Cyclically fully commutative elements in affine Coxeter groups

Mathias Pétréolle

ICJ

SLC 72, Mars 2014

Mathias Pétréolle (ICJ)

Cyclically fully commutative elements

SLC 72, Mars 2014 1 / 16

2 Cyclically fully commutative elements and heaps

3 Characterization and enumeration in finite and affine types

Coxeter group W given by Coxeter matrix
$$(m_{s,t})_{s,t \in S}$$

Relations
$$\begin{cases} s^2 = 1 \\ \underbrace{sts \cdots}_{m_{s,t}} = \underbrace{tst \cdots}_{m_{s,t}} & \text{Braid relations} \\ & \text{If } m_{s,t} = 2, \text{ commutation relations} \end{cases}$$

Ξ

・ロト ・四ト ・ヨト ・ヨト

Coxeter group W given by Coxeter matrix
$$(m_{s,t})_{s,t\in S}$$

Relations
$$\begin{cases} s^2 = 1 \\ \underbrace{sts \cdots}_{m_{s,t}} = \underbrace{tst \cdots}_{m_{s,t}} & \text{Braid relations} \\ & \text{If } m_{s,t} = 2, \text{ commutation relations} \end{cases}$$

Length of $w := \ell(w) = \text{minimal } \ell$ such that $w = s_1 s_2 \dots s_\ell$ with $s_i \in S$ Such a word is a reduced decomposition of $w \in W$

A 1

Coxeter group W given by Coxeter matrix
$$(m_{s,t})_{s,t\in S}$$

Relations
$$\begin{cases} s^2 = 1 \\ \underbrace{sts\cdots}_{m_{s,t}} = \underbrace{tst\cdots}_{m_{s,t}} & \text{Braid relations} \\ & \text{If } m_{s,t} = 2, \text{ commutation relations} \end{cases}$$

Length of $w := \ell(w) = \text{minimal } \ell$ such that $w = s_1 s_2 \dots s_\ell$ with $s_i \in S$ Such a word is a reduced decomposition of $w \in W$

Theorem (Matsumoto, 1964)

Given two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other.

An element w is *fully commutative* if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

An element w is *fully commutative* if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

Examples: *id*,
$$s_1$$
, s_2 , s_1s_2 and s_2s_1 FC
 $s_1s_2s_1 = s_2s_1s_2$ not FC $s_1 s_2 A_2$

An element w is *fully commutative* if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

• Billey-Jockush-Stanley (1993), Hanusa-Jones (2000), Green (2002): in type A and \tilde{A} , 321-avoiding permutations

- Billey-Jockush-Stanley (1993), Hanusa-Jones (2000), Green (2002): in type A and \tilde{A} , 321-avoiding permutations
- Fan, Graham (1995): index a basis of the generalized Temperley-Lieb algebra

- Billey-Jockush-Stanley (1993), Hanusa-Jones (2000), Green (2002): in type A and \tilde{A} , 321-avoiding permutations
- Fan, Graham (1995): index a basis of the generalized Temperley-Lieb algebra
- Stembrigde (1996-1998): first general approach for FC finite cases

- Billey-Jockush-Stanley (1993), Hanusa-Jones (2000), Green (2002): in type A and \tilde{A} , 321-avoiding permutations
- Fan, Graham (1995): index a basis of the generalized Temperley-Lieb algebra
- Stembrigde (1996-1998): first general approach for FC finite cases
- Biagioli-Jouhet-Nadeau (2013): characterizations in terms of heaps, computation of $W^{FC}(q) := \sum_{w \in W^{FC}} q^{\ell(w)}$

An element w is cyclically fully commutative if every cyclic shift of every reduced decomposition for w is a reduced expression for a FC element.

伺下 くきト くきト

An element w is cyclically fully commutative if every cyclic shift of every reduced decomposition for w is a reduced expression for a FC element.

Examples in $\underset{s_1 \ s_2 \ s_3}{\overset{\bullet}{}} \underset{s_4 \ s_5 \ s_6}{\overset{\bullet}{}} A_6$ $s_6 s_2 s_1 s_3 s_2 s_5 \text{ FC} \xrightarrow{\text{shift}} s_5 s_6 s_2 s_1 s_3 s_2 \text{ FC} \xrightarrow{\text{shift}} s_2 s_5 s_6 s_2 s_1 s_3 \text{ not reduced}$

An element w is cyclically fully commutative if every cyclic shift of every reduced decomposition for w is a reduced expression for a FC element.

Examples in
$$\underset{s_1 s_2 s_3 s_4 s_5 s_6}{\circ} A_6$$

 $s_6 s_2 s_1 s_3 s_2 s_5 \text{ FC} \xrightarrow{\text{shift}} s_5 s_6 s_2 s_1 s_3 s_2 \text{ FC} \xrightarrow{\text{shift}} s_2 s_5 s_6 s_2 s_1 s_3$ not reduced
 $s_6 s_2 s_1 s_3 s_5 \text{ CFC}$

・ 同 ト ・ ヨ ト ・ ヨ ト

An element w is cyclically fully commutative if every cyclic shift of every reduced decomposition for w is a reduced expression for a FC element.

Examples in
$$\underset{s_1 s_2 s_3 s_4 s_5 s_6}{\circ} A_6$$

 $s_6s_2s_1s_3s_2s_5 \text{ FC} \xrightarrow{\text{shift}} s_5s_6s_2s_1s_3s_2 \text{ FC} \xrightarrow{\text{shift}} s_2s_5s_6s_2s_1s_3 \text{ not reduced} s_6s_2s_1s_3s_5 \text{ CFC}$

Previous work on cyclically fully commutative elements

 Boothby et al. (2012): introduction and first properties; a Coxeter group is FC finite ⇔ it is CFC finite

An element w is cyclically fully commutative if every cyclic shift of every reduced decomposition for w is a reduced expression for a FC element.

Examples in
$$\underset{s_1 s_2 s_3 s_4 s_5 s_6}{\circ} A_6$$

 $s_6 s_2 s_1 s_3 s_2 s_5 \text{ FC} \xrightarrow{\text{shift}} s_5 s_6 s_2 s_1 s_3 s_2 \text{ FC} \xrightarrow{\text{shift}} s_2 s_5 s_6 s_2 s_1 s_3$ not reduced
 $s_6 s_2 s_1 s_3 s_5 \text{ CFC}$

Previous work on cyclically fully commutative elements

- Boothby et al. (2012): introduction and first properties; a Coxeter group is FC finite ⇔ it is CFC finite
- Marquis (2013): characterization of CFC logarithmic elements

An element w is cyclically fully commutative if every cyclic shift of every reduced decomposition for w is a reduced expression for a FC element.

Examples in
$$\underset{s_1 s_2 s_3 s_4 s_5 s_6}{\circ} A_6$$

 $s_6 s_2 s_1 s_3 s_2 s_5 \text{ FC} \xrightarrow{\text{shift}} s_5 s_6 s_2 s_1 s_3 s_2 \text{ FC} \xrightarrow{\text{shift}} s_2 s_5 s_6 s_2 s_1 s_3$ not reduced
 $s_6 s_2 s_1 s_3 s_5 \text{ CFC}$

Previous work on cyclically fully commutative elements

- Boothby et al. (2012): introduction and first properties; a Coxeter group is FC finite ⇔ it is CFC finite
- Marquis (2013): characterization of CFC logarithmic elements

Motivation for introducing CFC elements: looking for a cyclic version of Matsumoto's theorem.

Proposition (Stembridge, 1995)

A reduced word represents a FC element if and only if no element of its commutation class contains a factor $\underbrace{sts\cdots}_{tst}$, for a $m_{s,t} \ge 3$

 $m_{s,t}$

Mathias Pétréolle (ICJ)

Proposition (Stembridge, 1995)

A reduced word represents a FC element if and only if no element of its commutation class contains a factor $\underbrace{sts\cdots}_{m_{s,t}}$, for a $m_{s,t} \ge 3$

 \Rightarrow We encode the whole commutation class of a FC elements by its heap.

The heap of a word **w** is a poset (H, \prec) labelled by generators s_i of W. If two words are commutation equivalent, their heaps are isomorphic.

・ 一 ト ・ 三 ト ・ ・

The heap of a word **w** is a poset (H, \prec) labelled by generators s_i of W. If two words are commutation equivalent, their heaps are isomorphic.

Example:

$$\begin{array}{ccccc} \bullet & \bullet & \bullet & \bullet & \bullet \\ s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & & & H = & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

< 4 → <

The heap of a word **w** is a poset (H, \prec) labelled by generators s_i of W. If two words are commutation equivalent, their heaps are isomorphic.

Example:

< 47 ▶ <

The heap of a word **w** is a poset (H, \prec) labelled by generators s_i of W. If two words are commutation equivalent, their heaps are isomorphic.

Example:

< 47 ▶ <

The heap of a word **w** is a poset (H, \prec) labelled by generators s_i of W. If two words are commutation equivalent, their heaps are isomorphic.

Example:

< 47 ▶ <

The heap of a word **w** is a poset (H, \prec) labelled by generators s_i of W. If two words are commutation equivalent, their heaps are isomorphic.

Example:

A 🕨 🕹

The heap of a word **w** is a poset (H, \prec) labelled by generators s_i of W. If two words are commutation equivalent, their heaps are isomorphic.

Example:

A 1

The heap of a word **w** is a poset (H, \prec) labelled by generators s_i of W. If two words are commutation equivalent, their heaps are isomorphic.

Example:

The heap of a word **w** is a poset (H, \prec) labelled by generators s_i of W. If two words are commutation equivalent, their heaps are isomorphic.

We write $x \prec_c y$ if x and y are connected by an edge in H (chain covering relation)

Characterization of FC elements

A chain $i_1 \prec \cdots \prec i_{\ell}$ is convex if the only elements x satisfying $i_1 \preceq x \preceq i_{\ell}$ are the elements i_i of the chain.

Characterization of FC elements

A chain $i_1 \prec \cdots \prec i_{\ell}$ is convex if the only elements x satisfying $i_1 \preceq x \preceq i_{\ell}$ are the elements i_i of the chain.

Proposition (Stembridge, 1995)

Mathias Pétréolle (ICJ)

Heaps H of FC reduced words are characterized by:

- No covering relation $i \prec j$ in H such that $s_i = s_j$
- No convex chain $i_1 \prec \cdots \prec i_{m_{s,t}}$ in H such that $s_{i_1} = s_{i_3} = \cdots = s$

and $s_{i_2} = s_{i_4} = \cdots = t$ where $m_{s,t} \geq 3$

 $\checkmark \emptyset$ and \emptyset

Characterization of FC elements

A chain $i_1 \prec \cdots \prec i_{\ell}$ is convex if the only elements x satisfying $i_1 \preceq x \preceq i_{\ell}$ are the elements i_i of the chain.

Proposition (Stembridge, 1995)

Heaps H of FC reduced words are characterized by:

- No covering relation $i \prec j$ in H such that $s_i = s_j$
- No convex chain $i_1 \prec \cdots \prec i_{m_{s,t}}$ in H such that $s_{i_1} = s_{i_3} = \cdots = s$

and
$$s_{i_2} = s_{i_4} = \cdots = t$$
 where $m_{s,t} \geq 3$

 $\checkmark \emptyset$ and \emptyset

Let *H* be a heap. The cylindric transformation H^c is defined by the same points, labellings and chain covering relations \prec_c as *H*, and some new relations:

- for each generator s, consider the minimal point a and the maximal point b in the chain H_s (for the partial order \prec). If a is minimal and b is maximal in the poset H, we add a new relation $b \prec_c a$.
- for each pair of generators (s,t) such that m_{s,t} ≥ 3, consider the minimal point a and the maximal point b in the chain H_{s,t} (for the partial order ≺). If one has label s and the other has label t, we add a new relation b ≺_c a.

Let *H* be a heap. The cylindric transformation H^c is defined by the same points, labellings and chain covering relations \prec_c as *H*, and some new relations:

- for each generator s, consider the minimal point a and the maximal point b in the chain H_s (for the partial order \prec). If a is minimal and b is maximal in the poset H, we add a new relation $b \prec_c a$.
- for each pair of generators (s,t) such that m_{s,t} ≥ 3, consider the minimal point a and the maximal point b in the chain H_{s,t} (for the partial order ≺). If one has label s and the other has label t, we add a new relation b ≺_c a.

Example:

 $S_3 = S_A$

 s_5

Consider a chain of distinct elements $i_1 \prec_c \cdots \prec_c i_m$ in H^c with $m \ge 3$. Such a chain is called cylindric convex if the only elements u_1, \ldots, u_d , satisfying $i_1 \prec_c \cdots \prec_c i_k \prec_c u_1 \prec_c \cdots \prec_c u_d \prec_c i_m$ with all elements involved in this second chain distinct, are the elements i_i of the first chain. Consider a chain of distinct elements $i_1 \prec_c \cdots \prec_c i_m$ in H^c with $m \ge 3$. Such a chain is called cylindric convex if the only elements u_1, \ldots, u_d , satisfying $i_1 \prec_c \cdots \prec_c i_k \prec_c u_1 \prec_c \cdots \prec_c u_d \prec_c i_m$ with all elements involved in this second chain distinct, are the elements i_i of the first chain.

11 / 16

Characterization of CFC elements

Theorem (P., 2014)

Cylindric transformed heaps H^c of CFC elements are characterized by:

- No chain covering relation $i \prec_c j$ in H^c such that $s_i = s_j$ and $i \neq j$
- No cylindric convex chain $i_1 \prec_c \cdots \prec i_{m_{s,t}}$ in H^c such that

 $s_{i_1} = s_{i_3} = \cdots = s$ and $s_{i_2} = s_{i_4} = \cdots = t$ where $m_{s,t} \ge 3$

Characterization of CFC elements

Theorem (P., 2014)

Cylindric transformed heaps H^c of CFC elements are characterized by:

- No chain covering relation $i \prec_c j$ in H^c such that $s_i = s_j$ and $i \neq j$
- No cylindric convex chain $i_1 \prec_c \cdots \prec i_{m_{s,t}}$ in H^c such that
 - $s_{i_1} = s_{i_3} = \cdots = s$ and $s_{i_2} = s_{i_4} = \cdots = t$ where $m_{s,t} \ge 3$

Characterization of CFC elements

Theorem (P., 2014)

Cylindric transformed heaps H^c of CFC elements are characterized by:

- No chain covering relation $i \prec_c j$ in H^c such that $s_i = s_j$ and $i \neq j$
- No cylindric convex chain $i_1 \prec_c \cdots \prec i_{m_{s,t}}$ in H^c such that
 - $s_{i_1} = s_{i_3} = \cdots = s$ and $s_{i_2} = s_{i_4} = \cdots = t$ where $m_{s,t} \ge 3$

 $w \in \tilde{A}_{n-1}$ is CFC if and only if one (equivalently, any) of its reduced expressions **w** verifies one of these conditions:

- (a) each generator occurs at most once in \boldsymbol{w} ,
- (b) w is an alternating word and $|\mathbf{w}_{s_0}| = |\mathbf{w}_{s_1}| = \cdots = |\mathbf{w}_{s_{n-1}}| \ge 2.$

 $w \in \tilde{A}_{n-1}$ is CFC if and only if one (equivalently, any) of its reduced expressions **w** verifies one of these conditions:

(a) each generator occurs at most once in **w**,

(b) **w** is an alternating word and $|\mathbf{w}_{s_0}| = |\mathbf{w}_{s_1}| = \cdots = |\mathbf{w}_{s_{n-1}}| \ge 2$. $\tilde{A}_{n-1}^{CFC}(q) := \sum_{w \in \tilde{A}_{n-1}} q^{\ell(w)} = P_{n-1}(q) + \frac{2^n - 2}{1 - q^n} q^{2n}$,

where $P_{n-1}(q)$ is a computable polynomial.

 $w \in \tilde{A}_{n-1}$ is CFC if and only if one (equivalently, any) of its reduced expressions **w** verifies one of these conditions:

(a) each generator occurs at most once in \boldsymbol{w} ,

(b) **w** is an alternating word and $|\mathbf{w}_{s_0}| = |\mathbf{w}_{s_1}| = \cdots = |\mathbf{w}_{s_{n-1}}| \ge 2$. $\tilde{A}_{n-1}^{CFC}(q) := \sum_{w \in \tilde{A}_{n-1}} q^{\ell(w)} = P_{n-1}(q) + \frac{2^n - 2}{1 - q^n} q^{2n}$,

where $P_{n-1}(q)$ is a computable polynomial.

The coefficients of $\tilde{A}_{n-1}^{CFC}(q)$ are ultimately periodic of exact period n, and the periodicity starts at length n.

Mathias Pétréolle (ICJ)

For W of any affine types, we have an explicit characterization and the enumeration of CFC elements. In all these types, the coefficients of $W^{CFC}(q) := \sum_{w \in W^{CFC}} q^{\ell(w)}$ are ultimately periodic.

・ 何 ト ・ ヨ ト ・ ヨ ト

For W of any affine types, we have an explicit characterization and the enumeration of CFC elements. In all these types, the coefficients of $W^{CFC}(q) := \sum_{w \in W^{CFC}} q^{\ell(w)}$ are ultimately periodic.

Theorem (P., 2014)

The CFC elements in type A_{n-1} are those having reduced expressions in which each generator occurs at most once.

For W of any affine types, we have an explicit characterization and the enumeration of CFC elements. In all these types, the coefficients of $W^{CFC}(q) := \sum_{w \in W^{CFC}} q^{\ell(w)}$ are ultimately periodic.

Theorem (P., 2014)

The CFC elements in type A_{n-1} are those having reduced expressions in which each generator occurs at most once. Moreover, for $n \ge 3$,

$$A_{n-1}^{CFC}(q) = (2q+1)A_{n-2}^{CFC}(q) - qA_{n-3}^{CFC}(q).$$

where $A_0^{CFC}(q) = 1$, $A_1^{CFC}(q) = 1 + q$.

イロト 不得下 イヨト イヨト 二日

We say that an element w is logarithmic if and only if the equality $\ell(w^k) = k\ell(w)$ holds for all positive integer k.

Theorem (Marquis, 2013 - P., 2014)

For $W = \tilde{A}, \tilde{B}, \tilde{C}$, or \tilde{D} , if w is a CFC element, w is logarithmic if and only if a (equivalently, any) reduced expression w of w has full support (i.e all generators occur in w).

Thank you for your attention

< 🗇 🕨 <

э