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Some Properties

The m-Cover Poset

let P = (P,≤) be a poset

bounded poset: a poset with a least and a greatest element,
denoted by 0̂ and 1̂

for m > 0, consider m-tuples

p =
(
0̂, 0̂, . . . , 0̂︸ ︷︷ ︸

l1

, p, p, . . . , p︸ ︷︷ ︸
l2

, q, q, . . . , q︸ ︷︷ ︸
l3

)
for p, q ∈ P with 0̂ 6= p l q
where l is the covering relation of P
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The m-Cover Poset

write p =
(
0̂l1 , pl2 , ql3

)
instead

define P〈m〉 =
{(

0̂l1 , pl2 , ql3
)
| 0P 6= p l q, l1 + l2 + l3 = m

}
m-cover poset of P: the poset P〈m〉 =

(
P〈m〉,≤

)
where ≤ means componentwise order
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Example

P

1

2

P〈2〉

(1, 1)

(1, 2)

(2, 2)
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A Characterization

Theorem (Kallipoliti & , 2013)

Let P be a bounded poset. Then, P〈m〉 is a lattice for all m > 0 if
and only if P is a lattice and the Hasse diagram of P with 0̂
removed is a tree rooted at 1̂.

these posets are (in principle) so-called chord posets
see Kim, Mészáros, Panova, Wilson: “Dyck Tilings, Increasing Trees, Descents

and Inversions” (JCTA 2014)

they have a natural connection to Dyck paths
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Irreducible Elements

join-irreducible element of P: a non-minimal element p ∈ P
with a unique lower cover p?

meet-irreducible element of P: a non-maximal element p ∈ P
with a unique upper cover p?

J (P): set of all join-irreducible elements of P
M(P): set of all meet-irreducible elements of P
this is of course abuse of notation!
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Irreducible Elements

Proposition (Kallipoliti & , 2013)

Let P be a bounded poset with 0̂ /∈M(P) and 1̂ /∈ J (P), and let
m > 0. Then,

J
(
P〈m〉

)
=
{(

0̂s , pm−s) | p ∈ J (P) and 0 ≤ s < m
}
, and

M
(
P〈m〉

)
=
{(

ps , (p?)m−s
)
| p ∈M(P) and 1 ≤ s ≤ m

}
.
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Irreducible Elements

Corollary (Kallipoliti & , 2013)

Let P be a bounded poset with 0̂ /∈M(P) and 1̂ /∈ J (P), and let
m > 0. Then,∣∣∣J (P〈m〉)∣∣∣ = m ·

∣∣∣J (P)
∣∣∣ and

∣∣∣M(P〈m〉)∣∣∣ = m ·
∣∣∣M(P)

∣∣∣.
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Cardinality

Proposition (Kallipoliti & , 2013)

Let P be a bounded poset with n elements, c cover relations and a
atoms. Then for m > 0, we have∣∣∣P〈m〉∣∣∣ = (c − a)

(
m

2

)
+ m(n − 1) + 1.

atoms are elements covering 0̂
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m-Dyck Paths

m-Dyck path: a lattice path from (0, 0) to (mn, n) consisting
only of up-steps (0, 1) and right-steps (1, 0) and staying
weakly above x = my

D(m)
n : set of all m-Dyck paths of parameter n

we have
∣∣D(m)

n

∣∣ = Cat(m)(n) = 1
n

(mn+n
n−1

)
these are the Fuss-Catalan numbers

step sequence: up = (u1, u2, . . . , un) with u1 ≤ u2 ≤ · · · ≤ un

and ui ≤ m(i − 1) for 1 ≤ i ≤ n
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p ∈ D(4)
5
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Example

p ∈ D(4)
5

u1 = 0

u2 = 2

u3 = 2

u4 = 9

u5 = 15

up = (0, 2, 2, 9, 15)
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Rotation Order on D(m)
n

rotation order: exchange a right-step of p ∈ D(m)
n , which is

followed by an up-step, with the subpath of p starting with
this up-step

m-Tamari lattice: the lattice T (m)
n =

(
D(m)

n ,≤R

)
where ≤R denotes the rotation order

we omit superscripts, when m = 1
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Example

(
D(2)

3 ,≤R

)

Behold: this is the
2-cover poset of the
pentagon lattice!
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Example

(
D(2)

3 ,≤R

)

Behold: this is the
2-cover poset of the
pentagon lattice!

The pentagon lattice
is isomorphic to T3.
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The Posets T 〈m〉n

the Hasse diagram of Tn with 0 removed is a tree if and only
if n ≤ 3

Observation

The poset T 〈m〉n is a lattice for all m > 0 if and only if n ≤ 3.
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The Posets T 〈m〉n

Tn has Cat(n) elements, n − 1 atoms, and n−1
2 Cat(n) cover

relations

Observation

We have∣∣∣D〈m〉n

∣∣∣ =
n − 1

2

(
Cat(n)− 2

)(m

2

)
+ m · Cat(n)−m + 1.
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The Posets T 〈m〉n

for n > 3 and m > 1: T 〈m〉n is not a lattice and∣∣D〈m〉n

∣∣ < Cat(m)(n)

idea: consider a lattice completion of T 〈m〉n

Dedekind-MacNeille completion: the smallest lattice
containing a given poset, denoted by DM

Theorem (Kallipoliti & , 2013)

For m, n > 0, we have T (m)
n
∼= DM

(
T 〈m〉n

)
.
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Sketch of Proof

how do you prove such a statement?

recall the following result ...

Theorem (Banaschewski, 1956)

If P is a finite lattice, then P ∼= DM
(
J (P) ∪M(P)

)
.

... and investigate the irreducibles
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n

a meet-irreducible element of T (4)
8 :
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Irreducibles of T (m)
n

Proposition (Kallipoliti & , 2013)

Let p ∈ D(m)
n . Then, p ∈M

(
T (m)
n

)
if and only if its step sequence

up = (u1, u2, . . . , un) satisfies

uj =

{
0, for j ≤ i ,

a, for j > i ,

where 1 ≤ a ≤ mi and 1 ≤ i < n.
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Irreducibles of T (m)
n

Proposition (Kallipoliti & , 2013)

Let p ∈ D(m)
n . Then, p ∈ J

(
T (m)
n

)
if and only if its step sequence

up = (u1, u2, . . . , un) satisfies

uj =

{
m(j − 1), for j /∈ {i , i + 1, . . . , k},
m(j − 1)− s, for j ∈ {i , i + 1, . . . , k},

for exactly one i ∈ {1, 2, . . . , n}, where k > i and 1 ≤ s ≤ m.
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Irreducibles of T (m)
n

Corollary (Kallipoliti & , 2013)∣∣∣M(T (m)
n

)∣∣∣ = m
(n

2

)
for every m, n > 0.

Corollary (Kallipoliti & , 2013)∣∣∣J (T (m)
n

)∣∣∣ = m
(n

2

)
for every m, n > 0.
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Irreducibles of T 〈m〉n

the previous results also imply what the irreducibles of Tn look
like

we have characterized the irreducibles of P〈m〉 for arbitrary
bounded posets earlier

put these things together!

but how?

elements of T (m)
n : m-Dyck paths

elements of T 〈m〉
n : m-tuples of Dyck paths
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The Strip-Decomposition

We obtain an injective map δ : D(m)
n →

(
Dn

)m
!
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The m-Cover Poset of the Tamari Lattices
A More Explicit Approach

Irreducibles of T 〈m〉n

Corollary (Kallipoliti & , 2013)

For m, n > 0, we have
∣∣∣J (T 〈m〉n

)∣∣∣ = m
(n

2

)
=
∣∣∣M(T 〈m〉n

)∣∣∣.

Proposition (Kallipoliti & , 2013)

If p ∈ J
(
T (m)
n

)
, then δ(p) ∈ J

(
T 〈m〉n

)
. If p ∈M

(
T (m)
n

)
, then

δ(p) ∈M
(
T 〈m〉n

)
.
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Irreducibles of T 〈m〉n

Proposition (Kallipoliti & , 2013)

The map δ is an poset isomorphism between
(
J
(
T (m)
n

)
,≤R

)
and(

J
(
T 〈m〉n

)
,≤R

)
, respectively between

(
M
(
T (m)
n

)
,≤R

)
and(

M
(
T 〈m〉n

)
,≤R

)
.

Proposition (Kallipoliti & , 2013)

Every element in D〈m〉n can be expressed as a join of elements in

J
(
T 〈m〉n

)
.
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Proving the Connection

Theorem (Kallipoliti & , 2013)

For m, n > 0, we have T (m)
n
∼= DM

(
T 〈m〉n

)
.

Proof

T (m)
n
∼= DM

(
J
(
T (m)
n

)
∪M

(
T (m)
n

))
∼= DM

(
J
(
T 〈m〉n

)
∪M

(
T 〈m〉n

))
∼= DM

(
T 〈m〉n

)
.
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Bouncing Dyck Paths

let ∧R and ∨R denote meet and join in Tn
define a map

βi ,j : (Dn)m → (Dn)m,

(q1, q2, . . . , qm) 7→ (q1, . . . , qi ∧R qj , . . . , qi ∨R qj , . . . , qm)

bouncing map: β = βm−1,m ◦ · · · ◦ β2,3 ◦ β1,m ◦ · · · ◦ β1,3 ◦ β1,2,

define ζ : D(m)
n → (Dn)m, p 7→ β ◦ δ(p)

Conjecture

The posets
(
D(m)

n ,≤R

)
and

(
ζ
(
D(m)

n

)
,≤R

)
are isomorphic.
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Example

(
δ(D(2)

3 ),≤R

)
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A Generalization

Tn is associated with the Coxeter group An−1

Reading’s Cambrian lattices provide a generalization of Tn to
the other Coxeter groups

what about the m-cover posets of other Cambrian lattices?
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Cambrian Lattices Associated with the Dihedral Groups

Dk : the dihedral group of order 2k

Ck : the following poset:

0

a1 b

a2

.

.

.

ak−1

1

Myrto Kallipoliti and Henri Mühle On m-Cover Posets and Their Applications 26 / 30



The m-Cover Poset
The m-Tamari Lattices

More m-Tamari Like Lattices

The Dihedral Groups
Other Coxeter Groups

Properties of C〈m〉k

Proposition (Kallipoliti & , 2013)

For k > 1 and m > 0, the poset C〈m〉k is a lattice with(m+1
2

)
k + m + 1 elements.

(m+1
2

)
k + m + 1 = Cat(m)(Dk)
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Properties of C〈m〉k

Proposition (Kallipoliti & , 2013)

For k > 1 and m > 0, the poset C〈m〉k is in fact trim, and its
Möbius function takes values only in {−1, 0, 1}.

this generalizes some structural and topological properties of
Ck
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Example

C4

0

c1 a1

c2

c3

1

C〈2〉4

(0, 0)

(0, c1) (0, a1)

(c1, c1) (0, c2)

(c1, c2) (0, c3)

(c2, c2) (0, 1) (a1, a1)

(c2, c3)

(c3, c3)

(c3, 1) (a1, 1)

(1, 1)
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Other Coxeter Groups

unfortunately, this approach does not work for other Coxeter
groups

the 2-cover poset of the B3-Tamari lattice has 66 elements ...
... and its Dedekind-MacNeille completion has 88 elements ...
... but Cat(2)(B3) = 84

it even fails for the other Cambrian lattices of An−1
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Thank you!
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Fuss-Catalan Numbers for Coxeter Groups

let W be a Coxeter group of rank n, and let d1, d2, . . . , dn be
the degrees of W

define Cat(m)(W ) =
∏n

i=1
mdn+di

di
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Fuss-Catalan Numbers for Coxeter Groups

let W be a Coxeter group of rank n, and let d1, d2, . . . , dn be
the degrees of W

define Cat(m)(W ) =
∏n

i=1
mdn+di

di

if W = Sn, then di = i + 1 for 1 ≤ i < n

we have Cat(m)(Sn) = 1
n

(mn+n
n−1

)
= Cat(n)(m)
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Fuss-Catalan Numbers for Coxeter Groups

let W be a Coxeter group of rank n, and let d1, d2, . . . , dn be
the degrees of W

define Cat(m)(W ) =
∏n

i=1
mdn+di

di

if W = Dk , then d1 = 2 and d2 = k

we have Cat(m)(Dk) =
(m+1

2

)
k + m + 1
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Trim Lattices

extremal lattice: a lattice P = (P,≤) satisfying∣∣J (P)
∣∣ = `(P) =

∣∣M(P)
∣∣

where `(P) is the maximal length of a maximal chain in P

left-modular element: x ∈ P satisfying
(y ∨ x) ∧ z = y ∨ (x ∧ z) for all y < z

left-modular lattice: a lattice with a maximal chain consisting
of left-modular elements

trim lattice: a left-modular, extremal lattice
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