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Coxeter groups

Coxeter group W given by Coxeter matrix (ms,t)s,t∈S

Relations





s2 = 1

sts · · ·︸ ︷︷ ︸ = tst · · ·︸ ︷︷ ︸ Braid relations

ms,t ms,t If ms,t = 2, commutation relations

Length of w := `(w) = minimal ` such that w = s1s2...s` with si ∈ S
Such a word is a reduced decomposition of w ∈W

Theorem (Matsumoto, 1964)

Given two reduced decompositions of w , there is a sequence of braid
relations which can be applied to transform one into the other.
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Mathias Pétréolle (ICJ) Cyclically fully commutative elements SLC 72, Mars 2014 3 / 16



Coxeter groups

Coxeter group W given by Coxeter matrix (ms,t)s,t∈S

Relations





s2 = 1

sts · · ·︸ ︷︷ ︸ = tst · · ·︸ ︷︷ ︸ Braid relations

ms,t ms,t If ms,t = 2, commutation relations

Length of w := `(w) = minimal ` such that w = s1s2...s` with si ∈ S
Such a word is a reduced decomposition of w ∈W

Theorem (Matsumoto, 1964)

Given two reduced decompositions of w , there is a sequence of braid
relations which can be applied to transform one into the other.
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Fully commutative elements

Definition

An element w is fully commutative if given two reduced decompositions of
w , there is a sequence of commutation relations which can be applied to
transform one into the other.

Examples: id , s1, s2, s1s2 and s2s1 FC

s1 A2s2s1s2s1 = s2s1s2 not FC

s6s2s1s3s2s5 FC
s1 s5

A6
s2 s3 s4 s6
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Mathias Pétréolle (ICJ) Cyclically fully commutative elements SLC 72, Mars 2014 4 / 16



Fully commutative elements

Previous work on fully commutative elements:

Billey-Jockush-Stanley (1993), Hanusa-Jones (2000), Green (2002):
in type A and Ã, 321-avoiding permutations

Fan, Graham (1995): index a basis of the generalized Temperley-Lieb
algebra

Stembrigde (1996-1998): first general approach for FC finite cases

Biagioli-Jouhet-Nadeau (2013): characterizations in terms of heaps,
computation of W FC (q) :=

∑
w∈W FC q`(w)
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Cyclically fully commutative elements

Definition

An element w is cyclically fully commutative if every cyclic shift of every
reduced decomposition for w is a reduced expression for a FC element.

Examples in s1 s5
A6s2 s3 s4 s6

s6s2s1s3s2s5 FC
shift−−→ s5s6s2s1s3s2 FC

shift−−→ s2s5s6s2s1s3 not reduced

s6s2s1s3s5 CFC

Previous work on cyclically fully commutative elements

Boothby et al. (2012): introduction and first properties; a Coxeter
group is FC finite ⇔ it is CFC finite

Marquis (2013): characterization of CFC logarithmic elements

Motivation for introducing CFC elements: looking for a cyclic version of
Matsumoto’s theorem.
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Heaps

Proposition (Stembridge, 1995)

A reduced word represents a FC element if and only if no element of its
commutation class contains a factor sts · · ·︸ ︷︷ ︸

ms,t

, for a ms,t ≥ 3

⇒ We encode the whole commutation class of a FC elements by its heap.
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Heap

Definition

The heap of a word w is a poset (H,≺) labelled by generators si of W. If
two words are commutation equivalent, their heaps are isomorphic.

s1 s5

A6

s2 s3 s4
s1s2s3s4s5s6

H =

w = s5s3s4s2s1s3s2s6s5

Example:

s6
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Heap

Definition

The heap of a word w is a poset (H,≺) labelled by generators si of W. If
two words are commutation equivalent, their heaps are isomorphic.

s1 s5

A6

s2 s3 s4
s1s2s3s4s5s6

H =

w = s5s3s4s2s1s3s2s6s5

Example:

s6

w = s3s2s1s2s4s3s5

s1s2s3s4s5s6

We write x ≺c y if x and y are connected by an edge in H (chain covering
relation)
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Characterization of FC elements

A chain i1 ≺ · · · ≺ i` is convex if the only elements x satisfying i1 � x � i`
are the elements ij of the chain.

Proposition (Stembridge, 1995)

Heaps H of FC reduced words are characterized by:

No covering relation i ≺ j in H such that si = sj

No convex chain i1 ≺ · · · ≺ ims,t in H such that si1 = si3 = · · · = s

and si2 = si4 = · · · = t where ms,t ≥ 3 ∅ and ∅

s1 s5

A6

s2 s3 s4
s1s2s3s4s5s6

H =

w = s5s3s4s2s1s3s2s6s5 w = s3s2s1s2s4s3s5

s1s2s3s4s5s6

Example:

s6

FC not FC
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Cylindric transformation

Let H be a heap. The cylindric transformation Hc is defined by the same
points, labellings and chain covering relations ≺c as H, and some new
relations:

for each generator s, consider the minimal point a and the maximal
point b in the chain Hs (for the partial order ≺). If a is minimal and b
is maximal in the poset H, we add a new relation b ≺c a.

for each pair of generators (s,t) such that ms,t ≥ 3, consider the
minimal point a and the maximal point b in the chain H{s,t} (for the
partial order ≺). If one has label s and the other has label t, we add a
new relation b ≺c a.

s1 s5

A6

s2 s3 s4
s1s2s3s4s5s6

H =

w = s5s3s4s2s1s3s2s6s5

Example:

s6
Hc =
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Cylindric convex chain

Consider a chain of distinct elements i1 ≺c · · · ≺c im in Hc with m ≥ 3.
Such a chain is called cylindric convex if the only elements u1, . . . , ud ,
satisfying i1 ≺c · · · ≺c ik ≺c u1 ≺c · · · ≺c ud ≺c im with all elements
involved in this second chain distinct, are the elements ij of the first chain.

cylindric
convex chain

not cylindric
convex chain
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Characterization of CFC elements

Theorem (P., 2014)

Cylindric transformed heaps Hc of CFC elements are characterized by:

No chain covering relation i ≺c j in Hc such that si = sj and i 6= j

No cylindric convex chain i1 ≺c · · · ≺ ims,t in Hc such that
si1 = si3 = · · · = s and si2 = si4 = · · · = t where ms,t ≥ 3

w = s5s3s4s2s1s3s2s6s5

s1 s5
A6

s2 s3 s4 s6

w = ts1ts2uts3s2us3

t u
C̃4

s1 s2 s3

4 4
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Type Ã

s1 sn−1

s0
Ãn−1

Theorem (P., 2014)

w ∈ Ãn−1 is CFC if and only if one (equivalently, any) of its reduced
expressions w verifies one of these conditions:

(a) each generator occurs at most once in w,

(b) w is an alternating word and |ws0 | = |ws1 | = · · · = |wsn−1 | ≥ 2.

ÃCFC
n−1 (q) :=

∑

w∈Ãn−1

q`(w) = Pn−1(q) +
2n − 2

1− qn
q2n,

where Pn−1(q) is a computable polynomial.

The coefficients of ÃCFC
n−1 (q) are ultimately periodic of exact period n, and

the periodicity starts at length n.
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Other types

Theorem (P., 2014)

For W of any affine types, we have an explicit characterization and the
enumeration of CFC elements. In all these types, the coefficients of
W CFC (q) :=

∑
w∈W CFC q`(w) are ultimately periodic.

Theorem (P., 2014)

The CFC elements in type An−1 are those having reduced expressions in
which each generator occurs at most once.
Moreover, for n ≥ 3,

ACFC
n−1 (q) = (2q + 1)ACFC

n−2 (q)− qACFC
n−3 (q).

where ACFC
0 (q) = 1, ACFC

1 (q) = 1 + q.
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Logarithmic elements

We say that an element w is logarithmic if and only if the equality
`(wk) = k`(w) holds for all positive integer k .

Theorem (Marquis, 2013 - P., 2014)

For W=Ã, B̃, C̃ , or D̃, if w is a CFC element, w is logarithmic if and only
if a (equivalently, any) reduced expression w of w has full support (i.e all
generators occur in w).
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Thank you for your attention
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