A Bialgebra on Hypertree and Partition Posets

Bérénice Oger
Institut Camille Jordan (Lyon)
Tuesday, March 25th 2014
SLC 72

A Bialgebra on Hypertree and Partition Bounded Posets

Bérénice Oger
Institut Camille Jordan (Lyon)

Tuesday March, 25th 2014
SLC 72

Table of contents

(1) Incidence Hopf Algebra of a Family of Bounded Posets

- Incidence Hopf Algebra
- Moebius number
(2) Hypertree Posets
- From Hypergraphs to Hypertrees
- Hypertree Posets
(3) Construction of a Bialgebra on Hypertree and Partition Bounded Posets
- From the Incidence Hopf Algebra to a simpler Bialgebra
- Computation of the Coproduct in this Bialgebra
- Application : Computation of Moebius numbers of Hypertree Posets

Incidence Hopf Algebra of a Family of Bounded Posets

Bounded poset $=$ a poset with a least and a greatest element.
We consider posets up to isomorphisms of posets.
Considered a family \mathcal{P} of bounded posets which is

- Interval closed,
- Stable under direct product.

We endow the \mathbb{Q}-vector space $V_{\mathcal{P}}$ generated by \mathcal{P} with

- a coproduct defined for all $P \in V_{\mathcal{P}}$ by:

$$
\Delta[P]=\sum_{x \in P}\left[0_{P}, x\right] \otimes\left[x, 1_{P}\right]
$$

- the direct product of posets.

We endow the \mathbb{Q}-vectorial space $V_{\mathcal{P}}$ generated by \mathcal{P} with

- a coproduct defined for all $P \in V_{\mathcal{P}}$ by:

$$
\Delta[P]=\sum_{x \in P}\left[0_{P}, x\right] \otimes\left[x, 1_{P}\right]
$$

- the direct product of posets.

Theorem (W.R. Schmitt, 1994)
$\left(V_{\mathcal{P}}, \Delta, \times\right)$ is a Hopf Algebra, called Incidence Hopf algebra.

Moebius number

Definition

For any poset P the Moebius function is defined by :

$$
\begin{array}{lr}
\mu(x, x)=1, & \forall x \in P \\
\mu(x, y)=-\sum_{x \leq z<y} \mu(x, z), & \forall x<y \in P
\end{array}
$$

If P is bounded, the Moebius number of P is $\mu(P):=\mu(\hat{0}, \hat{1})$

Link between Moebius numbers and Incidence Hopf algebra

Idea :

The coproduct on the Incidence Hopf algebra enables us to compute Moebius numbers of posets in this algebra!

(1) Incidence Hopf Algebra of a Family of Bounded Posets

(2) Hypertree Posets

- From Hypergraphs to Hypertrees
- Hypertree Posets

(3) Construction of a Bialgebra on Hypertree and Partition Bounded Posets

Hypergraphs and hypertrees

Definition (Berge, 1989)

A hypergraph (on a set V) is an ordered pair (V, E) where:

- V is a finite set (vertices)
- E is a collection of subsets of cardinality at least two of elements of V (edges).
The valency of a vertex v in H is the number of edges containing v.
Example of a hypergraph on $[1 ; 7]$

Walk on a hypergraph

Definition

Let $H=(V, E)$ be a hypergraph.
A walk from d to f in H is an alternating sequence of vertices and edges beginning by d and ending by f :

$$
\left(d, \ldots, e_{i}, v_{i}, e_{i+1}, \ldots, f\right)
$$

where for all $i, v_{i} \in V, e_{i} \in E$ and $\left\{v_{i}, v_{i+1}\right\} \subseteq e_{i}$.

Examples of walks

Hypertrees

Definition

A hypertree is a non-empty hypergraph H such that, given any distinct vertices v and w in H,

- there exists a walk from v to w in H with distinct edges e_{i}, (H is connected),
- and this walk is unique, (H has no cycles).

Example of a hypertree

The hypertree poset

Definition

Let I be a finite set of cardinality n, S and T be two hypertrees on I.
$S \preceq T \Longleftrightarrow$ Each edge of S is the union of edges of T
We write $S \prec T$ if $S \preceq T$ but $S \neq T$.

Example with hypertrees on four vertices

- Triangle-like poset
- $\mathrm{HT}_{\mathrm{n}}=$ hypertree poset on n vertices.
- Möbius number : $(n-1)^{n-2}$ [McCammond and Meier 2004]
- Triangle-like poset
- $\mathrm{HT}_{\mathrm{n}}=$ hypertree poset on n vertices.
- Möbius number : $(n-1)^{n-2}$ [McCammond and Meier 2004]

Goal :

Construction of an analogue of Incidence Hopf algebra which enables us to compute again Moebius numbers of posets.

(1) Incidence Hopf Algebra of a Family of Bounded Posets

(2) Hypertree Posets
(3) Construction of a Bialgebra on Hypertree and Partition Bounded Posets

- From the Incidence Hopf Algebra to a simpler Bialgebra
- Computation of the Coproduct in this Bialgebra
- Application: Computation of Moebius numbers of Hypertree Posets

From the Incidence Hopf Algebra to a simpler Bialgebra

- Add a maximum element to triangle posets
- Close by interval and product
\Rightarrow Incidence Hopf algebra \mathcal{H}
Construction of a smaller bialgebra in which computation will be easier.

THE Bialgebra

Lemma (McCammond, Meier, 2004)

Let τ be a hypertree on n vertices.
(a) The interval $[\hat{0}, \tau]$ is a direct product of partition posets (bounded posets),
(b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets.

Family of direct products of hypertree posets and partition posets is interval closed and closed by direct product \rightsquigarrow associated algebra \mathcal{B} We endow this algebra with the following coproduct :

$$
\Delta(d)=\sum_{x \in d}\left[\hat{0}_{d}, x\right] \otimes\left[x, \hat{1}_{d}\right] \quad \text { and } \quad \Delta(t)=\sum_{x \in t}\left[\hat{0}_{t}, x\right] \otimes\left[x, \hat{1}_{\widehat{t}}\right),
$$

for a bounded poset $d \in \mathcal{B}$ and a triangle poset $t \in \mathcal{B}$, where \hat{t} is the bounded poset obtained from t by adding a greatest element.

THE Bialgebra

Lemma (McCammond, Meier, 2004)

Let τ be a hypertree on n vertices.
(a) The interval $[\hat{0}, \tau]$ is a direct product of partition posets (bounded posets),
(b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets.

Family of direct products of hypertree posets and partition posets is interval closed and closed by direct product \rightsquigarrow associated algebra \mathcal{B} We endow this algebra with the following coproduct :

$$
\Delta(d)=\sum_{x \in d}\left[\hat{0}_{d}, x\right] \otimes\left[x, \hat{1}_{d}\right] \quad \text { and } \quad \Delta(t)=\sum_{x \in t}\left[\hat{0}_{t}, x\right] \otimes\left[x, \hat{1}_{\hat{t}}\right),
$$

for a bounded poset $d \in \mathcal{B}$ and a triangle poset $t \in \mathcal{B}$, where \hat{t} is the bounded poset obtained from t by adding a greatest element.

$$
\mathcal{B} \text { is a bialgebra. }
$$

Comparison between coproducts

- Same coproducts on bounded posets.
- In \mathcal{H}

$$
\Delta(\hat{t})=\sum_{x \in \widehat{t}}[\hat{0}, x] \otimes[x, \hat{1}]
$$

- In \mathcal{B}

$$
\Delta(t)=\sum_{x \in t}\left[\hat{0}_{t}, x\right] \otimes\left[x, \hat{1}_{\widehat{t}}\right)
$$

Comparison between coproducts

- Same coproducts on bounded posets.
- In \mathcal{H}

$$
\Delta(\hat{t})=\sum_{x \in \widehat{t}}[\hat{0}, x] \otimes[x, \hat{1}]
$$

- $\operatorname{In} \mathcal{B}$

$$
\Delta(t)=\sum_{x \in t}\left[\hat{0}_{t}, x\right] \otimes\left[x, \hat{1}_{\widehat{t}}\right)
$$

Why working in \mathcal{B} ?

Comparison between coproducts

- Same coproducts on bounded posets.
- In \mathcal{H}

$$
\Delta(\widehat{t})=\sum_{x \in \widehat{t}}[\hat{0}, x] \otimes[x, \hat{1}]
$$

- In \mathcal{B}

$$
\Delta(t)=\sum_{x \in t}\left[\hat{0}_{t}, x\right] \otimes\left[x, \hat{1}_{\widehat{t}}\right)
$$

Why working in \mathcal{B} ?

Because $\left[x, \hat{1}_{\widehat{t}}\right.$) can be written as a product of hypertree posets whereas [$x, \hat{1}$] cannot!

Computation of the Coproduct in this Bialgebra

Lemma (McCammond, Meier, 2004)
Let τ be a hypertree on n vertices.
(a) The interval $[\hat{0}, \tau]$ is a direct product of partition posets, with one factor p_{j} for each vertex in τ with valency j.
(b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets, with one factor $\mathrm{HT}_{\mathrm{j}}=h_{j}$ for each edge in τ with size j.

Computation of the Coproduct in this Bialgebra

Lemma (McCammond, Meier, 2004)

Let τ be a hypertree on n vertices.
(a) The interval $[\hat{0}, \tau]$ is a direct product of partition posets, with one factor p_{j} for each vertex in τ with valency j.
(b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets, with one factor $\mathrm{HT}_{\mathrm{j}}=h_{j}$ for each edge in τ with size j.

$$
\Delta\left(h_{n}\right)=\sum_{(\alpha, \pi) \in \mathcal{P}_{n}} c_{\alpha, \pi}^{n} p_{\alpha} \otimes h_{\pi},
$$

where for all $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ and $\pi=\left(\pi_{2}, \pi_{3}, \ldots, \pi_{l}\right)$,
$p_{\alpha}=1^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ and $h_{\pi}=h_{2}^{\pi_{2}} h_{3}^{\pi_{3}} \ldots h_{l}^{\pi_{1}}$.

Computation of the Coproduct in this Bialgebra

Lemma (McCammond, Meier, 2004)

Let τ be a hypertree on n vertices.
(a) The interval $[\hat{0}, \tau]$ is a direct product of partition posets, with one factor p_{j} for each vertex in τ with valency j.
(b) The half-open interval $[\tau, \hat{1})$ is a direct product of hypertree posets, with one factor $\mathrm{HT}_{\mathrm{j}}=h_{j}$ for each edge in τ with size j.

$$
\Delta\left(h_{n}\right)=\sum_{(\alpha, \pi) \in \mathcal{P}_{n}} c_{\alpha, \pi}^{n} p_{\alpha} \otimes h_{\pi}
$$

where for all $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ and $\pi=\left(\pi_{2}, \pi_{3}, \ldots, \pi_{l}\right)$, $p_{\alpha}=1^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ and $h_{\pi}=h_{2}^{\pi_{2}} h_{3}^{\pi_{3}} \ldots h_{l}^{\pi_{1}}$.
$c_{\alpha, \pi}^{n}=$ number of hypertrees in h_{n} with :

- α_{i} vertices of valency $i, \forall i \geq 1$
- π_{j} edges of size $j, \forall j \geq 2$

First criterion

Criterion for the vanishing of $c_{\alpha, \pi}^{n}$
$c_{\alpha, \pi}^{n} \neq 0 \Longleftrightarrow \sum_{i=1}^{k} \alpha_{i}=n, \quad \sum_{j=2}^{\prime}(j-1) \pi_{j}=n-1$ and $\sum_{i=1}^{k} i \alpha_{i}=n+\sum_{j=2}^{\prime} \pi_{j}-1$.

Counting hypertrees

A π-hooked partition P, for $\pi=(1,2)$:
(2)

Prüfer code

A π-hooked partition P, for $\pi=(1,2)$:
(2)

Code :

Prüfer code

A π-hooked partition P, for $\pi=(1,2)$:

Code:

Prüfer code

A π-hooked partition P, for $\pi=(1,2)$:

Code : 1

Prüfer code

A π-hooked partition P, for $\pi=(1,2)$:

Code : 1,

Prüfer code

A π-hooked partition P, for $\pi=(1,2)$:

Code: 1, 6

Prüfer code

A π-hooked partition P, for $\pi=(1,2)$:
(2)

Prüfer code

A π-hooked partition P, for $\pi=(1,2)$:
(2)

Prüfer code

A π-hooked partition P, for $\pi=(1,2)$:
(2)

Prüfer code

A π-hooked partition P, for $\pi=(1,2)$:
(2)

Code : 1, 6

Return of the Prüfer code

constructions of a rooted hypertree of valency set α from P_{π}
words on $\llbracket 1, n \rrbracket$, of length $k=\sum_{j \geq 2} \pi_{j}-1$, with $\sum_{i \geq 2} \alpha_{i}$ different letters, where α_{i} letters appear $i-1$ times, $\forall i \geq 2$

$$
\rightsquigarrow \frac{k!\times n!}{\prod_{i \geq 2}(i-1)!^{\alpha_{i}} \alpha_{i}!} .
$$

Theorem (B.O.)

$$
\Delta\left(h_{n}\right)=\frac{1}{n} \times \sum_{(\alpha, \pi) \in \mathcal{P}(n)} \frac{n!}{\prod_{j \geq 2}(j-1)!^{\pi_{j} \pi_{j}!}} \times \frac{k!\times n!}{\prod_{i \geq 1}(i-1)!^{\alpha_{i}} \alpha_{i}!} \prod_{i=2}^{k} p_{i}^{\alpha_{i}} \otimes \prod_{j=2}^{l} h_{j}^{\pi}
$$

Application: Computation of Moebius numbers of Hypertree Posets

Theorem (McCammond and Meier 2004)

The Moebius number of the augmented hypertree poset on n vertices is given by:

$$
\mu\left(\widehat{H T_{n}}\right)=(-1)^{n-1}(n-1)^{n-2} .
$$

The following equality holds:

$$
(n-1)^{n-2}=\sum_{(\alpha, \pi) \in \mathcal{P}(n)} \frac{(-1)^{i \alpha_{i}-1}}{n} \times \frac{n!}{\prod_{j \geq 2}(j-1)!!^{\pi_{j}} \pi_{j}!} \times \frac{k!\times n!}{\prod_{i \geq 1} \alpha_{i}!},
$$

where $\mathcal{P}(n)=\left(\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \pi=\left(\pi_{2}, \ldots, \pi_{l}\right)\right)$ satisfying:

$$
\sum_{i=1}^{k} \alpha_{i}=n, \quad \sum_{j=2}^{l}(j-1) \pi_{j}=n-1, \quad \text { and } \quad \sum_{i=1}^{k} i \alpha_{i}=n+\sum_{j=2}^{l} \pi_{j}-1
$$

Thank you very much!

