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Plan:

• Greatest common divisor of sλ(1
k) with λ ⊢ n.

• Existence of generalized parking spaces.

• Greatest common divisor of sλ(1, q, · · · , qk−1) with λ ⊢ n.



Greatest Common Divisors of sλ(1
k)



Schur Functions

A partition of a positive integer n is a weakly decreasing sequence

λ = (λ1, λ2, λ3, · · · ), λ1 ≥ λ2 ≥ λ3 ≥ · · ·
of non-negative integers with

∑
i λi = n. Then we write λ ⊢ n. The

length l(λ) of a partition λ is defined by

l(λ) = #{i : λi > 0}.
Let k be a positive integer and let λ be a partition with length ≤ k.

The Schur function sλ(x1, · · · , xk) corresponding to λ is defined by

sλ(x1, · · · , xk) =
det

(
x
λj+k−j
i

)
1≤i,j≤k

det
(
x
k−j
i

)
1≤i,j≤k

.

The Schur functions are symmetric polynomials in x1, · · · , xk with non-
negative integer coefficients.



Specialized Schur Functions

We are interested in the greatest common divisors of the special values

sλ(1
k) = sλ(1, · · · , 1︸ ︷︷ ︸

k

), and sλ(1, q, q
2, · · · , qk−1).

The special values sλ(1
k) can be interpreted as follows:

sλ(1
k) = the number of semistandard tableaux of shape λ

with entries in {1, 2, · · · , k}
= the dimension of the irreducible representation

of GLk with highest weight λ

=
∏

x∈D(λ)

k + c(x)

h(x)
,

where D(λ) is the Young diagram of λ, and c(x) and h(x) denote the
content and the hook length of x respectively.



Theorem 1 Let k and n be positive integers. Then we have

gcd Z
{
sλ(1

k) : λ ⊢ n
}
=

k

gcd(n, k)
.

Example If n = 4, then we have

k s(4)(1
k) s(3,1)(1

k) s(22)(1
k) s(2,12)(1

k) s(14)(1
k) GCD

1 1 0 0 0 0 1
2 5 3 1 0 0 1
3 15 15 6 3 0 3
4 35 45 20 15 1 1
5 70 105 50 45 5 5
6 126 210 105 105 15 3
7 210 378 196 210 35 7
8 330 630 336 378 70 2
9 495 990 540 630 126 9
10 715 1485 825 990 210 5



Theorem 1 Let k and n be positive integers. Then we have

gcd Z
{
sλ(1

k) : λ ⊢ n
}
=

k

gcd(n, k)
.

Proof follows from the following two claims.

Claim 1 For any partition λ of n, the integer sλ(1
k) is divisible by

k/ gcd(n, k).

Claim 2 The integer k/ gcd(n, k) is an element of the ideal of Z
generated by sλ(1

k)’s (λ ⊢ n).



Proof of Theorem 1 (1/4)

Claim 1 For any partition λ of n, the integer sλ(1
k) is divisible by

k/ gcd(n, k).

Proof of Claim 1
Let d = gcd(n, k). It follows from the Frobenius formula that∑

λ⊢n

sλ(1
k)

k/d
χλ(σ) =

1

k/d
· kl(type(σ)) (σ ∈ Sn),

where χλ is the irreducible character of the symmetric group Sn corre-
sponding to λ, and type(σ) is the cycle type of σ. Hence it is enough to
show that there exists a representation of Sn whose character θ is given
by

θ(σ) =
1

k/d
· kl(type(σ)) (σ ∈ Sn).



Proof of Theorem 1 (2/4)

Consider the permutation representation of Sn on X = (Z/kZ)n, and
put

Xp = {(xi) ∈ (Z/kZ)n : x1 + · · · + xn − pd ∈ {0, 1, · · · , d− 1}}
for p = 0, 1, · · · , k/d−1, where we identify Z/kZ with {0, 1, · · · , k−1}.
If we denote by ψ and ψp the permutation character of X and Xp, then
we have

ψ(σ) = kl(type(σ)), and ψ = ψ0 + ψ1 + · · · + ψk/d−1.

Since gcd(k/d, n/d) = 1, we can find an equivariant bijection between
X0 and Xp, so we have

ψ0 = ψ1 = · · · = ψk/d−1.

Hence we conclude that θ is the permutation character ψ0 of X0, and

that
sλ(1

k)
k/d

is an integer.



Proof of Theorem 1 (3/4)

Claim 2 The integer k/ gcd(n, k) is an element of the ideal of Z
generated by sλ(1

k)’s (λ ⊢ n).
Proof of Claim 2
We have the following relation among ideals of Z:⟨
sλ(1

k) : λ ⊢ n
⟩
=
⟨
mλ(1

k) : λ ⊢ n
⟩
⊃

⟨
m

(fn/f )
(1k) : f | d

⟩
,

where mλ(x1, · · · , xk) is the monomial symmetric polynomial corre-
sponding to λ, and d = gcd(k, n). Since we have

m
(fn/f )

(1k) =

(
k

f

)
,

it is enough to show that

k

d
∈
⟨(

k

f

)
: f | d

⟩
.



Proof of Theorem 1 (4/4)

Lemma If e divides k, then

k

e
∈
⟨(

k

f

)
: f | e

⟩
.

This lemma can be shown by using the induction on e and the relation(
pal

pa

)
− pal

pa
≡ 0 mod pl,

where p is a prime.



Generalized Parking Spaces



Parking Functions

A parking function of length n is a sequence (a1, a2, · · · , an) of positive
integers satisfying

• ai ∈ {1, 2, · · · , n}, and
• #{i : ai ≤ k} ≥ k for k = 1, 2, · · · , n.

Imagine that there are n cars C1, C2, · · · , Cn and n parking spaces
1, 2, · · · , n in a one-way street. Car Ci prefers the parking space ai and
approaches its preferred parking space.

• If it is free, then Ci parks there.
• If it is occupied, then Ci parks in the next available space if possible.

Then the sequence (a1, · · · , an) is a parking function if and only if all
cars can park.



Parking Functions

A parking function of length n is a sequence (a1, a2, · · · , an) of positive
integers satisfying

• ai ∈ {1, 2, · · · , n}, and
• #{i : ai ≤ k} ≥ k for k = 1, 2, · · · , n.
We put

PFn = the set of parking functions of length n.

Example

PF2 =
{
11, 12, 21

}
,

PF3 =

{
111, 112, 121, 211, 113, 131, 311, 122
212, 221, 123, 132, 213, 231, 312, 321

}



The symmetric group Sn acts on the set PFn by permuting entries:

σ · (a1, · · · , an) = (aσ(1), · · · , aσ(n)) (σ ∈ Sn).

It is known that the corresponding permutation character is given by

φ(σ) = (n + 1)l(type(σ))−1 (σ ∈ Sn).

More generally, given a positive integer k, we consider the class function
on Sn defined by

φk(σ) = kl(type(σ))−1 (σ ∈ Sn).

Question When is φk the character of some representation of Sn?

It is not hard to show that, if k is relatively prime to n, then φk is the
permutation character on

{x ∈ (Z/kZ)n : x1 + · · · + xn = 0}.



By using Theorem 1, we can prove

Corollary

φk is the character of a representation of Sn

⇐⇒ k is relatively prime to n.

Proof It follows from the Frobenius formula that

φk =
∑
λ⊢n

sλ(1
k)

k
χλ.

Hence we have

φk is the character of a representation of Sn

⇐⇒ sλ(1
k)

k
∈ Z for all λ ⊢ n

⇐⇒ k is relatively prime to n,

since gcd{sλ(1k) : λ ⊢ n} = k/ gcd(n, k).



Generalization to Coxeter groups
Let (W,S) be a finite Coxeter system and V its geometric representa-

tion.
Example (Type An−1)

W = Sn,

S = {si = (i, i + 1) : 1 ≤ i ≤ n− 1},
V = {x = (x1, · · · , xn) ∈ Rn : x1 + · · · + xn = 0}.

In this setting, we have

l(type(σ))− 1 = dimV σ (σ ∈ Sn),

where V σ = {v ∈ V : σv = v}.



Generalization to Coxeter groups
Let (W,S) be a finite Coxeter system and V its geometric representa-

tion. Let k be a positive integer and consider the class function φWk on
W given by

φWk (w) = kdimV w (w ∈ W ),

where V w is the fixed-point subspace of w.

Question When is φWk is the character of a representation of W ?

A W -module U is called a generalized parking space if its character is
given by φWk for some positive integer k. For example, the vector space
CPFn with basis PFn is a parking space for Sn.



Theorem 2 Let W be an irreducible Coxeter group. Then φWk is
a character of some representation of W if and only if the following
condition is satisfied:

type condition on k
An−1 k is relatively prime to n
Bn, Dn k is odd

E6, E7, F4 k is not divisible by 2 and 3
E8 k is not divisible by 2, 3, and 5
H3 k ≡ 1, 5, 9 mod 10
H4 k ≡ 1, 11, 19, 29 mod 30

I2(m) (m is even) k = 1 or “k ≥ m− 1 and k2 ≡ 1 mod 2m”

I2(m) (m is odd) k = 1 or “k ≥ m− 1 and k2 ≡ 1 mod m”



Theorem 2 Let W be an irreducible Coxeter group. Then φWk is
a character of some representation of W if and only if the following
condition is satisfied:

type condition on k
An−1 k is relatively prime to n
Bn, Dn k is odd

E6, E7, F4 k is not divisible by 2 and 3
E8 k is not divisible by 2, 3, and 5
H3 k ≡ 1, 5, 9 mod 10
H4 k ≡ 1, 11, 19, 29 mod 30

I2(m) (m is even) k = 1 or “k ≥ m− 1 and k2 ≡ 1 mod 2m”

I2(m) (m is odd) k = 1 or “k ≥ m− 1 and k2 ≡ 1 mod m”

Remark E. Sommers proved that, ifW is a Weyl group and k satisfies
the above condition, then the permutation representation on Q/kQ has
the character φWk , where Q is the root lattice.



If W is not of type I2(m) with m = 5 or m ≥ 7, then the condition
in Theorem 2 can be stated in terms of “generalized q-Catalan number”
CWk (q):

CWk (q) =
r∏
i=1

[k + ei]q
[1 + ei]q

,

where e1, · · · , er are the exponents of W and [m]q = (1− qm)/(1− q).

Example (TypeAn−1) IfW = Sn, then the exponents are 1, 2, · · · , n−
1, and

CSn
k (q) =

1

[n]q

[
k + n− 1

k

]
q
,

where

[
m

k

]
q
is the q-binomial coefficient. If k = n+1 (Coxeter number),

then CSn
n+1(q) is a q-analogue of the Catalan number Cn.



If W is not of type I2(m) with m = 5 or m ≥ 7, then the condition
in Theorem 2 can be stated in terms of “generalized q-Catalan number”
CWk (q):

CWk (q) =
r∏
i=1

[k + ei]q
[1 + ei]q

,

where e1, · · · , er are the exponents of W and [m]q = (1− qm)/(1− q).

Corollary Suppose thatW is not of type I2(m) withm = 5 orm ≥ 7.
Then

φWk is a character of some representation of W

⇐⇒ CWk (q) is a polynomial in q.



Greatest Common Divisors of sλ(1, q, · · · , qk−1)



Theorem 1 Let k and n be positive integers. Then we have

gcd Z
{
sλ(1

k) : λ ⊢ n
}
=

k

gcd(n, k)
.

Theorem 3 Let k and n be positive integers. Then we have

gcdQ[q]

{
sλ(1, q, q

2, · · · , qk−1) : λ ⊢ n
}
=

[k]q
[gcd(n, k)]q

,

where [r]q = (1− qr)/(1− q).

Remark Theorem 3 does not imply Theorem 1 by letting q = 1. For
example,

lim
q→1

gcd
{
(q2 + 1)(q + 1)2, (q + 1)3

}
= lim
q→1

(q + 1)2 = 4,

gcd
{
lim
q→1

(q2 + 1)(q + 1)2, lim
q→1

(q + 1)3
}
= gcd(8, 8) = 8.



Theorem 3 Let k and n be positive integers. Then we have

gcdQ[q]

{
sλ(1, q, q

2, · · · , qk−1) : λ ⊢ n
}
=

[k]q
[gcd(n, k)]q

,

where [r]q = (1− qr)/(1− q).

Proof follows from

1.

{z ∈ C : z is a common root of hλ(1, q, . . . , q
k−1) (λ ⊢ n)}

=
⊔

d|k, d∤n
{z ∈ C : z is a primitive d-th root of 1}.

2. If z is a common root of hλ(1, q, . . . , q
k−1) (λ ⊢ n), then z is a

simple root of hµ(1, q, . . . , q
k−1) for some µ ⊢ n.



Conjectures

Theorem 3 implies that

sλ(1, q, · · · , qk−1)

[k]q/[d]q
=

sλ(1, q, · · · , qk−1)

1 + qd + · · · + qk−d
∈ Z[q],

where λ ⊢ n and d = gcd(k, n).

Conjecture 1 If λ is a partition of n and d = gcd(k, n), then

sλ(1, q, · · · , qk−1)

1 + qd + · · · + qk−d
∈ N[q],

i.e., it is a polynomial with non-negative integer coefficients.

This conjecture is true if

• n is a multiple of k (i.e., d = k) (well-known), or

• k/d is relatively prime to n.

Conjecture 1 is now proved.



A finite sequence (a0, a1, · · · , am) is called unimodal if there is an
index p satisfying

a0 ≤ a1 ≤ · · · ≤ ap−1 ≤ ap ≥ ap+1 ≥ · · · ≥ am−1 ≥ am.

Conjecture 2 Let λ be a partition of n and d = gcd(k, n). If we
write

sλ(1, q, · · · , qk−1)

1 + qd + · · · + qk−d
=
∑
i≥0

aiq
i,

then the sequences

(a0, a2, a4, · · · ), and (a1, a3, a5, · · · )
are both unimodal.

This conjecture is true if

• n is a multiple of k (i.e., d = k) (well-known), or

• k is relatively prime to n.


