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Lecture 1: Coxeter groups & 
Reflection groups

A bit of history (cf. Bourbaki, Lie groups, Chap. IV-VI)

Symmetries.


Classificat° of regular polygons & polyhedral (cf. Euclid 300BC)

Study of regular tilings of the plane and the sphere (Byzantine 
school, High Middle-age, Kepler ~ 1619)            

C wikipedia
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A bit of history (cf. Bourbaki, Lie groups, Chap. IV-VI)

19th - century


Study of (discrete groups of) isometries, generated by 
reflections or not  (Möbius ~ 1852, Jordan ~ 1869)

Tilings and regular polytopes in high dimension (Schläfli ~ 1850)

Christophe Hohlweg, 2014

beginning of 20th - century

Classification of discrete subgroups generated by 
reflections (Cartan, Coxeter, Vinberg, etc… ) -> words

Lie Theory via root systems (Killing, Cartan, Weyl, Witt, Coxeter, etc…)

C wikipedia

Lecture 1: Coxeter groups & 
Reflection groups



          Euclidean space (             )

   i.e.         vector space,       scalar product, 

                  associated norm.


                                           Orthogonal group

!

!

 Reflection:            with set of fixed points a hyperplan   . 

(V, h·, ·i) dimV = n

V R� h·, ·i
|| · ||

O(V ) = {f : V ! V, f isometry}
= {f : V ! V | ||f(x)|| = ||x||, 8x 2 V }
 GL(V )

s 2 O(V ) H

Properties. A reflection            is uniquely determined:

by a hyperplan              ;

or by a nonzero vector        and we write         .

s 2 O(V )
H = Fix(s)

↵ 2 V

R↵ = H?Observe that            , a line. 

R↵ = H?

H

vs↵(v)

↵

k

x

Christophe Hohlweg, 2014

s↵ := s ``root’’

Finite Reflection Groups (FRG)



!
!

Indeed, for   with             we have:

                and then         
(nontrivial isometry);

 for 

Properties. A reflection            is uniquely determined:

by a hyperplan              ;

or by a nonzero vector        and we write         .

s 2 O(V )
H = Fix(s)

↵ 2 V

s R↵ = H?

s(R↵) = R↵ s(↵) = �↵

v = x+ k↵ 2 V = H � R↵

s(v) = v � 2k↵ = v � 2
h↵, vi
||↵||2 ↵

R↵ = H?

H

vs↵(v)

↵

k

x

Theorem (Cartan-Dieudonné). Any isometry in        is the 
product of at most              reflections.

O(V )
n = dimV

Christophe Hohlweg, 2014

s↵ := s ``root’’

Finite Reflection Groups (FRG)



Examples:

 Dihedral groups:    is a plane (      ), P is a regular polygon 
with m sides (centred at the origin) and  

              finite is a finite reflection group (FRG) if there   
is               such that                    . 

          isometry group of P

W  O(V )
A ✓ V \ {0} W = hs↵ |↵ 2 Ai

V n = 2

Dm =

D3 = {s↵, s� , s� , r, r2, r3 = e}
= hs↵, s� , s�i is a FRG

Finite Reflection Groups (FRG)

r = s↵s�

↵
�

�



              finite is a finite reflection group (FRG) if there   
is               such that                    . 

          isometry group of P

W  O(V )
A ✓ V \ {0} W = hs↵ |↵ 2 Ai

Dm =

D3 = {s↵, s� , s� , r, r2, r3 = e}
= hs↵, s� , s�i s� = s↵s�s↵
= hs↵, s�i

r = s↵s�

Christophe Hohlweg, 2014

is a FRG

Finite Reflection Groups (FRG)

Examples:

 Dihedral groups:    is a plane (      ), P is a regular polygon 
with m sides (centred at the origin) and  

V n = 2

↵
�

�



              finite is a finite reflection group (FRG) if there   
is               such that                    . 

          isometry group of P

W  O(V )
A ✓ V \ {0} W = hs↵ |↵ 2 Ai

Dm =

D3 = {s↵, s� , s� , r, r2, r3 = e}
= hs↵, s� , s�i s� = s↵s�s↵
= hs↵, s�i
= hs↵, s� | s2↵ = s2� = (s↵s�)

3 = e)i

r = s↵s�
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Finite Reflection Groups (FRG)

Examples:

 Dihedral groups:    is a plane (      ), P is a regular polygon 
with m sides (centred at the origin) and  

V n = 2

↵
�

�



              finite is a finite reflection group (FRG) if there   
is               such that                    . 

          isometry group of P

W  O(V )
A ✓ V \ {0} W = hs↵ |↵ 2 Ai

Dm =

= hs, t | s2 = t2 = (st)m = ei

m

Christophe Hohlweg, 2014

s
st t

where   (resp.  ) is the reflection 
associated to the line passing 
through a vertex of P (resp. the 
middle of an adjacent edge).

ts

Finite Reflection Groups (FRG)

Examples:

 Dihedral groups:    is a plane (      ), P is a regular polygon 
with m sides (centred at the origin) and  

V n = 2
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Examples:

 Symmetric group:    acts on          by permutation of the 
coordinates:


         faithful action:


A transposition             is a reflection with hyperplane 

                              or vector 

V = RnSn

� · (x1, . . . , xn) = (x�(1), . . . , x�(n))

Sn  GL(n)

⌧ij = (i j)
Hij = {x 2 Rn |xi = xj} ↵ij = ej � ei (i.e. ⌧ij = s↵ij )

Sn = h⌧ij | 1  i < j  ni  O(Rn) is a FRG

Finite Reflection Groups (FRG)



Examples:

 Symmetric group:    acts on          by permutation of the 
coordinates:


         faithful action:


A transposition             is a reflection with hyperplane 

                              or vector 
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V = RnSn

� · (x1, . . . , xn) = (x�(1), . . . , x�(n))

Sn  GL(n)

⌧ij = (i j)
Hij = {x 2 Rn |xi = xj} ↵ij = ej � ei (i.e. ⌧ij = s↵ij )

Sn = h⌧ij | 1  i < j  ni  O(Rn) is a FRG

where              satisfies⌧i := ⌧ii+1 ⌧2i = (⌧i⌧i+1)
3 = (⌧i⌧j)

2 = e, |i� j| > 1

= h⌧i = sei+1�ei | 1  i < n� 1i ..

Finite Reflection Groups (FRG)

       (dihedral sg) means

       means               (they commute)

⌧i⌧i+1⌧i = ⌧i+1⌧i⌧i+1

⌧i⌧j = ⌧j⌧i
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              is a FRG i.e.                     where                 
(is constituted of same norm vectors for simplification)
W  O(V ) A ✓ V \ {0}W = hs↵ |↵ 2 Ai

Finite Reflection Groups (FRG)

Proposition. 8w 2 O(V ), 8↵ 2 V \ {0}, ws↵w
�1 = sw(↵)

Root system:              on which    acts by conjugation� = W (A) W

Example:                                 

In     :D3 ↵

�

�

s := s↵ s� =: t

h↵,�i = � cos

⇣⇡
3

⌘
||↵|| = ||�|| = 1
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              is a FRG i.e.                     where                 
(is constituted of same norm vectors for simplification)
W  O(V ) A ✓ V \ {0}W = hs↵ |↵ 2 Ai

Finite Reflection Groups (FRG)

Proposition. 8w 2 O(V ), 8↵ 2 V \ {0}, ws↵w
�1 = sw(↵)

Root system:              on which    acts by conjugation� = W (A) W

Example:                                 

In     :D3 ↵

�

�

s := s↵ s� =: t

h↵,�i = � cos

⇣⇡
3

⌘
||↵|| = ||�|| = 1

�� = s(�) = t(↵) = ↵+ �

s� = ss(�)
= sts

= tst
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              is a FRG i.e.                     where                 
(is constituted of same norm vectors for simplification)
W  O(V ) A ✓ V \ {0}W = hs↵ |↵ 2 Ai

Finite Reflection Groups (FRG)

Proposition. 8w 2 O(V ), 8↵ 2 V \ {0}, ws↵w
�1 = sw(↵)

Root system:              on which    acts by conjugation� = W (A) W

Example:                                 

In     :D3 ↵

�

�

s := s↵ s� =: t

h↵,�i = � cos

⇣⇡
3

⌘
||↵|| = ||�|| = 1

�� = s(�) = t(↵) = ↵+ �

�� = t(�)�↵ = s(↵)

sts = tst
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              is a FRG i.e.                     where                 
(is constituted of same norm vectors for simplification)
W  O(V ) A ✓ V \ {0}W = hs↵ |↵ 2 Ai

Finite Reflection Groups (FRG)

Proposition. 8w 2 O(V ), 8↵ 2 V \ {0}, ws↵w
�1 = sw(↵)

Root system:              on which    acts by conjugation� = W (A) W

Example:                                 

In     :D3 ↵

�

s := s↵ s� =: t

h↵,�i = � cos

⇣⇡
3

⌘
||↵|| = ||�|| = 1

�� = s(�) = t(↵) = ↵+ �

�� = t(�)�↵ = s(↵)

sts = tst

� = ts(↵) = st(�)

st(↵) = �
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              is a FRG i.e.                     where                 
(is constituted of same norm vectors for simplification)
W  O(V ) A ✓ V \ {0}W = hs↵ |↵ 2 Ai

Finite Reflection Groups (FRG)

Proposition. 8w 2 O(V ), 8↵ 2 V \ {0}, ws↵w
�1 = sw(↵)

Root system:              on which    acts by conjugation� = W (A) W

↵
�

�� = s(�) = t(↵) = ↵+ �

�� = t(�)�↵ = s(↵)

sts = tst

� = ts(↵) = st(�)

st(↵) = �

Conclusion:    -orbit is
D3

� = {±↵, ±�, ±(↵+ �)}

�+ = {↵,�,↵+ �}
The positive part is

The base of             

gives the desired 
generators s and t.

cone(�

+
)
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              is a FRG i.e.                     where                 
(is constituted of same norm vectors for simplification)
W  O(V ) A ✓ V \ {0}W = hs↵ |↵ 2 Ai

Finite Reflection Groups (FRG)

Proposition. 8w 2 O(V ), 8↵ 2 V \ {0}, ws↵w
�1 = sw(↵)

Root system:              on which    acts by conjugation� = W (A) W

Conclusion:    -orbit is
D3

� = {±↵, ±�, ±(↵+ �)}

�+ = {↵,�,↵+ �}
The positive part is

The base of             

gives the desired 
generators s and t.

cone(�

+
) D3 = ��+
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Example:

Root system:


The cone of                                    has as basis                                 

                                that corresponds to the generators.          

Sn is                                  (              ).. ⌧i = sei+1�ei

� = {±(ej � ei) | 1  i < j  n}
�+ = {ej � ei | 1  i < j  n}

� = {ei+1 � ei | 1  i < n}

Finite Reflection Groups (FRG)

!
!
!
!

  and:

Root system:              verifies the following properties                                        

D3

� = W (A)

(i)   is finite, nonzero vectors;

(ii)                      ;

(iii)                              .

�

s↵(�) = �, 8↵ 2 �

� \ R↵ = {±↵}, 8↵ 2 �

W = hs↵ |↵ 2 �i



                     FRG                     root system in 


Separating    by a (linear) hyperplane we have: 

W  O(V ) � V

�

Treflections
1:1

1:1

�+ positive roots
�s�

� basis of 
cone(�

+
)

simple reflections S ✓ T

Theorem.      is generated by W S = {s↵ |↵ 2 �}

D3In general:

Christophe Hohlweg, 2014

Finite Reflection Groups (FRG)

Theorem.                              where

            is the order of the rotation     (and          ) 

W = hS | (st)mst = ei mst = mts

st mss = 1



       Coxeter system of finite rank            i.e.                    


                         group


          (  involut°);                              for

Coxeter groups

Christophe Hohlweg, 2014

W = hS | (st)mst = ei

|S| < 1

s 6= tmss = 1 mst = mts 2 N�2 [ {1}

Examples.  Symmetric group     is


Dihedral group:                                       ;


Infinite dihedral group:                              ;


Universal Coxeter group:

Sn

Un = ha1, . . . , an | a2i = ei

D1 = hs, t | s2 = t2 = ei

Dm = hs, t | s2 = t2 = (st)m = ei

 A Coxeter graph    is given by: 
 vertices    (finite)

 edges            with             or 

S
mst mst � 3

�

mst = 1s t

..



Coxeter groups

Christophe Hohlweg, 2014

W = hS | (st)mst = ei

       Coxeter system of finite rank            i.e.                    


                         group


          (  involut°);                              for

|S| < 1

s 6= tmss = 1 mst = mts 2 N�2 [ {1}

Examples.  Symmetric group     is


Dihedral group:       is           or              


Infinite dihedral group:       is                   


Universal Coxeter group:

Sn

Un = ha1, . . . , an | a2i = ei

 A Coxeter graph    is given by: 
 vertices    (finite)

 edges            with             or 

S
mst mst � 3

�

mst = 1s t

..
m (m = 2)

D1



any           is a word in the alphabet   ;


Length function                with            and   

w 2 W S

` : W ! N `(e) = 0

`(w) = min{k |w = s1s2 . . . sk, si 2 S}

How to study words on   representing    ? Is a word

              a reduced word for    (i.e.            ) ?s1s2 . . . sk

w
w k = `(w)

S

Christophe Hohlweg, 2014

Proposition. Let        and        , then                    . 

Examples.      is            ;                 


                       since     

D3

ststs = (sts)ts = (tst)ts = t`(ststs) = 1

e s t st ts sts = tst
` 0 1 1 2 2 3

s 2 S w 2 W `(ws) = `(w)± 1

W = hS | (st)mst = ei

Coxeter groups



Subgraphs and standard parabolic subgroups 

;             is a Coxeter system
    is irreducible iff      is connected �S

...m

S2 ⇥D1 ⇥D3

Dm ⇥D1 ⇥ S4 1     2      3              n-1     n

To study Coxeter groups it is often just necessary to 
study the irreducible ones. In the following we often 

consider irreducible Coxeter systems. 
Christophe Hohlweg, 2014

Coxeter groups

�I



world of roots world of words
Coxeter groups/graphs

Finite 
Reflection 
Groups roots 

to 
words ?Finite 
Coxeter groups 

How to find all Coxeter graphs that correspond to 

Finite Reflection groups (FRG)? to Finite Coxeter groups?

Coxeter groups and Reflection groups

Christophe Hohlweg, 2013



world of roots world of words
Coxeter groups/graphs

Finite 
Reflection 
Groups roots 

to 
words

``Reflection groups’’?
words 

to 
roots?

?Finite 
Coxeter groups 

How to find all Coxeter graphs that correspond to 

Finite Reflection groups (FRG)? to Finite Coxeter groups?

Coxeter groups and Reflection groups

Christophe Hohlweg, 2013



Root systems for Coxeter groups ?
An observation

If        is a Finite Reflection Group with                . 

D3

                   corresponds to the subgraphs:                                   

(W,S)

Dihedral (standard) parabolic subgroups:

mst

s = s↵ t = s�

or
s = s↵ t = s�

I = {s, t} ✓ S

WI = hIi  W

                acts on                      :WI = Dmst VI = span(↵,�)

 We have:                            

s↵(�) = � � 2h↵,�i↵

Christophe Hohlweg, 2013

the scalar product is given on the basis    by �

(h↵,�i)↵,�2� =

✓
� cos

✓
⇡

mst

◆◆

s,t2S

� ✓ �+ ✓ �



Tits classical geometric representation of

        real quadratic space:

 basis                    ;

 symmetric bilinear form defined by:

(W,S)

� = {↵s | s 2 S}

                 ``  -isometry’’:
s(v) = v � 2B(v,↵)↵, s 2 S

Christophe Hohlweg, 2014

D3

Proposition. Let        and        , then:s 2 S w 2 W
`(ws) = `(w) + 1 () w(↵s) 2 �+

� = W (�), �

+
= cone(�) \ �= ���

(V,B)

B(↵s,↵t) = � cos

✓
⇡

mst

◆
, (= 1 if s = t; = �1 if mst = 1)

BW  OB(V )

Root system:

Geometric representations



↵ = ⇢1� = ⇢0
1

⇢2⇢0
2

⇢3⇢0
3

⇢4⇢0
4

Q

(a) B(↵,� ) = �1

= s↵(�)
= � + 2↵

s�(↵) =
↵ + 2� =

= s↵s�(↵)
= 3↵ + 2�

⇢n = (n + 1)↵ + n�⇢0
n = n↵ + (n + 1)�

s↵(v) = v � 2B(v,↵ )↵.

Q = {v 2 V |B(v, v) = 0}

Infinite 
dihedral 
group

�+

Christophe Hohlweg, 2013

Geometric representations



A reflection subgroup of         is a subgroup  

                         where           is finite 

Root of a B-reflection on V: for         and 

                              with              .

The isotropic cone of B:
↵ /2 Q v 2 V

B(↵,↵ ) = 1s↵(v) = v � 2B(v,↵ )↵

Restriction to Reflection subgroups
Q = {v 2 V |B(v, v) = 0}

Christophe Hohlweg, 2014

Geometric representations

Theorem (Dyer, Deodhar). Let          ,                       and     

     the basis of           . Then            is a Coxeter 
system, where                       . 

A ✓ �+

(W,S)

WA = hs↵ |↵ 2 Ai

A ✓ �+

�A cone(A0
)

SA = {s↵ |↵ 2 �A}
(WA, SA)

The restriction of Tits geometric representation to             
is not necessarily the one for

A0 = WA(A) \ �+

(WA, SA)
WA



Q�

↵ = ⇢1� = ⇢01

⇢2⇢02

⇢3⇢03

⇢4⇢04

(b) B(↵,� ) = �1.01 < �1
s↵(v) = v � 2B(v,↵ )↵.

Infinite 
dihedral 
group II

Q� = {v 2 V |B(v, v)  0}

1(�1, 01)

Christophe Hohlweg, 2013

�+

Geometric representations



Vinberg geometric representations of (W,S)

B(↵s,↵t) =

(
� cos

⇣
⇡

mst

⌘
if mst < 1

a  �1 if mst = 1

Christophe Hohlweg, 2013

Geometric representations

        real quadratic space and        s.t. 

                             ;

                   s.t.

(V,B) � ✓ V
cone(�) \ cone(��) = {0}

                 ``  -isometry’’:
s(v) = v � 2B(v,↵)↵, s 2 S

Proposition. Let        and        , then:s 2 S w 2 W
`(ws) = `(w) + 1 () w(↵s) 2 �+

� = W (�), �

+
= cone(�) \ �= ���

BW  OB(V )

Root system:

Q�

↵ = ⇢1� = ⇢01

⇢2⇢02

⇢3⇢03

⇢4⇢04

(b) B(↵,� ) = �1.01 < �1

1(�1, 01)

� = {↵s | s 2 S}



Classification of Finite Reflection Groups
world of roots world of words

Coxeter groups/graphs

Finite 
Reflection 
Groups roots 

to 
words

  -Reflection groups
words 

to 
roots

Finite 

Coxeter groups 

Theorem. The following assertions are equivalent:

      (i)          is a finite Coxeter system;

      (ii)     is a scalar product and                 ;               

      (iii)     is a finite reflection group.

B

(W,S)
B
W

W  OB(V )

Christophe Hohlweg, 2013



Theorem. The irreducible FRG are precisely the finite 
irreducible Coxeter groups. Their graphs are:

...

...

...

m

n = |S| = dim(V )

Christophe Hohlweg, 2013

Coxeter groups



Conclusion
world of roots world of words

Coxeter groups/graphs

Finite 
Reflection 
Groups

roots 
to 

words

  -Reflection groups
words 

to 
rootsB

�W allowing 1(a  �1)signature          of (p, q, r) B

Christophe Hohlweg, 2013

Question: Are all B-reflection groups Coxeter groups?



A simple system   , i.e., �
• � is a basis of V ;

• B(↵,↵ ) = 1 for all ↵ 2 �;

• B(↵,� ) 2 ]�1,�1] [{� cos

�
⇡
k

�
, k � 2}, for all ↵,� 2 �

A B-reflection group    generated 
by                    . 

W
S := {s↵ |↵ 2 �}

Root system: � = W (�)

Theorem (Vinberg, 1971)

  (a)         is a Coxeter system;

  (b) the order of       is   (or    ) if

                            (or                ) 

  (c)                        is a positive

      root system:                  . 

(W,S)
s↵s� k 1

B(↵,� ) = � cos(

⇡
k ) B(↵,� )  �1

�

+
:= cone(�) \ �

� = �+ t ��+

1(�1, 01)

In the spherical, euclidean and hyperbolic case, all finitely 
generated discrete B-reflection groups are Coxeter groups (models 
for these geometry exist in V or its dual; `cut’ these models by 

the hyperplanes of reflections)

!

C Pilaud-Stump, Sage, Wikipedia, Casselman

Finite case i.e. B is a scalar product (         ): 
the model is the unit sphere

||v||2 = B(v, v) = 1

V = V ⇤

Christophe Hohlweg, 2013

Conclusion



A simple system   , i.e., �
• � is a basis of V ;

• B(↵,↵ ) = 1 for all ↵ 2 �;

• B(↵,� ) 2 ]�1,�1] [{� cos

�
⇡
k

�
, k � 2}, for all ↵,� 2 �

A B-reflection group    generated 
by                    . 

W
S := {s↵ |↵ 2 �}

Root system: � = W (�)

Theorem (Vinberg, 1971)

  (a)         is a Coxeter system;

  (b) the order of       is   (or    ) if

                            (or                ) 

  (c)                        is a positive

      root system:                  . 

(W,S)
s↵s� k 1

B(↵,� ) = � cos(

⇡
k ) B(↵,� )  �1

�

+
:= cone(�) \ �

� = �+ t ��+

1(�1, 01)

C Pilaud-Stump, Sage, Wikipedia, Casselman

In the spherical, euclidean and hyperbolic case, 

they are all Coxeter groups (models for these geometry exist in V 
or its dual; `cut’ these models by the hyperplanes of reflections)


!

Finite case i.e. B is a scalar product 

Affine case i.e. B is positive degenerate. Its radical is a 
line: 

The model is an affine hyperplane in the dual    :

!

N.B: reflection hyperplanes leave in the dual here.

Rad(B) = {v 2 V |B(v,↵) = 0, 8↵ 2 �} = Rx
V ⇤

H = {' 2 V ⇤ |'(x) = 1}

sgn(B) = (n, 0, 0)

Christophe Hohlweg, 2013

Conclusion



A simple system   , i.e., �
• � is a basis of V ;

• B(↵,↵ ) = 1 for all ↵ 2 �;

• B(↵,� ) 2 ]�1,�1] [{� cos

�
⇡
k

�
, k � 2}, for all ↵,� 2 �

A B-reflection group    generated 
by                    . 

W
S := {s↵ |↵ 2 �}

Root system: � = W (�)

Theorem (Vinberg, 1971)

  (a)         is a Coxeter system;

  (b) the order of       is   (or    ) if

                            (or                ) 

  (c)                        is a positive

      root system:                  . 

(W,S)
s↵s� k 1

B(↵,� ) = � cos(

⇡
k ) B(↵,� )  �1

�

+
:= cone(�) \ �

� = �+ t ��+

1(�1, 01)

In the spherical, euclidean and hyperbolic case, 

they are all Coxeter groups (models for these geometry exist in V 
or its dual; `cut’ these models by the hyperplanes of reflections)


!

C Pilaud-Stump, Sage, Wikipedia, Casselman

Affine case i.e. B is positive degenerate. Finite case i.e. B is a scalar product 
sgn(B) = (n, 0, 0) sgn(B) = (n� 1, 0, 1)

Hyperbolic case i.e.                                           (         ). Many 
models exists: projective (non conformal), hyperboloïd or the ball 
model

sgn(B) = (n� 1, 1, 0) V = V ⇤

Hn�1 = {x 2 V |B(x, x) = �1}

Christophe Hohlweg, 2013

Conclusion



Conclusion
world of roots world of words

Coxeter groups/graphs

Finite 
Reflection 
Groups

roots 
to 

words

  -Reflection groups
words 

to 
rootsB

Problem: Let            , classify all the Coxeter graphs 
with signature         . Count them?

!
N.B.: Known for          - FRG -;                - affine type - and 
partially for                - ``weakly hyperbolic’’ type

�W allowing 1(a  �1)signature          of (p, q, r) B

p, q, r 2 N
(p, q, r)

Christophe Hohlweg, 2013

(n, 0, 0) (n� 1, 0, 1)
(n� 1, 1, 0)



Selected biblio of Part 1 ...Donald Coxeter

(London 1907, Toronto 2003)


Professor at University of Toronto 
(1936-2003)

Christophe Hohlweg, 2013



Lecture 2: Weak order and roots
In the last episode   

Christophe Hohlweg, 2014

world of roots world of words
Coxeter groups/graphs

Finite 
Reflection 
Groups

roots 
to 

words

  -Reflection groups
words 

to 
rootsB

�W allowing 1(a  �1)signature          of (p, q, r) B
W = hS | (st)mst = ei



       Coxeter system of finite rank           

any           is a word in the alphabet   ;


Length function                with            and   

w 2 W S

` : W ! N `(e) = 0

`(w) = min{k |w = s1s2 . . . sk, si 2 S}

How to study words on   representing    ? Is a word

              a reduced word for    (i.e.            ) ?s1s2 . . . sk

w
w k = `(w)

S

Christophe Hohlweg, 2014

Proposition. Let        and        , then                    . 

Examples.      is            ;                 


                       since     

D3

ststs = (sts)ts = (tst)ts = t`(ststs) = 1

e s t st ts sts = tst
` 0 1 1 2 2 3

s 2 S w 2 W `(ws) = `(w)± 1

Weak order and reduced words
|S| < 1

W = hS | (st)mst = ei



Cayley graph of             i.e.

!
!
!
is naturally oriented by the 
(right) weak order:

W = hSi
 vertices    

 edges            

W

w wss (s 2 S)

w < ws `(w) < `(ws)if
w wsswrite:

Christophe Hohlweg, 2014

Weak order and reduced words
e

stts

tst = sts = w�

st

D3 = S3
e

stts

st

tst sts
D1 = U2

Fact: (a)         iff a reduced word 
of    is a prefix of a red. word of   .

(b) reduced words of   corresp. to 
maximal chains in the interval      .

(c) Chain property: if         with  

                     then:

u  w

u w

w
[e, w]

u  w

`(u) + 1 < `(w)

9v 2 W, u � v � w

e

s1

s2

s3

s1s2

s2s1

s1s3

s2s3

s3s2
s1s2s1

s1s2s3

s1s3s2

s2s3s1

s2s3s2

s3s2s1
s1s2s3s1

s1s2s3s2

s2s3s1s2

s1s3s2s1

s2s3s2s1 s1s2s3s1s2

s1s2s3s2s1

s2s3s1s2s1

w�

= s2s3s2s1s2 = s3s2s3s1s2

S4



Christophe Hohlweg, 2014

Weak order and reduced words

e

s1

s2

s3

s1s2

s2s1

s1s3

s2s3

s3s2
s1s2s1

s1s2s3

s1s3s2

s2s3s1

s2s3s2

s3s2s1
s1s2s3s1

s1s2s3s2

s2s3s1s2

s1s3s2s1

s2s3s2s1 s1s2s3s1s2

s1s2s3s2s1

s2s3s1s2s1

w�

= s2s3s2s1s2 = s3s2s3s1s2

S4

Theorem (Björner). The weak order is a complete meet-
semilattice. In particular                                 , exists. u ^ v = inf(u, v), 8u, v 2 W

Proposition. Assume     is 
finite, then:

(i) there is a unique  

   such that:                   .

(ii) the map             is a 
poset antiautomorphism.

(iii) the weak order is a 
complete lattice. In part., 

                     exists.

(iv)

W

w� 2 W
u  w�, 8u 2 W

u _ v = sup(u, v)
u ^ v = w�(w�u _ w�v)

w 7! w�w



e

s1

s2

s3

s1s2

s2s1

s1s3

s2s3

s3s2
s1s2s1

s1s2s3

s1s3s2

s2s3s1

s2s3s2

s3s2s1
s1s2s3s1

s1s2s3s2

s2s3s1s2

s1s3s2s1

s2s3s2s1 s1s2s3s1s2

s1s2s3s2s1

s2s3s1s2s1

w�

Weak order & Generalized Associahedra

!
 Permutahedra


    simple system;

                      ;

 Choose   generic i.e.  


!

�

S = {s↵ |↵ 2 �}

 finite Coxeter system, so W  O(V )(W,S)

Perm

aaa
(W ) = conv {w(aaa) |w 2 W}

Christophe Hohlweg, 2013

Proposition.              is a simple polytope whose oriented 
1-skeleton is the graph of the (right) weak order.      

Permaaa(W )

aaa

haaa,↵i > 0, 8↵ 2 �



Associahedra (Convex polytopes):

 Type A (Haiman 1984, Lee, Loday, ... ) 

 Type B - cyclohedra (Bott-Taubes 1994, ...)

 Weyl groups (Chapoton-Fomin-Zelevinsky, 

2003)

 from permutahedra of finite Coxeter groups 

(CH-Lange-Thomas 2011, ...)

Building Generalized Associahedra

Christophe Hohlweg, 2013

Associahedra (lattices/complexes):

 Lattice (Tamari, 1951) 

 Cell complex (Stasheff, 1963)

 Cluster complex (Fomin-Zelevinsky, 2003)


 Cambrian lattices (Reading 2007, 
2007 )and more ...



   Coxeter element associated to this orientation i.e 
product without repetition of all the simple reflections; 

!
     subword with letters 

Building Generalized Associahedra

Hohlweg, C. Lange, H. Thomas (2009) 

c

c(I)

W = S4

c = ⌧2⌧3⌧1

I = {⌧1, ⌧2} ✓ S ) c(I) = ⌧2⌧1

   - word of     :                                     reduced 
expression s.t.  
c w� w

o

w
o

w
o

(c) = c(K1)c(K2) . . . c(Kp)

S ◆ K1 ◆ K2 ◆ · · · ◆ Kp 6= ;
w

o

w
o

w
o

(⌧1⌧2⌧3) = ⌧1⌧2⌧3.⌧1⌧2.⌧1 = c(S)c({⌧1,⌧2})c({⌧1})
w

o

w
o

w
o

(⌧2⌧3⌧1) = ⌧2⌧3⌧1.⌧2⌧3⌧1 = c(S)c(S).

Christophe Hohlweg, 2013

 Data:              and an orientation of Permaaa(W ) �W

⌧1 ⌧2 ⌧3

I ✓ S



Building Generalized Associahedra

Hohlweg, C. Lange, H. Thomas (2009) 

   - word of     :                                     reduced 
expression s.t.  
c w� w

o

w
o

w
o

(c) = c(K1)c(K2) . . . c(Kp)

S ◆ K1 ◆ K2 ◆ · · · ◆ Kp 6= ;
w

o

w
o

w
o

(⌧1⌧2⌧3) = ⌧1⌧2⌧3.⌧1⌧2.⌧1 = c(S)c({⌧1,⌧2})c({⌧1})
w

o

w
o

w
o

(⌧2⌧3⌧1) = ⌧2⌧3⌧1.⌧2⌧3⌧1 = c(S)c(S).

   - singletons are the prefixes 
of        up to commutations
c

w
o

w
o

w
o

(c)

Proposition.                - singletons form a 

distributive sublattice of the weak order.

c

Christophe Hohlweg, 2013

e, ⌧2⌧3, ⌧2⌧3⌧1⌧2⌧3,
⌧2, ⌧2⌧3⌧1, ⌧2⌧3⌧1⌧2⌧1, and
⌧2⌧1, ⌧2⌧3⌧1⌧2, w

o

= ⌧2⌧1⌧3⌧2⌧1⌧3.



Theorem. The 1-skeleton of

!

is N. Reading’s   - Cambrian lattice; 
its normal fan is the corresponding 
Cambrian fan studied in detailed by 
N. Reading & D. Speyer. The facets 
are labelled by almost positive roots

Building Generalized Associahedra

Hohlweg, C. Lange, H. Thomas (2009) 

   - generalized associahedron 
is the polytope              
obtained from                by 
keeping only the facets 
containing a   - singleton

c

c

Asso

aaa
c (W )

Permaaa(W )

c

Asso

aaa
c (W )

Christophe Hohlweg, 2013



e

t1

t2

t3

t1t2

t2t1

t1t3

t2t3

t3t2
t1t2t1

t1t2t3

t1t3t2

t2t3t1

t2t3t2
t3t2t1

t1t2t3t1

t1t2t3t2

t2t3t1t2

t1t3t2t1

t2t3t2t1 t1t2t3t1t2

t1t2t3t2t1

t2t3t1t2t1

w�

e

t1

t1t2

t1t2t1t1t2t3

t1t2t3t1

t1t2t3t1t2
w�

t2

t3

t1t3

t2t3
t2t3t2

t1t2t3t2

Type A

Christophe Hohlweg, 2013



e

w

o

e

w

o

e

w

o

= t0t1t2t0t1t2t0t1t2

Type B Type H

Christophe Hohlweg, 2013



V. Pilaud and C. Stump:


1. Brick polytopes of spherical subword 
complexes: A new approach to 
generalized associahedra (2012)


2. Vertex barycenter of generalized 
associahedra (2012)


 Convex hull of the vertices: brick polytopes. Barycenter 
identical to the permutahedron:


!

 Classification of isometry classes in term of the lattices 
of    singletons (N. Bergeron, Hohlweg, C. Lange, H. Thomas, 2009)

 Recovering the corresponding cluster algebra: 

C Pilaud-Stump

c�

S. Stella, Polyhedral models for generalized associahedra via Coxeter elements (2013)


Selected developements on the subject

Christophe Hohlweg, 2013



e

t1

t2

t3

t1t2

t2t1

t1t3

t2t3

t3t2
t1t2t1

t1t2t3

t1t3t2

t2t3t1

t2t3t2
t3t2t1

t1t2t3t1

t1t2t3t2

t2t3t1t2

t1t3t2t1

t2t3t2t1 t1t2t3t1t2

t1t2t3t2t1

t2t3t1t2t1

w�

e

t1

t1t2

t1t2t1t1t2t3

t1t2t3t1

t1t2t3t1t2
w�

t2

t3

t1t3

t2t3
t2t3t2

t1t2t3t2

Cambrian (semi)lattices/fans in finite case & 
Generalized associahedra in finite case

Weak order: a combinatorial model

Christophe Hohlweg, 2014

Initial section of reflection orders and KL-polynomials (M. Dyer): 
combinatorial formulas for KL-polynomials (F. Brenti, M. Dyer).

A combinatorial model for cambrian lattices/generalized 
associahedra in infinite case, or twisted Bruhat order and KL-
polynomials (M. Dyer)? Is it possible to «enlarge» Coxeter 
groups to have a weak order that is a complete lattice?



Geometric representations of (W,S)

B(↵s,↵t) =

(
� cos

⇣
⇡

mst

⌘
if mst < 1

a  �1 if mst = 1

Christophe Hohlweg, 2013

        real quadratic space and        s.t. 

                             ;

                   s.t.

(V,B) � ✓ V
cone(�) \ cone(��) = {0}

                : s(v) = v � 2B(v,↵)↵, s 2 S

� = W (�), �

+
= cone(�) \ �= ���

W  OB(V )

Root system:

� = {↵s | s 2 S}

D3

e s = s↵ t = s� st ts sts = tst
` 0 1 1 2 2 3
↵ ↵ �↵ � � �� ��
� � � �� �� ↵ �↵
� � � ↵ �↵ �� ��

Weak order and root system
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                             ;

                   s.t.

(V,B) � ✓ V
cone(�) \ cone(��) = {0}

                : s(v) = v � 2B(v,↵)↵, s 2 S

� = W (�), �

+
= cone(�) \ �= ���

W  OB(V )

Root system:
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D3
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` 0 1 1 2 2 3
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⇣
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        real quadratic space and        s.t. 

                             ;

                   s.t.

(V,B) � ✓ V
cone(�) \ cone(��) = {0}

                : s(v) = v � 2B(v,↵)↵, s 2 S

� = W (�), �

+
= cone(�) \ �= ���

W  OB(V )

Root system:
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Geometric representations of (W,S)

B(↵s,↵t) =

(
� cos

⇣
⇡

mst

⌘
if mst < 1

a  �1 if mst = 1

Christophe Hohlweg, 2013

        real quadratic space and        s.t. 

                             ;

                   s.t.

(V,B) � ✓ V
cone(�) \ cone(��) = {0}

                : s(v) = v � 2B(v,↵)↵, s 2 S

� = W (�), �

+
= cone(�) \ �= ���

W  OB(V )

Root system:

� = {↵s | s 2 S}

D3

e s = s↵ t = s� st ts sts = tst
` 0 1 1 2 2 3
↵ ↵ �↵ � � �� ��
� � � �� �� ↵ �↵
� � � ↵ �↵ �� ��

`(w) = |{⌫ 2 �+ |w(⌫) 2 ��}|

Weak order and root system



e s = s↵ t = s� st ts sts = tst
` 0 1 1 2 2 3
↵ ↵ �↵ � � �� ��
� � � �� �� ↵ �↵
� � � ↵ �↵ �� ��

Definition.  The inversion set of          is 

!

w 2 W

inv(w) = �+ \ w�1(��) = {⌫ 2 �+ |w(⌫) 2 ��}

D3

Christophe Hohlweg, 2014

Weak order and root system

If            then those ``are’’ the natural inversion.W = Sn

inv(�) = {ej � ei | 1  i < j  n, e�(j) � e�(i) 2 ��}



e s = s↵ t = s� st ts sts = tst
` 0 1 1 2 2 3
↵ ↵ �↵ � � �� ��
� � � �� �� ↵ �↵
� � � ↵ �↵ �� ��

Definition.  The inversion set of          is 

!

w 2 W

inv(w) = �+ \ w�1(��) = {⌫ 2 �+ |w(⌫) 2 ��}

D3

Christophe Hohlweg, 2014

Weak order and root system

If            then those ``are’’ the natural inversion.W = Sn

inv(�) = {ej � ei | 1  i < j  n, �(j) < �(i)}



e s = s↵ t = s� st ts sts = tst
` 0 1 1 2 2 3
↵ ↵ �↵ � � �� ��
� � � �� �� ↵ �↵
� � � ↵ �↵ �� ��

Definition.  The inversion set of          is 

!

w 2 W

inv(w) = �+ \ w�1(��) = {⌫ 2 �+ |w(⌫) 2 ��}

D3

Christophe Hohlweg, 2014

Weak order and root system

If            then those ``are’’ the natural inversion.W = Sn

inv(�) ' {(i, j) | 1  i < j  n, �(i) > �(j)}
45132



e s = s↵ t = s� st ts sts = tst
` 0 1 1 2 2 3
↵ ↵ �↵ � � �� ��
� � � �� �� ↵ �↵
� � � ↵ �↵ �� ��

Definition.  The inversion set of          is 

!

w 2 W

inv(w) = �+ \ w�1(��) = {⌫ 2 �+ |w(⌫) 2 ��}

D3

Christophe Hohlweg, 2014

Weak order and root system

Proposition. Let                  be a reduced word, then:

                                                    

In particular:                                 

w = s1s2 . . . sk
N(w) := inv(w�1) = {↵1, s1(↵2), · · · , s1 . . . sk�1(↵k)}

|N(w)| = |inv(w)| = `(w)



e s = s↵ t = s� st ts sts = tst
` 0 1 1 2 2 3
↵ ↵ �↵ � � �� ��
� � � �� �� ↵ �↵
� � � ↵ �↵ �� ��

Christophe Hohlweg, 2014

Weak order and root system

Definition.  The inversion set of          is 

!

w 2 W

inv(w) = �+ \ w�1(��) = {⌫ 2 �+ |w(⌫) 2 ��}

Proposition. Let                  be a reduced word, then:

                                                    

In particular:                                 

w = s1s2 . . . sk
N(w) := inv(w�1) = {↵1, s1(↵2), · · · , s1 . . . sk�1(↵k)}

|N(w)| = |inv(w)| = `(w)

e

s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�

�+



e s = s↵ t = s� st ts sts = tst
` 0 1 1 2 2 3
↵ ↵ �↵ � � �� ��
� � � �� �� ↵ �↵
� � � ↵ �↵ �� ��

Christophe Hohlweg, 2014

Weak order and root system

Definition.  The inversion set of          is 

!

w 2 W

inv(w) = �+ \ w�1(��) = {⌫ 2 �+ |w(⌫) 2 ��}

Proposition. Let                  be a reduced word, then:

                                                    

In particular:                                 

w = s1s2 . . . sk
N(w) := inv(w�1) = {↵1, s1(↵2), · · · , s1 . . . sk�1(↵k)}

|N(w)| = |inv(w)| = `(w)

Proposition. The map                               is an 
injective morphism of posets.

N : (W,) ! (P(�+),✓)

What is         ?  Im(N)

e

s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�

�+



e

s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�

�+
D3

Christophe Hohlweg, 2014

          is closed if for all                                   ; 

          is biclosed if                     are closed.

                               ; 

A ✓ �+

A ✓ �+

↵,� 2 A, cone(↵,�) \ � ✓ A

B(W ) = {biclosed sets} B0(W ) = {A ✓ B(W ) | |A| < 1}
A, Ac := �+ \A

Proposition.                               is a poset isomorphism   

                                    and                if    is finite. 

N : (W,) ! (B0(W ),✓)
N(w�) = �+ W

Weak order and biclosed sets



e

s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�

�+
D3
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N : (W,) ! (B0(W ),✓)
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e

s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�

�+
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          is biclosed if                     are closed.

                               ; 
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↵,� 2 A, cone(↵,�) \ � ✓ A

B(W ) = {biclosed sets} B0(W ) = {A ✓ B(W ) | |A| < 1}
A, Ac := �+ \A

Proposition.                               is a poset isomorphism   

                                    and                if    is finite. 

N : (W,) ! (B0(W ),✓)
N(w�) = �+ W

closed not 
bicolsed

Weak order and biclosed sets



e
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stts
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;

↵�

, �, � ↵�

�+
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s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�
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          is closed if for all                                   ; 

          is biclosed if                     are closed.

                               ; 

A ✓ �+

A ✓ �+

↵,� 2 A, cone(↵,�) \ � ✓ A

B(W ) = {biclosed sets} B0(W ) = {A ✓ B(W ) | |A| < 1}
A, Ac := �+ \A

Proposition.                               is a poset isomorphism   

                                    and                if    is finite. 

N : (W,) ! (B0(W ),✓)
N(w�) = �+ W

Weak order and biclosed sets

Inverse map (recursive construction)

                  ,                 is finite biclosed and 9↵ 2 � \A

A = {↵} t s↵(A \ {↵})

s↵(A \ {↵})

wA = s↵ws↵(A\{↵})



e

s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�

�+
D3
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Weak order and root system
          is closed if for all                                   ; 

          is biclosed if                     are closed.

                               ; 

A ✓ �+

A ✓ �+

↵,� 2 A, cone(↵,�) \ � ✓ A

B(W ) = {biclosed sets} B0(W ) = {A ✓ B(W ) | |A| < 1}
A, Ac := �+ \A

Proposition.                               is a poset isomorphism   

                                    and                if    is finite. 

N : (W,) ! (B0(W ),✓)
N(w�) = �+ W

⇢n = (n + 1)↵ + n�⇢0
n = n↵ + (n + 1)�

↵ = ⇢1� = ⇢0
1

⇢2⇢0
2

⇢3⇢0
3

⇢4⇢0
4

Q

(a) B(↵,� ) = �1

= s↵(�)
= � + 2↵

s�(↵) =
↵ + 2� =

= s↵s�(↵)
= 3↵ + 2�

s↵(v) = v � 2B(v,↵ )↵.

Q = {v 2 V |B(v, v) = 0}

�+ The biclosed are:

 the finite ones;

 their complements;

 and two infinite 

ones: the left and 
right side of Q!

!



world of rootsworld of words
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Chain property: if         
with                then:

u  w

`(u) + 1 < `(w)

9v 2 W, u � v � w

N
If    is finite, then:

(i) a unique           s.t             


!

(ii)             is a poset 
antiautomorphism.

(iii) the weak order is a 
complete lattice.

(iv)

W

u  w�, 8u 2 W

u ^ v = w�(w�u _ w�v)

w� 2 W

Chain property: if         
finite biclosed with                           

             then:

        

If    is finite, then:

(i)                and            


!

(ii)             is a poset 
antiautomorphism.

(iii) the weak order is a 
complete lattice.

(iv)

W

A ✓ B

|B \A| > 1

N(w�) = �+

A ✓ �+, 8A 2 B = B0

A 7! Ac

A ^B = (Ac _Bc)c

9C 2 B0, A ( C ( B

Weak order and biclosed sets

w 7! w�w



world of roots
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Chain property: if         
finite biclosed with                           

             then:

        

If    is finite, then:

(i)                and            


!

(ii)             is a poset 
antiautomorphism.

(iii) the weak order is a 
complete lattice.

(iv)

W

A ✓ B

|B \A| > 1

N(w�) = �+

A ✓ �+, 8A 2 B = B0

A 7! Ac

A ^B = (Ac _Bc)c

9C 2 B0, A ( C ( B

Conjectures (M. Dyer, 2011). 

(a) chain property: if         are 
biclosed and               then 
there is         s.t.              .


(b)         is a complete lattice 
(with minimal element    and 
maximal element    ).


;
�+

A ✓ B
|B \A| > 1

C 2 B A ( C ( B

(B,✓)

                    so how to 
understand them geometrically?

 if    exists then

!

_ 6= [; ^ 6= \

A ^B = (Ac _Bc)c
_

Weak order and biclosed sets



Bruhat graph of             

!
!

W = hSi
 vertices    

 edges            

W e

s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�

�+
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Weak order and Bruhat order

Bruhat order:  transitive closure of             if 

Set of reflections:   T =
[

w2W

wSw�1 = {s� |� 2 �+}

w B wt `(w) < `(wt)

w ws�
� �

�

�

↵

↵

↵

�

��
Weak order implies 
Bruhat order.



   B-closure of          :

e

s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�

�+
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Weak order and Bruhat order

�

�

�

↵

↵

↵

�

�

  - path: path starting with   
in the Bruhat graph and 
indexed by elements in         .

A

A ✓ �+

Exemple.             :e

�

A = {↵, �}
e ! w� = s�
e ! s ! ts

Conjecture (M. Dyer). 

 Let       be biclosed sets, then 

!
!
 This conjecture is open even in 
finite cases!

A = {� 2 �+ | s� is in a A� path}

A,B

A _B = A [B

A [B
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Weak order and Bruhat order
Another example:         is 

Conjecture (M. Dyer). 

 Let       be biclosed sets, then 

!
!
 This conjecture is open even in 
finite cases!

A,B

A _B = A [B

(W,S)
⌧1 ⌧2 ⌧3

A = N(⌧1⌧2) = {↵1, ⌧1(↵2)} = {↵1,↵1 + ↵2}
B = N(⌧3) = {↵3}
A [B = {↵1,↵3,↵1 + ↵2}

Graph of        pathsA [B

e

⌧1

⌧2⌧1

⌧2⌧1⌧3

⌧2⌧3⌧2⌧1

; s↵1+↵2 = ⌧1⌧2⌧1

↵1

↵1 + ↵2

↵3

↵1 + ↵2

↵1 + ↵2
↵3

⌧3

⌧3⌧1⌧2⌧1

⌧1⌧2⌧3⌧2⌧1
= s↵1+↵2+↵3

↵1 + ↵2

↵3

⌧1⌧2⌧1

⌧1⌧2⌧1⌧3
↵3

↵1 + ↵2
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Weak order and Bruhat order
Another example:         is 

Conjecture (M. Dyer). 

 Let       be biclosed sets, then 

!
!
 This conjecture is open even in 
finite cases!

A,B

A _B = A [B

(W,S)
⌧1 ⌧2 ⌧3

A = N(⌧1⌧2) = {↵1, ⌧1(↵2)} = {↵1,↵1 + ↵2}
B = N(⌧3) = {↵3}
A [B = {↵1,↵3,↵1 + ↵2}

e

⌧1

⌧2⌧1

⌧2⌧1⌧3

⌧2⌧3⌧2⌧1

; s↵1+↵2 = ⌧1⌧2⌧1

↵1

↵1 + ↵2

↵3

↵1 + ↵2

↵1 + ↵2
↵3

⌧3

⌧3⌧1⌧2⌧1

⌧1⌧2⌧3⌧2⌧1
= s↵1+↵2+↵3

↵1 + ↵2

↵3

⌧1⌧2⌧1

⌧1⌧2⌧1⌧3
↵3

↵1 + ↵2

A [B = {↵1,↵3,↵1 + ↵2,↵1 + ↵2 + ↵3} = N(⌧1⌧3⌧2⌧3)

⌧1⌧2 _ ⌧3 = ⌧1⌧3⌧2⌧3
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Weak order and Bruhat order
Another example:         is 

Conjecture (M. Dyer). 

 Let       be biclosed sets, then 

!
!
 This conjecture is open even in 
finite cases!

A,B

A _B = A [B

(W,S)
⌧1 ⌧2 ⌧3

A = N(⌧1⌧2) = {↵1, ⌧1(↵2)} = {↵1,↵1 + ↵2}
B = N(⌧3) = {↵3}
A [B = {↵1,↵3,↵1 + ↵2}

e

⌧1

⌧2⌧1

⌧2⌧1⌧3

⌧2⌧3⌧2⌧1

; s↵1+↵2 = ⌧1⌧2⌧1

↵1

↵1 + ↵2

↵3

↵1 + ↵2

↵1 + ↵2
↵3

⌧3

⌧3⌧1⌧2⌧1

⌧1⌧2⌧3⌧2⌧1
= s↵1+↵2+↵3

↵1 + ↵2

↵3

⌧1⌧2⌧1

⌧1⌧2⌧1⌧3
↵3

↵1 + ↵2

A [B = {↵1,↵3,↵1 + ↵2,↵1 + ↵2 + ↵3} = N(⌧1⌧3⌧2⌧3)

Another way to interpret the join?
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Weak order and Bruhat order
Another example:         is 

Conjecture (M. Dyer). 

 Let       be biclosed sets, then 

!
!
 This conjecture is open even in 
finite cases!

A,B

A _B = A [B

(W,S)
⌧1 ⌧2 ⌧3

A = N(⌧1⌧2) = {↵1, ⌧1(↵2)} = {↵1,↵1 + ↵2}
B = N(⌧3) = {↵3}
A [B = {↵1,↵3,↵1 + ↵2}

e

⌧1

⌧2⌧1

⌧2⌧1⌧3

⌧2⌧3⌧2⌧1

; s↵1+↵2 = ⌧1⌧2⌧1

↵1

↵1 + ↵2

↵3

↵1 + ↵2

↵1 + ↵2
↵3

⌧3

⌧3⌧1⌧2⌧1

⌧1⌧2⌧3⌧2⌧1
= s↵1+↵2+↵3

↵1 + ↵2

↵3

⌧1⌧2⌧1

⌧1⌧2⌧1⌧3
↵3

↵1 + ↵2

A [B = {↵1,↵3,↵1 + ↵2,↵1 + ↵2 + ↵3} = N(⌧1⌧3⌧2⌧3)

Another way to interpret the join?

END of Part 2

- to be continued in Part 3 - 
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Lecture 3: Words & infinite root systems



The Cayley graph of         is naturally oriented by the (right) 

weak order:                                  .


The weak order is a complete meet-semilattice and 

world of roots world of words
Coxeter groups/graphs

Finite 
Reflection 
Groups

roots 
to 

words

  -Reflection groups
words 

to 
rootsB

�W allowing 1(a  �1)signature          of (p, q, r) B

Christophe Hohlweg, 2013

w < ws `(w) < `(ws)if
(W,S)

In the last episode   

u  v () N(u) ✓ N(v); N(u) = �+ \ u(��)
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e

s = s↵t = s�

stts

tst = sts = w�

;

↵�

, �, � ↵�

�+

In the last episode   

Im(N) = B0 ✓ B

Finite and infinite biclosed sets Conjectures (M. Dyer, 2011). 

(a) chain property: if         are 
biclosed and               then 
there is         s.t.              .


(b)         is a complete lattice 
(with minimal element    and 
maximal element    ).


;
�+

A ✓ B
|B \A| > 1

C 2 B A ( C ( B

(B,✓)

                    so how to 
understand them geometrically?

 if    exists then

_ 6= [; ^ 6= \

A ^B = (Ac _Bc)c
_



Geometric representations of (W,S)

B(↵s,↵t) =

(
� cos

⇣
⇡

mst

⌘
if mst < 1

a  �1 if mst = 1

Christophe Hohlweg, 2014

        real quadratic space and        s.t. 

                             ;

                   s.t.

(V,B) � ✓ V
cone(�) \ cone(��) = {0}

                : s(v) = v � 2B(v,↵)↵, s 2 S

� = W (�), �

+
= cone(�) \ �= ���

W  OB(V )

Root system:

� = {↵s | s 2 S}

Q�

↵ = ⇢1� = ⇢01

⇢2⇢02

⇢3⇢03

⇢4⇢04

(b) B(↵,� ) = �1.01 < �1

↵ = ⇢1� = ⇢0
1

⇢2⇢0
2

⇢3⇢0
3

⇢4⇢0
4

Q

(a) B(↵,� ) = �1

infinite dihedral 1(�1) 1(�1, 01)

A Projective view of root systems



A Projective view of root systems
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`Cut’            by an affine hyperplane: cone(�)

V1 = {v 2 V |
X

↵2�

v↵ = 1}

Normalized roots:                    in b⇢ := ⇢/
X

↵2�

⇢↵ b� :=
[

⇢2�

R⇢ \ V1

Rank 2 root systems

Action of     on    :                  W b� w · ⇢̂ = [w(⇢)

s�(↵) =
↵ + 2� =

3 4... . .. .
↵ = ⇢1� = ⇢0

1

⇢2⇢0
2

⇢3⇢0
3

⇢4⇢0
4

Q

(a) B(↵,� ) = �1

Normalized isotropic 
cone: bQ := Q \ V1



A Projective view of root systems
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`Cut’            by an affine hyperplane: cone(�)

V1 = {v 2 V |
X

↵2�

v↵ = 1}

Normalized roots:                    in b⇢ := ⇢/
X

↵2�

⇢↵ b� :=
[

⇢2�

R⇢ \ V1

Rank 2 root systems

m

Action of     on    :                  

... .. .
↵̂ �̂s↵ · �̂ s� · ↵̂s↵s� · ↵̂ s�s↵ · �̂

W b� w · ⇢̂ = [w(⇢) Normalized isotropic 
cone: bQ := Q \ V1

⇢n = (n + 1)↵ + n�⇢0
n = n↵ + (n + 1)�

1(�1, 01)



A Projective view of root systems

Christophe Hohlweg, 2014

Rank 3 root systems

A dihedral subgroup group is infinite iff the associated line cuts Q 

affine



A Projective view of root systems

Christophe Hohlweg, 2014

Rank 3 root systems

A dihedral subgroup group is infinite iff the associated line cuts Q 

affine

^

^

^\↵+ �

s� · �̂

s� · �̂



A Projective view of root systems

Christophe Hohlweg, 2014

Rank 3 root systems

A dihedral subgroup group is infinite iff the associated line cuts Q 

affine

^

^

^

s� · �̂

s� · �̂

\↵+ �

s↵ · (s� ·
�̂) 2 [↵̂, s�

· �̂] \
[s↵ · �̂, s↵

· �̂]



A Projective view of root systems
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Rank 3 root systems

A dihedral subgroup group is infinite iff the associated line cuts Q 

affine

^

^

^

s� · �̂

s� · �̂

\↵+ �

s↵s� · �̂

s↵s� · �̂



A Projective view of root systems
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Rank 3 root systems

affine

^

^

^

s� · �̂

s� · �̂

\↵+ �

s↵s� · �̂

s↵s� · �̂ s�s↵s� · �̂ 2 [�̂, s↵s� · �̂] \ [s� · ↵̂, s� · (s� · �̂)]



A Projective view of root systems

Christophe Hohlweg, 2014

Rank 4 root systems

finite
affine

(weakly) hyperbolic

(2, 2)Sgn is 
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A = N(⌧1⌧2) = {↵1, ⌧1(↵2)} = {↵1,↵1 + ↵2} B = N(⌧3) = {↵3}

A [B = {↵1,↵3,↵1 + ↵2}

\↵1 + ↵2 + ↵3

\↵1 + ↵2

Join in finite Coxeter groups
Example:         is (W,S)

⌧1 ⌧2 ⌧3

⌧1⌧2 _ ⌧3 = ⌧1⌧3⌧2⌧3 N(⌧1⌧3⌧2⌧3) = {↵1,↵3,↵1 + ↵2,↵1 + ↵2 + ↵3}
;

;
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A = N(⌧1⌧2) = {↵1, ⌧1(↵2)} = {↵1,↵1 + ↵2} B = N(⌧3) = {↵3}

A [B = {↵1,↵3,↵1 + ↵2}

\↵1 + ↵2 + ↵3

\↵1 + ↵2

ˆA _ ˆB = conv(

ˆA [ ˆB) \ ˆ

�

Join in finite Coxeter groups
Example:         is (W,S)

⌧1 ⌧2 ⌧3

⌧1⌧2 _ ⌧3 = ⌧1⌧3⌧2⌧3 N(⌧1⌧3⌧2⌧3) = {↵1,↵3,↵1 + ↵2,↵1 + ↵2 + ↵3}
;

;
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A = N(⌧1⌧2) = {↵1, ⌧1(↵2)} = {↵1,↵1 + ↵2} B = N(⌧3) = {↵3}

A [B = {↵1,↵3,↵1 + ↵2}

\↵1 + ↵2 + ↵3

\↵1 + ↵2

Join in finite Coxeter groups
Example:         is (W,S)

⌧1 ⌧2 ⌧3

⌧1⌧2 _ ⌧3 = ⌧1⌧3⌧2⌧3 N(⌧1⌧3⌧2⌧3) = {↵1,↵3,↵1 + ↵2,↵1 + ↵2 + ↵3}
;

;

Proposition (CH, Labbé). 

 Let       be biclosed sets in a 
finite Coxeter group, then 

!
!

A,B

ˆA _ ˆB = conv(

ˆA [ ˆB) \ ˆ

�
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A = N(⌧1⌧2) = {↵1, ⌧1(↵2)} = {↵1,↵1 + ↵2} B = N(⌧3) = {↵3}

A [B = {↵1,↵3,↵1 + ↵2}

\↵1 + ↵2 + ↵3

\↵1 + ↵2

Join in finite Coxeter groups
Example:         is (W,S)

⌧1 ⌧2 ⌧3

⌧1⌧2 _ ⌧3 = ⌧1⌧3⌧2⌧3 N(⌧1⌧3⌧2⌧3) = {↵1,↵3,↵1 + ↵2,↵1 + ↵2 + ↵3}
;

;

Proposition (CH, Labbé). 

 Let       be biclosed sets in a 
finite Coxeter group, then 

!
!

A,B

ˆA _ ˆB = conv(

ˆA [ ˆB) \ ˆ

�

No true in general: the convex hull of the 
union of biclosed is not biclosed in general 

(counterexample in rank 4).



Limit roots (CH, Labbé, Ripoll): the set of limit roots is:

!
!

E(�) = Acc(

b
�) ✓ Q\ conv(�)

Action of    on        : given on E by b
Q \ L(↵, x) = {x, s↵ · x}b� t EW

^

^

^

^ ^
^

Limit roots

Remark.           is a singleton in the case of affine root system.E = Q̂



Dihedral reflection subgroups:               ,    


Associated root system: 


Observation: 


!

Limits of roots of dihedral reflection subgroups:

W 0 = hs⇢, s�i ⇢,� 2 �+

�0 = W 0({⇢,� })

Theorem (CH, Labbé, Ripoll 2012) 


 The sets     and    are dense in       

         .  


E2

E(�)

E(�0) = bQ \ L(b⇢, b�)

Christophe Hohlweg, 2013

E�
2

              where

! E�

2 :=
[

↵2�
⇢2�+

L(↵, b⇢) \ bQ
E2 = W · E�

2

Limit roots



Theorem (Dyer, CH, Ripoll 2013) 


The closure of        is dense in       for 

W · x E(�)

Christophe Hohlweg, 2013

Corollary (Dyer, CH, Ripoll, 2013) 

A first fractal Phenomenon.


L(↵, x)

x

s↵ · x

s↵ · y

y

Theorem (Dyer, CH, Ripoll, 2013) 


 

Morever, in this case, 


E =

ˆQ () ˆQ ✓ conv(�)

x 2 E(�)

sgn(B) = (n, 1, 0)

Limit roots



Theorem (Dyer, CH, Ripoll 2013) For irreducible root of 
signature           we have:

!

Problem (second fractal phenomenon): is it 
true for other indefinite types?


?

(2, 2)Sgn is 

E = conv(E) \Q(n, 1, 0)

Limit roots
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Limit roots (CH, Labbé, Ripoll): the set of limit roots is:

!
!

E(�) = Acc(

b
�) ✓ Q\ conv(�)

Action of    on        : given on E by b
Q \ L(↵, x) = {x, s↵ · x}b� t EW

^

^

^

^ ^
^

Theorem (Dyer, CH, Ripoll) 

Action on    faithful if 
irreducible not affine nor 
finite of rank > 2.


E

Proof. Difficult. Main 
ingredient: one can 
approximate    with 
arbitrary precision with the 
sets of limit roots of 
universal Coxeter subgroups

E

Limit roots
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Limit roots (CH, Labbé, Ripoll): the set of limit roots is:

!
!

E(�) = Acc(

b
�) ✓ Q\ conv(�)

Action of    on        : given on E by b
Q \ L(↵, x) = {x, s↵ · x}b� t EW

^

^

^

^ ^
^

Theorem (Dyer, CH, Ripoll) 

Action on    faithful if 
irreducible not affine nor 
finite of rank > 2.


E

Proof. Difficult. Main 
ingredient: one can 
approximate    with 
arbitrary precision with the 
sets of limit roots of 
universal Coxeter subgroups

E

Limit roots
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Limit roots (CH, Labbé, Ripoll): the set of limit roots is:

!
!

E(�) = Acc(

b
�) ✓ Q\ conv(�)

Action of    on        : given on E by b
Q \ L(↵, x) = {x, s↵ · x}b� t EW

^

^

^

^ ^
^

Theorem (Dyer, CH, Ripoll) 

Action on    faithful if 
irreducible not affine nor 
finite of rank > 2.


E

Proof. Difficult. Main 
ingredient: one can 
approximate    with 
arbitrary precision with the 
sets of limit roots of 
universal Coxeter subgroups

E

Limit roots
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Imaginary convex set    is the      orbit of the polytope

Proposition (Dyer, CH, Ripoll 2013). The action of    on    extends 
to an action of     on           . So     acts on 

W E
W conv(E) W b

� t conv(E)

K = {v 2 conv(�) |B(v,↵)  0, 8↵ 2 �}

W�I

Theorem (Dyer, 2012). I = conv(E)

Tiling of 
conv(E)

Assume the root system to be not finite nor affine

Limit roots and imaginary cone



Limit roots and imaginary cone

Christophe Hohlweg, 2013

Imaginary convex body    is the      orbit of the polytope

Proposition (Dyer, CH, Ripoll 2013). The action of    on    extends 
to an action of     on           . So     acts on 

W E
W conv(E) W b

� t conv(E)

K = {v 2 conv(�) |B(v,↵)  0, 8↵ 2 �}

W�I

Theorem (Dyer, 2012). I = conv(E)

Tiling of 
conv(E)

Assume the root system to be not finite nor affine

I

K

b�



C  Lam & Thomas

Christophe Hohlweg, 2013

1

K

Here a rank 5 Coxeter group is 
represented in dim 3     is not a 
basis but is positively independent. 


 (bridge with hyperbolic geometry, work 
with JP Préaux & V. Ripoll)

�

Ball model

Roots and imaginary 
convex body model

Tiling of 
conv(E)

Limit roots and imaginary cone



Biconvex sets. Let          .

   is convex if                     ; 

   is biconvex if    and     are convex;

   is separable if 

Biconvex sets and biclosed sets (CH & JP Labbé) 

Christophe Hohlweg, 2014

Proposition. Let         .

i)   is closed iff                              ;

ii)  separable       (bi)convex      (bi)closed  

iii)   is finite biclosed iff finite separable iff

A ✓ �+

A [↵̂, �̂] \ �̂ ✓ Â, 8↵,� 2 A

A

conv(A) \ ˆ

� = AA
A AcA

A conv(A) \ conv(Ac
) = ;

A ✓ �+

=) =)
A = N(w), w 2 W

^ ^

^ ^



Biconvex sets. Let          .

   is convex if                     ; 

   is biconvex if    and     are convex;

   is separable if 

Biconvex sets and biclosed sets (CH & JP Labbé) 

Christophe Hohlweg, 2014

Proposition. Let         .

i)   is closed iff                              ;

ii)  separable       (bi)convex      (bi)closed  

iii)   is finite biclosed iff finite separable iff

A ✓ �+

A [↵̂, �̂] \ �̂ ✓ Â, 8↵,� 2 A

A

conv(A) \ ˆ

� = AA
A AcA

A conv(A) \ conv(Ac
) = ;

A ✓ �+

=) =)
A = N(w), w 2 W

Remarks. 

The theorem and the converse of Prop (ii) is false in general, 
counterexample in rank 4 not affine nor finite;

In rank 3 or affine type, does biconvex = biclosed?

Theorem (CH & JP Labbé). In rank 3, Biconvex sets with inclusion is 
a lattice: ˆA _ ˆB = conv(

ˆA [ ˆB) \ ˆ

�

^

^

^

^



Inversion sets of infinite words

Christophe Hohlweg, 2014

Infinite reduced words on   . For an infinite 
word                         , write:     


  

         and    


  is reduced if the    ’s are.

Inversion set:

Remark. P. Cellini & P. Papi, K. Ito studied biclosed sets for Kac-
Moody root systems (imaginaty root). They form a subclass: 

   or     verify                    . 

S
w = s1s2s3..., si 2 S

wi = s1s2s3 · · · si;

w wi

�0 = ↵s1 �i = wi(↵si+1) 2 �+.

N(w) = {�i | i 2 N}.

affine

N((s�s↵)
1)N((s↵s�)

1)

A Ac
conv(

ˆA) \Q = ;



Inversion sets of infinite words

Christophe Hohlweg, 2014

Theorem (Cellini & Papi, 1998). Let the root system be affine, 
i.e.,    is a singleton. Let          s.t.                    . Then: 


     biclosed iff    separable iff            ,   finite or infinite. 

Q

A

conv(

ˆA) \Q = ;A ✓ �+

A A = N(w) w

affineRemark. The class of          s.t.      

   or    verify                    

is not satisfying (negative answer to 
a question asked by Lam & Pylyavskyy; 
Baumann, Kamnitzer & Tingley)

A Ac
conv(

ˆA) \Q = ;
A ✓ �+

_N̂(21321) _ N̂(214) =

= conv( [ ) \ ˆ

�

does not arise as an inversion 
set of a word (finite or infinite)



Let          , we say that: 

  avoids    if                                 


  strictly avoids    if                    .

Christophe Hohlweg, 2014

Inversion sets of infinite words (CH & JP Labbé) 
A ✓ �+

A E

^ ^
1(�1, 01)

[↵̂, �̂] \Q = ;, 8↵,� 2 A

A E conv(

ˆA) \ E = ;

Proposition. Let          be finite.

i) if   is closed then   avoids   ;

ii) if   is convex then   strictly avoids   . 

A ✓ �+

A A E

A A E

strictly avoids      avoids =)

= s� · ([↵,�] \ �̂)



Christophe Hohlweg, 2014

^

Inversion sets of infinite words (CH & JP Labbé) 

Corollary. If             with   reduced infinite or finite word, 
then    strictly avoids    and is biconvex.   

A = N(w) w

A E

Questions: 

i) the converse is true? (true for affine by Cellini & Papi);

ii)                      ?; obviously true for finite and affine; true for 

weakly hyperbolic (H. Chen & JP Labbé, 2014)
|Acc(N(w)|  1



Conjecture.

!

Christophe Hohlweg, 2013

and  
conv(E)

Assume the root system to be not finite nor affine

Inversion sets of infinite words (CH & JP Labbé) 

For a reduced                         , recall that:     

                     reduced;           and

Inversion set:

w = s1s2s3..., si 2 S

wi = s1s2s3 · · · si; �0 = ↵s1 �i = wi(↵si+1) 2 �+.

N(w) = {�i | i 2 N}.

Representation in             :  

               and 

conv(E)

z 2 relint(K) {wi · z, i 2 N}

Acc(N̂(w) = Acc({wi · z, i 2 N})

s↵s� · z

Questions. Link with Lam & 
Thomas, 2013? Geometric 
realization of the Davis complex?

s↵s�s� · z



Selected bibliography and other readings

Christophe Hohlweg, 2013

And articles already cited + from

 Brigitte Brink, Bill Casselman, Fokko du Cloux, Bob 

Howlett, Xiang Fu (regarding automaton and comb.)

 Matthew Dyer (imaginary cones, weak order(s))

 CH & coauthors (Matthew Dyer, Jean-Philippe Labbé, 

Jean-Philippe Préaux, Vivien Ripoll). A good start for limit 
of roots and imaginary convex bodies is the survey of the case of 
Lorentzian spaces (CH, Ripoll, Préaux)

 P Papi and Ken Ito (limit weak order) 

 Hao Chen and Jean-Philippe Labbé (Sphere packing)

...


