Words and Roots in

Infinite Coxeter Groups

- - Séminaire Lotharingien de Combinatoire -

Lyon, March 23-26, 2014
Christophe Hohlweg, LaCIM, UQAM (on sabbatical at IRMA, Strasbourg)

(C) someone on the internet

Lecture 1: Coxeter groups \& Reflection groups

A bit of history (cf. Bourbaki, Lie groups, Chap. IV-VI)
\square Symmetries.
\square Classificat ${ }^{\circ}$ of regular polygons \& polyhedral (cf. Euclid 300BC)
\square Study of regular tilings of the plane and the sphere (Byzantine school, High Middle-age, Kepler ~ 1619)

(C)wikipedia

Lecture 1: Coxeter groups \& Reflection groups

A bit of history (cf. Bourbaki, Lie groups, Chap. IV-VI)
$\square 19^{\text {th }}$ - century
\square Study of (discrete groups of) isometries, generated by reflections or not (Möbius ~1852, Jordan ~ 1869)
\square Tilings and regular polytopes in high dimension (Schläfli ~ 1850)
\square beginning of $20^{\text {th }}$ - century
口 Classification of discrete subgroups generated by reflections (Cartan, Coxeter, Vinberg, etc...) -> words

(C) wikipedia
\square Lie Theory via root systems (Killing, Cartan, Weyl, Witt, Coxeter, etc...)

Finite Reflection Groups (FRG)

- ($V,\langle\cdot, \cdot\rangle$) Euclidean space ($\operatorname{dim} V=n$)
i.e. $V \mathbb{R}$-vector space, $\langle\cdot, \cdot\rangle$ scalar product,

|| || associated norm.
- $O(V)=\{f: V \rightarrow V, f$ isometry $\}$ Orthogonal group $=\{f: V \rightarrow V \mid\|f(x)\|=\|x\|, \forall x \in V\}$ $\leq \mathrm{GL}(V)$
- Reflection: $s \in O(V)$ with set of fixed points a hyperplan H.

Properties. A reflection $s \in O(V)$ is uniquely determined:
\square by a hyperplan $H=\operatorname{Fix}(s)$;
\square or by a nonzero vector $\alpha \in V$ and we write $s_{\alpha}:=s$. "root"
Observe that $\mathbb{R} \alpha=H^{\perp}$, a line.

Finite Reflection Groups (FRG)

Properties. A reflection $s \in O(V)$ is uniquely determined:
\square by a hyperplan $H=\operatorname{Fix}(s)$;
\square or by a nonzero vector $\alpha \in V$ and we write $s_{\alpha}:=s$. "root"
Indeed, for s with $\mathbb{R} \alpha=H^{\perp}$ we have:

- $s(\mathbb{R} \alpha)=\mathbb{R} \alpha$ and then $s(\alpha)=-\alpha$ (nontrivial isometry);
- for $v=x+k \alpha \in V=H \oplus \mathbb{R} \alpha$

$$
s(v)=v-2 k \alpha=v-2 \frac{\langle\alpha, v\rangle}{\|\alpha\|^{2}} \alpha
$$

Theorem (Cartan-Dieudonné). Any isometry in $O(V)$ is the product of at most $n=\operatorname{dim} V$ reflections.

Finite Reflection Groups (FRG)

- $W \leq O(V)$ finite is a finite reflection group (FRG) if there is $A \subseteq V \backslash\{0\}$ such that $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$.

Examples:

\square Dihedral groups: V is a plane $(n=2), P$ is a regular polygon with m sides (centred at the origin) and

$$
\begin{aligned}
& \mathcal{D}_{m}=\text { isometry group of } \mathrm{P} \\
& \begin{aligned}
\mathcal{D}_{3} & =\left\{s_{\alpha}, s_{\beta}, s_{\gamma}, r, r^{2}, r^{3}=e\right\} \\
& =\left\langle s_{\alpha}, s_{\beta}, s_{\gamma}\right\rangle \quad \text { is a FRG }
\end{aligned}
\end{aligned}
$$

Finite Reflection Groups (FRG)

- $W \leq O(V)$ finite is a finite reflection group (FRG) if there is $A \subseteq V \backslash\{0\}$ such that $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$.

Examples:

\square Dihedral groups: V is a plane $(n=2), P$ is a regular polygon with m sides (centred at the origin) and

$$
\begin{aligned}
& \mathcal{D}_{m}=\text { isometry group of } \mathbf{P} \\
& \begin{aligned}
\mathcal{D}_{3} & =\left\{s_{\alpha}, s_{\beta}, s_{\gamma}, r, r^{2}, r^{3}=e\right\} \\
& =\left\langle s_{\alpha}, s_{\beta}, s_{\gamma}\right\rangle \text { is a FRG } \\
& =\left\langle s_{\alpha}, s_{\beta}\right\rangle
\end{aligned}
\end{aligned}
$$

Finite Reflection Groups (FRG)

- $W \leq O(V)$ finite is a finite reflection group (FRG) if there is $A \subseteq V \backslash\{0\}$ such that $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$.

Examples:

\square Dihedral groups: V is a plane $(n=2), P$ is a regular polygon with m sides (centred at the origin) and

$$
\mathcal{D}_{m}=\text { isometry group of } \mathrm{P}
$$

$$
\mathcal{D}_{3}=\left\{s_{\alpha}, s_{\beta}, s_{\gamma}, r, r^{2}, r^{3}=e\right\}
$$

$$
=\left\langle s_{\alpha}, s_{\beta}, s_{\gamma}\right\rangle
$$

$s_{\gamma}=s_{\alpha} s_{\beta} s_{\alpha}$
$=\left\langle s_{\alpha}, s_{\beta}\right\rangle$
$\left.\left.=\left\langle s_{\alpha}, s_{\beta}\right| s_{\alpha}^{2}=s_{\beta}^{2}=\left(s_{\alpha} s_{\beta}\right)^{3}=e\right)\right\rangle$

Finite Reflection Groups (FRG)

- $W \leq O(V)$ finite is a finite reflection group (FRG) if there is $A \subseteq V \backslash\{0\}$ such that $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$.

Examples:
\square Dihedral groups: V is a plane $(n=2), P$ is a regular polygon with m sides (centred at the origin) and

$$
\begin{aligned}
\mathcal{D}_{m} & =\text { isometry group of } \mathbf{P} \\
& =\left\langle s, t \mid s^{2}=t^{2}=(s t)^{m}=e\right\rangle
\end{aligned}
$$

where s (resp. t) is the reflection associated to the line passing
through a vertex of P (resp. the middle of an adjacent edge).

Finite Reflection Groups (FRG)

Examples:

\square Symmetric group: S_{n} acts on $V=\mathbb{R}^{n}$ by permutation of the coordinates: $\sigma \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$
\rightarrow faithful action: $S_{n} \leq G L(n)$
A transposition $\tau_{i j}=(i j)$ is a reflection with hyperplane

$$
\begin{aligned}
& H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\} \text { or vector } \alpha_{i j}=e_{j}-e_{i}\left(i . e . \tau_{i j}=s_{\alpha_{i j}}\right) \\
& \quad \rightarrow S_{n}=\left\langle\tau_{i j} \mid 1 \leq i<j \leq n\right\rangle \leq O\left(\mathbb{R}^{n}\right) \text { is a FRG }
\end{aligned}
$$

Finite Reflection Groups (FRG)

Examples:

\square Symmetric group: S_{n} acts on $V=\mathbb{R}^{n}$ by permutation of the coordinates: $\sigma \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$
\rightarrow faithful action: $S_{n} \leq G L(n)$
A transposition $\tau_{i j}=(i j)$ is a reflection with hyperplane

$$
\begin{aligned}
& H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\} \text { or vector } \alpha_{i j}=e_{j}-e_{i}\left(i . e . \tau_{i j}=s_{\alpha_{i j}}\right) \\
& \rightarrow S_{n}=\left\langle\tau_{i j} \mid 1 \leq i<j \leq n\right\rangle \leq O\left(\mathbb{R}^{n}\right) \text { is a FRG } \\
& =\left\langle\tau_{i}=s_{e_{i+1}-e_{i}} \mid 1 \leq i<n-1\right\rangle \quad \because \square
\end{aligned}
$$

where $\tau_{i}:=\tau_{i i+1}$ satisfies $\tau_{i}^{2}=\left(\tau_{i} \tau_{i+1}\right)^{3}=\left(\tau_{i} \tau_{j}\right)^{2}=e,|i-j|>1$

- \longrightarrow (dihedral sg) means $\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1}$
- - means $\tau_{i} \tau_{j}=\tau_{j} \tau_{i}$ (they commute)

Finite Reflection Groups (FRG)

- $W \leq O(V)$ is a FRG i.e. $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$ where $A \subseteq V \backslash\{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \forall \alpha \in V \backslash\{0\}, w s_{\alpha} w^{-1}=s_{w(\alpha)}$

- Root system: $\Phi=W(A)$ on which W acts by conjugation

Example:
In \mathcal{D}_{3} :

$$
\begin{gathered}
\substack{\circ \\
s_{\alpha} \quad s_{\beta}=: t \\
\|\alpha\|=\|\beta\|=1 \\
\langle\alpha, \beta\rangle=-\cos \left(\frac{\pi}{3}\right)}
\end{gathered}
$$

Finite Reflection Groups (FRG)

- $W \leq O(V)$ is a FRG i.e. $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$ where $A \subseteq V \backslash\{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \forall \alpha \in V \backslash\{0\}, w s_{\alpha} w^{-1}=s_{w(\alpha)}$

- Root system: $\Phi=W(A)$ on which W acts by conjugation

Example:
In \mathcal{D}_{3} :

$$
\begin{gathered}
\substack{\circ \\
s_{\alpha} \quad s_{\beta}=: t \\
\|\alpha\|=\|\beta\|=1 \\
\langle\alpha, \beta\rangle=-\cos \left(\frac{\pi}{3}\right)}
\end{gathered}
$$

Finite Reflection Groups (FRG)

- $W \leq O(V)$ is a FRG i.e. $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$ where $A \subseteq V \backslash\{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \forall \alpha \in V \backslash\{0\}, w s_{\alpha} w^{-1}=s_{w(\alpha)}$

- Root system: $\Phi=W(A)$ on which W acts by conjugation

Example:
In \mathcal{D}_{3} :

$$
\begin{gathered}
\substack{\circ \\
s:=\\
s_{\beta}=: t \\
\|\alpha\|=\|\beta\|=1 \\
\langle\alpha, \beta\rangle=-\cos \left(\frac{\pi}{3}\right)}
\end{gathered}
$$

Finite Reflection Groups (FRG)

- $W \leq O(V)$ is a FRG i.e. $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$ where $A \subseteq V \backslash\{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \forall \alpha \in V \backslash\{0\}, w s_{\alpha} w^{-1}=s_{w(\alpha)}$

- Root system: $\Phi=W(A)$ on which W acts by conjugation

Example:
In \mathcal{D}_{3} :

$$
\begin{gathered}
s:=s_{\alpha} \quad s_{\beta}=: t \\
\|\alpha\|=\|\beta\|=1 \\
\langle\alpha, \beta\rangle=-\cos \left(\frac{\pi}{3}\right)
\end{gathered}
$$

Finite Reflection Groups (FRG)

- $W \leq O(V)$ is a FRG i.e. $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$ where $A \subseteq V \backslash\{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \forall \alpha \in V \backslash\{0\}, w s_{\alpha} w^{-1}=s_{w(\alpha)}$

- Root system: $\Phi=W(A)$ on which W acts by conjugation

Conclusion: \mathcal{D}_{3}-orbit is $\Phi=\{ \pm \alpha, \pm \beta, \pm(\alpha+\beta)\}$
The positive part is $\Phi^{+}=\{\alpha, \beta, \alpha+\beta\}$

The base of cone $\left(\Phi^{+}\right)$ gives the desired generators s and t.

Finite Reflection Groups (FRG)

- $W \leq O(V)$ is a FRG i.e. $W=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$ where $A \subseteq V \backslash\{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \forall \alpha \in V \backslash\{0\}, w s_{\alpha} w^{-1}=s_{w(\alpha)}$

- Root system: $\Phi=W(A)$ on which W acts by conjugation

Conclusion: \mathcal{D}_{3}-orbit is $\Phi=\{ \pm \alpha, \pm \beta, \pm(\alpha+\beta)\}$
The positive part is
$\Phi^{+}=\{\alpha, \beta, \alpha+\beta\}$
The base of cone $\left(\Phi^{+}\right)$ gives the desired generators s and t.

Finite Reflection Groups (FRG)

Example: \mathcal{S}_{n} is $\square \because \square\left(\tau_{i}=s_{e_{i+1}-e_{i}}\right)$
Root system:

$$
\Phi=\left\{ \pm\left(e_{j}-e_{i}\right) \mid 1 \leq i<j \leq n\right\}
$$

The cone of $\Phi^{+}=\left\{e_{j}-e_{i} \mid 1 \leq i<j \leq n\right\}$ has as basis
$\Delta=\left\{e_{i+1}-e_{i} \mid 1 \leq i<n\right\}$ that corresponds to the generators.

- Root system: $\Phi=W(A)$ verifies the following properties
(i) Φ is finite, nonzero vectors;
(ii) $s_{\alpha}(\Phi)=\Phi, \forall \alpha \in \Phi$;
(iii) $\Phi \cap \mathbb{R} \alpha=\{ \pm \alpha\}, \forall \alpha \in \Phi$.
and:

$$
W=\left\langle s_{\alpha} \mid \alpha \in \Phi\right\rangle
$$

Finite Reflection Groups (FRG)

In general:

$$
W \leq \mathrm{O}(V) \mathrm{FRG} \quad \longleftrightarrow \Phi \text { root system in } V
$$

- Separating Φ by a (linear) hyperplane we have:
 simple reflections $S \subseteq T \stackrel{1: 1}{\longleftrightarrow} \Delta$ basis of $\operatorname{cone}\left(\Phi^{+}\right)$

Theorem. W is generated by $S=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$
Theorem. $W=\left\langle S \mid(s t)^{m_{s t}}=e\right\rangle$ where $m_{s t}=m_{t s}$ is the order of the rotation $s t$ (and $m_{s s}=1$)

Coxeter groups

(W, S) Coxeter system of finite rank $|S|<\infty$ i.e.

- $W=\left\langle S \mid(s t)^{m_{s t}}=e\right\rangle$ group
(- $m_{s s}=1\left(s\right.$ involut $\left.^{\circ}\right) ; m_{s t}=m_{t s} \in \mathbb{N}_{\geq 2} \cup\{\infty\}$ for $s \neq t$
A Coxeter graph Γ is given by:
\square vertices S (finite)
\square edges $\stackrel{S}{{ }_{O}^{m_{s t}}}{ }^{t}$ with $m_{s t} \geq 3$ or $m_{s t}=\infty$
Examples. Symmetric group \mathcal{S}_{n} is $\left.t^{2}=(s t)^{m}=e\right\rangle$;
- Dihedral group: $\mathcal{D}_{m}=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{m}=e\right\rangle$;
- Infinite dihedral group: $\mathcal{D}_{\infty}=\left\langle s, t \mid s^{2}=t^{2}=e\right\rangle$;
- Universal Coxeter group: $U_{n}=\left\langle a_{1}, \ldots, a_{n} \mid a_{i}^{2}=e\right\rangle$

Coxeter groups

(W, S) Coxeter system of finite rank $|S|<\infty$ i.e.

- $W=\left\langle S \mid(s t)^{m_{s t}}=e\right\rangle$ group
- $m_{s s}=1\left(s^{\text {involut }}{ }^{\circ}\right) ; m_{s t}=m_{t s} \in \mathbb{N}_{\geq 2} \cup\{\infty\}$ for $s \neq t$

A Coxeter graph Γ is given by:
\square vertices S (finite)
\square edges $\underbrace{}_{\stackrel{s}{\circ} m_{s t}^{t}}$ with $m_{s t} \geq 3$ or $m_{s t}=\infty$

Examples. Symmetric group \mathcal{S}_{n} is
 ..

- Dihedral group: \mathcal{D}_{m} is $๑ \stackrel{m}{\longrightarrow}$ or $\bullet \quad 0(m=2)$
- Infinite dihedral group: \mathcal{D}_{∞} is $\xrightarrow{\infty}$
- Universal Coxeter group: $U_{n}=\left\langle a_{1}, \ldots, a_{n} \mid a_{i}^{2}=e\right\rangle$

Coxeter groups

- any $w \in W$ is a word in the alphabet S; $W=\left\langle S \mid(s t)^{m_{s t}}=e\right\rangle$
- Length function $\ell: W \rightarrow \mathbb{N}$ with $\ell(e)=0$ and

$$
\ell(w)=\min \left\{k \mid w=s_{1} s_{2} \ldots s_{k}, s_{i} \in S\right\}
$$

How to study words on S representing w ? Is a word $s_{1} s_{2} \ldots s_{k}$ a reduced word for w (i.e. $k=\ell(w)$) ?

Examples. \mathcal{D}_{3} is

	e	s	t	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3

$$
\ell(s t s t s)=1 \text { since ststs }=(s t s) t s=(t s t) t s=t
$$

Proposition. Let $s \in S$ and $w \in W$, then $\ell(w s)=\ell(w) \pm 1$.

Coxeter groups

- Subgraphs and standard parabolic subgroups

$$
I \subseteq S \longleftrightarrow \Gamma_{I} \quad ; \quad\left(W_{I}, I\right) \text { is a Coxeter system }
$$

- W is irreducible iff Γ_{S} is connected

Proposition. If I_{1}, \ldots, I_{k} corresponds to the connected components of Γ_{I} (I may be S), then

$$
W_{I} \simeq W_{I_{1}} \times \cdots \times W_{I_{k}}
$$

To study Coxeter groups it is often just necessary to study the irreducible ones. In the following we often consider irreducible Coxeter systems.

Coxeter groups and Reflection groups

How to find all Coxeter graphs that correspond to Finite Reflection groups (FRG)? to Finite Coxeter groups?

Coxeter groups and Reflection groups

How to find all Coxeter graphs that correspond to Finite Reflection groups (FRG)? to Finite Coxeter groups?

Root systems for Coxeter groups?

An observation
If (W, S) is a Finite Reflection Group with $\Delta \subseteq \Phi^{+} \subseteq \Phi$.

- Dihedral (standard) parabolic subgroups: $I=\{s, t\} \subseteq S$ - $W_{I}=\langle I\rangle \leq W$ corresponds to the subgraphs:

ㅁ $W_{I}=\mathcal{D}_{m_{s t}}$ acts on $V_{I}=\operatorname{span}(\alpha, \beta)$:

$$
s_{\alpha}(\beta)=\beta-2\langle\alpha, \beta\rangle \alpha
$$

\square We have: $\quad\langle\alpha, \beta\rangle=-\cos \left(\frac{\pi}{m_{s t}}\right)$

- the scalar product is given on the basis Δ by

$$
(\langle\alpha, \beta\rangle)_{\alpha, \beta \in \Delta}=\left(-\cos \left(\frac{\pi}{m_{s t}}\right)\right)_{s, t \in S}
$$

Geometric representations

Tits classical geometric representation of (W, S)

- (V, B) real quadratic space:
- basis $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$;
- symmetric bilinear form defined by:

$B\left(\alpha_{s}, \alpha_{t}\right)=-\cos \left(\frac{\pi}{m_{s t}}\right),\left(=1\right.$ if $s=t ;=-1$ if $\left.m_{s t}=\infty\right)$
$\square W \leq \mathrm{O}_{B}(V)$ " B-isometry":

$$
s(v)=v-2 B(v, \alpha) \alpha, s \in S
$$

Root system: $\Phi=W(\Delta), \Phi^{+}=\operatorname{cone}(\Delta) \cap \Phi=-\Phi^{-}$
Proposition. Let $s \in S$ and $w \in W$, then:

$$
\ell(w s)=\ell(w)+1 \Longleftrightarrow w\left(\alpha_{s}\right) \in \Phi^{+}
$$

Geometric representations

Infinite

dihedral group
$\rho_{n}^{\prime}=n \alpha+(n+1) \beta$
$Q=\{v \in V \mid B(v, v)=0\}$

$$
\rho_{n}=(n+1) \alpha+n \beta
$$

(a) $B(\alpha, \beta)=-1$

$$
s_{\alpha}(v)=v-2 B(v, \alpha) \alpha
$$

Geometric representations

Restriction to Reflection subgroups

The isotropic cone of B :
Root of a B-reflection on V : for $\alpha \notin Q$ and $v \in V$

$$
s_{\alpha}(v)=v-2 B(v, \alpha) \alpha \text { with } B(\alpha, \alpha)=1 \text {. }
$$

- A reflection subgroup of (W, S) is a subgroup $W_{A}=\left\langle s_{\alpha} \mid \alpha \in A\right\rangle$ where $A \subseteq \Phi^{+}$is finite

Theorem (Dyer, Deodhar). Let $A \subseteq \Phi^{+}, A^{\prime}=W_{A}(A) \cap \Phi^{+}$and Δ_{A} the basis of cone $\left(A^{\prime}\right)$. Then $\left(W_{A}, S_{A}\right)$ is a Coxeter system, where $S_{A}=\left\{s_{\alpha} \mid \alpha \in \Delta_{A}\right\}$.

The restriction of Tits geometric representation to W_{A} is not necessarily the one for $\left(W_{A}, S_{A}\right)$

Geometric representations

Infinite dihedral group II

$\stackrel{\infty}{(-1,01)}$

Geometric representations

Vinberg geometric representations of (W,S) $\square(V, B)$ real quadratic space and $\Delta \subseteq V$ s.t.

- cone $(\Delta) \cap \operatorname{cone}(-\Delta)=\{0\}$;
- $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$ s.t.

$$
B\left(\alpha_{s}, \alpha_{t}\right)=\left\{\begin{array}{cl}
-\cos \left(\frac{\pi}{m_{s t}}\right) & \text { if } m_{s t}<\infty \\
a \leq-1 & \text { if } m_{s t}=\infty
\end{array}\right.
$$

ㅁ $W \leq \mathrm{O}_{B}(V)$ " B-isometry":

$$
s(v)=v-2 B(v, \alpha) \alpha, s \in S
$$

Root system: $\Phi=W(\Delta), \Phi^{+}=\operatorname{cone}(\Delta) \cap \Phi=-\Phi^{-}$
Proposition. Let $s \in S$ and $w \in W$, then:

$$
\ell(w s)=\ell(w)+1 \Longleftrightarrow w\left(\alpha_{s}\right) \in \Phi^{+}
$$

Classification of Finite Reflection Groups

Theorem. The following assertions are equivalent:
(i) (W, S) is a finite Coxeter system;
(ii) B is a scalar product and $W \leq \mathrm{O}_{B}(V)$;
(iii) W is a finite reflection group.

Coxeter groups

Theorem. The irreducible FRG are precisely the finite irreducible Coxeter groups. Their graphs are:

$\mathrm{H}_{3} \xlongequal{5}$

$$
I_{2}(m) \circ \stackrel{m}{\longrightarrow}
$$

$$
n=|S|=\operatorname{dim}(V)
$$

Conclusion

world of roots

Question: Are all B-reflection groups Coxeter groups?

Conclusion

In the spherical, euclidean and hyperbolic case, all finitely generated discrete B-reflection groups are Coxeter groups (models for these geometry exist in V or its dual; 'cut' these models by the hyperplanes of reflections)

Finite case i.e. B is a scalar product $\left(V=V^{*}\right)$: the model is the unit sphere

$$
\|v\|^{2}=B(v, v)=1
$$

Conclusion

In the spherical, euclidean and hyperbolic case, they are all Coxeter groups (models for these geometry exist in V or its dual; 'cut' these models by the hyperplanes of reflections)

Finite case i.e. B is a scalar product $\operatorname{sgn}(B)=(n, 0,0)$

Affine case i.e. B is positive degenerate. Its radical is a line: $\operatorname{Rad}(B)=\{v \in V \mid B(v, \alpha)=0, \forall \alpha \in \Delta\}=\mathbb{R} x$
The model is an affine hyperplane in the dual V^{*} :

$$
H=\left\{\varphi \in V^{*} \mid \varphi(x)=1\right\}
$$

N.B: reflection hyperplanes leave in the dual here.

Conclusion

In the spherical, euclidean and hyperbolic case, they are all Coxeter groups (models for these geometry exist in V or its dual; 'cut' these models by the hyperplanes of reflections)

positive degenerate.
($n-1,0,1$)

Hyperbolic case i.e. $\operatorname{sgn}(B)=(n-1,1,0)\left(V=V^{*}\right)$. Many models exists: projective (non conformal), hyperboloïd or the ball model

$$
H^{n-1}=\{x \in V \mid B(x, x)=-1\}
$$

Conclusion

world of roots

Problem: Let $p, q, r \in \mathbb{N}$, classify all the Coxeter graphs with signature (p, q, r). Count them?
N.B.: Known for $(n, 0,0)$ - FRG -; $(n-1,0,1)$ - affine type - and partially for ($n-1,1,0$) - "weakly hyperbolic" type

Donald Coxeter

Selected biblio of Part 1 ...

(London 1907, Toronto 2003)
Professor at University of Toronto (1936-2003)

Reflection
Groups and Coxeter Groups

JAMES E. HUMPHREYS

Graduate Texts in Mathematics

Anders Björner Francesco Brenti
Combinatorics of
Coxeter Groups
Q) Springer

Graduate Texts
 in Mathematics

Peter Abramenko Kenneth S. Brown

Buildings

Theory and Apelication

Q Springer

Lecture 2: Weak order and roots

In the last episode

Weak order and reduced words

(W, S) Coxeter system of finite rank $|S|<\infty$

- any $w \in W$ is a word in the alphabet S; $W=\left\langle S \mid(s t)^{m_{s t}}=e\right\rangle$
- Length function $\ell: W \rightarrow \mathbb{N}$ with $\ell(e)=0$ and

$$
\ell(w)=\min \left\{k \mid w=s_{1} s_{2} \ldots s_{k}, s_{i} \in S\right\}
$$

How to study words on S representing w ? Is a word $s_{1} s_{2} \ldots s_{k}$ a reduced word for w (i.e. $k=\ell(w)$)?

Examples. \mathcal{D}_{3} is

	e	s	t	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3

$$
\ell(s t s t s)=1 \text { since ststs }=(s t s) t s=(t s t) t s=t
$$

Proposition. Let $s \in S$ and $w \in W$, then $\ell(w s)=\ell(w) \pm 1$.

Weak order and reduced words

Cayley graph of $W=\langle S\rangle$ i.e.
\square vertices W
\square edges $w \xrightarrow[S]{s}$ ws $(s \in S)$
is naturally oriented by the (right) weak order:

$$
w<w s \text { if } \ell(w)<\ell(w s)
$$

write: $w \xrightarrow{S} w s$
Fact: (a) $u \leq w$ iff a reduced word of u is a prefix of a red. word of w.
(b) reduced words of w corresp. to maximal chains in the interval $[e, w]$.
(c) Chain property: if $u \leq w$ with $\ell(u)+1<\ell(w)$ then:

$$
\exists v \in W, u \leq v \leq w
$$

Weak order and reduced words

Theorem (Björner). The weak order is a complete meetsemilattice. In particular $u \wedge v=\inf (u, v), \forall u, v \in W$, exists.

Proposition. Assume W is finite, then:
(i) there is a unique $w_{0} \in W$ such that: $u \leq w_{0}, \forall u \in W$.
(ii) the map $w \mapsto w_{\circ} w$ is a poset antiautomorphism. (iii) the weak order is a complete lattice. In part., $u \vee v=\sup (u, v)$ exists. (iv) $u \wedge v=w_{\circ}\left(w_{\circ} u \vee w_{\circ} v\right)$

Weak order \& Generalized Associahedra

(W, S) finite Coxeter system, so $W \leq \mathrm{O}(V)$

Permutahedra

\square - simple system;
$\square S=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$;
\square Choose a generic i.e.

$$
\langle\boldsymbol{a}, \alpha\rangle>0, \forall \alpha \in \Delta
$$

$\operatorname{Perm}^{\boldsymbol{a}}(W)=\operatorname{conv}\{w(\boldsymbol{a}) \mid w \in W\}$

Proposition. Perm ${ }^{a}(W)$ is a simple polytope whose oriented 1-skeleton is the graph of the (right) weak order.

Building Generalized Associahedra

Associahedra (lattices/complexes):

- Lattice (Tamari, 1951)
- Cell complex (Stasheff, 1963)
- Cluster complex (Fomin-Zelevinsky, 2003)
- Cambrian lattices (Reading 2007, 2007) and more ...

Associahedra (Convex polytopes):

- Type A (Haiman 1984, Lee, Loday, ...)
- Type B - cyclohedra (Bott-Taubes 1994, ...)
- Weyl groups (Chapoton-Fomin-Zelevinsky, 2003)
- from permutahedra of finite Coxeter groups (CH-Lange-Thomas 2011, ...)

Building Generalized Associahedra

 Hohlweg, C. Lange, H. Thomas (2009)- Data: $\operatorname{Perm}^{a}(W)$ and an orientation of Γ_{W}

$$
W=S_{4} \stackrel{\begin{array}{c}
\tau_{1} \\
0 \longleftrightarrow \\
\hline \longleftrightarrow 0
\end{array} \tau_{2} \tau_{3}}{\substack{\tau_{2} \\
\hline}}
$$

$\square c$ Coxeter element associated to this orientation i.e product without repetition of all the simple reflections;

$$
c=\tau_{2} \tau_{3} \tau_{1}
$$

$\square C_{(I)}$ subword with letters $I \subseteq S$

$$
I=\left\{\tau_{1}, \tau_{2}\right\} \subseteq S \Rightarrow c_{(I)}=\tau_{2} \tau_{1}
$$

$\square c$ - word of $w_{0}: w_{o}(c)=c_{\left(K_{1}\right)} c_{\left(K_{2}\right)} \ldots c_{\left(K_{p}\right)}$ reduced expression s.t. $\quad S \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{p} \neq \emptyset$

$$
\begin{aligned}
& \boldsymbol{w}_{\boldsymbol{o}}\left(\tau_{1} \tau_{2} \tau_{3}\right)=\tau_{1} \tau_{2} \tau_{3} \cdot \tau_{1} \tau_{2} \cdot \tau_{1}=c_{(S)} c_{\left(\left\{\tau_{1}, \tau_{2}\right\}\right)} c_{\left(\left\{\tau_{1}\right\}\right)} \\
& \boldsymbol{w}_{\boldsymbol{o}}\left(\tau_{2} \tau_{3} \tau_{1}\right)=\tau_{2} \tau_{3} \tau_{1} \cdot \tau_{2} \tau_{3} \tau_{1}=c_{(S)} c_{(S)} .
\end{aligned}
$$

Building Generalized Associahedra

 Hohlweg, C. Lange, H. Thomas (2009)$\square c$ - word of $w_{0}: w_{o}(c)=c_{\left(K_{1}\right)} c_{\left(K_{2}\right)} \ldots c_{\left(K_{p}\right)}$ reduced expression s.t. $S \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{p} \neq \emptyset$

$$
\begin{aligned}
& \boldsymbol{w}_{\boldsymbol{o}}\left(\tau_{1} \tau_{2} \tau_{3}\right)=\tau_{1} \tau_{2} \tau_{3} \cdot \tau_{1} \tau_{2} \cdot \tau_{1}=c_{(S)}{ }^{c}\left(\left\{\tau_{1},\right.\right. \\
& \boldsymbol{w}_{\boldsymbol{o}}\left(\tau_{2} \tau_{3} \tau_{1}\right)=\tau_{2} \tau_{3} \tau_{1} \cdot \tau_{2} \tau_{3} \tau_{1}=c_{(S)}{ }^{c}(S)
\end{aligned}
$$

$\square c$ - singletons are the prefixes of $w_{0}(c)$ up to commutations
e,
τ_{2},
$\tau_{2} \tau_{1}$,
$\tau_{2} \tau_{3}$,
$\tau_{2} \tau_{3} \tau_{1} \tau_{2} \tau_{3}$,
$\tau_{2} \tau_{3} \tau_{1} \tau_{2} \tau_{1}$, and

$$
w_{o}=\tau_{2} \tau_{1} \tau_{3} \tau_{2} \tau_{1} \tau_{3}
$$

Proposition. c - singletons form a distributive sublattice of the weak order.

Building Generalized Associahedra

 Hohlweg, C. Lange, H. Thomas (2009)$\square c$ - generalized associahedron is the polytope $\mathrm{Asso}_{c}^{a}(W)$ obtained from Perm ${ }^{a}(W)$ by keeping only the facets containing a c - singleton

Theorem. The 1-skeleton of

$$
\operatorname{Asso}_{c}^{a}(W)
$$

is N . Reading's c-Cambrian lattice; its normal fan is the corresponding Cambrian fan studied in detailed by N. Reading \& D. Speyer. The facets are labelled by almost positive roots

Type A

Type B $\xrightarrow{4}$

Type H

Selected developements on the subject

- Convex hull of the vertices: brick polytopes. Barycenter identical to the permutahedron:
V. Pilaud and C. Stump:
(C) Pilaud-Stump

1. Brick polytopes of spherical subword complexes: A new approach to generalized associahedra (2012)
2. Vertex barycenter of generalized associahedra (2012)

- Classification of isometry classes in term of the lattices of c-singletons (N. Bergeron, Hohlweg, C. Lange, H. Thomas, 2009)
- Recovering the corresponding cluster algebra:
S. Stella, Polyhedral models for generalized associahedra via Coxeter elements (2013)

Weak order: a combinatorial model

Cambrian (semi)lattices/fans in finite case \& Generalized associahedra in finite case

Initial section of reflection orders and KL-polynomials (M. Dyer): combinatorial formulas for KL-polynomials (F. Brenti, M. Dyer).

A combinatorial model for cambrian lattices/generalized associahedra in infinite case, or twisted Bruhat order and KLpolynomials (M. Dyer)? Is it possible to «enlarge» Coxeter groups to have a weak order that is a complete lattice?

Weak order and root system

Geometric representations of (W, S)

- (V, B) real quadratic space and $\Delta \subseteq V$ s.t.
- cone $(\Delta) \cap \operatorname{cone}(-\Delta)=\{0\}$;
- $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$ s.t.

$$
B\left(\alpha_{s}, \alpha_{t}\right)=\left\{\begin{array}{cl}
-\cos \left(\frac{\pi}{m_{s t}}\right) & \text { if } m_{s t}<\infty \\
a \leq-1 & \text { if } m_{s t}=\infty
\end{array}\right.
$$

$\square W \leq \mathrm{O}_{B}(V): s(v)=v-2 B(v, \alpha) \alpha, s \in S$
Root system: $\Phi=W(\Delta), \Phi^{+}=\operatorname{cone}(\Delta) \cap \Phi=-\Phi^{-}$

	e	$s=s_{\alpha}$	$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3
α	α					
β	β					
γ	γ					

Weak order and root system

Geometric representations of (W, S)

- (V, B) real quadratic space and $\Delta \subseteq V$ s.t.
- cone $(\Delta) \cap \operatorname{cone}(-\Delta)=\{0\}$;
- $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$ s.t.

$$
B\left(\alpha_{s}, \alpha_{t}\right)=\left\{\begin{array}{cl}
-\cos \left(\frac{\pi}{m_{s t}}\right) & \text { if } m_{s t}<\infty \\
a \leq-1 & \text { if } m_{s t}=\infty
\end{array}\right.
$$

$\square W \leq \mathrm{O}_{B}(V): s(v)=v-2 B(v, \alpha) \alpha, s \in S$
Root system: $\Phi=W(\Delta), \Phi^{+}=\operatorname{cone}(\Delta) \cap \Phi=-\Phi^{-}$

	e	$s=s_{\alpha}$	$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3
α	α	$-\alpha$	γ			
β	β	γ	$-\beta$			
γ	γ	β	α			

Weak order and root system

Geometric representations of (W, S)

- (V, B) real quadratic space and $\Delta \subseteq V$ s.t.
- cone $(\Delta) \cap \operatorname{cone}(-\Delta)=\{0\}$;
- $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$ s.t.

$$
B\left(\alpha_{s}, \alpha_{t}\right)=\left\{\begin{array}{cl}
-\cos \left(\frac{\pi}{m_{s t}}\right) & \text { if } m_{s t}<\infty \\
a \leq-1 & \text { if } m_{s t}=\infty
\end{array}\right.
$$

$\square \quad W \leq \mathrm{O}_{B}(V): s(v)=v-2 B(v, \alpha) \alpha, s \in S$
Root system: $\Phi=W(\Delta), \Phi^{+}=\operatorname{cone}(\Delta) \cap \Phi=-\Phi^{-}$

	e	$s=s_{\alpha}$	$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3
α	α	$-\alpha$	γ	β	$-\gamma$	$-\beta$
β	β	γ	$-\beta$	$-\gamma$	α	$-\alpha$
γ	γ	β	α	$-\alpha$	$-\beta$	$-\gamma$

Weak order and root system

Geometric representations of (W, S)

- (V, B) real quadratic space and $\Delta \subseteq V$ s.t.
- cone $(\Delta) \cap \operatorname{cone}(-\Delta)=\{0\}$;
- $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$ s.t.

$$
B\left(\alpha_{s}, \alpha_{t}\right)=\left\{\begin{array}{cl}
-\cos \left(\frac{\pi}{m_{s t}}\right) & \text { if } m_{s t}<\infty \\
a \leq-1 & \text { if } m_{s t}=\infty
\end{array}\right.
$$

$$
\square \leq \mathrm{O}_{B}(V): \quad s(v)=v-2 B(v, \alpha) \alpha, s \in S
$$

Root system: $\Phi=W(\Delta), \Phi^{+}=\operatorname{cone}(\Delta) \cap \Phi=-\Phi^{-}$

	e	$s=s_{\alpha}$	$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3
α	α	$-\alpha$	γ	β	$-\gamma$	$-\beta$
β	β	γ	$-\beta$	$-\gamma$	α	$-\alpha$
γ	γ	β	α	$-\alpha$	$-\beta$	$-\gamma$
$\ell(w)=\mid\left\{\nu \in \Phi^{+}\right.$					$\left.\mid w(\nu) \in \Phi^{-}\right\} \mid$	

Weak order and root system

	e	$s=s_{\alpha}$	$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3
α	α	$-\alpha$	γ	β	$-\gamma$	$-\beta$
β	β	γ	$-\beta$	$-\gamma$	α	$(-\alpha$
γ	γ	β	α	$-\alpha$	$-\beta$	$-\gamma$

Definition. The inversion set of $w \in W$ is

$$
\operatorname{inv}(w)=\Phi^{+} \cap w^{-1}\left(\Phi^{-}\right)=\left\{\nu \in \Phi^{+} \mid w(\nu) \in \Phi^{-}\right\}
$$

- If $W=S_{n}$ then those "are" the natural inversion.

$$
\operatorname{inv}(\sigma)=\left\{e_{j}-e_{i} \mid 1 \leq i<j \leq n, e_{\sigma(j)}-e_{\sigma(i)} \in \Phi^{-}\right\}
$$

Weak order and root system

$\gamma=\alpha+\beta$		e	$s=s_{\alpha}$	$t=s_{\beta}$	st	ts	$s t s=t s t$
β	ℓ	0	1	1	2	2	3
\mathcal{D}_{3}	$\begin{aligned} & \alpha \\ & \beta \\ & \gamma \end{aligned}$	α β γ	$\begin{gathered} -\alpha) \\ \gamma \\ \beta \end{gathered}$	$\frac{\gamma}{-\beta}$			$\left(\begin{array}{l} -\beta \\ -\alpha \\ -\gamma \end{array}\right)$

Definition. The inversion set of $w \in W$ is

$$
\operatorname{inv}(w)=\Phi^{+} \cap w^{-1}\left(\Phi^{-}\right)=\left\{\nu \in \Phi^{+} \mid w(\nu) \in \Phi^{-}\right\}
$$

- If $W=S_{n}$ then those "are" the natural inversion.

$$
\operatorname{inv}(\sigma)=\left\{e_{j}-e_{i} \mid 1 \leq i<j \leq n, \sigma(j)<\sigma(i)\right\}
$$

Weak order and root system

	e	$s=s_{\alpha}$	$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3
α	α	$-\alpha$	γ	β	$-\gamma$	$-\beta$
β	β	γ	$-\beta$	$-\gamma$	α	$(-\alpha$
γ	γ	β	α	$-\alpha$	$-\beta$	$-\gamma$

Definition. The inversion set of $w \in W$ is

$$
\operatorname{inv}(w)=\Phi^{+} \cap w^{-1}\left(\Phi^{-}\right)=\left\{\nu \in \Phi^{+} \mid w(\nu) \in \Phi^{-}\right\}
$$

- If $W=S_{n}$ then those "are" the natural inversion.

$$
\operatorname{inv}(\sigma) \simeq\{(i, j) \mid 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}
$$

Weak order and root system

	e	$s=s_{\alpha}$	$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3
α	α	$-\alpha$	γ	β	$-\gamma$	$-\beta$
β	β	γ	$-\beta$	$-\gamma$	α	$(-\alpha$
γ	γ	β	α	$-\alpha$	$-\beta$	$-\gamma$

Definition. The inversion set of $w \in W$ is

$$
\operatorname{inv}(w)=\Phi^{+} \cap w^{-1}\left(\Phi^{-}\right)=\left\{\nu \in \Phi^{+} \mid w(\nu) \in \Phi^{-}\right\}
$$

Proposition. Let $w=s_{1} s_{2} \ldots s_{k}$ be a reduced word, then:

$$
N(w):=\operatorname{inv}\left(w^{-1}\right)=\left\{\alpha_{1}, s_{1}\left(\alpha_{2}\right), \cdots, s_{1} \ldots s_{k-1}\left(\alpha_{k}\right)\right\}
$$

In particular: $\quad|N(w)|=|\operatorname{inv}(w)|=\ell(w)$

Weak order and root system

	e	$s=s_{\alpha}$	$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3
α	α	$-\alpha$	γ	β	$-\gamma$	$-\beta$
β	β	γ	$-\beta$	$-\gamma$	α	$-\alpha$
γ	γ	β	α	$-\alpha$	$-\beta$	$-\gamma$

Definition. The inversion set of $w \in W$ is

$$
\operatorname{inv}(w)=\Phi^{+} \cap w^{-1}\left(\Phi^{-}\right)=\left\{\nu \in \Phi^{+} \mid w(\nu) \in \Phi^{-}\right\}
$$

Proposition. Let $w=s_{1} s_{2} \ldots s_{k}$ be a reduced word, then:

$$
N(w):=\operatorname{inv}\left(w^{-1}\right)=\left\{\alpha_{1}, s_{1}\left(\alpha_{2}\right), \cdots, s_{1} \ldots s_{k-1}\left(\alpha_{k}\right)\right\}
$$

In particular: $\quad|N(w)|=|\operatorname{inv}(w)|=\ell(w)$

Weak order and root system

	e	$s=s_{\alpha}$	$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
ℓ	0	1	1	2	2	3
α	α	$-\alpha$	γ	β	$-\gamma$	$-\beta$
β	β	γ	$-\beta$	$-\gamma$	α	$-\alpha$
γ	γ	β	α	$-\alpha$	$-\beta$	$-\gamma$

Definition. The inversion set of $w \in W$ is

$$
\operatorname{inv}(w)=\Phi^{+} \cap w^{-1}\left(\Phi^{-}\right)=\left\{\nu \in \Phi^{+} \mid w(\nu) \in \Phi^{-}\right\}
$$

Proposition. Let $w=s_{1} s_{2} \ldots s_{k}$ be a reduced word, then:

$$
N(w):=\operatorname{inv}\left(w^{-1}\right)=\left\{\alpha_{1}, s_{1}\left(\alpha_{2}\right), \cdots, s_{1} \ldots s_{k-1}\left(\alpha_{k}\right)\right\}
$$

In particular: $|N(w)|=|\operatorname{inv}(w)|=\ell(w) \quad$ What is $\operatorname{Im}(N) ?$
Proposition. The map $N:(W, \leq) \rightarrow\left(\mathcal{P}\left(\Phi^{+}\right), \subseteq\right)$ is an injective morphism of posets.

Weak order and biclosed sets

$\square A \subseteq \Phi^{+}$is closed if for all $\alpha, \beta \in A$, cone $(\alpha, \beta) \cap \Phi \subseteq A$;
$\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$
Proposition. $N:(W, \leq) \rightarrow\left(\mathcal{B}_{0}(W), \subseteq\right)$ is a poset isomorphism and $N\left(w_{\circ}\right)=\Phi^{+}$if W is finite.

Weak order and biclosed sets

$\square A \subseteq \Phi^{+}$is closed if for all $\alpha, \beta \in A$, cone $(\alpha, \beta) \cap \Phi \subseteq A$;
$\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$
Proposition. $N:(W, \leq) \rightarrow\left(\mathcal{B}_{0}(W), \subseteq\right)$ is a poset isomorphism and $N\left(w_{\circ}\right)=\Phi^{+}$if W is finite.

Weak order and biclosed sets

$\square A \subseteq \Phi^{+}$is closed if for all $\alpha, \beta \in A$, cone $(\alpha, \beta) \cap \Phi \subseteq A$;
$\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$
Proposition. $N:(W, \leq) \rightarrow\left(\mathcal{B}_{0}(W), \subseteq\right)$ is a poset isomorphism and $N\left(w_{\circ}\right)=\Phi^{+}$if W is finite.

Weak order and biclosed sets

$\square A \subseteq \Phi^{+}$is closed if for all $\alpha, \beta \in A$, cone $(\alpha, \beta) \cap \Phi \subseteq A$;
$\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$
Proposition. $N:(W, \leq) \rightarrow\left(\mathcal{B}_{0}(W), \subseteq\right)$ is a poset isomorphism and $N\left(w_{\circ}\right)=\Phi^{+}$if W is finite.

Weak order and biclosed sets

$\square A \subseteq \Phi^{+}$is closed if for all $\alpha, \beta \in A$, cone $(\alpha, \beta) \cap \Phi \subseteq A$; $\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$
Proposition. $N:(W, \leq) \rightarrow\left(\mathcal{B}_{0}(W), \subseteq\right)$ is a poset isomorphism and $N\left(w_{\circ}\right)=\Phi^{+}$if W is finite.

Inverse map (recursive construction)
$\exists \alpha \in \Delta \cap A, s_{\alpha}(A \backslash\{\alpha\})$ is finite biclosed and

$$
\begin{aligned}
& A=\{\alpha\} \sqcup s_{\alpha}(A \backslash\{\alpha\}) \\
& w_{A}=s_{\alpha} w_{s_{\alpha}}(A \backslash\{\alpha\})
\end{aligned}
$$

$$
\rho_{n}^{\prime}=n \alpha+(n+1) \beta \quad \rho_{n}=(n+1) \alpha+n \beta
$$

\square

(a) $B(\alpha, \beta)=-1$
$s_{\alpha}(v)=v-2 B(v, \alpha) \alpha$.

The biclosed are:
\square the finite ones;

- their complements;
\square and two infinite ones: the left and right side of Q !

Weak order and biclosed sets

world of words

Chain property: if $u \leq w$ with $\ell(u)+1<\ell(w)$ then:

$$
\exists v \in W, u \leq v \leq w
$$

If W is finite, then:
(i) a unique $w_{\circ} \in W$ s.t

$$
u \leq w_{0}, \forall u \in W
$$

(ii) $w \mapsto w_{0} w$ is a poset antiautomorphism.
(iii) the weak order is a complete lattice.
(iv) $u \wedge v=w_{\circ}\left(w_{\circ} u \vee w_{\circ} v\right)$

world of roots

Chain property: if $A \subseteq B$
finite biclosed with
$|B \backslash A|>1$ then:

$$
\exists C \in \mathcal{B}_{0}, A \subsetneq C \subsetneq B
$$

If W is finite, then:
(i) $N\left(w_{0}\right)=\Phi^{+}$and $A \subseteq \Phi^{+}, \forall A \in \mathcal{B}=\mathcal{B}_{0}$
(ii) $A \mapsto A^{c}$ is a poset antiautomorphism.
(iii) the weak order is a complete lattice.
(iv) $A \wedge B=\left(A^{c} \vee B^{c}\right)^{c}$

Weak order and biclosed sets

Conjectures (M. Dyer, 2011). (a) chain property: if $A \subseteq B$ are biclosed and $|B \backslash A|>1$ then there is $C \in \mathcal{B}$ s.t. $A \subsetneq C \subsetneq B$.
(b) (\mathcal{B}, \subseteq) is a complete lattice (with minimal element \emptyset and maximal element Φ^{+}).

$$
\square \vee \neq U ; \wedge \neq \cap \text { so how to }
$$ understand them geometrically? \square if V exists then

$$
A \wedge B=\left(A^{c} \vee B^{c}\right)^{c}
$$

world of roots

Chain property: if $A \subseteq B$
finite biclosed with
$|B \backslash A|>1$ then:

$$
\exists C \in \mathcal{B}_{0}, A \subsetneq C \subsetneq B
$$

If W is finite, then:
(i) $N\left(w_{0}\right)=\Phi^{+}$and $A \subseteq \Phi^{+}, \forall A \in \mathcal{B}=\mathcal{B}_{0}$
(ii) $A \mapsto A^{c}$ is a poset antiautomorphism.
(iii) the weak order is a complete lattice.
(iv) $A \wedge B=\left(A^{c} \vee B^{c}\right)^{c}$

Weak order and Bruhat order

Set of reflections: $T=\bigcup_{w \in W} w S w^{-1}=\left\{s_{\beta} \mid \beta \in \Phi^{+}\right\}$
Bruhat order: transitive closure of $w \leq_{B}$ wt if $\ell(w)<\ell(w t)$

Bruhat graph of $W=\langle S\rangle$
\square vertices W
\square edges $w \xrightarrow{\beta} w s_{\beta}$

Weak order implies Bruhat order.

Weak order and Bruhat order

A-path: path starting with e in the Bruhat graph and indexed by elements in $A \cup B$.

Exemple. $A=\{\alpha, \gamma\}$:

$$
\begin{aligned}
& e \rightarrow w_{0}=s_{\gamma} \\
& e \rightarrow s \rightarrow t s
\end{aligned}
$$

B-closure of $A \subseteq \Phi^{+}: \bar{A}=\left\{\beta \in \Phi^{+} \mid s_{\beta}\right.$ is in a A - path $\}$

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

$$
A \vee B=\overline{A \cup B}
$$

This conjecture is open even in finite cases!

Weak order and Bruhat order

Another example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; \quad s_{\alpha_{1}+\alpha_{2}}=\tau_{1} \tau_{2} \tau_{1}$
$B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

$$
A \vee B=\overline{A \cup B}
$$

This conjecture is open even in finite cases!

Graph of $A \cup B$ paths

Weak order and Bruhat order

Another example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; \quad s_{\alpha_{1}+\alpha_{2}}=\tau_{1} \tau_{2} \tau_{1}$
$B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$

$$
\tau_{1} \tau_{2} \vee \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3}
$$

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

$$
A \vee B=\overline{A \cup B}
$$

This conjecture is open even in finite cases!

$$
\overline{A \cup B}=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}=N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)
$$

Another way to interpret the join?

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

$$
A \vee B=\overline{A \cup B}
$$

This conjecture is open even in finite cases!

$$
\overline{A \cup B}=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}=N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)
$$

Lecture 3: Words \& infinite root systems

In the last episode

world of roots

The Cayley graph of (W, S) is naturally oriented by the (right) weak order: $w<w s$ if $\ell(w)<\ell(w s)$.

The weak order is a complete meet-semilattice and

$$
u \leq v \Longleftrightarrow N(u) \subseteq N(v) ; \quad N(u)=\Phi^{+} \cap u\left(\Phi^{-}\right)
$$

In the last episode

Finite and infinite biclosed sets

$$
\operatorname{Im}(N)=\mathcal{B}_{0} \subseteq \mathcal{B}
$$

Conjectures (M. Dyer, 2011). (a) chain property: if $A \subseteq B$ are biclosed and $|B \backslash A|>1$ then there is $C \in \mathcal{B}$ s.t. $A \subsetneq C \subsetneq B$.
(b) (\mathcal{B}, \subseteq) is a complete lattice (with minimal element \emptyset and maximal element Φ^{\dagger}).

- $\vee \neq U ; \wedge \neq \cap$ so how to understand them geometrically? \square if \vee exists then

$$
A \wedge B=\left(A^{c} \vee B^{c}\right)^{c}
$$

A Projective view of root systems

Geometric representations of (W, S)

infinite	dihedral $\quad \substack{\infty(-1,01) \\ \hline}$
 (a) $B(\alpha, \beta)=-1$	(b) $B(\alpha, \beta)=-1.01<-1$

$\square(V, B)$ real quadratic space and $\Delta \subseteq V$ s.t.

- cone $(\Delta) \cap \operatorname{cone}(-\Delta)=\{0\}$;
- $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$ s.t.

$$
B\left(\alpha_{s}, \alpha_{t}\right)=\left\{\begin{array}{cl}
-\cos \left(\frac{\pi}{m_{s t}}\right) & \text { if } m_{s t}<\infty \\
a \leq-1 & \text { if } m_{s t}=\infty
\end{array}\right.
$$

$$
\square W \leq \mathrm{O}_{B}(V): s(v)=v-2 B(v, \alpha) \alpha, s \in S
$$

Root system: $\Phi=W(\Delta), \Phi^{+}=\operatorname{cone}(\Delta) \cap \Phi=-\Phi^{-}$

A Projective view of root systems

'Cut' cone(Δ) by an affine hyperplane: $V_{1}=\left\{v \in V \mid \sum_{\alpha \in \Delta} v_{\alpha}=1\right\}$
Normalized roots: $\widehat{\rho}:=\rho / \sum_{\alpha \in \Delta} \rho_{\alpha}$ in $\widehat{\Phi}:=\bigcup_{\rho \in \Phi} \mathbb{R} \rho \cap V_{1}$
Action of W on $\hat{\Phi}: w \cdot \hat{\rho}=\widehat{w(\rho)}$

$$
\widehat{Q}:=Q \cap V_{1}
$$

- Rank 2 root systems

A Projective view of root systems

'Cut' cone(Δ) by an affine hyperplane: $V_{1}=\left\{v \in V \mid \sum_{\alpha \in \Delta} v_{\alpha}=1\right\}$ Normalized roots: $\widehat{\rho}:=\rho / \sum_{\alpha \in \Delta} \rho_{\alpha}$ in $\widehat{\Phi}:=\bigcup_{\rho \in \Phi} \mathbb{R} \rho \cap V_{1}$
Action of W on $\hat{\Phi}: w \cdot \hat{\rho}=\widehat{w(\rho)}$

$$
\widehat{Q}:=Q \cap V_{1}
$$

- Rank 2 root systems

A Projective view of root systems

- Rank 3 root systems

A dihedral subgroup group is infinite iff the associated line cuts

A Projective view of root systems

- Rank 4 root systems
finite

Sgn is (2, 2)
(weakly) hyperbolic

Join in finite Coxeter groups

Example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$ $\tau_{1} \tau_{2} \vee \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3} \quad ; N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$

Join in finite Coxeter groups

Example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$ $\tau_{1} \tau_{2} \vee \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3} \quad ; N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$
$\hat{A} \vee \hat{B}=\operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}$

Join in finite Coxeter groups

Example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$
$\tau_{1} \tau_{2} \vee \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3} \quad ; N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$

Proposition (CH, Labbé).
Let A, B be biclosed sets in a finite Coxeter group, then

$$
\hat{A} \vee \hat{B}=\operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}
$$

Ex No true in general: the convex hull of the union of biclosed is not biclosed in general (counterexample in rank 4).

Proposition (CH, Labbé).
Let A, B be biclosed sets in a finite Coxeter group, then

$$
\hat{A} \vee \hat{B}=\operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}
$$

Limit roots

Limit roots (CH, Labbé, Ripoll): the set of limit roots is:

$$
E(\Phi)=\operatorname{Acc}(\widehat{\Phi}) \subseteq Q \cap \operatorname{conv}(\Delta)
$$

- Action of W on $\widehat{\Phi} \sqcup E$: given on E by $\widehat{Q} \cap L(\alpha, x)=\left\{x, s_{\alpha} \cdot x\right\}$

Remark. $E=\hat{Q}$ is a singleton in the case of affine root system.

Limit roots

Dihedral reflection subgroups: $W^{\prime}=\left\langle s_{\rho}, s_{\gamma}\right\rangle, \rho, \gamma \in \Phi^{+}$ Associated root system: $\Phi^{\prime}=W^{\prime}(\{\rho, \gamma\})$
Observation: $E\left(\Phi^{\prime}\right)=\widehat{Q} \cap L(\widehat{\rho}, \widehat{\gamma})$

$$
\begin{array}{llllll}
\beta=\rho_{1}^{\prime} & \rho_{2}^{\prime} & \ldots & \rho_{2} & \alpha=\rho_{1}
\end{array}
$$

$$
\begin{array}{lllll}
\beta=\rho_{1}^{\prime} & \rho_{2}^{\prime} & \ldots & \rho_{2} & \alpha=\rho_{1}
\end{array}
$$

Limits of roots of dihedral reflection subgroups:

- $E_{2}=W \cdot E_{2}^{\circ}$ where

$$
E_{2}^{\circ}:=\bigcup_{\substack{\alpha \in \Delta \\ \rho \in \Phi^{+}}} L(\alpha, \widehat{\rho}) \cap \widehat{Q}
$$

Theorem (CH, Labbé, Ripoll 2012)
The sets E_{2} and E_{2}° are dense in $E(\Phi)$.

Limit roots

Theorem (Dyer, CH, Ripoll 2013)
The closure of $W \cdot x$ is dense in $E(\Phi)$ for $x \in E(\Phi)$
Theorem (Dyer, CH, Ripoll, 2013)

$$
E=\hat{Q} \Longleftrightarrow \hat{Q} \subseteq \operatorname{conv}(\Delta)
$$

Morever, in this case,

$$
\operatorname{sgn}(B)=(n, 1,0)
$$

Corollary (Dyer, CH, Ripoll, 2013)
A first fractal Phenomenon.

Limit roots

Theorem (Dyer, CH, Ripoll 2013) For irreducible root of signature $(n, 1,0)$ we have: $E=\operatorname{conv}(E) \cap Q$

Problem (second fractal phenomenon): is it true for other indefinite types?

Limit roots

Limit roots (CH, Labbé, Ripoll): the set of limit roots is:

$$
E(\Phi)=\operatorname{Acc}(\widehat{\Phi}) \subseteq Q \cap \operatorname{conv}(\Delta)
$$

- Action of W on $\widehat{\Phi} \sqcup E$: given on E by $\widehat{Q} \cap L(\alpha, x)=\left\{x, s_{\alpha} \cdot x\right\}$

Theorem (Dyer, CH, Ripoll) Action on E faithful if irreducible not affine nor finite of rank > 2 .

Proof. Difficult. Main ingredient: one can approximate E with arbitrary precision with the sets of limit roots of universal Coxeter subgroups

Limit roots

Limit roots

Limit roots (CH, Labbé, Ripoll): the set of limit roots is:

$$
E(\Phi)=\operatorname{Acc}(\widehat{\Phi}) \subseteq Q \cap \operatorname{conv}(\Delta)
$$

- Action of W on $\widehat{\Phi} \sqcup E$: given on E by $\widehat{Q} \cap L(\alpha, x)=\left\{x, s_{\alpha} \cdot x\right\}$

Theorem (Dyer, CH, Ripoll) Action on E faithful if irreducible not affine nor finite of rank > 2 .

Proof. Difficult. Main ingredient: one can approximate E with arbitrary precision with the sets of limit roots of universal Coxeter subgroups

Limit roots and imaginary cone Tiling of $\operatorname{conv}(E)$

Assume the root system to be not finite nor affine

- Imaginary convex set \mathcal{I} is the W-orbit of the polytope

$$
K=\{v \in \operatorname{conv}(\Delta) \mid B(v, \alpha) \leq 0, \forall \alpha \in \Delta\}
$$

Theorem (Dyer, 2012). $\overline{\mathcal{I}}=\operatorname{conv}(E)$

Proposition (Dyer, CH, Ripoll 2013). The action of W on E extends to an action of W on $\operatorname{conv}(E)$. So W acts on $\widehat{\Phi} \sqcup \operatorname{conv}(E)$

Limit roots and
 Tiling of

Limit roots and imaginary cone

 Tiling of $\operatorname{conv}(E)$

Biconvex sets and biclosed sets (CH \& JP Labbé)

Biconvex sets. Let $A \subseteq \Phi^{+}$.

- A is convex if $\operatorname{conv}(\hat{A}) \cap \hat{\Phi}=\hat{A}$;
- A is biconvex if A and A^{c} are convex;
- A is separable if $\operatorname{conv}(\hat{A}) \cap \operatorname{conv}\left(\hat{A}^{c}\right)=\emptyset$

Proposition. Let $A \subseteq \Phi+$
i) A is closed iff $[\hat{\alpha}, \hat{\beta}] \cap \hat{\Phi} \subseteq \hat{A}, \forall \alpha, \beta \in A$;
ii) separable \Longrightarrow (bi)convex \Longrightarrow (bi)closed
iii) A is finite biclosed iff finite separable iff $A=N(w), w \in W$

Biconvex sets and biclosed sets (CH \& JP Labbé)

Biconvex sets. Let $A \subseteq \Phi^{+}$.

- A is convex if $\operatorname{conv}(\hat{A}) \cap \hat{\Phi}=\hat{A}$;
- A is biconvex if A and A^{c} are convex;
- A is separable if $\operatorname{conv}(\hat{A}) \cap \operatorname{conv}\left(\hat{A}^{c}\right)=\emptyset$

Proposition. Let $A \subseteq \Phi^{+}$.
i) A is closed iff $[\hat{\alpha}, \hat{\beta}] \cap \hat{\Phi} \subseteq \hat{A}, \forall \alpha, \beta \in A$;

ii) separable \Longrightarrow (bi)convex \Longrightarrow (bi)closed
iii) A is finite biclosed iff finite separable iff $A=N(w), w \in W$

Theorem (CH \& JP Labbé). In rank 3, Biconvex sets with inclusion is a lattice: $\hat{A} \vee \hat{B}=\operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}$

Remarks.

- The theorem and the converse of Prop (ii) is false in general, counterexample in rank 4 not affine nor finite;
- In rank 3 or affine type, does biconvex = biclosed?

Inversion sets of infinite words

 Infinite reduced words on S. For an infinite word $w=s_{1} s_{2} s_{3} \ldots, s_{i} \in S$, write:- $w_{i}=s_{1} s_{2} s_{3} \cdots s_{i}$;
- $\beta_{0}=\alpha_{s_{1}}$ and $\beta_{i}=w_{i}\left(\alpha_{s_{i+1}}\right) \in \Phi^{+}$.
- w is reduced if the w_{i} 's are.
- Inversion set: $N(w)=\left\{\beta_{i} \mid i \in \mathbb{N}\right\}$.

Remark. P. Cellini \& P. Papi, K. Ito studied biclosed sets for KacMoody root systems (imaginaty root). They form a subclass: A or A^{c} verify $\operatorname{conv}(\hat{A}) \cap Q=\emptyset$.

Inversion sets of infinite words

Theorem (Cellini \& Papi, 1998). Let the root system be affine, i.e., Q is a singleton. Let $A \subseteq \Phi^{+}$s.t. $\operatorname{conv}(\hat{A}) \cap Q=\emptyset$. Then:
A biclosed iff A separable iff $A=N(w)$, w finite or infinite.

Remark. The class of $A \subseteq \Phi^{+}$s.t. A or A^{c} verify $\operatorname{conv}(\hat{A}) \cap Q=\emptyset$ is not satisfying (negative answer to a question asked by Lam \& Pylyavskyy; Baumann, Kamnitzer \& Tingley)

$$
\begin{aligned}
& \hat{N}(21321) \vee \hat{N}(214)=\bullet \vee \bullet \\
& =\operatorname{conv}(\bullet \cup \bullet) \cap \hat{\Phi}
\end{aligned}
$$

does not arise as an inversion set of a word (finite or infinite)

Inversion sets of infinite words (CH \& JP Labbé)

Let $A \subseteq \Phi^{+}$, we say that:

- A avoids E if $[\hat{\alpha}, \hat{\beta}] \cap Q=\emptyset, \forall \alpha, \beta \in A$
- A strictly avoids E if $\operatorname{conv}(\hat{A}) \cap E=\emptyset$.

strictly avoids \Longrightarrow avoids

Proposition. Let $A \subseteq \Phi^{+}$be finite.
i) if A is closed then A avoids E;
ii) if A is convex then A strictly avoids E.

Inversion sets of infinite words (CH \& JP Labbé)

Corollary. If $A=N(w)$ with w reduced infinite or finite word, then A strictly avoids E and is biconvex.

Questions:
i) the converse is true? (true for affine by Cellini \& Papi);
ii) $\mid \operatorname{Acc}(N(w) \mid \leq 1$?; obviously true for finite and affine; true for weakly hyperbolic (H. Chen \& JP Labbé, 2014)

Inversion sets of infinite words (CH \& JP Labbé) and $\operatorname{conv}(E)$

Assume the root system to be not finite nor affine For a reduced $w=s_{1} s_{2} s_{3} \ldots, s_{i} \in S$, recall that:

- $w_{i}=s_{1} s_{2} s_{3} \cdots s_{i} ;$ reduced; $\beta_{0}=\alpha_{s_{1}}$ and $\beta_{i}=w_{i}\left(\alpha_{s_{i+1}}\right) \in \Phi^{+}$.
- Inversion set: $N(w)=\left\{\beta_{i} \mid i \in \mathbb{N}\right\}$.

Representation in $\operatorname{conv}(E)$:
$z \in \operatorname{relint}(K)$ and $\left\{w_{i} \cdot z, i \in \mathbb{N}\right\}$
Conjecture.
$\operatorname{Acc}\left(\hat{N}(w)=\operatorname{Acc}\left(\left\{w_{i} \cdot z, i \in \mathbb{N}\right\}\right)\right.$
Questions. Link with Lam \& Thomas, 2013? Geometric realization of the Davis complex?

Selected bibliography and other readings

And articles already cited + from \square Brigitte Brink, Bill Casselman, Fokko du Cloux, Bob Howlett, Xiang Fu (regarding automaton and comb.)

- Matthew Dyer (imaginary cones, weak order(s))
- CH \& coauthors (Matthew Dyer, Jean-Philippe Labbé,

Jean-Philippe Préaux, Vivien Ripoll). A good start for limit of roots and imaginary convex bodies is the survey of the case of Lorentzian spaces (CH, Ripoll, Préaux)

- P Papi and Ken Ito (limit weak order)
- Hao Chen and Jean-Philippe Labbé (Sphere packing)

Reflection
Groups and

