Words and Roots in Infinite Coxeter Groups - Séminaire Lotharingien de Combinatoire -Lyon, March 23-26, 2014 Christophe Hohlweg, LaCIM, UQAM (on sabbatical at IRMA, Strasbourg)

©someone on the internet

Reflection Groups and Coxeter Groups

JAMES E. HUMPHREYS

Symmetries.

Lecture 1: Coxeter groups & Reflection groups

A bit of history (cf. Bourbaki, Lie groups, Chap. IV-VI)

Classificat[°] of regular polygons & polyhedral (cf. Euclid 300BC)
 Study of regular tilings of the plane and the sphere (Byzantine school, High Middle-age, Kepler ~ 1619)

©wikipedia

Reflection Groups and Coxeter Groups

Lecture 1: Coxeter groups & Reflection groups

A bit of history (cf. Bourbaki, Lie groups, Chap. IV-VI)

□ 19th - century

Study of (discrete groups of) isometries, generated by reflections or not (Möbius ~ 1852, Jordan ~ 1869) □ Tilings and regular polytopes in high dimension (Schläfli ~ 1850)

□ beginning of 20th – century Classification of discrete subgroups generated by © wikipedia reflections (Cartan, Coxeter, Vinberg, etc...) -> words Lie Theory via root systems (Killing, Cartan, Weyl, Witt, Coxeter, etc...)

• $(V, \langle \cdot, \cdot \rangle)$ Euclidean space ($\dim V = n$) i.e. $V \mathbb{R}$ -vector space, $\langle \cdot, \cdot \rangle$ scalar product, $||\cdot||$ associated norm.

Reflection: $s \in O(V)$ with set of fixed points a hyperplan H.

Properties. A reflection $s \in O(V)$ is uniquely determined: \Box by a hyperplan H = Fix(s); \Box or by a nonzero vector $\alpha \in V$ and we write $s_{\alpha} := s$. "root"

Observe that $\mathbb{R}\alpha = H^{\perp}$, a line.

 $\mathbb{R}\alpha = H^{\perp}$

Properties. A reflection $s \in O(V)$ is uniquely determined: \square by a hyperplan H = Fix(s); \square or by a nonzero vector $\alpha \in V$ and we write $s_{\alpha} := s$. "root" Indeed, for s with $\mathbb{R}\alpha = H^{\perp}$ we have: Η k• $s(\mathbb{R}\alpha) = \mathbb{R}\alpha$ and then $s(\alpha) = -\alpha$ (nontrivial isometry); \mathcal{X} • for $v = x + k\alpha \in V = H \oplus \mathbb{R}\alpha$ $s_{\alpha}(v)$ $s(v) = v - 2k\alpha = v - 2\frac{\langle \alpha, v \rangle}{||\alpha||^2}\alpha$ $\mathbb{R}\alpha = H^{\perp}$

Theorem (Cartan-Dieudonné). Any isometry in O(V) is the product of at most $n = \dim V$ reflections.

• $W \leq O(V)$ finite is a finite reflection group (FRG) if there is $A \subseteq V \setminus \{0\}$ such that $W = \langle s_{\alpha} \mid \alpha \in A \rangle$.

Dihedral groups: V is a plane (n = 2), P is a regular polygon with m sides (centred at the origin) and

 $egin{aligned} \mathcal{D}_m &= ext{ isometry group of P} \ \mathcal{D}_3 &= \{s_lpha, s_eta, s_\gamma, r, r^2, r^3 = e\} \ &= \langle s_lpha, s_eta, s_\gamma
angle ext{ is a FRG} \end{aligned}$

• $W \leq O(V)$ finite is a finite reflection group (FRG) if there is $A \subseteq V \setminus \{0\}$ such that $W = \langle s_{\alpha} \mid \alpha \in A \rangle$.

Dihedral groups: V is a plane (n = 2), P is a regular polygon with m sides (centred at the origin) and

$${\cal D}_m=$$
 isometry group of P

$$\mathcal{D}_{3} = \{s_{\alpha}, s_{\beta}, s_{\gamma}, r, r^{2}, r^{3} = e\}$$
$$= \langle s_{\alpha}, s_{\beta}, s_{\gamma} \rangle \quad \text{is a FRG}$$
$$= \langle s_{\alpha}, s_{\beta} \rangle$$

• $W \le O(V)$ finite is a finite reflection group (FRG) if there is $A \subseteq V \setminus \{0\}$ such that $W = \langle s_{\alpha} \mid \alpha \in A \rangle$.

I

Dihedral groups: V is a plane (n = 2), P is a regular polygon with m sides (centred at the origin) and

 $\mathcal{D}_m = \text{ isometry group of P}$

 $s_{lpha}s_{eta}$

.....

• $W \le O(V)$ finite is a finite reflection group (FRG) if there is $A \subseteq V \setminus \{0\}$ such that $W = \langle s_{\alpha} \mid \alpha \in A \rangle$.

Examples:

Dihedral groups: V is a plane (n = 2), P is a regular polygon with m sides (centred at the origin) and

$$\mathcal{D}_m=$$
 isometry group of P

$$= \langle s, t | s^2 = t^2 = (st)^m = e$$

where s (resp. t) is the reflection associated to the line passing through a vertex of P (resp. the middle of an adjacent edge).

Examples:

Symmetric group: S_n acts on $V = \mathbb{R}^n$ by permutation of the coordinates: $\sigma \cdot (x_1, \dots, x_n) = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$

 \rightarrow faithful action: $S_n \leq GL(n)$

A transposition $\tau_{ij} = (i \ j)$ is a reflection with hyperplane $H_{ij} = \{x \in \mathbb{R}^n \mid x_i = x_j\}$ or vector $\alpha_{ij} = e_j - e_i \ (i.e. \ \tau_{ij} = s_{\alpha_{ij}})$ $\implies S_n = \langle \tau_{ij} \mid 1 \le i < j \le n \rangle \le O(\mathbb{R}^n)$ is a FRG

Examples:

- □ Symmetric group: S_n acts on $V = \mathbb{R}^n$ by permutation of the coordinates: $\sigma \cdot (x_1, \dots, x_n) = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$ → faithful action: $S_n \leq GL(n)$
- (dihedral sg) means $\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$ means $\tau_i \tau_j = \tau_j \tau_i$ (they commute)

• $W \le O(V)$ is a FRG i.e. $W = \langle s_{\alpha} \mid \alpha \in A \rangle$ where $A \subseteq V \setminus \{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \forall \alpha \in V \setminus \{0\}, ws_{\alpha}w^{-1} = s_{w(\alpha)}$

• Root system: $\Phi = W(A)$ on which W acts by conjugation

• $W \leq O(V)$ is a FRG i.e. $W = \langle s_{\alpha} \mid \alpha \in A \rangle$ where $A \subseteq V \setminus \{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \ \forall \alpha \in V \setminus \{0\}, \ ws_{\alpha}w^{-1} = s_{w(\alpha)}$

• Root system: $\Phi = W(A)$ on which W acts by conjugation

Example:

• $W \le O(V)$ is a FRG i.e. $W = \langle s_{\alpha} \mid \alpha \in A \rangle$ where $A \subseteq V \setminus \{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \ \forall \alpha \in V \setminus \{0\}, \ ws_{\alpha}w^{-1} = s_{w(\alpha)}$

• Root system: $\Phi = W(A)$ on which W acts by conjugation

• $W \leq O(V)$ is a FRG i.e. $W = \langle s_{\alpha} \mid \alpha \in A \rangle$ where $A \subseteq V \setminus \{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \ \forall \alpha \in V \setminus \{0\}, \ ws_{\alpha}w^{-1} = s_{w(\alpha)}$

• Root system: $\Phi = W(A)$ on which W acts by conjugation

• $W \le O(V)$ is a FRG i.e. $W = \langle s_{\alpha} \mid \alpha \in A \rangle$ where $A \subseteq V \setminus \{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \ \forall \alpha \in V \setminus \{0\}, \ ws_{\alpha}w^{-1} = s_{w(\alpha)}$

Solution Root system: $\Phi = W(A)$ on which W acts by conjugation

Conclusion: \mathcal{D}_3 -orbit is $\Phi = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\} \quad st(\alpha) = \beta$ The positive part is $\Phi^+ = \{\alpha, \beta, \alpha + \beta\}$ The base of cone(Φ^+) gives the desired generators s and t. $\rho = \{\alpha, \beta, \alpha + \beta\}$

• $W \le O(V)$ is a FRG i.e. $W = \langle s_{\alpha} \mid \alpha \in A \rangle$ where $A \subseteq V \setminus \{0\}$ (is constituted of same norm vectors for simplification)

Proposition. $\forall w \in O(V), \ \forall \alpha \in V \setminus \{0\}, \ ws_{\alpha}w^{-1} = s_{w(\alpha)}$

Root system: $\Phi = W(A)$ on which Wacts by conjugation

Conclusion: \mathcal{D}_3 -orbit is $\Phi = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\}$ The positive part is $\Phi^+ = \{\alpha, \beta, \alpha + \beta\}$ The base of cone(Φ^+) gives the desired generators s and t.

• Root system: $\Phi = W(A)$ verifies the following properties

(i) Φ is finite, nonzero vectors; (ii) $s_{\alpha}(\Phi) = \Phi, \forall \alpha \in \Phi;$ (iii) $\Phi \cap \mathbb{R}\alpha = \{\pm \alpha\}, \forall \alpha \in \Phi.$ and: $W = \langle s_{\alpha} \mid \alpha \in \Phi \rangle$

(W,S) Coxeter system of finite rank $|S| < \infty$ i.e. $W = \langle S | (st)^{m_{st}} = e \rangle$ group $o m_{ss} = 1$ (sinvolut°); $m_{st} = m_{ts} \in \mathbb{N}_{\geq 2} \cup \{\infty\}$ for $s \neq t$ A Coxeter graph Γ is given by: \square vertices S (finite) \square edges $\left(\begin{smallmatrix} s & m_{st} \\ \bullet & \bullet \end{smallmatrix} \right)$ with $m_{st} \geq 3$ or $m_{st} = \infty$ Examples. Symmetric group S_n is \frown \bullet \bullet \bullet \bullet • Dihedral group: $\mathcal{D}_m = \langle s,t \,|\, s^2 = t^2 = (st)^m = e
angle$; ${old o}$ Infinite dihedral group: ${\cal D}_{\infty}=\langle s,t\,|\,s^2=t^2=e
angle$; • Universal Coxeter group: $U_n = \langle a_1, \ldots, a_n \mid a_i^2 = e \rangle$

(W,S) Coxeter system of finite rank $|S| < \infty$ i.e. $W = \langle S | (st)^{m_{st}} = e \rangle$ group $m_{ss} = 1$ (sinvolut); $m_{st} = m_{ts} \in \mathbb{N}_{\geq 2} \cup \{\infty\}$ for $s \neq t$ A Coxeter graph Γ is given by: \square vertices S (finite) \square edges $\left(\begin{smallmatrix} s & m_{st} \\ \bullet & \bullet \end{smallmatrix} \right)$ with $m_{st} \geq 3$ or $m_{st} = \infty$ Examples. Symmetric group S_n is \frown \bullet \bullet \bullet \bullet \bullet O Dihedral group: D_m is $[● _m ●]$ or [●] ●] (m = 2) Infinite dihedral group: \mathcal{D}_{∞} is $\mathbf{O}_{\infty}^{\infty}$ • Universal Coxeter group: $U_n = \langle a_1, \ldots, a_n \mid a_i^2 = e \rangle$

• any $w \in W$ is a word in the alphabet S; $W = \langle S \mid (st)^{m_{st}} = e \rangle$ • Length function $\ell: W \to \mathbb{N}$ with $\ell(e) = 0$ and $\ell(w) = \min\{k \,|\, w = s_1 s_2 \dots s_k, \, s_i \in S\}$ How to study words on S representing w ? Is a word $s_1s_2\ldots s_k$ a reduced word for w (i.e. $k = \ell(w)$)? Examples. \mathcal{D}_3 is $(--); \quad \begin{array}{c|c} e & s & t \\ \ell & 0 & 1 & 1 \\ \end{array} \quad \begin{array}{c} st & ts & sts = tst \\ 2 & 2 & 3 \\ \end{array}$ $\ell(ststs) = 1$ since ststs = (sts)ts = (tst)ts = t**Proposition.** Let $s \in S$ and $w \in W$, then $\ell(ws) = \ell(w) \pm 1$.

Proposition. If I_1, \ldots, I_k corresponds to the connected components of Γ_I (I may be S), then

$$W_I \simeq W_{I_1} \times \cdots \times W_{I_k}$$

To study Coxeter groups it is often just necessary to study the irreducible ones. In the following we often consider irreducible Coxeter systems.

Coxeter groups and Reflection groups

How to find all Coxeter graphs that correspond to Finite Reflection groups (FRG)? to Finite Coxeter groups?

Coxeter groups and Reflection groups

How to find all Coxeter graphs that correspond to Finite Reflection groups (FRG)? to Finite Coxeter groups?

Root systems for Coxeter groups ? An observation If (W,S) is a Finite Reflection Group with $\Delta \subseteq \Phi^+ \subseteq \Phi$. The Dihedral (standard) parabolic subgroups: $I = \{s, t\} \subseteq S$ \square $W_I = \langle I \rangle \leq W$ corresponds to the subgraphs: $s = s_{\alpha} \quad t = s_{\beta}$ or $s = s_{\alpha} \quad t = s_{\beta}$ $\gamma = \alpha + \beta$ $\square W_I = \mathcal{D}_{m_{st}}$ acts on $V_I = \operatorname{span}(\alpha, \beta)$: $s_{\alpha}(\beta) = \beta - 2\langle \alpha, \beta \rangle \alpha$ D We have: $\langle \alpha, \beta \rangle = -\cos\left(\frac{\pi}{m_{st}}\right)$ \mathcal{D}_{2} Φ^{-} ${\it {\it o}}$ the scalar product is given on the basis Δ by $\left(\langle \alpha, \beta \rangle\right)_{\alpha, \beta \in \Delta} = \left(-\cos\left(\frac{\pi}{m_{st}}\right)\right)_{s, t \in S}$

Geometric representations Tits classical geometric representation of (W, S) $\gamma = \alpha + \beta$ \square (V, B) real quadratic space: \bullet basis $\Delta = \{ \alpha_s \mid s \in S \};$ symmetric bilinear form defined by: $B(\alpha_s, \alpha_t) = -\cos\left(\frac{\pi}{m_{st}}\right), \ (=1 \text{ if } s = t; \ =-1 \text{ if } m_{st} = \infty)$ $\square W \leq O_B(V)$ "B-isometry": $s(v) = v - 2B(v, \alpha)\alpha, \ s \in S$ Root system: $\Phi = W(\Delta), \ \Phi^+ = \operatorname{cone}(\Delta) \cap \Phi = -\Phi^-$ **Proposition.** Let $s \in S$ and $w \in W$, then: $\ell(ws) = \ell(w) + 1 \iff w(\alpha_s) \in \Phi^+$

Christophe Hohlweg, 2014

 Φ^+

Geometric representations

 $\rho'_n = n\alpha + (n+1)\beta$

Infinite dihedral group

 $s_{\beta}($

$$Q = \{v \in V | B(v, v) = 0\}$$

$$\rho_{4}^{\prime} \uparrow \rho_{3} = s_{\alpha}s_{\beta}(\alpha)$$

$$= \gamma_{2}^{\prime} \uparrow \rho_{2} = s_{\alpha}(\beta)$$

$$= \beta + 2\alpha$$

$$\beta = \rho_{1}^{\prime} \quad \alpha = \rho_{1}$$
(a) $B(\alpha, \beta) = -1$

$$s_{\alpha}(v) = v - 2B(v, \alpha)\alpha$$

 $\overline{\rho_n} = (n+1)\alpha + n\beta$

Geometric representations Restriction to Reflection subgroups The isotropic cone of $B: Q = \{v \in V \mid B(v, v) = 0\}$ Root of a B-reflection on V: for $\alpha \notin Q$ and $v \in V$ $s_{\alpha}(v) = v - 2B(v, \alpha)\alpha$ with $B(\alpha, \alpha) = 1$.

• A reflection subgroup of (W, S) is a subgroup $W_A = \langle s_\alpha \mid \alpha \in A \rangle$ where $A \subseteq \Phi^+$ is finite

Theorem (Dyer, Deodhar). Let $A \subseteq \Phi^+$, $A' = W_A(A) \cap \Phi^+$ and Δ_A the basis of $\operatorname{cone}(A')$. Then (W_A, S_A) is a Coxeter system, where $S_A = \{s_\alpha \mid \alpha \in \Delta_A\}$.

The restriction of Tits geometric representation to W_A is not necessarily the one for (W_A, S_A)

Geometric representations

Infinite dihedral group II

$$(-1,01)$$

 \propto

Geometric representations $\begin{array}{c} \rho_4' \\ \rho_3' \\ \rho_3' \end{array} \left(\begin{array}{c} Q^- \\ \rho_3' \\ \rho_3 \end{array} \right) \left(\begin{array}{c} \rho_4 \\ \rho_4 \end{array} \right) \left(\begin{array}{c} \rho_4 \end{array} \right) \left(\begin{array}{c} \rho_4 \\ \rho_4 \end{array} \right) \left(\begin{array}{c} \rho_4$ Vinberg geometric representations of (W, S) \square (V, B) real quadratic space and $\Delta \subseteq V$ s.t. \circ cone $(\Delta) \cap$ cone $(-\Delta) = \{0\};$ $\alpha = \rho_1$ $\beta = \rho_1'$ • $\Delta = \{\alpha_s \mid s \in S\}$ s.t. (b) $B(\alpha,\beta) = -1.01 < -1$ $B(\alpha_s, \alpha_t) = \begin{cases} -\cos\left(\frac{\pi}{m_{st}}\right) & \text{if } m_{st} < \infty \\ a \le -1 & \text{if } m_{st} = \infty \end{cases}$ $\square W \leq O_B(V) ``B-isometry'':$ $s(v) = v - 2B(v, \alpha)\alpha, \ s \in S$ Root system: $\Phi = W(\Delta), \ \Phi^+ = \operatorname{cone}(\Delta) \cap \Phi = -\Phi^-$

Proposition. Let $s \in S$ and $w \in W$, then: $\ell(ws) = \ell(w) + 1 \iff w(\alpha_s) \in \Phi^+$

Theorem. The following assertions are equivalent: (i) (W, S) is a finite Coxeter system; (ii) B is a scalar product and $W \leq O_B(V)$; (iii) W is a finite reflection group.

Theorem. The irreducible FRG are precisely the finite irreducible Coxeter groups. Their graphs are:

Conclusion

Question: Are all B-reflection groups Coxeter groups?

Conclusion

In the spherical, euclidean and hyperbolic case, all finitely generated discrete B-reflection groups are Coxeter groups (models for these geometry exist in V or its dual; `cut' these models by the hyperplanes of reflections)

Finite case i.e. B is a scalar product ($V = V^*$): the model is the unit sphere $||v||^2 = B(v,v) = 1$

Conclusion

In the spherical, euclidean and hyperbolic case, they are all Coxeter groups (models for these geometry exist in V or its dual; `cut' these models by the hyperplanes of reflections)

Finite case i.e. B is a scalar product sgn(B) = (n, 0, 0)

Affine case i.e. B is positive degenerate. Its radical is a line: $Rad(B) = \{v \in V | B(v, \alpha) = 0, \forall \alpha \in \Delta\} = \mathbb{R}x$ The model is an affine hyperplane in the dual V^* : $H = \{\varphi \in V^* | \varphi(x) = 1\}$

N.B: reflection hyperplanes leave in the dual here.
Conclusion

In the spherical, euclidean and hyperbolic case, they are all Coxeter groups (models for these geometry exist in V or its dual; `cut' these models by the hyperplanes of reflections)

Hyperbolic case i.e. sgn(B) = (n - 1, 1, 0) ($V = V^*$). Many models exists: projective (non conformal), hyperboloïd or the ball model $H^{n-1} = \{x \in V \mid B(x, x) = -1\}$

Conclusion

Problem: Let $p, q, r \in \mathbb{N}$, classify all the Coxeter graphs with signature (p, q, r). Count them?

N.B.: Known for (n, 0, 0) – FRG –; (n - 1, 0, 1) – affine type – and partially for (n - 1, 1, 0) – "weakly hyperbolic" type

Donald Coxeter

(London 1907, Toronto 2003) Professor at University of Toronto (1936–2003)

Mandatory photo credit. Mathematics genius Donald Coxeter is the subject of a public talk by journalist Siobhan Roberts, The Man Who Saved Geometry, on Sunday, July 31. Photo courtesy of The Banff Centre.

Selected biblio of Part 1 ...

Cambridge studies in advanced mathematics 29 Reflection Groups and **Coxeter Groups** Anders Björner Francesco Brenti JAMES E. HUMPHREYS Combinatorics of **Coxeter Groups** Springer Alexandre V. Borovik **Graduate Texts** Anna Borovik in Mathematics The Geometry and Topology of Coxeter Groups Mirrors and Peter Abramenko Kenneth S. Brown Michael W. Davis Reflections **Buildings** The Geometry of Finite **Reflection Groups** Theory and Applications D Springer D Springer

Lecture 2: Weak order and roots In the last episode

Weak order and reduced words (W,S) Coxeter system of finite rank $|S| < \infty$ • any $w \in W$ is a word in the alphabet S; $W = \langle S | (st)^{m_{st}} = e \rangle$ Length function $\ell: W \to \mathbb{N}$ with $\ell(e) = 0$ and $\ell(w) = \min\{k \,|\, w = s_1 s_2 \dots s_k, \, s_i \in S\}$ How to study words on S representing w ? Is a word $s_1s_2\ldots s_k$ a reduced word for w (i.e. $k = \ell(w)$)? $\ell(ststs) = 1$ since ststs = (sts)ts = (tst)ts = t**Proposition.** Let $s \in S$ and $w \in W$, then $\ell(ws) = \ell(w) \pm 1$.

Weak order and reduced words

Cayley graph of $W = \langle S \rangle$ i.e. \Box vertices W \Box edges $w \xrightarrow{S} ws \ (s \in S)$ is naturally oriented by the (right) weak order: w < ws if $\ell(w) < \ell(ws)$ write: $w \xrightarrow{S} ws$

Fact: (a) $u \le w$ iff a reduced word of u is a prefix of a red. word of w. (b) reduced words of w corresp. to maximal chains in the interval [e, w]. (c) Chain property: if $u \le w$ with $\ell(u) + 1 < \ell(w)$ then: $\exists v \in W, \ u \le v \le w$

Weak order and reduced words

Theorem (Björner). The weak order is a complete meetsemilattice. In particular $u \wedge v = \inf(u, v), \ \forall u, v \in W$, exists.

Proposition. Assume W is finite, then: (i) there is a unique $w_{\circ} \in W$ such that: $u \leq w_{\circ}, \forall u \in W$. (ii) the map $w \mapsto w_{\circ}w$ is a poset antiautomorphism. (iii) the weak order is a complete lattice. In part., $u \lor v = \sup(u, v)$ exists. (iv) $u \wedge v = w_{\circ}(w_{\circ}u \vee w_{\circ}v)$

Weak order & Generalized Associahedra

(W,S) finite Coxeter system, so $W \leq O(V)$

Permutahedra

 $\Box \Delta \text{ simple system;}$ $\Box S = \{s_{\alpha} \mid \alpha \in \Delta\};$ $\Box \text{ Choose } a \text{ generic i.e.}$ $\langle a, \alpha \rangle > 0, \ \forall \alpha \in \Delta$ $\operatorname{Perm}^{a}(W) = \operatorname{conv} \{w(a) \mid w \in W\}$

Proposition. $Perm^{a}(W)$ is a simple polytope whose oriented 1-skeleton is the graph of the (right) weak order.

Stru

Tamari's associahedron

Associahedra (Convex polytopes):

Type A (Haiman 1984, Lee, Loday, ...)

- Type B cyclohedra (Bott-Taubes 1994, ...)
- Weyl groups (Chapoton-Fomin-Zelevinsky, 2003)

from permutahedra of finite Coxeter groups (CH-Lange-Thomas 2011, ...)

Associahedra (lattices/complexes):

- Lattice (Tamari, 1951)
- Cell complex (Stasheff, 1963)
- Cluster complex (Fomin-Zelevinsky, 2003)
- Cambrian lattices (Reading 2007, 2007) and more ...

Hohlweg, C. Lange, H. Thomas (2009)

 \square Data: $\operatorname{Perm}^{\boldsymbol{a}}(W)$ and an orientation of Γ_W

 $\square c$ Coxeter element associated to this orientation i.e. product without repetition of all the simple reflections; $c = \tau_2 \tau_3 \tau_1$ $\square c_{(I)}$ subword with letters $I \subseteq S$ $I = \{\tau_1, \tau_2\} \subseteq S \Rightarrow c_{(I)} = \tau_2 \tau_1$ $\square c$ - word of $w_{\circ}: w_{o}(c) = c_{(K_{1})}c_{(K_{2})} \dots c_{(K_{p})}$ reduced expression s.t. $S \supseteq K_1 \supseteq K_2 \supseteq \cdots \supseteq K_p \neq \emptyset$ $\boldsymbol{w_o}(\tau_1\tau_2\tau_3) = \tau_1\tau_2\tau_3.\tau_1\tau_2.\tau_1 = c_{(S)}c_{(\{\tau_1,\tau_2\})}c_{(\{\tau_1\})}$ $\boldsymbol{w}_{\boldsymbol{o}}(\tau_{2}\tau_{3}\tau_{1}) = \tau_{2}\tau_{3}\tau_{1}.\tau_{2}\tau_{3}\tau_{1} = c_{(S)}c_{(S)}.$

Hohlweg, C. Lange, H. Thomas (2009)

 $\begin{array}{l} \square \ c \ - \ \text{word of} \ w_{\circ} \colon \boldsymbol{w_{o}}(c) = c_{(K_{1})}c_{(K_{2})} \ldots c_{(K_{p})} \ \text{reduced} \\ \text{expression s.t.} \ \ S \supseteq K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{p} \neq \emptyset \\ \boldsymbol{w_{o}}(\tau_{1}\tau_{2}\tau_{3}) = \tau_{1}\tau_{2}\tau_{3}.\tau_{1}\tau_{2}.\tau_{1} = c_{(S)}c_{(\{\tau_{1},\tau_{2}\})}c_{(\{\tau_{1}\})} \\ \boldsymbol{w_{o}}(\tau_{2}\tau_{3}\tau_{1}) = \tau_{2}\tau_{3}\tau_{1}.\tau_{2}\tau_{3}\tau_{1} = c_{(S)}c_{(S)}. \end{array}$

 $\square c$ – singletons are the prefixes

of $\boldsymbol{w_o}(c)$ up to commutations

e, $au_{2} au_{3}$, $au_{2} au_{3} au_{1} au_{2} au_{3}$, au_{2} , $au_{2} au_{3} au_{1}$, $au_{2} au_{3} au_{1} au_{2} au_{1}$, and $au_{2} au_{1}$, $au_{2} au_{3} au_{1} au_{2}$, $w_{o} = au_{2} au_{1} au_{3} au_{2} au_{1} au_{3}$.

Proposition. c – singletons form a distributive sublattice of the weak order.

Hohlweg, C. Lange, H. Thomas (2009)

 $\square c$ - generalized associahedron is the polytope $\operatorname{Asso}_{c}^{a}(W)$ obtained from $\operatorname{Perm}^{a}(W)$ by keeping only the facets containing a c - singleton

Theorem. The 1-skeleton of $Asso_c^a(W)$ is N. Reading's *c*- Cambrian lattice; its normal fan is the corresponding Cambrian fan studied in detailed by N. Reading & D. Speyer. The facets

are labelled by almost positive roots

Selected developements on the subject

Convex hull of the vertices: brick polytopes. Barycenter identical to the permutahedron:

V. Pilaud and C. Stump:

1. Brick polytopes of spherical subword complexes: A new approach to generalized associahedra (2012)

2. Vertex barycenter of generalized associahedra (2012)

© Pilaud-Stump

Classification of isometry classes in term of the lattices of *c*—singletons (N. Bergeron, Hohlweg, C. Lange, H. Thomas, 2009)
 Recovering the corresponding cluster algebra:
 S. Stella, Polyhedral models for generalized associahedra via Coxeter elements (2013)

Weak order: a combinatorial model

Cambrian (semi)lattices/fans in finite case & Generalized associahedra in finite case

Initial section of reflection orders and KL-polynomials (M. Dyer): combinatorial formulas for KL-polynomials (F. Brenti, M. Dyer).

A combinatorial model for cambrian lattices/generalized associahedra in infinite case, or twisted Bruhat order and KLpolynomials (M. Dyer)? Is it possible to «enlarge» Coxeter groups to have a weak order that is a complete lattice?

Weak order and root system Geometric representations of (W, S) \square (V, B) real quadratic space and $\Delta \subseteq V$ s.t. • $\operatorname{cone}(\Delta) \cap \operatorname{cone}(-\Delta) = \{0\};$ \bullet $\Delta = \{ \alpha_s \mid s \in S \}$ s.t. $B(\alpha_s, \alpha_t) = \begin{cases} -\cos\left(\frac{\pi}{m_{st}}\right) & \text{if } m_{st} < \infty \\ a \le -1 & \text{if } m_{st} = \infty \end{cases}$ $\square W \le O_B(V): \quad s(v) = v - 2B(v, \alpha)\alpha, \ s \in S$ Root system: $\Phi = W(\Delta), \ \Phi^+ = \operatorname{cone}(\Delta) \cap \Phi = -\Phi^ \gamma = \alpha + \beta$ $e \quad s = s_{\alpha} \quad t = s_{\beta}$ st $ts \quad sts = tst$

Weak order and root system Geometric representations of (W, S) \square (V, B) real quadratic space and $\Delta \subseteq V$ s.t. • $\operatorname{cone}(\Delta) \cap \operatorname{cone}(-\Delta) = \{0\};$ • $\Delta = \{ \alpha_s \, | \, s \in S \}$ s.t. $B(\alpha_s, \alpha_t) = \begin{cases} -\cos\left(\frac{\pi}{m_{st}}\right) & \text{if } m_{st} < \infty \\ a \le -1 & \text{if } m_{st} = \infty \end{cases}$ $\square W \le \mathcal{O}_B(V): \quad s(v) = v - 2B(v,\alpha)\alpha, \ s \in S$ Root system: $\Phi = W(\Delta), \ \Phi^+ = \operatorname{cone}(\Delta) \cap \Phi = -\Phi^-$

Weak order and root system Geometric representations of (W, S) \square (V, B) real quadratic space and $\Delta \subseteq V$ s.t. • $\operatorname{cone}(\Delta) \cap \operatorname{cone}(-\Delta) = \{0\};$ • $\Delta = \{ \alpha_s \mid s \in S \}$ s.t. $B(\alpha_s, \alpha_t) = \begin{cases} -\cos\left(\frac{\pi}{m_{st}}\right) & \text{if } m_{st} < \infty \\ a \le -1 & \text{if } m_{st} = \infty \end{cases}$ $\square W \le \mathcal{O}_B(V): \quad s(v) = v - 2B(v,\alpha)\alpha, \ s \in S$ Root system: $\Phi = W(\Delta), \ \Phi^+ = \operatorname{cone}(\Delta) \cap \Phi = -\Phi^-$

	e	$s = s_{\alpha}$	$t = s_{\beta}$	st	ts	sts = tst
l	0	1	1	2	2	3
α	α	$-\alpha$	γ	β	$-\gamma$	$-\beta$
β	β	γ	$-\beta$	$-\gamma$	lpha	-lpha
γ	γ	eta	lpha	$-\alpha$	$-\beta$	$-\gamma$

Weak order and root system Geometric representations of (W, S) \square (V, B) real quadratic space and $\Delta \subseteq V$ s.t. • $\operatorname{cone}(\Delta) \cap \operatorname{cone}(-\Delta) = \{0\};$ • $\Delta = \{ \alpha_s \mid s \in S \}$ s.t. $B(\alpha_s, \alpha_t) = \begin{cases} -\cos\left(\frac{\pi}{m_{st}}\right) & \text{if } m_{st} < \infty \\ a \le -1 & \text{if } m_{st} = \infty \end{cases}$ $\square W \leq \mathcal{O}_B(V): \quad s(v) = v - 2B(v,\alpha)\alpha, \ s \in S$ Root system: $\Phi = W(\Delta), \ \Phi^+ = \operatorname{cone}(\Delta) \cap \Phi = -\Phi^$ $e \quad s = s_{\alpha} \quad t = s_{\beta} \quad st \quad ts \quad sts = tst$ $\gamma = \alpha + \beta$ ℓ 0 1 1 2 2 3 $\alpha \mid \alpha \quad (-\alpha)$ β $egin{array}{ccc} eta & \widetilde{\gamma} & \ \gamma & \beta & \end{array} \ \gamma & eta & eta & \end{array}$ $-\beta$ β $-\alpha$ $\gamma \mid$ $\ell(w) = |\{\nu \in \Phi^+ \mid w(\nu) \in \Phi^-\}|$ Φ^{-} Christophe Hohlweg, 2013

Definition. The inversion set of $w \in W$ is $\operatorname{inv}(w) = \Phi^+ \cap w^{-1}(\Phi^-) = \{\nu \in \Phi^+ \mid w(\nu) \in \Phi^-\}$

• If $W = S_n$ then those "are" the natural inversion. $\operatorname{inv}(\sigma) = \{e_j - e_i \mid 1 \le i < j \le n, \ e_{\sigma(j)} - e_{\sigma(i)} \in \Phi^-\}$

Definition. The inversion set of $w \in W$ is $\operatorname{inv}(w) = \Phi^+ \cap w^{-1}(\Phi^-) = \{\nu \in \Phi^+ \mid w(\nu) \in \Phi^-\}$

• If $W = S_n$ then those ``are" the natural inversion. $inv(\sigma) = \{e_j - e_i \mid 1 \le i < j \le n, \ \sigma(j) < \sigma(i)\}$

Definition. The inversion set of $w \in W$ is $\operatorname{inv}(w) = \Phi^+ \cap w^{-1}(\Phi^-) = \{\nu \in \Phi^+ \mid w(\nu) \in \Phi^-\}$

• If $W = S_n$ then those ``are" the natural inversion. $\operatorname{inv}(\sigma) \simeq \{(i,j) \mid 1 \le i < j \le n, \ \sigma(i) > \sigma(j)\}$

Definition. The inversion set of $w \in W$ is $\operatorname{inv}(w) = \Phi^+ \cap w^{-1}(\Phi^-) = \{\nu \in \Phi^+ \mid w(\nu) \in \Phi^-\}$

Proposition. Let $w = s_1 s_2 \dots s_k$ be a reduced word, then: $N(w) := inv(w^{-1}) = \{\alpha_1, s_1(\alpha_2), \dots, s_1 \dots s_{k-1}(\alpha_k)\}$ In particular: $|N(w)| = |inv(w)| = \ell(w)$

Definition. The inversion set of $w \in W$ is $\operatorname{inv}(w) = \Phi^+ \cap w^{-1}(\Phi^-) = \{\nu \in \Phi^+ \mid w(\nu) \in \Phi^-\}$

Proposition. Let $w = s_1 s_2 \dots s_k$ be a reduced word, then: $N(w) := inv(w^{-1}) = \{\alpha_1, s_1(\alpha_2), \dots, s_1 \dots s_{k-1}(\alpha_k)\}$ In particular: $|N(w)| = |inv(w)| = \ell(w)$

Definition. The inversion set of $w \in W$ is $\operatorname{inv}(w) = \Phi^+ \cap w^{-1}(\Phi^-) = \{\nu \in \Phi^+ \mid w(\nu) \in \Phi^-\}$

Proposition. Let $w = s_1 s_2 \dots s_k$ be a reduced word, then: $N(w) := inv(w^{-1}) = \{\alpha_1, s_1(\alpha_2), \dots, s_1 \dots s_{k-1}(\alpha_k)\}$ In particular: $|N(w)| = |inv(w)| = \ell(w)$ What is Im(N)?

Proposition. The map $N:(W,\leq)\to (\mathcal{P}(\Phi^+),\subseteq)$ is an injective morphism of posets.

 $\Box A \subseteq \Phi^{+} \text{ is closed if for all } \alpha, \beta \in A, \text{ cone}(\alpha, \beta) \cap \Phi \subseteq A;$ $\Box A \subseteq \Phi^{+} \text{ is biclosed if } A, A^{c} := \Phi^{+} \setminus A \text{ are closed.}$ $\Box \mathcal{B}(W) = \{\text{biclosed sets}\}; \mathcal{B}_{0}(W) = \{A \subseteq \mathcal{B}(W) \mid |A| < \infty\}$

Proposition. $N: (W, \leq) \rightarrow (\mathcal{B}_0(W), \subseteq)$ is a poset isomorphism and $N(w_\circ) = \Phi^+$ if W is finite.

 $\Box A \subseteq \Phi^{+} \text{ is closed if for all } \alpha, \beta \in A, \text{ cone}(\alpha, \beta) \cap \Phi \subseteq A;$ $\Box A \subseteq \Phi^{+} \text{ is biclosed if } A, A^{c} := \Phi^{+} \setminus A \text{ are closed.}$ $\Box \mathcal{B}(W) = \{\text{biclosed sets}\}; \mathcal{B}_{0}(W) = \{A \subseteq \mathcal{B}(W) \mid |A| < \infty\}$

Proposition. $N: (W, \leq) \rightarrow (\mathcal{B}_0(W), \subseteq)$ is a poset isomorphism and $N(w_\circ) = \Phi^+$ if W is finite.

 $\Box A \subseteq \Phi^+ \text{ is closed if for all } \alpha, \beta \in A, \text{ cone}(\alpha, \beta) \cap \Phi \subseteq A;$ $\Box A \subseteq \Phi^+ \text{ is biclosed if } A, A^c := \Phi^+ \setminus A \text{ are closed.}$ $\Box \mathcal{B}(W) = \{\text{biclosed sets}\}; \mathcal{B}_0(W) = \{A \subseteq \mathcal{B}(W) \mid |A| < \infty\}$

Proposition. $N: (W, \leq) \rightarrow (\mathcal{B}_0(W), \subseteq)$ is a poset isomorphism and $N(w_\circ) = \Phi^+$ if W is finite.

 $= s_{\alpha}$

st

 α, γ

 $\Box A \subseteq \Phi^+ \text{ is closed if for all } \alpha, \beta \in A, \text{ cone}(\alpha, \beta) \cap \Phi \subseteq A;$ $\Box A \subseteq \Phi^+ \text{ is biclosed if } A, A^c := \Phi^+ \setminus A \text{ are closed.}$ $\Box \mathcal{B}(W) = \{\text{biclosed sets}\}; \mathcal{B}_0(W) = \{A \subseteq \mathcal{B}(W) \mid |A| < \infty\}$

Proposition. $N: (W, \leq) \rightarrow (\mathcal{B}_0(W), \subseteq)$ is a poset isomorphism and $N(w_\circ) = \Phi^+$ if W is finite.

 $\Box A \subseteq \Phi^+ \text{ is closed if for all } \alpha, \beta \in A, \text{ cone}(\alpha, \beta) \cap \Phi \subseteq A;$ $\Box A \subseteq \Phi^+ \text{ is biclosed if } A, A^c := \Phi^+ \setminus A \text{ are closed.}$ $\Box \mathcal{B}(W) = \{\text{biclosed sets}\}; \mathcal{B}_0(W) = \{A \subseteq \mathcal{B}(W) \mid |A| < \infty\}$

Proposition. $N: (W, \leq) \rightarrow (\mathcal{B}_0(W), \subseteq)$ is a poset isomorphism and $N(w_\circ) = \Phi^+$ if W is finite.

Inverse map (recursive construction) $\exists \alpha \in \Delta \cap A, s_{\alpha}(A \setminus \{\alpha\}) \text{ is finite biclosed and}$ $A = \{\alpha\} \sqcup s_{\alpha}(A \setminus \{\alpha\})$ $w_A = s_{\alpha} w_{s_{\alpha}(A \setminus \{\alpha\})}$

	$ ho_n'$	$= n\alpha + (n+1)\beta$ $\rho_n = (n+1)\alpha +$	$\cdot n eta$
		$Q = \{ v \in V B(v, v) = 0 \}$	
0 0		ρ_4' \uparrow ρ_4 Φ^+	The bic
Ρ		$\rho_{3}' \uparrow \qquad $	 The in The ir The ir and t ones: th
		$s_{\beta}(\alpha) = \rho'_{2} \qquad \qquad$	right si
• • • •		$\beta = \rho_1' \qquad \qquad \alpha = \rho_1$	
		(a) $B(\alpha,\beta) = -1$ $s_{\alpha}(v) = v - 2B(v,\alpha)\alpha.$	

The biclosed are:
the finite ones;
their complements;
and two infinite
ones: the left and
right side of Q!

 ∞

N

world of words

Chain property: if $u \le w$ with $\ell(u) + 1 < \ell(w)$ then: $\exists v \in W, \ u \le v \le w$

If W is finite, then: (i) a unique $w_o \in W$ s.t $u \leq w_o, \ \forall u \in W$ (ii) $w \mapsto w_o w$ is a poset antiautomorphism. (iii) the weak order is a complete lattice. (iv) $u \wedge v = w_o(w_o u \lor w_o v)$ world of roots Chain property: if $A \subseteq B$ finite biclosed with $|B \setminus A| > 1$ then: $\exists C \in \mathcal{B}_0, \ A \subsetneq C \subsetneq B$

If W is finite, then: (i) $N(w_{\circ}) = \Phi^+$ and $A \subseteq \Phi^+, \forall A \in \mathcal{B} = \mathcal{B}_0$ (ii) $A \mapsto A^c$ is a poset antiautomorphism. (iii) the weak order is a complete lattice. (iv) $A \wedge B = (A^c \lor B^c)^c$

Conjectures (M. Dyer, 2011). (a) chain property: if $A \subseteq B$ are biclosed and $|B \setminus A| > 1$ then there is $C \in \mathcal{B}$ s.t. $A \subsetneq C \subsetneq B$.

(b) (\mathcal{B}, \subseteq) is a complete lattice (with minimal element \emptyset and maximal element Φ^+).

□ $\lor \neq \cup$; $\land \neq \cap$ so how to understand them geometrically? □ if \lor exists then $A \land B = (A^c \lor B^c)^c$ world of roots Chain property: if $A \subseteq B$ finite biclosed with $|B \setminus A| > 1$ then: $\exists C \in \mathcal{B}_0, \ A \subsetneq C \subsetneq B$

If W is finite, then: (i) $N(w_{\circ}) = \Phi^+$ and $A \subseteq \Phi^+, \forall A \in \mathcal{B} = \mathcal{B}_0$ (ii) $A \mapsto A^c$ is a poset antiautomorphism. (iii) the weak order is a complete lattice. (iv) $A \wedge B = (A^c \vee B^c)^c$

Weak order and Bruhat order

Set of reflections: $T = \bigcup_{w \in W} wSw^{-1} = \{s_{\beta} \mid \beta \in \Phi^+\}$

Bruhat order: transitive closure of $w \leq_B wt$ if $\ell(w) < \ell(wt)$

Bruhat graph of $W = \langle S \rangle$ \Box vertices W \Box edges $w \xrightarrow{\beta} w s_{\beta}$

> Weak order implies Bruhat order.

Weak order and Bruhat order

A - path: path starting with ein the Bruhat graph and indexed by elements in $A \cup B$. Exemple. $A = \{\alpha, \gamma\}$: $e \to w_{\circ} = s_{\gamma}$ $e \to s \to ts$

B-closure of $A \subseteq \Phi^+$: $\overline{A} = \{\beta \in \Phi^+ \mid s_\beta \text{ is in a } A - \text{path}\}$

Conjecture (M. Dyer). Let A, B be biclosed sets, then $A \lor B = \overline{A \cup B}$

This conjecture is open even in finite cases!

Weak order and Bruhat order

Another example: (W, S) is $\tau_1 \tau_2 \tau_3$ $A = N(\tau_1 \tau_2) = \{\alpha_1, \tau_1(\alpha_2)\} = \{\alpha_1, \alpha_1 + \alpha_2\}; \quad s_{\alpha_1 + \alpha_2} = \tau_1 \tau_2 \tau_1$ $B = N(\tau_3) = \{\alpha_3\}$ $A \cup B = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2\}$

Conjecture (M. Dyer). Let A, B be biclosed sets, then $A \lor B = \overline{A \cup B}$

This conjecture is open even in finite cases!

Graph of $A \cup B$ paths

Weak order and Bruhat order

Another example: (W, S) is $\tau_1 \tau_2 \tau_3$ $A = N(\tau_1 \tau_2) = \{\alpha_1, \tau_1(\alpha_2)\} = \{\alpha_1, \alpha_1 + \alpha_2\}; \quad s_{\alpha_1 + \alpha_2} = \tau_1 \tau_2 \tau_1$ $B = N(\tau_3) = \{\alpha_3\}$ $A \cup B = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2\}$ $\tau_1 \tau_2 \lor \tau_3 = \tau_1 \tau_3 \tau_2 \tau_3$

Conjecture (M. Dyer). Let A, B be biclosed sets, then $A \lor B = \overline{A \cup B}$

This conjecture is open even in finite cases!

 $A \cup B = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3\} = N(\tau_1 \tau_3 \tau_2 \tau_3)$

Another way to interpret the join?

Conjecture (M. Dyer). Let A, B be biclosed sets, then $A \lor B = \overline{A \cup B}$

This conjecture is open even in finite cases!

 $A \cup B = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3\} = N(\tau_1 \tau_3 \tau_2 \tau_3)$

Lecture 3: Words & infinite root systems

In the last episode

The Cayley graph of (W, S) is naturally oriented by the (right) weak order: w < ws if $\ell(w) < \ell(ws)$.

The weak order is a complete meet-semilattice and $u \le v \iff N(u) \subseteq N(v); \quad N(u) = \Phi^+ \cap u(\Phi^-)$

In the last episode

Finite and infinite biclosed sets $\operatorname{Im}(N) = \mathcal{B}_0 \subseteq \mathcal{B}$

Conjectures (M. Dyer, 2011). (a) chain property: if $A \subseteq B$ are biclosed and $|B \setminus A| > 1$ then there is $C \in \mathcal{B}$ s.t. $A \subsetneq C \subsetneq B$.

(b) (\mathcal{B}, \subseteq) is a complete lattice (with minimal element \emptyset and maximal element Φ^+).

□ $\lor \neq \cup$; $\land \neq \cap$ so how to understand them geometrically? □ if \lor exists then $A \land B = (A^c \lor B^c)^c$

A Projective view of root systems

Geometric representations of (W, S)

 $\square (V,B) \text{ real quadratic space and } \Delta \subseteq V \text{ s.t.}$ $\bullet \operatorname{cone}(\Delta) \cap \operatorname{cone}(-\Delta) = \{0\};$ $\bullet \Delta = \{\alpha_s \mid s \in S\} \text{ s.t.}$ $B(\alpha_s, \alpha_t) = \begin{cases} -\cos\left(\frac{\pi}{m_{st}}\right) & \text{if } m_{st} < \infty \\ a \leq -1 & \text{if } m_{st} = \infty \end{cases}$ $\square W \leq \mathcal{O}_B(V); \quad s(v) = v - 2B(v, \alpha)\alpha, \ s \in S$ Root system: $\Phi = W(\Delta), \ \Phi^+ = \operatorname{cone}(\Delta) \cap \Phi = -\Phi^-$

A Projective view of root systems `Cut' $\operatorname{cone}(\Delta)$ by an affine hyperplane: $V_1 = \{v \in V \mid \sum v_{\alpha} = 1\}$ $\alpha \in \Delta$ Normalized roots: $\widehat{\rho} := \rho / \sum \rho_{\alpha}$ in $\widehat{\Phi} := \bigcup \mathbb{R}\rho \cap V_1$ $\alpha \in \Delta$ $\rho \in \Phi$ Action of W on $\widehat{\Phi}$: $w \cdot \hat{\rho} = w(\rho)$ Cone: $\widehat{Q} := Q \cap V_1$ Rank 2 root systems $\beta = \rho_1' \qquad \rho_2' \qquad \dots \qquad \rho_2$ $\alpha = \rho_1$ $\alpha_1 + \alpha_2$

A Projective view of root systems `Cut' $cone(\Delta)$ by an affine hyperplane: $V_1 = \{v \in V \mid \sum v_{\alpha} = 1\}$ $\alpha \in \Delta$ Normalized roots: $\widehat{\rho} := \rho / \sum \rho_{\alpha}$ in $\widehat{\Phi} := \bigcup \mathbb{R}\rho \cap V_1$ $\alpha \in \Delta$ $\rho \in \Phi$ Action of W on $\widehat{\Phi}$: $w \cdot \hat{\rho} = \widehat{w(\rho)}$ **cone:** $\widehat{Q} := Q \cap V_1$ Rank 2 root systems •<u>m</u>• $s_{\beta}s_{lpha}\cdot\hat{eta} \quad s_{eta}\cdot\hat{lpha} \quad \hat{eta}$ $s_{\alpha} \cdot \hat{\beta} = s_{\alpha} s_{\beta} \cdot \hat{\alpha}$ $\beta = \rho'_1 \quad \rho'_2 \quad \dots \quad \rho_2 \quad \alpha = \rho_1$ ∞ $\overline{\rho}_n = (n+1)\alpha + n\beta$ $\rho'_n = n\alpha + (n+1)\beta$ $\beta = \rho'_1 \qquad \rho'_2 \qquad \dots \qquad \rho_2 \qquad \alpha = \rho_1$ $\infty(-1,01)$

A Projective view of root systems

Rank 3 root systems

A dihedral subgroup group is infinite iff the associated line cuts Q

A Projective view of root systems

Rank 4 root systems

(weakly) hyperbolic

Join in finite Coxeter groups

 τ_3

Example: (W, S) is

 $A = N(\tau_1 \tau_2) = \{\alpha_1, \tau_1(\alpha_2)\} = \{\alpha_1, \alpha_1 + \alpha_2\} ; B = N(\tau_3) = \{\alpha_3\}$ $\tau_1 \tau_2 \lor \tau_3 = \tau_1 \tau_3 \tau_2 \tau_3 ; N(\tau_1 \tau_3 \tau_2 \tau_3) = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3\}$

 $A \cup B = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2\}$

Join in finite Coxeter groups

 τ_3

Example: (W, S) is \frown

 $A = N(\tau_1 \tau_2) = \{\alpha_1, \tau_1(\alpha_2)\} = \{\alpha_1, \alpha_1 + \alpha_2\} ; B = N(\tau_3) = \{\alpha_3\}$ $\tau_1 \tau_2 \lor \tau_3 = \tau_1 \tau_3 \tau_2 \tau_3 ; N(\tau_1 \tau_3 \tau_2 \tau_3) = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3\}$

 $A \cup B = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2\}$

Join in finite Coxeter groups

Example: (W, S) is

$$\begin{array}{c} \bullet \bullet \bullet \bullet \\ \hline 1 & \tau_2 & \tau_3 \end{array}$$

 $A = N(\tau_1 \tau_2) = \{\alpha_1, \tau_1(\alpha_2)\} = \{\alpha_1, \alpha_1 + \alpha_2\} ; B = N(\tau_3) = \{\alpha_3\}$ $\tau_1 \tau_2 \lor \tau_3 = \tau_1 \tau_3 \tau_2 \tau_3 ; N(\tau_1 \tau_3 \tau_2 \tau_3) = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3\}$

 $A \cup B = \{\alpha_1, \alpha_3, \alpha_1 + \alpha_2\}$

Proposition (CH, Labbé). Let A, B be biclosed sets in a finite Coxeter group, then

 $\hat{A} \lor \hat{B} = \operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}$

Ex No true in general: the convex hull of the union of biclosed is not biclosed in general A = $\tau_1 \tau_2$ (counterexample in rank 4).

Proposition (CH, Labbé). Let A, B be biclosed sets in a finite Coxeter group, then

A

 $\hat{A} \lor \hat{B} = \operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}$

3 }

 α_3

Limit roots (CH, Labbé, Ripoll): the set of limit roots is: $E(\Phi) = \operatorname{Acc}(\widehat{\Phi}) \subseteq Q \cap \operatorname{conv}(\Delta)$

• Action of W on $\widehat{\Phi} \sqcup E$: given on E by $\widehat{Q} \cap L(\alpha, x) = \{x, s_{\alpha} \cdot x\}$

Remark. $E=\hat{Q}$ is a singleton in the case of affine root system.

Dihedral reflection subgroups: $W' = \langle s_{
ho}, s_{\gamma} \rangle$, $ho, \gamma \in \Phi^+$ Associated root system: $\Phi' = W'(\{\rho,\gamma\})$ Observation: $E(\Phi') = \widehat{Q} \cap L(\widehat{\rho}, \widehat{\gamma})$ $\beta = \rho'_1 \qquad \rho'_2 \qquad \dots \qquad \rho_2 \qquad \alpha = \rho_1 \qquad \qquad \beta = \rho'_1 \qquad \rho'_2 \qquad \dots \qquad \rho_2 \qquad \alpha = \rho_1$ Limits of roots of dihedral reflection subgroups: • $E_2 = W \cdot E_2^{\circ}$ where $E_2^{\circ} := \bigcup L(\alpha, \widehat{\rho}) \cap \widehat{Q}$ $\alpha \in \Delta$ $\rho \in \Phi^+$

Theorem (CH, Labbé, Ripoll 2012) The sets E_2 and E_2° are dense in $E(\Phi).$

Theorem (Dyer, CH, Ripoll 2013) The closure of $W \cdot x$ is dense in $E(\Phi)$ for $x \in E(\Phi)$

Theorem (Dyer, CH, Ripoll, 2013) $E = \hat{Q} \iff \hat{Q} \subseteq \operatorname{conv}(\Delta)$ Morever, in this case,

 $\operatorname{sgn}(B) = (n, 1, 0)$

Corollary (Dyer, CH, Ripoll, 2013) A first fractal Phenomenon.

Theorem (Dyer, CH, Ripoll 2013) For irreducible root of signature (n, 1, 0) we have: $E = \operatorname{conv}(E) \cap Q$

Problem (second fractal phenomenon): is it true for other indefinite types?

Limit roots (CH, Labbé, Ripoll): the set of limit roots is: $E(\Phi) = \operatorname{Acc}(\widehat{\Phi}) \subseteq Q \cap \operatorname{conv}(\Delta)$ • Action of W on $\widehat{\Phi} \sqcup E$: given on E by $\widehat{Q} \cap L(\alpha, x) = \{x, s_{\alpha} \cdot x\}$

Theorem (Dyer, CH, Ripoll) Action on E faithful if irreducible not affine nor finite of rank > 2.

Proof. Difficult. Main ingredient: one can approximate E with arbitrary precision with the sets of limit roots of universal Coxeter subgroups

Limit roots (CH, Labbé, Ripoll): the set of limit roots is: $E(\Phi) = \operatorname{Acc}(\widehat{\Phi}) \subseteq Q \cap \operatorname{conv}(\Delta)$ • Action of W on $\widehat{\Phi} \sqcup E$: given on E by $\widehat{Q} \cap L(\alpha, x) = \{x, s_{\alpha} \cdot x\}$

Theorem (Dyer, CH, Ripoll) Action on E faithful if irreducible not affine nor finite of rank > 2.

Proof. Difficult. Main ingredient: one can approximate E with arbitrary precision with the sets of limit roots of universal Coxeter subgroups

Limit roots and imaginary cone Tiling of conv(E)

Assume the root system to be not finite nor affine

• Imaginary convex set $\mathcal I$ is the W-orbit of the polytope

 $K = \{ v \in \operatorname{conv}(\Delta) \mid B(v, \alpha) \le 0, \forall \alpha \in \Delta \}$

Theorem (Dyer, 2012). $\overline{\mathcal{I}} = \operatorname{conv}(E)$

Proposition (Dyer, CH, Ripoll 2013). The action of W on E extends to an action of W on $\mathrm{conv}(E)$. So W acts on $\widehat{\Phi} \sqcup \mathrm{conv}(E)$

Limit roots and i Tiling of

ope

Limit roots and imaginary cone Tiling of $\operatorname{conv}(E)$

Here a rank 5 Coxeter group is represented in dim 3 Δ is not a basis but is positively independent. (bridge with hyperbolic geometry, work with JP Préaux & V. Ripoll)

Ball model

C Lam & Thomas

Roots and imaginary convex body model

K

Biconvex sets and biclosed sets (CH & JP Labbé) Biconvex sets. Let $A \subseteq \Phi^+$. • A is convex if $\operatorname{conv}(\hat{A}) \cap \hat{\Phi} = \hat{A}$; A is biconvex if A and A^c are convex; • A is separable if $\operatorname{conv}(\hat{A}) \cap \operatorname{conv}(\hat{A}^c) = \emptyset$ Proposition. Let $A \subseteq \Phi^+$. i) A is closed iff $[\hat{\alpha}, \hat{\beta}] \cap \hat{\Phi} \subseteq \hat{A}, \forall \alpha, \beta \in A;$ ii) separable \implies (bi)convex \implies (bi)closed iii) A is finite biclosed iff finite separable iff $A = N(w), w \in W$

Biconvex sets and biclosed sets (CH & JP Labbé) Biconvex sets. Let $A \subseteq \Phi^+$. • A is convex if $conv(\hat{A}) \cap \hat{\Phi} = \hat{A}$; • A is biconvex if A and A^c are convex; • A is separable if $conv(\hat{A}) \cap conv(\hat{A}^c) = \emptyset$ Proposition. Let $A \subseteq \Phi^+$.

- i) A is closed iff $[\hat{\alpha}, \hat{\beta}] \cap \hat{\Phi} \subseteq \hat{A}, \ \forall \alpha, \beta \in A$;
- ii) separable \implies (bi)convex \implies (bi)closed
- iii) A is finite biclosed iff finite separable iff $A = N(w), w \in W$

Theorem (CH & JP Labbé). In rank 3, Biconvex sets with inclusion is a lattice: $\hat{A} \vee \hat{B} = \operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}$

Remarks.

- The theorem and the converse of Prop (ii) is false in general, counterexample in rank 4 not affine nor finite;
- In rank 3 or affine type, does biconvex = biclosed?

Inversion sets of infinite words

Infinite reduced words on S. For an infinite word $w = s_1 s_2 s_3 \dots, s_i \in S$, write: $w_i = s_1 s_2 s_3 \dots s_i;$ $\beta_0 = \alpha_{s_1}$ and $\beta_i = w_i(\alpha_{s_{i+1}}) \in \Phi^+$.

• w is reduced if the w_i 's are.

• Inversion set: $N(w) = \{\beta_i \mid i \in \mathbb{N}\}.$

Remark. P. Cellini & P. Papi, K. Ito studied biclosed sets for Kac-Moody root systems (imaginaty root). They form a subclass: $A \operatorname{or} A^c \operatorname{verify} \operatorname{conv}(\hat{A}) \cap Q = \emptyset.$

Inversion sets of infinite words

Theorem (Cellini & Papi, 1998). Let the root system be affine, i.e., Q is a singleton. Let $A \subseteq \Phi^+$ s.t. $\operatorname{conv}(\hat{A}) \cap Q = \emptyset$. Then:

A biclosed iff A separable iff A = N(w), w finite or infinite.

Remark. The class of $A \subseteq \Phi^+$ s.t. $A \text{ or } A^c \text{ verify } \operatorname{conv}(\hat{A}) \cap Q = \emptyset$ is not satisfying (negative answer to a question asked by Lam & Pylyavskyy; Baumann, Kamnitzer & Tingley)

 $\hat{N}(21321) \lor \hat{N}(214) = \bullet \lor \bullet$ $= \operatorname{conv}(\bullet \cup \bullet) \cap \hat{\Phi}$

does not arise as an inversion set of a word (finite or infinite)

Inversion sets of infinite words (CH & JP Labbé)

 $-\infty$

 $\infty(-1,01)$

Let $A \subseteq \Phi^+$, we say that: • A avoids E if $[\hat{\alpha}, \hat{\beta}] \cap Q = \emptyset$, $\forall \alpha, \beta \in A$ • A strictly avoids E if $\operatorname{conv}(\hat{A}) \cap E = \emptyset$.

 $\beta = \rho_1' \qquad \rho_2' \qquad \dots \qquad \rho_2 \qquad \alpha = \rho_1$

$$\beta = \rho_1' \qquad \rho_2' \qquad \dots \qquad \rho_2 \qquad \alpha = \rho_1$$

$$s_{\gamma} \cdot ([\alpha, \beta] \cap \hat{\Phi})$$

strictly avoids \implies avoids

Proposition. Let $A \subseteq \Phi^+$ be finite. i) if A is closed then A avoids E; ii) if A is convex then A strictly avoids E.

Inversion sets of infinite words (CH & JP Labbé)

Corollary. If A = N(w) with w reduced infinite or finite word, then A strictly avoids E and is biconvex.

Questions:

i) the converse is true? (true for affine by Cellini & Papi);
ii) |Acc(N(w)| ≤ 1 ?; obviously true for finite and affine; true for weakly hyperbolic (H. Chen & JP Labbé, 2014)

Inversion sets of infinite words (CH & JP Labbé) and $\operatorname{conv}(E)$ Assume the root system to be not finite nor affine For a reduced $w = s_1 s_2 s_3 \dots$, $s_i \in S$, recall that: • $w_i = s_1 s_2 s_3 \dots s_i$; reduced; $\beta_0 = \alpha_{s_1}$ and $\beta_i = w_i(\alpha_{s_{i+1}}) \in \Phi^+$. • Inversion set: $N(w) = \{\beta_i \mid i \in \mathbb{N}\}.$

Representation in $\operatorname{conv}(E)$: $z \in \operatorname{relint}(K)$ and $\{w_i \cdot z, i \in \mathbb{N}\}$

Conjecture.

 $\operatorname{Acc}(\hat{N}(w) = \operatorname{Acc}(\{w_i \cdot z, i \in \mathbb{N}\}))$

Questions. Link with Lam & Thomas, 2013? Geometric realization of the Davis complex?

Selected bibliography and other readings

And articles already cited + from
Brigitte Brink, Bill Casselman, Fokko du Cloux, Bob Howlett, Xiang Fu (regarding automaton and comb.)
Matthew Dyer (imaginary cones, weak order(s))
CH & coauthors (Matthew Dyer, Jean-Philippe Labbé, Jean-Philippe Préaux, Vivien Ripoll). A good start for limit of roots and imaginary convex bodies is the survey of the case of Lorentzian spaces (CH, Ripoll, Préaux)
P Papi and Ken Ito (limit weak order)
Hao Chen and Jean-Philippe Labbé (Sphere packing) Reflection Groups and Coxeter Groups

AMES E. HUMPHREYS

art Müler Holasen 1 Marcel Palle DissNett 149

Associahedra, Tamari Lattices and Related Structures

W Hirkhäuser