Greatest Common Divisors of Specialized Schur Functions

Soichi OKADA (Nagoya University)
joint work with Yusuke ITO (Nagoya University)

72nd Séminaire Lotharingien de Combinatoire Lyon, March 25, 2014

Plan:

- Greatest common divisor of $s_{\lambda}\left(1^{k}\right)$ with $\lambda \vdash n$.
- Existence of generalized parking spaces.
- Greatest common divisor of $s_{\lambda}\left(1, q, \cdots, q^{k-1}\right)$ with $\lambda \vdash n$.

Greatest Common Divisors of $s_{\lambda}\left(1^{k}\right)$

Schur Functions

A partition of a positive integer n is a weakly decreasing sequence

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots\right), \quad \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \cdots
$$

of non-negative integers with $\sum_{i} \lambda_{i}=n$. Then we write $\lambda \vdash n$. The length $l(\lambda)$ of a partition λ is defined by

$$
l(\lambda)=\#\left\{i: \lambda_{i}>0\right\} .
$$

Let k be a positive integer and let λ be a partition with length $\leq k$. The Schur function $s_{\lambda}\left(x_{1}, \cdots, x_{k}\right)$ corresponding to λ is defined by

$$
s_{\lambda}\left(x_{1}, \cdots, x_{k}\right)=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+k-j}\right)_{1 \leq i, j \leq k}}{\operatorname{det}\left(x_{i}^{k-j}\right)_{1 \leq i, j \leq k}}
$$

The Schur functions are symmetric polynomials in x_{1}, \cdots, x_{k} with nonnegative integer coefficients.

Specialized Schur Functions

We are interested in the greatest common divisors of the special values

$$
s_{\lambda}\left(1^{k}\right)=s_{\lambda}(\underbrace{1, \cdots, 1}), \quad \text { and } \quad s_{\lambda}\left(1, q, q^{2}, \cdots, q^{k-1}\right) \text {. }
$$

The special values $s_{\lambda}\left(1^{k}\right)$ can be interpreted as follows:

$$
\begin{aligned}
s_{\lambda}\left(1^{k}\right)= & \text { the number of semistandard tableaux of shape } \lambda \\
& \text { with entries in }\{1,2, \cdots, k\} \\
= & \text { the dimension of the irreducible representation } \\
& \text { of } \mathbf{G L}_{k} \text { with highest weight } \lambda \\
= & \prod_{x \in D(\lambda)} \frac{k+c(x)}{h(x)},
\end{aligned}
$$

where $D(\lambda)$ is the Young diagram of λ, and $c(x)$ and $h(x)$ denote the content and the hook length of x respectively.

Theorem 1 Let k and n be positive integers. Then we have

$$
\operatorname{gcd} \mathbb{Z}\left\{s_{\lambda}\left(1^{k}\right): \lambda \vdash n\right\}=\frac{k}{\operatorname{gcd}(n, k)}
$$

Example If $n=4$, then we have

k	$s_{(4)}\left(1^{k}\right)$	$s_{(3,1)}\left(1^{k}\right)$	$s_{\left(2^{2}\right)}\left(1^{k}\right)$	$s_{\left(2,1^{2}\right)}\left(1^{k}\right)$	$s_{\left(1^{4}\right)}\left(1^{k}\right)$	GCD
1	1	0	0	0	0	1
2	5	3	1	0	0	1
3	15	15	6	3	0	3
4	35	45	20	15	1	1
5	70	105	50	45	5	5
6	126	210	105	105	15	3
7	210	378	196	210	35	7
8	330	630	336	378	70	2
9	495	990	540	630	126	9
10	715	1485	825	990	210	5

Theorem 1 Let k and n be positive integers. Then we have

$$
\operatorname{gcd} \mathbb{Z}\left\{s_{\lambda}\left(1^{k}\right): \lambda \vdash n\right\}=\frac{k}{\operatorname{gcd}(n, k)}
$$

Proof follows from the following two claims.
Claim 1 For any partition λ of n, the integer $s_{\lambda}\left(1^{k}\right)$ is divisible by $k / \operatorname{gcd}(n, k)$.
Claim 2 The integer $k / \operatorname{gcd}(n, k)$ is an element of the ideal of \mathbb{Z} generated by $s_{\lambda}\left(1^{k}\right)$'s $(\lambda \vdash n)$.

Proof of Theorem 1 (1/4)

Claim 1 For any partition λ of n, the integer $s_{\lambda}\left(1^{k}\right)$ is divisible by $k / \operatorname{gcd}(n, k)$.

Proof of Claim 1

Let $d=\operatorname{gcd}(n, k)$. It follows from the Frobenius formula that

$$
\sum_{\lambda \vdash n} \frac{s_{\lambda}\left(1^{k}\right)}{k / d} \chi^{\lambda}(\sigma)=\frac{1}{k / d} \cdot k^{l(\operatorname{type}(\sigma))} \quad\left(\sigma \in \mathfrak{S}_{n}\right),
$$

where χ^{λ} is the irreducible character of the symmetric group \mathfrak{S}_{n} corresponding to λ, and type (σ) is the cycle type of σ. Hence it is enough to show that there exists a representation of \mathfrak{S}_{n} whose character θ is given by

$$
\theta(\sigma)=\frac{1}{k / d} \cdot k^{l(\operatorname{type}(\sigma))} \quad\left(\sigma \in \mathfrak{S}_{n}\right) .
$$

Proof of Theorem 1 (2/4)

Consider the permutation representation of \mathfrak{S}_{n} on $X=(\mathbb{Z} / k \mathbb{Z})^{n}$, and put

$$
X_{p}=\left\{\left(x_{i}\right) \in(\mathbb{Z} / k \mathbb{Z})^{n}: x_{1}+\cdots+x_{n}-p d \in\{0,1, \cdots, d-1\}\right\}
$$

for $p=0,1, \cdots, k / d-1$, where we identify $\mathbb{Z} / k \mathbb{Z}$ with $\{0,1, \cdots, k-1\}$. If we denote by ψ and ψ_{p} the permutation character of X and X_{p}, then we have

$$
\psi(\sigma)=k^{l(\operatorname{type}(\sigma))}, \quad \text { and } \quad \psi=\psi_{0}+\psi_{1}+\cdots+\psi_{k / d-1}
$$

Since $\operatorname{gcd}(k / d, n / d)=1$, we can find an equivariant bijection between X_{0} and X_{p}, so we have

$$
\psi_{0}=\psi_{1}=\cdots=\psi_{k / d-1}
$$

Hence we conclude that θ is the permutation character ψ_{0} of X_{0}, and that $\frac{s_{\lambda}\left(1^{k}\right)}{k / d}$ is an integer.

Proof of Theorem 1 (3/4)

Claim 2 The integer $k / \operatorname{gcd}(n, k)$ is an element of the ideal of \mathbb{Z} generated by $s_{\lambda}\left(1^{k}\right)$'s $(\lambda \vdash n)$.

Proof of Claim 2

We have the following relation among ideals of \mathbb{Z} :

$$
\left\langle s_{\lambda}\left(1^{k}\right): \lambda \vdash n\right\rangle=\left\langle m_{\lambda}\left(1^{k}\right): \lambda \vdash n\right\rangle \supset\left\langle m_{\left(f^{n / f}\right)}\left(1^{k}\right): f \mid d\right\rangle,
$$

where $m_{\lambda}\left(x_{1}, \cdots, x_{k}\right)$ is the monomial symmetric polynomial corresponding to λ, and $d=\operatorname{gcd}(k, n)$. Since we have

$$
m_{\left(f^{n / f}\right)}\left(1^{k}\right)=\binom{k}{f}
$$

it is enough to show that

$$
\frac{k}{d} \in\left\langle\binom{ k}{f}: f \mid d\right\rangle .
$$

Proof of Theorem 1 (4/4)

Lemma If e divides k, then

$$
\frac{k}{e} \in\left\langle\binom{ k}{f}: f \mid e\right\rangle .
$$

This lemma can be shown by using the induction on e and the relation

$$
\binom{p^{a} l}{p^{a}}-\frac{p^{a} l}{p^{a}} \equiv 0 \bmod p l,
$$

where p is a prime.

Generalized Parking Spaces

Parking Functions

A parking function of length n is a sequence $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ of positive integers satisfying

- $a_{i} \in\{1,2, \cdots, n\}$, and
- $\#\left\{i: a_{i} \leq k\right\} \geq k$ for $k=1,2, \cdots, n$.

Imagine that there are n cars $C_{1}, C_{2}, \cdots, C_{n}$ and n parking spaces $1,2, \cdots, n$ in a one-way street. Car C_{i} prefers the parking space a_{i} and approaches its preferred parking space.

- If it is free, then C_{i} parks there.
- If it is occupied, then C_{i} parks in the next available space if possible. Then the sequence $\left(a_{1}, \cdots, a_{n}\right)$ is a parking function if and only if all cars can park.

Parking Functions

A parking function of length n is a sequence $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ of positive integers satisfying

- $a_{i} \in\{1,2, \cdots, n\}$, and
- $\#\left\{i: a_{i} \leq k\right\} \geq k$ for $k=1,2, \cdots, n$.

We put

$$
\mathrm{PF}_{n}=\text { the set of parking functions of length } n \text {. }
$$

Example

$$
\begin{aligned}
\mathrm{PF}_{2} & =\{11,12,21\}, \\
\mathrm{PF}_{3} & =\left\{\begin{array}{l}
111,112,121,211,113,131,311,122 \\
212,221,123,132,213,231,312,321
\end{array}\right\}
\end{aligned}
$$

The symmetric group \mathfrak{S}_{n} acts on the set PF_{n} by permuting entries:

$$
\sigma \cdot\left(a_{1}, \cdots, a_{n}\right)=\left(a_{\sigma(1)}, \cdots, a_{\sigma(n)}\right) \quad\left(\sigma \in \mathfrak{S}_{n}\right)
$$

It is known that the corresponding permutation character is given by

$$
\varphi(\sigma)=(n+1)^{l(\operatorname{tgpe}(\sigma))-1} \quad\left(\sigma \in \mathfrak{S}_{n}\right)
$$

More generally, given a positive integer k, we consider the class function on \mathfrak{S}_{n} defined by

$$
\varphi_{k}(\sigma)=k^{l(\operatorname{type}(\sigma))-1} \quad\left(\sigma \in \mathfrak{S}_{n}\right)
$$

Question When is φ_{k} the character of some representation of \mathfrak{S}_{n} ?
It is not hard to show that, if k is relatively prime to n, then φ_{k} is the permutation character on

$$
\left\{x \in(\mathbb{Z} / k \mathbb{Z})^{n}: x_{1}+\cdots+x_{n}=0\right\} .
$$

By using Theorem 1, we can prove

Corollary

φ_{k} is the character of a representation of \mathfrak{S}_{n} $\Longleftrightarrow k$ is relatively prime to n.

Proof It follows from the Frobenius formula that

$$
\varphi_{k}=\sum_{\lambda \vdash n} \frac{s_{\lambda}\left(1^{k}\right)}{k} \chi^{\lambda}
$$

Hence we have
φ_{k} is the character of a representation of \mathfrak{S}_{n}
$\Longleftrightarrow \frac{s_{\lambda}\left(1^{k}\right)}{k} \in \mathbb{Z}$ for all $\lambda \vdash n$
$\Longleftrightarrow k$ is relatively prime to n,
since $\operatorname{gcd}\left\{s_{\lambda}\left(1^{k}\right): \lambda \vdash n\right\}=k / \operatorname{gcd}(n, k)$.

Generalization to Coxeter groups

Let (W, S) be a finite Coxeter system and V its geometric representation.
Example (Type A_{n-1})

$$
\begin{aligned}
W & =\mathfrak{S}_{n} \\
S & =\left\{s_{i}=(i, i+1): 1 \leq i \leq n-1\right\} \\
V & =\left\{x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}+\cdots+x_{n}=0\right\}
\end{aligned}
$$

In this setting, we have

$$
l(\operatorname{type}(\sigma))-1=\operatorname{dim} V^{\sigma} \quad\left(\sigma \in \mathfrak{S}_{n}\right),
$$

where $V^{\sigma}=\{v \in V: \sigma v=v\}$.

Generalization to Coxeter groups

Let (W, S) be a finite Coxeter system and V its geometric representation. Let k be a positive integer and consider the class function φ_{k}^{W} on W given by

$$
\varphi_{k}^{W}(w)=k^{\operatorname{dim} V^{w}} \quad(w \in W)
$$

where V^{w} is the fixed-point subspace of w.
Question When is φ_{k}^{W} is the character of a representation of W ?
A W-module U is called a generalized parking space if its character is given by φ_{k}^{W} for some positive integer k. For example, the vector space $\mathbb{C} \mathrm{PF}_{n}$ with basis PF_{n} is a parking space for \mathfrak{S}_{n}.

Theorem 2 Let W be an irreducible Coxeter group. Then φ_{k}^{W} is a character of some representation of W if and only if the following condition is satisfied:

type	condition on k
A_{n-1}	k is relatively prime to n
B_{n}, D_{n}	k is odd
E_{6}, E_{7}, F_{4}	k is not divisible by 2 and 3
E_{8}	k is not divisible by 2,3, and 5
H_{3}	$k \equiv 1,5,9 \bmod 10$
H_{4}	$k \equiv 1,11,19,29 \bmod 30$
$I_{2}(m)(m$ is even $)$	$k=1$ or " $k \geq m-1$ and $k^{2} \equiv 1 \bmod 2 m "$
$I_{2}(m)(m$ is odd $)$	$k=1$ or " $k \geq m-1$ and $k^{2} \equiv 1 \bmod m "$

Theorem 2 Let W be an irreducible Coxeter group. Then φ_{k}^{W} is a character of some representation of W if and only if the following condition is satisfied:

type	condition on k
A_{n-1}	k is relatively prime to n
B_{n}, D_{n}	k is odd
E_{6}, E_{7}, F_{4}	k is not divisible by 2 and 3
E_{8}	k is not divisible by 2,3 , and 5
H_{3}	$k \equiv 1,5,9 \bmod 10$
H_{4}	$k \equiv 1,11,19,29 \bmod 30$
$I_{2}(m)(m$ is even $)$	$k=1$ or " $k \geq m-1$ and $k^{2} \equiv 1 \bmod 2 m "$
$I_{2}(m)(m$ is odd $)$	$k=1$ or " $k \geq m-1$ and $k^{2} \equiv 1 \bmod m "$

Remark E. Sommers proved that, if W is a Weyl group and k satisfies the above condition, then the permutation representation on $Q / k Q$ has the character φ_{k}^{W}, where Q is the root lattice.

If W is not of type $I_{2}(m)$ with $m=5$ or $m \geq 7$, then the condition in Theorem 2 can be stated in terms of "generalized q-Catalan number" $C_{k}^{W}(q):$

$$
C_{k}^{W}(q)=\prod_{i=1}^{r} \frac{\left[k+e_{i}\right]_{q}}{\left[1+e_{i}\right]_{q}}
$$

where e_{1}, \cdots, e_{r} are the exponents of W and $[m]_{q}=\left(1-q^{m}\right) /(1-q)$.
Example (Type A_{n-1}) If $W=\mathfrak{S}_{n}$, then the exponents are $1,2, \cdots, n-$ 1 , and

$$
C_{k}^{\mathfrak{S}_{n}}(q)=\frac{1}{[n]_{q}}\left[\begin{array}{c}
k+n-1 \\
k
\end{array}\right]_{q},
$$

where $\left[\begin{array}{c}m \\ k\end{array}\right]_{q}$ is the q-binomial coefficient. If $k=n+1$ (Coxeter number), then $C_{n+1}^{\mathfrak{S}_{n}}(q)$ is a q-analogue of the Catalan number C_{n}.

If W is not of type $I_{2}(m)$ with $m=5$ or $m \geq 7$, then the condition in Theorem 2 can be stated in terms of "generalized q-Catalan number" $C_{k}^{W}(q)$:

$$
C_{k}^{W}(q)=\prod_{i=1}^{r} \frac{\left[k+e_{i}\right]_{q}}{\left[1+e_{i}\right]_{q}}
$$

where e_{1}, \cdots, e_{r} are the exponents of W and $[m]_{q}=\left(1-q^{m}\right) /(1-q)$.
Corollary Suppose that W is not of type $I_{2}(m)$ with $m=5$ or $m \geq 7$. Then
φ_{k}^{W} is a character of some representation of W $\Longleftrightarrow C_{k}^{W}(q)$ is a polynomial in q.

Greatest Common Divisors of $s_{\lambda}\left(1, q, \cdots, q^{k-1}\right)$

Theorem 1 Let k and n be positive integers. Then we have

$$
\operatorname{gcd} \mathbb{Z}\left\{s_{\lambda}\left(1^{k}\right): \lambda \vdash n\right\}=\frac{k}{\operatorname{gcd}(n, k)}
$$

Theorem 3 Let k and n be positive integers. Then we have

$$
\operatorname{gcd}_{\mathbb{Q}[q]}\left\{s_{\lambda}\left(1, q, q^{2}, \cdots, q^{k-1}\right): \lambda \vdash n\right\}=\frac{[k]_{q}}{[\operatorname{gcd}(n, k)]_{q}},
$$

where $[r]_{q}=\left(1-q^{r}\right) /(1-q)$.
Remark Theorem 3 does not imply Theorem 1 by letting $q=1$. For example,

$$
\begin{aligned}
\lim _{q \rightarrow 1} \operatorname{gcd}\left\{\left(q^{2}+1\right)(q+1)^{2},(q+1)^{3}\right\} & =\lim _{q \rightarrow 1}(q+1)^{2}=4, \\
\operatorname{gcd}\left\{\lim _{q \rightarrow 1}\left(q^{2}+1\right)(q+1)^{2}, \lim _{q \rightarrow 1}(q+1)^{3}\right\} & =\operatorname{gcd}(8,8)=8 .
\end{aligned}
$$

Theorem 3 Let k and n be positive integers. Then we have

$$
\operatorname{gcd}_{\mathbb{Q}[q]}\left\{s_{\lambda}\left(1, q, q^{2}, \cdots, q^{k-1}\right): \lambda \vdash n\right\}=\frac{[k]_{q}}{[\operatorname{gcd}(n, k)]_{q}},
$$

where $[r]_{q}=\left(1-q^{r}\right) /(1-q)$.
Proof follows from
1.

$$
\begin{aligned}
& \left\{z \in \mathbb{C}: z \text { is a common root of } h_{\lambda}\left(1, q, \ldots, q^{k-1}\right)(\lambda \vdash n)\right\} \\
& =\bigsqcup_{d \mid k, d \nmid n}\{z \in \mathbb{C}: z \text { is a primitive } d \text {-th root of } 1\} .
\end{aligned}
$$

2. If z is a common root of $h_{\lambda}\left(1, q, \ldots, q^{k-1}\right)(\lambda \vdash n)$, then z is a simple root of $h_{\mu}\left(1, q, \ldots, q^{k-1}\right)$ for some $\mu \vdash n$.

Conjectures

Theorem 3 implies that

$$
\frac{s_{\lambda}\left(1, q, \cdots, q^{k-1}\right)}{[k]_{q} /[d]_{q}}=\frac{s_{\lambda}\left(1, q, \cdots, q^{k-1}\right)}{1+q^{d}+\cdots+q^{k-d}} \in \mathbb{Z}[q],
$$

where $\lambda \vdash n$ and $d=\operatorname{gcd}(k, n)$.
Conjecture $1 \quad$ If λ is a partition of n and $d=\operatorname{gcd}(k, n)$, then

$$
\frac{s_{\lambda}\left(1, q, \cdots, q^{k-1}\right)}{1+q^{d}+\cdots+q^{k-d}} \in \mathbb{N}[q],
$$

i.e., it is a polynomial with non-negative integer coefficients.

This conjecture is true if

- n is a multiple of k (i.e., $d=k$) (well-known), or
- k / d is relatively prime to n.

A finite sequence $\left(a_{0}, a_{1}, \cdots, a_{m}\right)$ is called unimodal if there is an index p satisfying

$$
a_{0} \leq a_{1} \leq \cdots \leq a_{p-1} \leq a_{p} \geq a_{p+1} \geq \cdots \geq a_{m-1} \geq a_{m}
$$

Conjecture 2 Let λ be a partition of n and $d=\operatorname{gcd}(k, n)$. If we write

$$
\frac{s_{\lambda}\left(1, q, \cdots, q^{k-1}\right)}{1+q^{d}+\cdots+q^{k-d}}=\sum_{i \geq 0} a_{i} q^{i}
$$

then the sequences

$$
\left(a_{0}, a_{2}, a_{4}, \cdots\right), \quad \text { and } \quad\left(a_{1}, a_{3}, a_{5}, \cdots\right)
$$

are both unimodal.
This conjecture is true if

- n is a multiple of k (i.e., $d=k$) (well-known), or
- k is relatively prime to n.

