Isomorphic induced modules and Dynkin diagram automorphims

C. Lecouvey (joint work with J. Guilhot) Tours University

SLC72

Lyon March 2013

Lecouvey & Guilhot (SLC72) Induced modules and D.D. automorphims

Let ${\mathfrak g}$ be a simple Lie algebra over ${\mathbb C}$ wih triangular decomposition

$$\mathfrak{g} = igoplus_{lpha \in R_+} \mathfrak{g}_lpha \oplus \mathfrak{h} \oplus igoplus_{lpha \in R_+} \mathfrak{g}_{-lpha}$$

where \mathfrak{h} is the cartan subalgebra and $R_+ \subset \mathfrak{h}^*_{\mathbb{R}}$ the set of positive roots.

The weight lattice P and the root lattice Q of \mathfrak{g} are realised in $E = \mathfrak{h}_{\mathbb{R}}^*$ equipped with the scalar product $\langle \cdot, \cdot \rangle$. Let $S \subset R_+$ be the set of simple roots $W = \langle s_{\alpha} \mid \alpha \in S \rangle$ is the Weyl group of \mathfrak{g} . Set

$$\overline{C} = \{ x \in E \mid \langle x, \alpha \rangle \ge 0 \text{ for any } \alpha \in S \}.$$

We have

$$E = \bigcup_{w \in W} w(\overline{C})$$

The cone of dominant weights of \mathfrak{g} is $P_+ = P \cap \overline{C}$.

$$\{ \text{dominant weights } \lambda \in P_+ \} \stackrel{1:1}{\leftrightarrow} \{ \text{f.d. irr. rep. of } \mathfrak{g} \} \\ \lambda \to V(\lambda)$$

Levi subalgebra

Consider

- $\overline{S} \subset S$
- $\overline{R} \subset R$ the parabolic root system generated by \overline{S}
- $\overline{R}_+ = \overline{R} \cap R_+$ the corresponding set of positive roots.

Let $\overline{\mathfrak{g}} \subset \mathfrak{g}$ be the Levi subalgebra of \mathfrak{g} with set of positive roots \overline{R}_+ and triangular decomposition

$$\overline{\mathfrak{g}} = \bigoplus_{lpha \in \overline{R}_+} \mathfrak{g}_{lpha} \oplus \mathfrak{h} \oplus \bigoplus_{lpha \in \overline{R}_+} \mathfrak{g}_{-lpha}.$$

The algebras \mathfrak{g} and $\overline{\mathfrak{g}}$ have the same integral weight lattice P. Let

$$\overline{P}_+ = \{\mu \in P \mid \langle \mu, \alpha \rangle \ge 0 \text{ for any } \alpha \in \overline{S} \}.$$

be the cone of dominant weights for $\overline{\mathfrak{g}}$.

Example

For
$$\mathfrak{g} = \mathfrak{sp}_8$$
 of type C_4 , $S = \{\varepsilon_1 - \varepsilon_2, \varepsilon_2 - \varepsilon_3, \varepsilon_3 - \varepsilon_4, 2\varepsilon_4\}$
 $R_+ = \{\varepsilon_i - \varepsilon_j \mid 1 \le i < j \le 4\} \cup \{\varepsilon_i + \varepsilon_j \mid 1 < i \le j \le 4\}$
and $P = \mathbb{Z}^4$

$$P_+ = \{x = (x_1, \dots, x_4) \in \mathbb{Z}^4 \mid x_1 \geq \dots \geq x_4 \geq 0\}.$$

The Levi subalgebra $\overline{\mathfrak{g}} \subset \mathfrak{g}$ such that $\overline{S} = \{\varepsilon_1 - \varepsilon_2, \varepsilon_3 - \varepsilon_4, 2\varepsilon_4\}$

$$\overline{R}_{+} = \{\varepsilon_1 - \varepsilon_2\} \cup \{\varepsilon_3 \pm \varepsilon_4\} \cup \{2\varepsilon_3, 2\varepsilon_4\}$$

is isomorphic to

 $\mathfrak{gl}_2\oplus\mathfrak{sp}_4$

and

$$\overline{P}_+ = x = (x_1, \dots, x_4) \in \mathbb{Z}^4 \mid x_1 \ge x_2 \text{ and } x_3 \ge x_4 \ge 0\}.$$

< 4 → <

3

For any $\lambda \in P_+$ set

$$V(\lambda) \downarrow_{\overline{\mathfrak{g}}}^{\mathfrak{g}} \simeq \bigoplus_{\mu \in \overline{P}_+} \overline{V}(\mu)^{\oplus m_{\mu,\lambda}}.$$

Remark: when $\overline{\mathfrak{g}} = \mathfrak{h}$ we have $\overline{P}_+ = P$ and

$$s_{\lambda} := \operatorname{char} V(\lambda) = \sum_{\mu \in P} m_{\mu,\lambda} e^{\mu},$$

 $m_{\mu,\lambda} = \dim V(\lambda)_{\mu}$

< 4 → <

3

Our problem

Problem: Can we have two identical rows or columns in the infinite matrix

$$M = (m_{\mu,\lambda})_{\mu \in \overline{P}_+, \lambda \in P_+}$$
?

Easy for the columns: let $\lambda, \Lambda \in P_+$ if $m_{\mu,\lambda} = m_{\mu,\Lambda}$ for any $\mu \in \overline{P}_+$ we have

Given $\mu \in \overline{P}_+$ we set

$$H_{\mu} := \operatorname{char} \overline{V}(\mu) \uparrow_{\overline{\mathfrak{g}}}^{\mathfrak{g}}$$

So

$${\it H}_{\mu} = \sum_{\lambda \in {\it P}_{+}} m_{\mu,\lambda} {\it s}_{\lambda}.$$

• *M* has two identical rows labelled by μ and ν if and only if $H_{\mu} = H_{\nu}$.

- When $\overline{\mathfrak{g}} = \mathfrak{h}$, we write $h_{\mu} := H_{\mu}$.
- We have $h_{\mu} = h_{w(\mu)}$ for any $\mu \in P$ and any $w \in W$.

Theorem

• We have for any $\mu \in \overline{P}_+$

$$H_{\mu} = \sum_{\overline{w} \in \overline{W}} \varepsilon(\overline{w}) h_{\mu + \overline{
ho} - \overline{w}(\overline{
ho})}$$

where $\overline{\rho} = \frac{1}{2} \sum_{\alpha \in \overline{R}_{+}} \alpha$. Consider $\mu, \nu \in \overline{P}_{+}$. Assume $u \in W$ is such that $\nu = u(\mu)$ and $u(\overline{R}_{+}) = \overline{R}_{+}$. Then $H_{\mu} = H_{\nu}$.

Dynkin diagram automorphisms

Lemma

 $u \in W$ verifies $u(\overline{R}_+) = \overline{R}_+$ iff $u \in W$ and is a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$.

Example

 $\mathfrak{g}=\mathfrak{sp}_{12}$ and $\overline{\mathfrak{g}}=\mathfrak{gl}_3\oplus\mathfrak{gl}_3$ admits the Dynkin diagrams

$$\circ - \circ - \bigcirc - \circ - \circ \Leftarrow \bigcirc$$
 and $\circ - \circ \circ - \circ$

$$\overline{R}_{+} = \{\varepsilon_1 - \varepsilon_2, \varepsilon_1 - \varepsilon_3, \varepsilon_1 - \varepsilon_3\} \cup \{\varepsilon_4 - \varepsilon_5, \varepsilon_4 - \varepsilon_6, \varepsilon_5 - \varepsilon_6\}.$$

The signed permutation

is a Dynkin diagram automorphism for $\overline{\mathfrak{g}}.$

Conjecture: Consider $\mu, \nu \in \overline{P}_+$. Then $H_{\mu} = H_{\nu}$ iff there exists $u \in W$ such that

•
$$u(\mu) = \nu$$
,
• $u(\overline{R}_+) = \overline{R}_+$.

For any $\mu\in\overline{P}_+$, set

$$E_{\mu} = \mu + \{\overline{\rho} - \overline{w}(\overline{\rho}) \mid \overline{w} \in \overline{W}\}.$$

Theorem

- When μ and ν are conjugate under the action of a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$ lying in W, we have $H_{\mu} = H_{\nu}$.
- 2 If $H_{\mu} = H_{\nu}$, then μ and ν are conjugate under the action of a Dynkin diagram automorphism lying in W in the following cases
 - μ and ν belong to the same Weyl chamber of \mathfrak{g} (in which case $\mu = \nu$),

For any $\mu\in\overline{P}_+$, set

$$E_{\mu} = \mu + \{\overline{\rho} - \overline{w}(\overline{\rho}) \mid \overline{w} \in \overline{W}\}.$$

Theorem

- When μ and ν are conjugate under the action of a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$ lying in W, we have $H_{\mu} = H_{\nu}$.
- If H_μ = H_ν, then μ and ν are conjugate under the action of a Dynkin diagram automorphism lying in W in the following cases
 - μ and ν belong to the same Weyl chamber of \mathfrak{g} (in which case $\mu = \nu$),
 - each set E_{μ} and E_{ν} is entirely contained in a Weyl chamber,

For any $\mu\in\overline{P}_+$, set

$$E_{\mu} = \mu + \{\overline{\rho} - \overline{w}(\overline{\rho}) \mid \overline{w} \in \overline{W}\}.$$

Theorem

- When μ and ν are conjugate under the action of a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$ lying in W, we have $H_{\mu} = H_{\nu}$.
- If H_μ = H_ν, then μ and ν are conjugate under the action of a Dynkin diagram automorphism lying in W in the following cases
 - μ and ν belong to the same Weyl chamber of \mathfrak{g} (in which case $\mu = \nu$),
 - each set E_{μ} and E_{ν} is entirely contained in a Weyl chamber,
 - $\mu + 2\overline{\rho}$ or $\nu + 2\overline{\rho}$ belongs to P_+ ,

For any $\mu\in\overline{P}_+$, set

$$E_{\mu} = \mu + \{\overline{\rho} - \overline{w}(\overline{\rho}) \mid \overline{w} \in \overline{W}\}.$$

Theorem

- When μ and ν are conjugate under the action of a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$ lying in W, we have $H_{\mu} = H_{\nu}$.
- If H_μ = H_ν, then μ and ν are conjugate under the action of a Dynkin diagram automorphism lying in W in the following cases
 - μ and ν belong to the same Weyl chamber of \mathfrak{g} (in which case $\mu = \nu$),
 - each set E_{μ} and E_{ν} is entirely contained in a Weyl chamber,
 - $\mu + 2\overline{
 ho}$ or $\nu + 2\overline{
 ho}$ belongs to P_+ ,
 - $\mathfrak{g} = \mathfrak{gl}_n$,

For any $\mu\in\overline{P}_+$, set

$$E_{\mu} = \mu + \{\overline{\rho} - \overline{w}(\overline{\rho}) \mid \overline{w} \in \overline{W}\}.$$

Theorem

- When μ and ν are conjugate under the action of a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$ lying in W, we have $H_{\mu} = H_{\nu}$.
- 2 If $H_{\mu} = H_{\nu}$, then μ and ν are conjugate under the action of a Dynkin diagram automorphism lying in W in the following cases
 - μ and ν belong to the same Weyl chamber of \mathfrak{g} (in which case $\mu = \nu$),
 - each set E_{μ} and E_{ν} is entirely contained in a Weyl chamber,
 - $\mu + 2\overline{
 ho}$ or $\nu + 2\overline{
 ho}$ belongs to P_+ ,
 - $\mathfrak{g} = \mathfrak{gl}_n$,
 - $\mathfrak{g} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} or \mathfrak{so}_{2n} and $\overline{\mathfrak{g}} = \mathfrak{gl}_n$.

The tensor product setting

Fix
$$k \in \mathbb{Z}_{>0}$$
. For any sequence $(\lambda^{(1)}, \dots, \lambda^{(k)}) \in P_+^k$, set
 $V(\lambda^{(1)}) \otimes \dots \otimes V(\lambda^{(k)}) \simeq \bigoplus_{\Lambda \in P_+} V(\Lambda)^{\oplus c_{\lambda^{(1)},\dots,\lambda^{(k)}}^{\Lambda}}$

and consider the matrix

$$\mathcal{C} = (\mathbf{c}^{\Lambda}_{\boldsymbol{\lambda}^{(1)},\ldots,\boldsymbol{\lambda}^{(k)}})_{(\boldsymbol{\lambda}^{(1)},\ldots,\boldsymbol{\lambda}^{(k)}) \in \mathcal{P}^k_+,\Lambda \in \mathcal{P}_+}.$$

Theorem

(Rajan 2004) Two rows of C are equal iff the two associates k-tuples of dominants weights coincide up permutation.

Easy for the columns : consider

$$(\lambda^{(1)},\ldots,\lambda^{(k)})=(\Lambda,0,\ldots,0).$$

Lecouvey & Guilhot (SLC72)

The decomposition numbers setting

Let S_n be the symmetric group of rank n.

 ${\text{Partitions } \pi \dashv n} \longleftrightarrow {\text{f.d. irr. rep. } S(\pi) \text{ over } \mathbb{Q}}.$

Let p be a odd prime number.

- $S(\pi)$ does not necessarly remain irreducible over \mathbb{F}_p ,
- Over \mathbb{F}_p the irreducible are parametrized by the *p*-regular partitions,
- We have a decomposition number $d_{\pi,\rho} \pi \dashv n$ and $\rho \dashv_{\text{reg}} n$.

Consider the matrix

$$D = (d_{\pi,\rho})_{\pi \dashv n, \rho \dashv_{\mathrm{reg}} n}$$

Theorem

(Wildon 2008) The columns of D are distinct.

Easy for the columns since $d_{\rho,\rho} = 1$ for any $\rho \dashv_{\mathrm{reg}} n$.

14 / 14