On *m*-Cover Posets and Their Applications

Myrto Kallipoliti and Henri Mühle

Universität Wien

72nd Séminaire Lotharingien de Combinatoire, Lyon March 24, 2014

Outline

The *m*-Cover Poset

Basics Some Properties

The *m*-Tamari Lattices

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

More *m*-Tamari Like Lattices

The Dihedral Groups Other Coxeter Groups

Basics Some Properties

Outline

The *m*-Cover Poset

Basics Some Properties

The *m*-Tamari Lattices

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

More *m*-Tamari Like Lattices The Dihedral Groups Other Coxeter Groups

<mark>Basics</mark> Some Properties

The *m*-Cover Poset

- * let $\mathcal{P} = (P, \leq)$ be a poset
- bounded poset: a poset with a least and a greatest element, denoted by 0 and 1
- * for m > 0, consider *m*-tuples

$$\mathbf{p} = (\underbrace{\hat{0}, \hat{0}, \dots, \hat{0}}_{l_1}, \underbrace{p, p, \dots, p}_{l_2}, \underbrace{q, q, \dots, q}_{l_3})$$

for $p,q \in P$ with $\hat{0} \neq p \lessdot q$

where \lessdot is the covering relation of $\mathcal P$

<mark>Basics</mark> Some Properties

The *m*-Cover Poset

$$lpha$$
 write $\mathbf{p}=(\hat{0}^{l_1},oldsymbol{p}^{l_2},oldsymbol{q}^{l_3})$ instead

Mefine
$$P^{\langle m \rangle} = \left\{ \left(\hat{0}^{l_1}, p^{l_2}, q^{l_3} \right) \mid 0_P \neq p \lessdot q, l_1 + l_2 + l_3 = m \right\}$$

* *m*-cover poset of \mathcal{P} : the poset $\mathcal{P}^{\langle m \rangle} = \left(\mathcal{P}^{\langle m \rangle}, \leq \right)$

where \leq means componentwise order

<mark>Basics</mark> Some Properties

Example

 \mathcal{P}

<mark>Basics</mark> Some Properties

Basics Some Properties

A Characterization

Theorem (Kallipoliti & 🐇, 2013)

Let \mathcal{P} be a bounded poset. Then, $\mathcal{P}^{\langle m \rangle}$ is a lattice for all m > 0 if and only if \mathcal{P} is a lattice and the Hasse diagram of \mathcal{P} with $\hat{0}$ removed is a tree rooted at $\hat{1}$.

Basics Some Properties

A Characterization

Theorem (Kallipoliti & 🐇, 2013)

Let \mathcal{P} be a bounded poset. Then, $\mathcal{P}^{\langle m \rangle}$ is a lattice for all m > 0 if and only if \mathcal{P} is a lattice and the Hasse diagram of \mathcal{P} with $\hat{0}$ removed is a tree rooted at $\hat{1}$.

- these posets are (in principle) so-called chord posets see Kim, Mészáros, Panova, Wilson: "Dyck Tilings, Increasing Trees, Descents and Inversions" (JCTA 2014)
- they have a natural connection to Dyck paths

Basics Some Properties

Basics Some Properties

Basics Some Properties

Irreducible Elements

- ✤ join-irreducible element of \mathcal{P} : a non-minimal element $p \in P$ with a unique lower cover p_*
- ★ meet-irreducible element of \mathcal{P} : a non-maximal element $p \in P$ with a unique upper cover p^*
- * $\mathcal{J}(\mathcal{P})$: set of all join-irreducible elements of \mathcal{P}
- M(P): set of all meet-irreducible elements of P this is of course abuse of notation!

Basics Some Properties

Irreducible Elements

Proposition (Kallipoliti & 🐇, 2013)

Let \mathcal{P} be a bounded poset with $\hat{0} \notin \mathcal{M}(\mathcal{P})$ and $\hat{1} \notin \mathcal{J}(\mathcal{P})$, and let m > 0. Then,

$$\mathcal{J}(\mathcal{P}^{\langle m \rangle}) = \Big\{ (\hat{0}^{s}, p^{m-s}) \mid p \in \mathcal{J}(\mathcal{P}) \text{ and } 0 \leq s < m \Big\}, \text{ and}$$

 $\mathcal{M}(\mathcal{P}^{\langle m \rangle}) = \Big\{ (p^{s}, (p^{\star})^{m-s}) \mid p \in \mathcal{M}(\mathcal{P}) \text{ and } 1 \leq s \leq m \Big\}.$

Basics Some Properties

Irreducible Elements

Corollary (Kallipoliti & 🐇, 2013)

Let \mathcal{P} be a bounded poset with $\hat{0} \notin \mathcal{M}(\mathcal{P})$ and $\hat{1} \notin \mathcal{J}(\mathcal{P})$, and let m > 0. Then,

$$\left|\mathcal{J}(\mathcal{P}^{\langle m \rangle})
ight| = m \cdot \left|\mathcal{J}(\mathcal{P})
ight| \quad \text{and} \quad \left|\mathcal{M}(\mathcal{P}^{\langle m
angle})
ight| = m \cdot \left|\mathcal{M}(\mathcal{P})
ight|.$$

Basics Some Properties

Cardinality

Proposition (Kallipoliti & 🐇, 2013)

Let \mathcal{P} be a bounded poset with n elements, c cover relations and a atoms. Then for m > 0, we have

$$\left|P^{\langle m\rangle}\right| = (c-a)\binom{m}{2} + m(n-1) + 1.$$

atoms are elements covering $\hat{\mathbf{0}}$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Outline

The *m*-Cover Poset

Basics Some Properties

The *m*-Tamari Lattices

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

More *m*-Tamari Like Lattices

The Dihedral Groups Other Coxeter Groups

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

m-Dyck Paths

- *m*-Dyck path: a lattice path from (0,0) to (*mn*, *n*) consisting only of up-steps (0,1) and right-steps (1,0) and staying weakly above x = my
- * $\mathcal{D}_n^{(m)}$: set of all *m*-Dyck paths of parameter *n*

★ we have
$$|D_n^{(m)}| = \operatorname{Cat}^{(m)}(n) = \frac{1}{n} \binom{mn+n}{n-1}$$

these are the Fuss-Catalan numbers

* step sequence: $\mathbf{u}_{\mathfrak{p}} = (u_1, u_2, \dots, u_n)$ with $u_1 \leq u_2 \leq \cdots \leq u_n$ and $u_i \leq m(i-1)$ for $1 \leq i \leq n$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

$$\mathfrak{p}\in\mathcal{D}_5^{(4)}$$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Example

$$\mathfrak{p}\in\mathcal{D}_5^{(4)}$$

 $\mathbf{u}_{p} = (0, 2, 2, 9, 15)$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Rotation Order on $\mathcal{D}_n^{(m)}$

- * rotation order: exchange a right-step of $\mathfrak{p} \in \mathcal{D}_n^{(m)}$, which is followed by an up-step, with the subpath of \mathfrak{p} starting with this up-step
- ★ *m*-Tamari lattice: the lattice $\mathcal{T}_n^{(m)} = (\mathcal{D}_n^{(m)}, \leq_R)$ where \leq_R denotes the rotation order
- * we omit superscripts, when m = 1

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

$$\mathfrak{p}\in\mathcal{D}_5^{(4)}$$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

$$\mathfrak{p}\in\mathcal{D}_5^{(4)}$$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

$$\mathfrak{p}\in\mathcal{D}_5^{(4)}$$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

$$\mathfrak{p}'\in\mathcal{D}_5^{(4)}$$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

$$\mathfrak{p}'\in\mathcal{D}_5^{(4)}$$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

$\left(\mathcal{D}_{3}^{(2)},\leq_{R} ight)$

Example

Behold: this is the 2-cover poset of the pentagon lattice!

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

$\left(\mathcal{D}_{3}^{(2)},\leq_{R}\right)$

Example

Behold: this is the 2-cover poset of the pentagon lattice!

The pentagon lattice is isomorphic to \mathcal{T}_3 .

Basics **Fhe** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

The Posets
$$\mathcal{T}_n^{\langle m}$$

* the Hasse diagram of \mathcal{T}_n with o removed is a tree if and only if $n \leq 3$

Observation

The poset $\mathcal{T}_n^{\langle m \rangle}$ is a lattice for all m > 0 if and only if $n \leq 3$.

Basics **Fhe** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

The Posets
$$\mathcal{T}_n^{\langle m
angle}$$

✤ T_n has Cat(n) elements, n-1 atoms, and $\frac{n-1}{2}$ Cat(n) cover relations

Observation

We have

$$\left|\mathcal{D}_{n}^{\langle m \rangle}\right| = \frac{n-1}{2} \Big(\operatorname{Cat}(n) - 2 \Big) {m \choose 2} + m \cdot \operatorname{Cat}(n) - m + 1.$$

Basics **Fhe** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

The Posets
$$\mathcal{T}_n^{\langle m}$$

for
$$n>3$$
 and $m>1$: $\mathcal{T}_n^{\langle m
angle}$ is not a lattice and $|\mathcal{D}_n^{\langle m
angle}| < \mathsf{Cat}^{(m)}(n)$

idea: consider a lattice completion of $\mathcal{T}_n^{\langle m \rangle}$

Dedekind-MacNeille completion: the smallest lattice containing a given poset, denoted by DM

Theorem (Kallipoliti & 🐇, 2013)

For
$$m, n > 0$$
, we have $\mathcal{T}_n^{(m)} \cong DM(\mathcal{T}_n^{\langle m \rangle})$.

Basics **Fhe** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

Sketch of Proof

how do you prove such a statement?
Basics **The** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

Sketch of Proof

- how do you prove such a statement?
- recall the following result ...

Theorem (Banaschewski, 1956)

If \mathcal{P} is a finite lattice, then $\mathcal{P} \cong DM(\mathcal{J}(\mathcal{P}) \cup \mathcal{M}(\mathcal{P}))$.

* ... and investigate the irreducibles

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Irreducibles of $\mathcal{T}_n^{(m)}$

* a meet-irreducible element of $\mathcal{T}_8^{(4)}$:

Basics **The** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

Irreducibles of $\mathcal{T}_n^{(m)}$

Proposition (Kallipoliti & 🐇, 2013)

Let $\mathfrak{p} \in \mathcal{D}_n^{(m)}$. Then, $\mathfrak{p} \in \mathcal{M}(\mathcal{T}_n^{(m)})$ if and only if its step sequence $\mathbf{u}_{\mathfrak{p}} = (u_1, u_2, \dots, u_n)$ satisfies

$$u_j = egin{cases} 0, & \mbox{for } j \leq i, \ a, & \mbox{for } j > i, \end{cases}$$

where $1 \leq a \leq mi$ and $1 \leq i < n$.

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Irreducibles of $\mathcal{T}_n^{(m)}$

* a join-irreducible element of $\mathcal{T}_8^{(4)}$:

Basics **The** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

Irreducibles of
$$\mathcal{T}_n^{(m)}$$

Proposition (Kallipoliti & 🐇, 2013)

Let $\mathfrak{p} \in \mathcal{D}_n^{(m)}$. Then, $\mathfrak{p} \in \mathcal{J}(\mathcal{T}_n^{(m)})$ if and only if its step sequence $\mathbf{u}_{\mathfrak{p}} = (u_1, u_2, \dots, u_n)$ satisfies

$$u_{j} = \begin{cases} m(j-1), & \text{for } j \notin \{i, i+1, \dots, k\}, \\ m(j-1) - s, & \text{for } j \in \{i, i+1, \dots, k\}, \end{cases}$$

for exactly one $i \in \{1, 2, ..., n\}$, where k > i and $1 \le s \le m$.

Basics **The** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

Irreducibles of
$$\mathcal{T}_n^{(m)}$$

$$\left|\mathcal{M}(\mathcal{T}_{n}^{(m)})\right| = m\binom{n}{2}$$
 for every $m, n > 0$.

Corollary (Kallipoliti & 🐇, 2013)

$$\left|\mathcal{J}(\mathcal{T}_{n}^{(m)})\right|=m\binom{n}{2}$$
 for every $m,n>0.$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Irreducibles of $\mathcal{T}_n^{\langle m \rangle}$

- * the previous results also imply what the irreducibles of \mathcal{T}_n look like
- * we have characterized the irreducibles of $\mathcal{P}^{\langle m \rangle}$ for arbitrary bounded posets earlier
- put these things together!

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Irreducibles of $\mathcal{T}_n^{\langle m \rangle}$

- the previous results also imply what the irreducibles of T_n look like
- * we have characterized the irreducibles of $\mathcal{P}^{\langle m \rangle}$ for arbitrary bounded posets earlier
- put these things together!
- but how?
 - * elements of $\mathcal{T}_n^{(m)}$: *m*-Dyck paths
 - ✤ elements of $\mathcal{T}_n^{\langle m \rangle}$: *m*-tuples of Dyck paths

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

The Strip-Decomposition

.9 / 30

Basics **The** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

The Strip-Decomposition

9 / 30

Basics **The** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Basics **The** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

The Strip-Decomposition

We obtain an injective map $\delta : \mathcal{D}_n^{(m)} \to (\mathcal{D}_n)^m!$

Basics **The** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

Irreducibles of $\mathcal{T}_n^{\langle m \rangle}$

Corollary (Kallipoliti & 🐇, 2013)

For
$$m, n > 0$$
, we have $\left| \mathcal{J}(\mathcal{T}_n^{\langle m \rangle}) \right| = m\binom{n}{2} = \left| \mathcal{M}(\mathcal{T}_n^{\langle m \rangle}) \right|$.

Proposition (Kallipoliti & 🐇, 2013)

If $\mathfrak{p} \in \mathcal{J}(\mathcal{T}_n^{(m)})$, then $\delta(\mathfrak{p}) \in \mathcal{J}(\mathcal{T}_n^{\langle m \rangle})$. If $\mathfrak{p} \in \mathcal{M}(\mathcal{T}_n^{(m)})$, then $\delta(\mathfrak{p}) \in \mathcal{M}(\mathcal{T}_n^{\langle m \rangle})$.

Basics **The** *m***-Cover Poset of the Tamari Lattices** A More Explicit Approach

Irreducibles of
$$\mathcal{T}_n^{\langle m}$$

Proposition (Kallipoliti & 🐇, 2013)

The map δ is an poset isomorphism between $\left(\mathcal{J}(\mathcal{T}_{n}^{(m)}), \leq_{R}\right)$ and $\left(\mathcal{J}(\mathcal{T}_{n}^{\langle m \rangle}), \leq_{R}\right)$, respectively between $\left(\mathcal{M}(\mathcal{T}_{n}^{\langle m \rangle}), \leq_{R}\right)$ and $\left(\mathcal{M}(\mathcal{T}_{n}^{\langle m \rangle}), \leq_{R}\right)$.

Proposition (Kallipoliti & 🐇, 2013)

Every element in $\mathcal{D}_n^{\langle m \rangle}$ can be expressed as a join of elements in $\mathcal{J}(\mathcal{T}_n^{\langle m \rangle})$.

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Proving the Connection

Theorem (Kallipoliti & 🐇, 2013)

For
$$m, n > 0$$
, we have $\mathcal{T}_n^{(m)} \cong D\!M(\mathcal{T}_n^{\langle m \rangle})$

Proof

$$\begin{aligned} \mathcal{T}_{n}^{(m)} &\cong DM\Bigl(\mathcal{J}(\mathcal{T}_{n}^{(m)}) \cup \mathcal{M}(\mathcal{T}_{n}^{(m)})\Bigr) \\ &\cong DM\Bigl(\mathcal{J}(\mathcal{T}_{n}^{\langle m \rangle}) \cup \mathcal{M}(\mathcal{T}_{n}^{\langle m \rangle})\Bigr) \\ &\cong DM\Bigl(\mathcal{T}_{n}^{\langle m \rangle}\Bigr). \end{aligned}$$

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

Bouncing Dyck Paths

- * let \wedge_R and \vee_R denote meet and join in \mathcal{T}_n
- 养 define a map

$$\beta_{i,j} : (\mathcal{D}_n)^m \to (\mathcal{D}_n)^m, (\mathfrak{q}_1, \mathfrak{q}_2, \dots, \mathfrak{q}_m) \mapsto (\mathfrak{q}_1, \dots, \mathfrak{q}_i \wedge_R \mathfrak{q}_j, \dots, \mathfrak{q}_i \vee_R \mathfrak{q}_j, \dots, \mathfrak{q}_m)$$

bouncing map: \$\beta = \beta_{m-1,m} \circles \cdots \circle \beta_{2,3} \circle \beta_{1,m} \circles \cdots \circle \beta_{1,3} \circle \beta_{1,2}\$,
define \$\zeta : \mathcal{D}_n^{(m)} \rightarrow (\mathcal{D}_n)^m\$, \$\mathcal{p} \mathcal{b} \circle \delta \beta \beta_1, \$\mathcal{b} \circle \delta \beta_{1,m} \circles \cdots \beta_{1,3} \circle \beta_{1,2}\$,

Basics The *m*-Cover Poset of the Tamari Lattices **A More Explicit Approach**

Bouncing Dyck Paths

- * let \wedge_R and \vee_R denote meet and join in \mathcal{T}_n
- 养 define a map

$$\beta_{i,j}: (\mathcal{D}_n)^m \to (\mathcal{D}_n)^m, (\mathfrak{q}_1, \mathfrak{q}_2, \dots, \mathfrak{q}_m) \mapsto (\mathfrak{q}_1, \dots, \mathfrak{q}_i \wedge_R \mathfrak{q}_j, \dots, \mathfrak{q}_i \vee_R \mathfrak{q}_j, \dots, \mathfrak{q}_m)$$

Conjecture

The posets
$$\left(\mathcal{D}_n^{(m)},\leq_R
ight)$$
 and $\left(\zeta\left(\mathcal{D}_n^{(m)}
ight),\leq_R
ight)$ are isomorphic.

Example

Basics The *m*-Cover Poset of the Tamari Lattices **A More Explicit Approach**

$\left(\delta(\mathcal{D}_3^{(2)}),\leq_R\right)$ 77 77 77 \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{P}

Example

Basics The *m*-Cover Poset of the Tamari Lattices **A More Explicit Approach**

$\left(\zeta(\mathcal{D}_3^{(2)}),\leq_R\right)$ $\vee \vee$ 77 77 77 \mathbb{Z} 77 \mathbf{P} \mathbb{P}

The Dihedral Groups Other Coxeter Groups

Outline

The *m*-Cover Poset

Basics Some Properties

The *m*-Tamari Lattices

Basics The *m*-Cover Poset of the Tamari Lattices A More Explicit Approach

More *m*-Tamari Like Lattices The Dihedral Groups Other Coxeter Groups

The Dihedral Groups Other Coxeter Groups

A Generalization

- * \mathcal{T}_n is associated with the Coxeter group A_{n-1}
- * Reading's Cambrian lattices provide a generalization of \mathcal{T}_n to the other Coxeter groups
- what about the *m*-cover posets of other Cambrian lattices?

The Dihedral Groups Other Coxeter Groups

Cambrian Lattices Associated with the Dihedral Groups

- * \mathfrak{D}_k : the dihedral group of order 2k
- * C_k : the following poset:

The Dihedral Groups Other Coxeter Groups

Properties of
$$\mathcal{C}_{k}^{\langle m}$$

Proposition (Kallipoliti & 🐇, 2013)

For k > 1 and m > 0, the poset $C_k^{\langle m \rangle}$ is a lattice with $\binom{m+1}{2}k + m + 1$ elements.

*
$$\binom{m+1}{2}k + m + 1 = \operatorname{Cat}^{(m)}(\mathfrak{D}_k)$$

The Dihedral Groups Other Coxeter Groups

Properties of
$$\mathcal{C}_{k}^{\langle m}$$

Proposition (Kallipoliti & 🐇, 2013)

For k > 1 and m > 0, the poset $C_k^{(m)}$ is in fact trim, and its Möbius function takes values only in $\{-1, 0, 1\}$.

 $\stackrel{\scriptstyle \bullet}{\sim}\,$ this generalizes some structural and topological properties of \mathcal{C}_k

Example

The Dihedral Groups <mark>Other Coxeter Groups</mark>

Other Coxeter Groups

unfortunately, this approach does not work for other Coxeter groups

The Dihedral Groups Other Coxeter Groups

Other Coxeter Groups

- unfortunately, this approach does not work for other Coxeter groups
 - the 2-cover poset of the B₃-Tamari lattice has 66 elements ...
 - ... and its Dedekind-MacNeille completion has 88 elements ...
 - * ... but $Cat^{(2)}(B_3) = 84$

The Dihedral Groups Other Coxeter Groups

Other Coxeter Groups

- unfortunately, this approach does not work for other Coxeter groups
 - * the 2-cover poset of the B_3 -Tamari lattice has 66 elements ...
 - ... and its Dedekind-MacNeille completion has 88 elements ...
 - * ... but $Cat^{(2)}(B_3) = 84$
- * it even fails for the other Cambrian lattices of A_{n-1}

The Dihedral Groups Other Coxeter Groups

Thank you!

Iet W be a Coxeter group of rank n, and let d₁, d₂,..., d_n be the degrees of W

* define
$$Cat^{(m)}(W) = \prod_{i=1}^{n} \frac{md_n + d_i}{d_i}$$

Iet W be a Coxeter group of rank n, and let d₁, d₂,..., d_n be the degrees of W

* define
$$\mathsf{Cat}^{(m)}(W) = \prod_{i=1}^n rac{md_n+d_i}{d_i}$$

* if
$$W = \mathfrak{S}_n$$
, then $d_i = i + 1$ for $1 \le i < n$

* we have
$$\operatorname{Cat}^{(m)}(\mathfrak{S}_n) = \frac{1}{n} \binom{mn+n}{n-1} = \operatorname{Cat}^{(n)}(m)$$

Iet W be a Coxeter group of rank n, and let d₁, d₂,..., d_n be the degrees of W

* define
$$\mathsf{Cat}^{(m)}(W) = \prod_{i=1}^n rac{md_n+d_i}{d_i}$$

* if
$$W = \mathfrak{D}_k$$
, then $d_1 = 2$ and $d_2 = k$

* we have
$$\operatorname{Cat}^{(m)}(\mathfrak{D}_k) = \binom{m+1}{2}k + m + 1$$
* extremal lattice: a lattice $\mathcal{P} = (P, \leq)$ satisfying $|\mathcal{J}(\mathcal{P})| = \ell(\mathcal{P}) = |\mathcal{M}(\mathcal{P})|$ where $\ell(\mathcal{P})$ is the maximal length of a maximal chain in \mathcal{P}

Ieft-modular element: $x \in P$ satisfying $(y \lor x) \land z = y \lor (x \land z) \text{ for all } y < z$

- left-modular lattice: a lattice with a maximal chain consisting of left-modular elements
- trim lattice: a left-modular, extremal lattice