A Bialgebra on Hypertree and Partition Posets

Bérénice Oger

Institut Camille Jordan (Lyon)

Tuesday, March 25th 2014 SLC 72 A Bialgebra on Hypertree and Partition Bounded Posets

Bérénice Oger

Institut Camille Jordan (Lyon)

Tuesday March, 25th 2014 SLC 72

Table of contents

Incidence Hopf Algebra of a Family of Bounded Posets

- Incidence Hopf Algebra
- Moebius number

Hypertree Posets

- From Hypergraphs to Hypertrees
- Hypertree Posets

Construction of a Bialgebra on Hypertree and Partition Bounded Posets

- From the Incidence Hopf Algebra to a simpler Bialgebra
- Computation of the Coproduct in this Bialgebra
- Application : Computation of Moebius numbers of Hypertree Posets

Incidence Hopf Algebra of a Family of Bounded Posets

Bounded poset = a poset with a least and a greatest element.

We consider posets up to isomorphisms of posets. Considered a family ${\mathcal P}$ of bounded posets which is

- Interval closed,
- Stable under direct product.

We endow the $\mathbb Q\text{-vector}$ space $V_{\mathcal P}$ generated by $\mathcal P$ with

4

• a coproduct defined for all $P \in V_{\mathcal{P}}$ by:

$$\Delta[P] = \sum_{x \in P} [0_P, x] \otimes [x, 1_P],$$

• the direct product of posets.

Bérénice Oger (ICJ -Lyon)

March, 25th 3 / 21

We endow the \mathbb{Q} -vectorial space $V_{\mathcal{P}}$ generated by \mathcal{P} with

• a coproduct defined for all $P \in V_{\mathcal{P}}$ by:

$$\Delta[P] = \sum_{x \in P} [0_P, x] \otimes [x, 1_P],$$

the direct product of posets.

Theorem (W.R. Schmitt, 1994) $(V_{\mathcal{P}}, \Delta, \times)$ is a Hopf Algebra, called Incidence Hopf algebra.

Moebius number

Definition

For any poset P the Moebius function is defined by :

$$\mu(x, x) = 1,$$
 $\forall x \in P$
 $\mu(x, y) = -\sum_{x \le z < y} \mu(x, z),$ $\forall x < y \in P.$

If P is bounded, the Moebius number of P is $\mu(P) := \mu(\hat{0}, \hat{1})$

$$\begin{array}{c} 2\{1\}\{2\}\{3\} \\ | \\ -1\{1,2\}\{3\} \\ -1\{1,3\}\{2\} \\ | \\ 1 \\ \{1,2,3\} \end{array}$$

.

Link between Moebius numbers and Incidence Hopf algebra

Idea :

The coproduct on the Incidence Hopf algebra enables us to compute Moebius numbers of posets in this algebra !

Incidence Hopf Algebra of a Family of Bounded Posets

2 Hypertree Posets

- From Hypergraphs to Hypertrees
- Hypertree Posets

3 Construction of a Bialgebra on Hypertree and Partition Bounded Posets

Hypergraphs and hypertrees

Definition (Berge, 1989)

A hypergraph (on a set V) is an ordered pair (V, E) where:

- V is a finite set (vertices)
- *E* is a collection of subsets of cardinality at least two of elements of *V* (edges).

The valency of a vertex v in H is the number of edges containing v.

Example of a hypergraph on [1; 7] $7 \xrightarrow{B} 6 \xrightarrow{1} 3$ $A \xrightarrow{5} 2$

→ ∃ →

Walk on a hypergraph

Definition

Let H = (V, E) be a hypergraph. A walk from d to f in H is an alternating sequence of vertices and edges beginning by d and ending by f:

$$(d,\ldots,e_i,v_i,e_{i+1},\ldots,f)$$

where for all i, $v_i \in V$, $e_i \in E$ and $\{v_i, v_{i+1}\} \subseteq e_i$.

Examples of walks

(4) (日本)

Hypertrees

Definition

A hypertree is a non-empty hypergraph H such that, given any distinct vertices v and w in H,

- there exists a walk from v to w in H with distinct edges e_i, (H is connected),
- and this walk is unique, (H has no cycles).

Example of a hypertree

A B b A B b

The hypertree poset

Definition

Let I be a finite set of cardinality n, S and T be two hypertrees on I.

 $S \preceq T \iff$ Each edge of S is the union of edges of T

We write $S \prec T$ if $S \preceq T$ but $S \neq T$.

- Triangle-like poset
- $HT_n = hypertree poset on$ *n*vertices.
- Möbius number : $(n-1)^{n-2}$ [McCammond and Meier 2004]

- Triangle-like poset
- $HT_n = hypertree poset on n vertices.$
- Möbius number : $(n-1)^{n-2}$ [McCammond and Meier 2004]

Goal :

Construction of an analogue of Incidence Hopf algebra which enables us to compute again Moebius numbers of posets.

11 / 21

Incidence Hopf Algebra of a Family of Bounded Posets

2 Hypertree Posets

3 Construction of a Bialgebra on Hypertree and Partition Bounded Posets

- From the Incidence Hopf Algebra to a simpler Bialgebra
- Computation of the Coproduct in this Bialgebra
- Application : Computation of Moebius numbers of Hypertree Posets

From the Incidence Hopf Algebra to a simpler Bialgebra

- Add a maximum element to triangle posets
- Close by interval and product
- \Rightarrow Incidence Hopf algebra $\mathcal H$

Construction of a smaller bialgebra in which computation will be easier.

THE Bialgebra

Lemma (McCammond, Meier, 2004)

Let τ be a hypertree on n vertices.

- (a) The interval [0, τ] is a direct product of partition posets (bounded posets),
- (b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets.

Family of direct products of hypertree posets and partition posets is interval closed and closed by direct product \rightsquigarrow associated algebra \mathcal{B} We endow this algebra with the following coproduct :

$$\Delta(d) = \sum_{x \in d} [\hat{0}_d, x] \otimes [x, \hat{1}_d] \quad \text{and} \quad \Delta(t) = \sum_{x \in t} [\hat{0}_t, x] \otimes [x, \hat{1}_{\widehat{t}}),$$

for a bounded poset $d \in B$ and a triangle poset $t \in B$, where \hat{t} is the bounded poset obtained from t by adding a greatest element.

- 4 回 ト 4 ヨ ト 4 ヨ ト

THE Bialgebra

Lemma (McCammond, Meier, 2004)

Let τ be a hypertree on n vertices.

- (a) The interval $[\hat{0}, \tau]$ is a direct product of partition posets (bounded posets),
- (b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets.

Family of direct products of hypertree posets and partition posets is interval closed and closed by direct product \rightsquigarrow associated algebra \mathcal{B} We endow this algebra with the following coproduct :

$$\Delta(d) = \sum_{x \in d} [\hat{0}_d, x] \otimes [x, \hat{1}_d] \quad \text{and} \quad \Delta(t) = \sum_{x \in t} [\hat{0}_t, x] \otimes [x, \hat{1}_{\widehat{t}}),$$

for a bounded poset $d \in \mathcal{B}$ and a triangle poset $t \in \mathcal{B}$, where \hat{t} is the bounded poset obtained from t by adding a greatest element.

 \mathcal{B} is a bialgebra.

Comparison between coproducts

• Same coproducts on bounded posets.

• In \mathcal{H}

$$\Delta(\widehat{t}) = \sum_{x \in \widehat{t}} [\widehat{0}, x] \otimes [x, \widehat{1}]$$

 $\bullet \ \text{In} \ \mathcal{B}$

$$\Delta(t) = \sum_{x \in t} [\hat{0}_t, x] \otimes [x, \hat{1}_{\hat{t}})$$

э

14 / 21

Comparison between coproducts

• Same coproducts on bounded posets.

• In \mathcal{H}

$$\Delta(\widehat{t}) = \sum_{x \in \widehat{t}} [\widehat{0}, x] \otimes [x, \widehat{1}]$$

 $\bullet \ \text{In} \ \mathcal{B}$

$$\Delta(t) = \sum_{x \in t} [\hat{0}_t, x] \otimes [x, \hat{1}_{\hat{t}})$$

Why working in \mathcal{B} ?

- A - E - N

Comparison between coproducts

• Same coproducts on bounded posets.

• In \mathcal{H}

$$\Delta(\widehat{t}) = \sum_{x \in \widehat{t}} [\widehat{0}, x] \otimes [x, \widehat{1}]$$

• In \mathcal{B}

$$\Delta(t) = \sum_{x \in t} [\hat{0}_t, x] \otimes [x, \hat{1}_{\hat{t}})$$

Why working in \mathcal{B} ?

Because $[x, \hat{1}_{\hat{t}})$ can be written as a product of hypertree posets whereas $[x, \hat{1}]$ cannot !

Computation of the Coproduct in this Bialgebra

Lemma (McCammond, Meier, 2004)

Let τ be a hypertree on n vertices.

- (a) The interval $[\hat{0}, \tau]$ is a direct product of partition posets, with one factor p_j for each vertex in τ with valency j.
- (b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets, with one factor $HT_j = h_j$ for each edge in τ with size j.

Computation of the Coproduct in this Bialgebra

Lemma (McCammond, Meier, 2004)

Let τ be a hypertree on n vertices.

- (a) The interval $[\hat{0}, \tau]$ is a direct product of partition posets, with one factor p_j for each vertex in τ with valency j.
- (b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets, with one factor $HT_j = h_j$ for each edge in τ with size j.

$$\Delta(h_n) = \sum_{(lpha, \pi) \in \mathcal{P}_n} c_{lpha, \pi}^n p_lpha \otimes h_\pi,$$

= $(lpha_1, lpha_2, \dots, lpha_k)$ and $\pi = (\pi_2, \pi_3, \dots, \pi_l),$

where for all $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ and $\pi = (\pi_2, \pi_3, \dots, \pi_k)$ $p_\alpha = 1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ and $h_\pi = h_2^{\pi_2} h_3^{\pi_3} \dots h_l^{\pi_l}$.

Computation of the Coproduct in this Bialgebra

Lemma (McCammond, Meier, 2004)

Let τ be a hypertree on n vertices.

- (a) The interval $[\hat{0}, \tau]$ is a direct product of partition posets, with one factor p_j for each vertex in τ with valency j.
- (b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets, with one factor $HT_j = h_j$ for each edge in τ with size j.

$$\Delta(h_n) = \sum_{(\alpha,\pi)\in\mathcal{P}_n} c_{\alpha,\pi}^n p_\alpha \otimes h_\pi,$$

where for all $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ and $\pi = (\pi_2, \pi_3, \dots, \pi_l),$
 $p_\alpha = 1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ and $h_\pi = h_2^{\pi_2} h_3^{\pi_3} \dots h_l^{\pi_l}.$

- $c_{\alpha,\pi}^n$ = number of hypertrees in h_n with :
 - α_i vertices of valency $i, \forall i \geq 1$
 - π_j edges of size j, $\forall j \ge 2$

First criterion

Criterion for the vanishing of $c_{\alpha,\pi}^n$

$$c_{\alpha,\pi}^n \neq 0 \iff \sum_{i=1}^k \alpha_i = n, \quad \sum_{j=2}^l (j-1)\pi_j = n-1 \text{ and } \sum_{i=1}^k i\alpha_i = n + \sum_{j=2}^l \pi_j - 1.$$

(I) < (II) < (II) < (II) < (II) < (III) </p>

э

Counting hypertrees

A π -hooked partition P, for $\pi = (1, 2)$:

Code :

Return of the Prüfer code

constructions of a rooted hypertree of valency set
$$\alpha$$
 from P_{π}
words on $\llbracket 1, n \rrbracket$, of length $k = \sum_{j \ge 2} \pi_j - 1$, with $\sum_{i \ge 2} \alpha_i$ different letters,
where α_i letters appear $i - 1$ times, $\forall i \ge 2$
 $\Rightarrow \frac{k! \times n!}{\prod_{i \ge 2} (i - 1)!^{\alpha_i} \alpha_i!}$.
Theorem (B.O.)

$$\Delta(h_n) = \frac{1}{n} \times \sum_{(\alpha,\pi)\in\mathcal{P}(n)} \frac{n!}{\prod_{j\geq 2} (j-1)!^{\pi_j} \pi_j!} \times \frac{k! \times n!}{\prod_{i\geq 1} (i-1)!^{\alpha_i} \alpha_i!} \prod_{i=2}^{\kappa} p_i^{\alpha_i} \otimes \prod_{j=2}^{l} h_j^{\pi_j}$$

3

Application : Computation of Moebius numbers of Hypertree Posets

Theorem (McCammond and Meier 2004)

The Moebius number of the augmented hypertree poset on n vertices is given by:

$$\mu(\widehat{HT}_n) = (-1)^{n-1}(n-1)^{n-2}.$$

The following equality holds:

$$(n-1)^{n-2} = \sum_{(\alpha,\pi)\in\mathcal{P}(n)} \frac{(-1)^{i\alpha_i-1}}{n} \times \frac{n!}{\prod_{j\geq 2} (j-1)!^{\pi_j} \pi_j!} \times \frac{k! \times n!}{\prod_{i\geq 1} \alpha_i!},$$

where $\mathcal{P}(n) = (\alpha = (\alpha_1, \dots, \alpha_k), \pi = (\pi_2, \dots, \pi_l))$ satisfying:

$$\sum_{i=1}^{k} \alpha_i = n, \quad \sum_{j=2}^{l} (j-1)\pi_j = n-1, \quad \text{and} \quad \sum_{i=1}^{k} i\alpha_i = n + \sum_{j=2}^{l} \pi_j - 1.$$

Thank you very much !

< □ > < □ > < □ > < □ > < □ > < □ >