$$\mathcal{S}(oldsymbol{\lambda}, \mathbf{s}) = egin{pmatrix} 0 & 4 & 5 & \ 0 & 1 & 2 & 5 & 7 \end{pmatrix}.$$

Reading of λ : w = 54075210. The bumping procedure gives

$$egin{pmatrix} 0 & 1 & 2 & 4 & 5 \ 0 & 5 & 7 & \end{pmatrix} = \mathcal{S}(oldsymbol{
u},\mathbf{t})$$

Theorem (Kashiwara 90's)

$$|oldsymbol{\lambda}, {f s}
angle \sim |oldsymbol{
u}, {f t}
angle.$$

 $\mathsf{Denote}\;\mathsf{RS}:|\boldsymbol{\lambda},\mathbf{s}\rangle\longmapsto|\boldsymbol{\nu},\mathbf{t}\rangle.$

- **(**) $\mathcal{S}(\boldsymbol{
 u},\mathbf{t})$ is semistandard, and
- **2** $S(\xi(\nu), \xi(\mathbf{t}))$ is semistandard.

(人間) トイヨト イヨト

- **1** $\mathcal{S}(oldsymbol{
 u},\mathbf{t})$ is semistandard, and
- **2** $S(\xi(\nu), \xi(\mathbf{t}))$ is semistandard.

Theorem (Foda-Leclerc-Okado-Thibon-Welsh 1999)

 $|\nu, t\rangle \in B(\emptyset, t)$ except if ν contains e parts of the same size $\alpha > 0$ such that

$$\{\alpha - a_i + s_{c_i} \mod e \ ; \ i = 1, \dots, e\} = \{0, \dots, e-1\},\$$

where $a_i = row$ fo the *i*-th part, and $c_i = component$ of the *i*-th part.

• • = • • = •

- **1** $\mathcal{S}(oldsymbol{
 u},\mathbf{t})$ is semistandard, and
- **2** $S(\xi(\nu), \xi(\mathbf{t}))$ is semistandard.

Theorem (Foda-Leclerc-Okado-Thibon-Welsh 1999)

 $|\nu, t\rangle \in B(\emptyset, t)$ except if ν contains e parts of the same size $\alpha > 0$ such that

$$\{\alpha - a_i + s_{c_i} \mod e ; i = 1, \dots, e\} = \{0, \dots, e-1\},\$$

where $a_i = row$ fo the *i*-th part, and $c_i = component$ of the *i*-th part.

 \rightsquigarrow The numbers $\alpha - a_i + s_{c_i}$ are the contents of the rightmost boxes in the parts of size α .

・ 同 ト ・ ヨ ト ・ ヨ ト

- **9** $\mathcal{S}(\boldsymbol{
 u},\mathbf{t})$ is semistandard, and
- **2** $S(\xi(\nu), \xi(\mathbf{t}))$ is semistandard.

Theorem (Foda-Leclerc-Okado-Thibon-Welsh 1999)

 $|\nu, t\rangle \in B(\emptyset, t)$ except if ν contains e parts of the same size $\alpha > 0$ such that

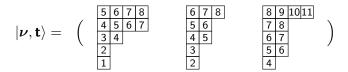
$$\{\alpha - a_i + s_{c_i} \mod e \ ; \ i = 1, \dots, e\} = \{0, \dots, e-1\},\$$

where $a_i = row$ fo the *i*-th part, and $c_i = component$ of the *i*-th part.

 \rightsquigarrow The numbers $\alpha - a_i + s_{c_i}$ are the contents of the rightmost boxes in the parts of size α .

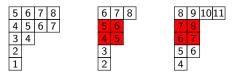
 \rightsquigarrow How to get rid of the "bad" parts?

Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



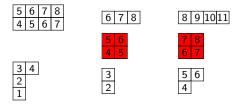
SLC 72 10 / 11

Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



SLC 72 10 / 11

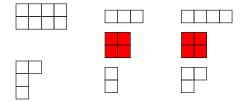
Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



≣। ≣ २९९ SLC 72 10 / 11

米部 とくほと くほど

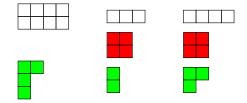
Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



■ ■ うへで SLC 72 10 / 11

(本間) (本語) (本語)

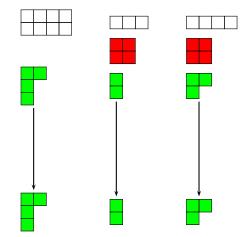
Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



SLC 72 10 / 11

(本間) (本語) (本語)

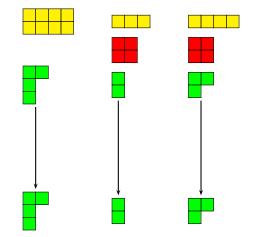
Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



SLC 72 10 / 11

個 ト イヨト イヨト

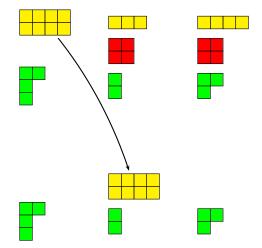
Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



SLC 72 10 / 11

個 ト イヨト イヨト

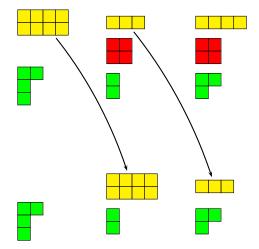
Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



SLC 72 10 / 11

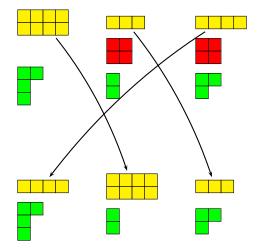
・日本 ・日本 ・日本

Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



個 ト イヨト イヨト

Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.

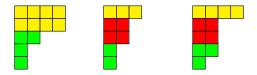


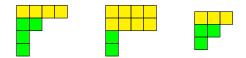
Thomas Gerber (Tours)

Generalising RSK to affine type A

SLC 72 10 / 11

Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



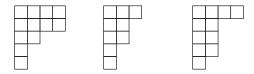


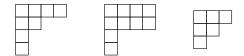
Thomas Gerber (Tours)

Generalising RSK to affine type A

SLC 72 10 / 11

Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.





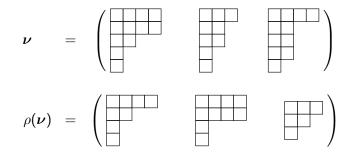
Thomas Gerber (Tours)

Generalising RSK to affine type A

SLC 72 10 / 11

- 1回 ト - ヨト - 4 ヨ

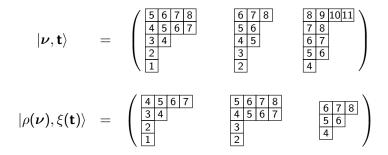
Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



SLC 72 10 / 11

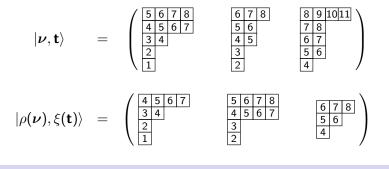
/□ ▶ 《 ⋽ ▶ 《 ⋽

Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



SLC 72 10 / 11

Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\boldsymbol{\nu} = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.

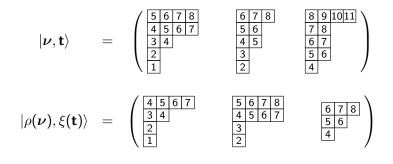


Theorem (G. 2013)

$$|\boldsymbol{\nu},\mathbf{t}\rangle\sim|
ho(\boldsymbol{
u}),\xi(\mathbf{t})\rangle.$$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Let e = 4, l = 3, $\mathbf{t} = (5, 6, 8)$, and $\nu = (4^2 \cdot 2 \cdot 1^2, 3 \cdot 2^2 \cdot 1^2, 4 \cdot 2^3 \cdot 1)$.



Theorem (G. 2013)

$$|\boldsymbol{
u},\mathbf{t}
angle\sim|
ho(\boldsymbol{
u}),\xi(\mathbf{t})
angle.$$

 \rightsquigarrow There exists $N \in \mathbb{N}$ such that $|\rho^N(\nu), \xi^N(\mathbf{t})\rangle \in B(\emptyset, \xi^N(\mathbf{t}))$.

Thomas Gerber (Tours)

SLC 72 10 / 11

• • = • • = • = =

Analogy with the non-affine case

	Finite type A	Affine type A
Quantum group	$\mathcal{U}_q(\mathfrak{sl}_e)$	$\mathcal{U}_q(\widehat{\mathfrak{sl}_e})$
Fock space	Basis = Young tableaux	Basis = charged <i>I</i> -partitions/symbols
Interesting connected component of the crystal	Vertices = semistandard tableaux	$\begin{array}{l} {\sf Vertices} = {\sf FLOTW} \\ {\sf symbols} \end{array}$
Crystal isomorphisms	RS for tableaux	RS for symbols
		cyclage ξ
		reduction $ ho$
Equivalence relation expected	$\begin{array}{c} \textbf{T}_1 \sim \textbf{T}_2 \text{ iff} \\ \textbf{RS}(\textbf{T}_1) = \textbf{RS}(\textbf{T}_2) \end{array}$	$egin{aligned} & \lambda_1 \sim \lambda_2 ext{ iff} \ & \Phi(\lambda_1) = \Phi(\lambda_2) ext{ where} \ & \Phi = ho^{\mathcal{N}} \circ (\mathbf{RS} \circ \xi)^{\mathcal{M}} \end{aligned}$

Image: A matrix

-

-