Graph Properties of Graph Associahedra

Thibault Manneville (LIX, Polytechnique)

joint work with Vincent Pilaud (CNRS, LIX Polytechnique)

March 24th, 2014

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Definition

An *associahedron* is a polytope whose graph is the flip graph of triangulations of a convex polygon.

Faces \leftrightarrow dissections of the polygon

イロト イポト イヨト イ

э

Flip graph on the triangulations of the polygon:

ヘロト ヘアト ヘヨト ヘ

Flip graph on the triangulations of the polygon:

 $n \text{ diagonals} \Rightarrow \text{the flip graph is } n$ -regular.

(日) (四) (日) (日)

Useful configuration (Loday's)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

 $\{\text{diagonals of } G_{n+3}\} \longleftrightarrow \{\text{strict subpaths of the path } [n+1]\}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:

non-adjacent subpaths

イロト イポト イヨト イ

3.1

nested subpaths

Pay attention to the second case:

The right condition is indeed *non-adjacent*, disjoint is not enough!

$$G = (V, E)$$
 a (connected) graph.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Definition

$$G = (V, E)$$
 a (connected) graph.

Definition

A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

G = (V, E) a (connected) graph.

Definition

A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 t and t' are compatible if they are nested or non-adjacent; G = (V, E) a (connected) graph.

Definition

- A *tube* of G is a proper subset t ⊆ V inducing a connected subgraph of G;
- t and t' are compatible if they are nested or non-adjacent;
- A tubing of G is a set of pairwise compatible tubes of G.

うして ふゆう ふほう ふほう うらつ

(日) (同) (日) (日)

э

Graph associahedra

The simplicial complex of tubings is spherical

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph !

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph !

Theorem (Carr-Devadoss '06)

There exists a polytope called **graph associahedron** of G, denoted **Asso**_G, whose graph is this flip graph.

Faces \leftrightarrow tubings of *G*.

Classical polytopes...

The associahedron

The cyclohedron

The permutahedron

ж

(a)

.can be seen as graph associahedra

The associahedron

The cyclohedron The permutahedron

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \ge 2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \ge 2$.

Hamiltonicity of flip graphs

Theorem (Lucas 87, Hurtado-Noy '99)

The n-dimensional associahedron is hamiltonian for $n \ge 2$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Theorem (M.-Pilaud '14⁺)

Any graph associahedron is hamiltonian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (M.-Pilaud '14⁺)

Any graph associahedron is hamiltonian.

Idea:

 \rightarrow Carr and Devadoss: iterated truncations of a simplex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (M.-Pilaud '14⁺)

Any graph associahedron is hamiltonian.

Idea:

 \rightarrow Carr and Devadoss: iterated truncations of a simplex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \rightarrow Truncation hyperplanes correspond to tubes.

Theorem (M.-Pilaud '14⁺)

Any graph associahedron is hamiltonian.

Idea:

- \rightarrow Carr and Devadoss: iterated truncations of a simplex.
- \rightarrow Truncation hyperplanes correspond to tubes.

Lemma

The diameter of the n-dimensional permutahedron is $\binom{n+1}{2}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma

The diameter of the n-dimensional permutahedron is $\binom{n+1}{2}$.

Theorem (Sleator-Trajan-Thurston '88, Pournin '12)

The diameter of the n-dimensional associahedron is 2n - 4 for $n \ge 10$.

うして ふゆう ふほう ふほう うらつ

$\delta(G) = \text{diameter of the flip graph on tubings of } G.$

$\delta(G) =$ diameter of the flip graph on tubings of G.

うして ふゆう ふほう ふほう うらつ

Theorem (M.-Pilaud '14⁺)

 δ is a non-decreasing function: G partial subgraph of $G' \Longrightarrow \delta(G) \leq \delta(G')$.

$\delta(G) = {\sf diameter} \ {\sf of} \ {\sf the} \ {\sf flip} \ {\sf graph} \ {\sf on} \ {\sf tubings} \ {\sf of} \ G.$

Theorem (M.-Pilaud '14⁺)

 δ is a non-decreasing function: G partial subgraph of $G' \Longrightarrow \delta(G) \leq \delta(G')$.

ldea:

 \rightarrow If $G \subseteq G'$, $Asso_{G'}$ is obtained by truncations of $Asso_G$.

うして ふゆう ふほう ふほう うらつ

$\delta(G) =$ diameter of the flip graph on tubings of G.

Theorem (M.-Pilaud '14⁺)

 δ is a non-decreasing function: G partial subgraph of $G' \Longrightarrow \delta(G) \leq \delta(G')$.

ldea:

→ If $G \subseteq G'$, $Asso_{G'}$ is obtained by truncations of $Asso_G$. → Truncating \iff replacing vertices by complete graphs.

Corollary

For any graph
$$G$$
, $\delta(G) \leq \binom{|V(G)|}{2}$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Corollary

For any graph
$$G$$
, $\delta(G) \leq inom{|V(G)|}{2}$.

G is included in the complete graph on its vertices... \blacksquare

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary

For any graph
$$G$$
, $\delta(G) \leq inom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (M.-Pilaud 14⁺)

For any graph G, $2|V(G)| - 18 \le \delta(G)$.

Corollary

For any graph
$$G$$
, $\delta(G) \leq inom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (M.-Pilaud 14⁺)

For any graph G, $2|V(G)| - 18 \le \delta(G)$.

Ingredients of the proof:

Corollary

For any graph
$$G, \quad \delta(G) \leq inom{|V(G)|}{2}$$
 .

G is included in the complete graph on its vertices...

うして ふゆう ふほう ふほう うらつ

Theorem (M.-Pilaud 14⁺)

For any graph G, $2|V(G)| - 18 \le \delta(G)$.

Ingredients of the proof:

• δ is non-decreasing;

Inequalities for the diameter

Corollary

For any graph
$$G$$
, $\delta(G) \leq inom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

Theorem (M.-Pilaud 14⁺)

For any graph G, $2|V(G)| - 18 \le \delta(G)$.

Ingredients of the proof:

- δ is non-decreasing;
- Technical metric properties of flip graphs;

ション ふゆ く 山 マ チャット しょうくしゃ

Inequalities for the diameter

Corollary

For any graph
$$G$$
, $\delta(G) \leq inom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

Theorem (M.-Pilaud 14⁺)

For any graph G, $2|V(G)| - 18 \le \delta(G)$.

Ingredients of the proof:

- δ is non-decreasing;
- Technical metric properties of flip graphs;
- Pournin's result for the classical associahedron.

Hamiltonicity

- - - - - < ロ > < 昂 > < ミ > < ミ > シへの

Hamiltonicity

• Algorithmic inefficience of the proof.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Hamiltonicity

• Algorithmic inefficience of the proof.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• How many Hamiltonian cycles?

Hamiltonicity

• Algorithmic inefficience of the proof.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• How many Hamiltonian cycles?

Diameter

Hamiltonicity

Algorithmic inefficience of the proof.How many Hamiltonian cycles?

Diameter

• What happens between
$$2n$$
 and $\binom{n}{2}$?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

• What happens between 2n and $\binom{n}{2}$? The cyclohedron has a diameter smaller than $\frac{5}{2}n$ (Pournin).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

What happens between 2n and ⁿ₂? The cyclohedron has a diameter smaller than ⁵/₂n (Pournin).
Hardness of δ(G)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

 What happens between 2n and ⁿ₂? The cyclohedron has a diameter smaller than ⁵/₂n (Pournin).
 Hardness of δ(G)?

ション ふゆ く 山 マ チャット しょうくしゃ

Other problems

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

 What happens between 2n and ⁿ₂? The cyclohedron has a diameter smaller than ⁵/₂n (Pournin).
 Hardness of δ(G)?

ション ふゆ く 山 マ チャット しょうくしゃ

Other problems

• How many tubings ?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

What happens between 2n and ⁽ⁿ⁾/₂? The cyclohedron has a diameter smaller than ⁵/₂n (Pournin).
Hardness of δ(G)?

ション ふゆ く 山 マ チャット しょうくしゃ

Other problems

• How many tubings ?

•

THANK YOU FOR YOUR ENTHUSIASTIC ATTENTION !

◆□▶ ◆帰▶ ◆三▶ ◆三▶ ○○○