Graph Properties of Graph Associahedra

Thibault Manneville (LIX, Polytechnique)
joint work with Vincent Pilaud (CNRS, LIX Polytechnique)

March $24^{\text {th }}, 2014$

Definition

An associahedron is a polytope whose graph is the flip graph of triangulations of a convex polygon.

Faces \leftrightarrow dissections of the polygon

Focus on graphs

Flip graph on the triangulations of the polygon:

Vertices: triangulations
Edges: flips

Focus on graphs

Flip graph on the triangulations of the polygon:

Vertices: triangulations
Edges: flips

n diagonals \Rightarrow the flip graph is n-regular.

Useful configuration (Loday's)

$$
G_{n+3}=\underbrace{n+2}_{2} n \underbrace{n}_{n+1} n
$$

Graph point of view

$\left\{\right.$ diagonals of $\left.G_{n+3}\right\} \longleftrightarrow\{$ strict subpaths of the path $[n+1]\}$

Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:

80
nested subpaths

non-adjacent subpaths

Pay attention to the second case:

The right condition is indeed non-adjacent, disjoint is not enough!

Now do it on graphs

$G=(V, E)$ a (connected) graph.
Definition

Now do it on graphs

$G=(V, E)$ a (connected) graph.

Definition

- A tube of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;

Now do it on graphs

$G=(V, E)$ a (connected) graph.

Definition

- A tube of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t^{\prime} are compatible if they are nested or non-adjacent;

Now do it on graphs

$G=(V, E)$ a (connected) graph.

Definition

- A tube of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t^{\prime} are compatible if they are nested or non-adjacent;
- A tubing of G is a set of pairwise compatible tubes of G.

A tube
(generalizes a diagonal)

A maximal tubing
(generalizes a triangulation)

Graph associahedra

The simplicial complex of tubings is spherical

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph!

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph !

Theorem (Carr-Devadoss '06)

There exists a polytope called graph associahedron of G, denoted Asso $_{G}$, whose graph is this flip graph.

Faces \leftrightarrow tubings of G.

Classical polytopes...

The associahedron

The cyclohedron

The permutahedron
...can be seen as graph associahedra

The associahedron

The cyclohedron

The permutahedron

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)
The n-dimensional permutahedron is hamiltonian for $n \geq 2$.

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \geq 2$.

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \geq 2$.

Theorem (Lucas 87, Hurtado-Noy '99)

The n-dimensional associahedron is hamiltonian for $n \geq 2$.

Hamiltonicity

Theorem (M.-Pilaud '14+)

Any graph associahedron is hamiltonian.

Hamiltonicity

Theorem (M.-Pilaud '14+)

Any graph associahedron is hamiltonian.
Idea:
\rightarrow Carr and Devadoss: iterated truncations of a simplex.

Hamiltonicity

Theorem (M.-Pilaud '14+)

Any graph associahedron is hamiltonian.

Idea:

\rightarrow Carr and Devadoss: iterated truncations of a simplex. \rightarrow Truncation hyperplanes correspond to tubes.

Hamiltonicity

Theorem (M.-Pilaud '14+)

Any graph associahedron is hamiltonian.

Idea:

\rightarrow Carr and Devadoss: iterated truncations of a simplex.
\rightarrow Truncation hyperplanes correspond to tubes.

Diameter of flip graphs

Lemma

The diameter of the n-dimensional permutahedron is $\binom{n+1}{2}$.

Diameter of flip graphs

Lemma

The diameter of the n-dimensional permutahedron is $\binom{n+1}{2}$. Theorem (Sleator-Trajan-Thurston '88, Pournin '12)
The diameter of the n-dimensional associahedron is $2 n-4$ for $n \geq 10$.

Diameter

$\delta(G)=$ diameter of the flip graph on tubings of G.

Diameter

$\delta(G)=$ diameter of the flip graph on tubings of G.

Theorem (M.-Pilaud '14+)

δ is a non-decreasing function:
G partial subgraph of $G^{\prime} \Longrightarrow \delta(G) \leq \delta\left(G^{\prime}\right)$.

Diameter

$\delta(G)=$ diameter of the flip graph on tubings of G.

Theorem (M.-Pilaud '14+)

δ is a non-decreasing function:
G partial subgraph of $G^{\prime} \Longrightarrow \delta(G) \leq \delta\left(G^{\prime}\right)$.
Idea:
\rightarrow If $G \subseteq G^{\prime}$, Asso $_{G^{\prime}}$ is obtained by truncations of Asso $_{G}$.

Diameter

$\delta(G)=$ diameter of the flip graph on tubings of G.

Theorem (M.-Pilaud '14+)

δ is a non-decreasing function:
G partial subgraph of $G^{\prime} \Longrightarrow \delta(G) \leq \delta\left(G^{\prime}\right)$.

Idea:

\rightarrow If $G \subseteq G^{\prime}$, Asso $_{G^{\prime}}$ is obtained by truncations of Asso $_{G}$.
\rightarrow Truncating \Longleftrightarrow replacing vertices by complete graphs.

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(G) \leq\binom{|V(G)|}{2}$.

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(G) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices... ■

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(G) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices... ■
Theorem (M.-Pilaud 14 ${ }^{+}$)
For any graph $G, \quad 2|V(G)|-18 \leq \delta(G)$.

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(G) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices... ■
Theorem (M.-Pilaud 14+)
For any graph $G, \quad 2|V(G)|-18 \leq \delta(G)$.
Ingredients of the proof:

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(G) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices... ■
Theorem (M.-Pilaud 14+)
For any graph $G, \quad 2|V(G)|-18 \leq \delta(G)$.
Ingredients of the proof:

- δ is non-decreasing;

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(G) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices... ■
Theorem (M.-Pilaud 14+)
For any graph $G, \quad 2|V(G)|-18 \leq \delta(G)$.
Ingredients of the proof:

- δ is non-decreasing;
- Technical metric properties of flip graphs;

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(G) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices... ■
Theorem (M.-Pilaud 14+)
For any graph $G, \quad 2|V(G)|-18 \leq \delta(G)$.
Ingredients of the proof:

- δ is non-decreasing;
- Technical metric properties of flip graphs;
- Pournin's result for the classical associahedron.

Discussion

Hamiltonicity

Discussion

Hamiltonicity

- Algorithmic inefficience of the proof.

Discussion

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Discussion

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

Discussion

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

Discussion

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter smaller than $\frac{5}{2} n$ (Pournin).

Discussion

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter smaller than $\frac{5}{2} n$ (Pournin).

- Hardness of $\delta(G)$?

Discussion

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter smaller than $\frac{5}{2} n$ (Pournin).

- Hardness of $\delta(G)$?

Other problems

Discussion

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter smaller than $\frac{5}{2} n$ (Pournin).

- Hardness of $\delta(G)$?

Other problems

- How many tubings ?

Discussion

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter smaller than $\frac{5}{2} n$ (Pournin).

- Hardness of $\delta(G)$?

Other problems

- How many tubings ?
-

THANK YOU FOR
 YOUR ENTHUSIASTIC
 ATTENTION!

