Greatest Common Divisors of Specialized Schur Functions

Soichi OKADA (Nagoya University) joint work with Yusuke ITO (Nagoya University)

72nd Séminaire Lotharingien de Combinatoire Lyon, March 25, 2014

Plan:

- Greatest common divisor of $s_{\lambda}(1^k)$ with $\lambda \vdash n$.
- Existence of generalized parking spaces.
- Greatest common divisor of $s_{\lambda}(1, q, \cdots, q^{k-1})$ with $\lambda \vdash n$.

Greatest Common Divisors of $s_\lambda(1^k)$

Schur Functions

A partition of a positive integer n is a weakly decreasing sequence

$$\lambda = (\lambda_1, \lambda_2, \lambda_3, \cdots), \quad \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots$$

of non-negative integers with $\sum_i \lambda_i = n$. Then we write $\lambda \vdash n$. The length $l(\lambda)$ of a partition λ is defined by

$$l(\lambda) = \#\{i : \lambda_i > 0\}.$$

Let k be a positive integer and let λ be a partition with length $\leq k$. The Schur function $s_{\lambda}(x_1, \dots, x_k)$ corresponding to λ is defined by

$$s_{\lambda}(x_1, \cdots, x_k) = \frac{\det \left(x_i^{\lambda_j + k - j}\right)_{1 \le i, j \le k}}{\det \left(x_i^{k - j}\right)_{1 \le i, j \le k}}$$

The Schur functions are symmetric polynomials in x_1, \dots, x_k with nonnegative integer coefficients.

Specialized Schur Functions

We are interested in the greatest common divisors of the special values

$$s_{\lambda}(1^k) = s_{\lambda}(\underbrace{1, \cdots, 1}_k), \quad \text{and} \quad s_{\lambda}(1, q, q^2, \cdots, q^{k-1}).$$

The special values $s_{\lambda}(1^k)$ can be interpreted as follows:

- $s_{\lambda}(1^k) = \text{ the number of semistandard tableaux of shape } \lambda$ with entries in $\{1, 2, \cdots, k\}$
 - = the dimension of the irreducible representation of \mathbf{GL}_k with highest weight λ

$$=\prod_{x\in D(\lambda)}\frac{k+c(x)}{h(x)},$$

where $D(\lambda)$ is the Young diagram of λ , and c(x) and h(x) denote the content and the hook length of x respectively.

Theorem 1 Let k and n be positive integers. Then we have

$$\operatorname{gcd}_{\mathbb{Z}}\left\{s_{\lambda}(1^{k}): \lambda \vdash n\right\} = \frac{k}{\operatorname{gcd}(n,k)}.$$

Example If n = 4, then we have

k	$ s_{(4)}(1^k) $	$ s_{(3,1)}(1^k) $	$s_{(2^2)}(1^k)$	$s_{(2,1^2)}(1^k)$	$s_{(1^4)}(1^k)$	GCD
1	1	0	0	0	0	1
2	5	3	1	0	0	1
3	15	15	6	3	0	3
4	35	45	20	15	1	1
5	70	105	50	45	5	5
6	126	210	105	105	15	3
7	210	378	196	210	35	7
8	330	630	336	378	70	2
9	495	990	540	630	126	9
10	715	1485	825	990	210	5

Theorem 1 Let k and n be positive integers. Then we have $\operatorname{gcd}_{\mathbb{Z}}\left\{s_{\lambda}(1^{k}): \lambda \vdash n\right\} = \frac{k}{\operatorname{gcd}(n,k)}.$

Proof follows from the following two claims.

Claim 1 For any partition λ of n, the integer $s_{\lambda}(1^k)$ is divisible by $k/\gcd(n,k)$.

Claim 2 The integer $k/ \operatorname{gcd}(n, k)$ is an element of the ideal of \mathbb{Z} generated by $s_{\lambda}(1^k)$'s $(\lambda \vdash n)$.

Proof of Theorem 1 (1/4)

Claim 1 For any partition λ of n, the integer $s_{\lambda}(1^k)$ is divisible by $k/\gcd(n,k)$.

Proof of Claim 1

Let d = gcd(n, k). It follows from the Frobenius formula that

$$\sum_{\lambda \vdash n} \frac{s_{\lambda}(1^k)}{k/d} \chi^{\lambda}(\sigma) = \frac{1}{k/d} \cdot k^{l(\operatorname{type}(\sigma))} \quad (\sigma \in \mathfrak{S}_n),$$

where χ^{λ} is the irreducible character of the symmetric group \mathfrak{S}_n corresponding to λ , and $\operatorname{type}(\sigma)$ is the cycle type of σ . Hence it is enough to show that there exists a representation of \mathfrak{S}_n whose character θ is given by

$$\theta(\sigma) = \frac{1}{k/d} \cdot k^{l(\operatorname{type}(\sigma))} \quad (\sigma \in \mathfrak{S}_n).$$

Proof of Theorem 1 (2/4)

Consider the permutation representation of \mathfrak{S}_n on $X = (\mathbb{Z}/k\mathbb{Z})^n$, and put

 $X_p = \{(x_i) \in (\mathbb{Z}/k\mathbb{Z})^n : x_1 + \dots + x_n - pd \in \{0, 1, \dots, d-1\}\}$ for $p = 0, 1, \dots, k/d-1$, where we identify $\mathbb{Z}/k\mathbb{Z}$ with $\{0, 1, \dots, k-1\}$. If we denote by ψ and ψ_p the permutation character of X and X_p , then we have

$$\psi(\sigma) = k^{l(\operatorname{type}(\sigma))}, \text{ and } \psi = \psi_0 + \psi_1 + \dots + \psi_{k/d-1}.$$

Since gcd(k/d, n/d) = 1, we can find an equivariant bijection between X_0 and X_p , so we have

$$\psi_0 = \psi_1 = \dots = \psi_{k/d-1}.$$

Hence we conclude that θ is the permutation character ψ_0 of X_0 , and that $\frac{s_\lambda(1^k)}{k/d}$ is an integer.

Proof of Theorem 1 (3/4)

Claim 2 The integer $k / \gcd(n, k)$ is an element of the ideal of \mathbb{Z} generated by $s_{\lambda}(1^k)$'s $(\lambda \vdash n)$.

Proof of Claim 2

We have the following relation among ideals of \mathbb{Z} :

$$\left\langle s_{\lambda}(1^k): \lambda \vdash n \right\rangle = \left\langle m_{\lambda}(1^k): \lambda \vdash n \right\rangle \supset \left\langle m_{(f^{n/f})}(1^k): f \mid d \right\rangle,$$

where $m_{\lambda}(x_1, \dots, x_k)$ is the monomial symmetric polynomial corresponding to λ , and $d = \gcd(k, n)$. Since we have

$$m_{(f^{n/f})}(1^k) = \binom{k}{f},$$

it is enough to show that

$$\frac{k}{d} \in \left\langle \binom{k}{f} : f \mid d \right\rangle.$$

Proof of Theorem 1 (4/4)

Lemma If e divides k, then

$$\frac{k}{e} \in \left\langle \binom{k}{f} : f \mid e \right\rangle.$$

This lemma can be shown by using the induction on e and the relation

$$\binom{p^a l}{p^a} - \frac{p^a l}{p^a} \equiv 0 \bmod pl,$$

where p is a prime.

Generalized Parking Spaces

Parking Functions

A parking function of length n is a sequence (a_1, a_2, \cdots, a_n) of positive integers satisfying

- $a_i \in \{1, 2, \cdots, n\}$, and
- $\#\{i : a_i \leq k\} \geq k \text{ for } k = 1, 2, \cdots, n.$

Imagine that there are n cars C_1, C_2, \dots, C_n and n parking spaces $1, 2, \dots, n$ in a one-way street. Car C_i prefers the parking space a_i and approaches its preferred parking space.

• If it is free, then C_i parks there.

• If it is occupied, then C_i parks in the next available space if possible. Then the sequence (a_1, \dots, a_n) is a parking function if and only if all cars can park.

Parking Functions

A parking function of length n is a sequence (a_1, a_2, \cdots, a_n) of positive integers satisfying

- $a_i \in \{1, 2, \cdots, n\}$, and
- $\#\{i: a_i \le k\} \ge k \text{ for } k = 1, 2, \cdots, n.$

We put

 PF_n = the set of parking functions of length n.

Example

$$PF_{2} = \{ 11, 12, 21 \},\$$

$$PF_{3} = \{ 111, 112, 121, 211, 113, 131, 311, 122 \},\$$

$$PF_{3} = \{ 212, 221, 123, 132, 213, 231, 312, 321 \}$$

The symmetric group \mathfrak{S}_n acts on the set PF_n by permuting entries:

$$\sigma \cdot (a_1, \cdots, a_n) = (a_{\sigma(1)}, \cdots, a_{\sigma(n)}) \quad (\sigma \in \mathfrak{S}_n).$$

It is known that the corresponding permutation character is given by

$$\varphi(\sigma) = (n+1)^{l(\operatorname{type}(\sigma))-1} \quad (\sigma \in \mathfrak{S}_n).$$

More generally, given a positive integer k, we consider the class function on \mathfrak{S}_n defined by

$$\varphi_k(\sigma) = k^{l(\operatorname{type}(\sigma))-1} \quad (\sigma \in \mathfrak{S}_n).$$

Question When is φ_k the character of some representation of \mathfrak{S}_n ?

It is not hard to show that, if k is relatively prime to n, then φ_k is the permutation character on

$$\{x \in (\mathbb{Z}/k\mathbb{Z})^n : x_1 + \dots + x_n = 0\}.$$

By using Theorem 1, we can prove

Corollary

 φ_k is the character of a representation of \mathfrak{S}_n $\iff k$ is relatively prime to n.

Proof It follows from the Frobenius formula that

$$\varphi_k = \sum_{\lambda \vdash n} \frac{s_\lambda(1^k)}{k} \chi^\lambda.$$

Hence we have

$$\begin{split} \varphi_k \text{ is the character of a representation of } \mathfrak{S}_n \\ \Longleftrightarrow \frac{s_\lambda(1^k)}{k} \in \mathbb{Z} \text{ for all } \lambda \vdash n \\ \Longleftrightarrow k \text{ is relatively prime to } n, \\ \text{since } \gcd\{s_\lambda(1^k) : \lambda \vdash n\} = k/\gcd(n,k). \end{split}$$

Generalization to Coxeter groups

Let (W, S) be a finite Coxeter system and V its geometric representation.

Example (Type A_{n-1})

$$W = \mathfrak{S}_n, S = \{s_i = (i, i+1) : 1 \le i \le n-1\}, V = \{x = (x_1, \cdots, x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 0\}.$$

In this setting, we have

$$l(\operatorname{type}(\sigma)) - 1 = \dim V^{\sigma} \quad (\sigma \in \mathfrak{S}_n),$$

where $V^{\sigma} = \{v \in V : \sigma v = v\}.$

Generalization to Coxeter groups

Let (W,S) be a finite Coxeter system and V its geometric representation. Let k be a positive integer and consider the class function φ_k^W on W given by

$$\varphi_k^W(w) = k^{\dim V^w} \quad (w \in W),$$

where V^w is the fixed-point subspace of w.

Question When is φ_k^W is the character of a representation of W?

A W-module U is called a generalized parking space if its character is given by φ_k^W for some positive integer k. For example, the vector space $\mathbb{C} \operatorname{PF}_n$ with basis PF_n is a parking space for \mathfrak{S}_n .

Theorem 2 Let W be an irreducible Coxeter group. Then φ_k^W is a character of some representation of W if and only if the following condition is satisfied:

type	condition on k
A_{n-1}	k is relatively prime to n
$B_n,\ D_n$	k is odd
E_{6}, E_{7}, F_{4}	k is not divisible by 2 and 3
E_8	k is not divisible by 2 , 3 , and 5
H_3	$k \equiv 1, 5, 9 \mod 10$
H_4	$k \equiv 1, 11, 19, 29 \mod 30$
$I_2(m)$ (m is even)	$k=1 \text{ or } "k \ge m-1 \text{ and } k^2 \equiv 1 \mod 2m"$
$I_2(m)$ (m is odd)	$k=1$ or " $k\geq m-1$ and $k^2\equiv 1 \mod m$ "

Theorem 2 Let W be an irreducible Coxeter group. Then φ_k^W is a character of some representation of W if and only if the following condition is satisfied:

type	condition on k
A_{n-1}	k is relatively prime to n
$B_n,\ D_n$	k is odd
E_{6}, E_{7}, F_{4}	k is not divisible by 2 and 3
E_8	k is not divisible by 2 , 3 , and 5
H_3	$k \equiv 1, 5, 9 \mod 10$
H_4	$k \equiv 1, 11, 19, 29 \mod 30$
$I_2(m)$ (<i>m</i> is even)	$k=1$ or " $k\geq m-1$ and $k^2\equiv 1 mod 2m$ "
$I_2(m)$ (m is odd)	$k=1$ or " $k\geq m-1$ and $k^2\equiv 1 mod m$ "

Remark E. Sommers proved that, if W is a Weyl group and k satisfies the above condition, then the permutation representation on Q/kQ has the character φ_k^W , where Q is the root lattice.

If W is not of type $I_2(m)$ with m = 5 or $m \ge 7$, then the condition in Theorem 2 can be stated in terms of "generalized q-Catalan number" $C_k^W(q)$:

$$C_k^W(q) = \prod_{i=1}^r \frac{[k+e_i]_q}{[1+e_i]_q},$$

where e_1, \dots, e_r are the exponents of W and $[m]_q = (1 - q^m)/(1 - q)$. **Example** (Type A_{n-1}) If $W = \mathfrak{S}_n$, then the exponents are $1, 2, \dots, n-1$, and

$$C_k^{\mathfrak{S}_n}(q) = \frac{1}{[n]_q} \begin{bmatrix} k+n-1\\k \end{bmatrix}_q,$$

where $\begin{bmatrix} m \\ k \end{bmatrix}_q$ is the q-binomial coefficient. If k = n+1 (Coxeter number), then $C_{n+1}^{\mathfrak{S}_n}(q)$ is a q-analogue of the Catalan number C_n .

If W is not of type $I_2(m)$ with m = 5 or $m \ge 7$, then the condition in Theorem 2 can be stated in terms of "generalized q-Catalan number" $C_k^W(q)$:

$$C_k^W(q) = \prod_{i=1}^r \frac{[k+e_i]_q}{[1+e_i]_q},$$

where e_1, \dots, e_r are the exponents of W and $[m]_q = (1 - q^m)/(1 - q)$. Corollary Suppose that W is not of type $I_2(m)$ with m = 5 or $m \ge 7$. Then

$$\varphi_k^W$$
 is a character of some representation of W
 $\iff C_k^W(q)$ is a polynomial in q .

Greatest Common Divisors of $s_{\lambda}(1, q, \cdots, q^{k-1})$

Theorem 1 Let k and n be positive integers. Then we have $\operatorname{gcd}_{\mathbb{Z}}\left\{s_{\lambda}(1^{k}): \lambda \vdash n\right\} = \frac{k}{\operatorname{gcd}(n,k)}.$

Theorem 3 Let k and n be positive integers. Then we have $gcd_{\mathbb{Q}[q]}\left\{s_{\lambda}(1,q,q^{2},\cdots,q^{k-1}):\lambda \vdash n\right\} = \frac{[k]_{q}}{[gcd(n,k)]_{q}},$ where $[r]_{q} = (1-q^{r})/(1-q).$

Remark Theorem 3 does not imply Theorem 1 by letting q = 1. For example,

$$\lim_{q \to 1} \gcd\{(q^2 + 1)(q + 1)^2, (q + 1)^3\} = \lim_{q \to 1} (q + 1)^2 = 4,$$
$$\gcd\{\lim_{q \to 1} (q^2 + 1)(q + 1)^2, \lim_{q \to 1} (q + 1)^3\} = \gcd(8, 8) = 8.$$

Theorem 3 Let k and n be positive integers. Then we have $\operatorname{gcd}_{\mathbb{Q}[q]}\left\{s_{\lambda}(1, q, q^{2}, \cdots, q^{k-1}) : \lambda \vdash n\right\} = \frac{\lfloor k \rfloor_{q}}{\left[\operatorname{gcd}(n, k)\right]_{q}},$ where $[r]_q = (1 - q^r)/(1 - q)$. **Proof** follows from 1. $\{z \in \mathbb{C} : z \text{ is a common root of } h_{\lambda}(1, q, \dots, q^{k-1}) \ (\lambda \vdash n)\}$ $= | | \{z \in \mathbb{C} : z \text{ is a primitive } d\text{-th root of } 1\}.$

$$d|k,\,d
eq n$$

f z is a common root of $h_\lambda(1,q,\ldots,q^{k-1})$ $(\lambdadash n)$, then z is a

2. If z is a common root of $h_{\lambda}(1, q, \ldots, q^{k-1})$ $(\lambda \vdash n)$, then z is a simple root of $h_{\mu}(1, q, \ldots, q^{k-1})$ for some $\mu \vdash n$.

Conjectures

Theorem 3 implies that

$$\frac{s_{\lambda}(1, q, \cdots, q^{k-1})}{[k]_q/[d]_q} = \frac{s_{\lambda}(1, q, \cdots, q^{k-1})}{1 + q^d + \cdots + q^{k-d}} \in \mathbb{Z}[q],$$

where $\lambda \vdash n$ and $d = \gcd(k, n)$.

Conjecture 1 If λ is a partition of n and d = gcd(k, n), then so $(1, a, \dots, a^{k-1})$

$$\frac{s_{\lambda}(1,q,\cdots,q^{n-1})}{1+q^d+\cdots+q^{k-d}} \in \mathbb{N}[q],$$

i.e., it is a polynomial with non-negative integer coefficients. This conjecture is true if

- n is a multiple of k (i.e., d = k) (well-known), or
- k/d is relatively prime to n.

Conjecture 1 is now proved.

A finite sequence (a_0, a_1, \cdots, a_m) is called unimodal if there is an index p satisfying

$$a_0 \le a_1 \le \dots \le a_{p-1} \le a_p \ge a_{p+1} \ge \dots \ge a_{m-1} \ge a_m.$$

Conjecture 2 Let λ be a partition of n and d = gcd(k, n). If we write

$$\frac{s_{\lambda}(1, q, \cdots, q^{k-1})}{1 + q^d + \cdots + q^{k-d}} = \sum_{i \ge 0} a_i q^i,$$

then the sequences

$$(a_0, a_2, a_4, \cdots),$$
 and (a_1, a_3, a_5, \cdots)

are both unimodal.

This conjecture is true if

- n is a multiple of k (i.e., d = k) (well-known), or
- k is relatively prime to n.