Isomorphisms of Hecke modules and parabolic Kazhdan-Lusztig polynomials

Paolo Sentinelli

Università degli Studi di Roma "Tor Vergata"

72nd Séminaire Lotharingien de Combinatoire

Theorem

Let
$$I, J \subseteq S$$
, $u \in {}^{I}W^{J}$ and $v, w \in (W_{I})^{I \cap u^{-1}Ju}$; then

$$R_{uv,uw}^{J,x} = R_{v,w}^{I \cap u^{-1}Ju,x},$$

$$P_{uv,uw}^{J,x} = P_{v,w}^{I \cap u^{-1}Ju,x}$$

Paolo Sentinelli

3

イロト イヨト イヨト イヨト

Theorem

Let $J \subseteq S$; then there exists a Coxeter system $(W', S \cup \{s'\})$, where $s' \notin S$, such that

$$R^{J,x}_{v,w}[W] = R^{S,x}_{s'v,s'w}[W']$$

and

$$P_{v,w}^{J,x}[W] = P_{s'v,s'w}^{S,x}[W'],$$

for all $v, w \in W^J$.

æ

▶ ★ 聖 ▶ ★ 更 ▶

Coxeter groups

Let S be a finite set and m:S imes S
ightarrow { 1, 2, ..., ∞ } be a map such that

$$m(s,t) = 1$$
, if $s = t$,
 $m(s,t) = m(t,s)$,

for every $s, t \in S$.

・ロト ・四ト ・ヨト ・ヨト

Coxeter groups

Let S be a finite set and m:S imes S o { 1,2,..., ∞ } be a map such that

m(s,t) = 1, if s = t, m(s,t) = m(t,s),

for every $s, t \in S$.

We define the Coxeter group W relative to the Coxeter matrix m by the presentation

$$(st)^{m(s,t)}=e,$$

for every $s, t \in S$, where e is the identity of the group and S is its generator set.

Coxeter groups

Let S be a finite set and m:S imes S o { $1,2,...,\infty$ } be a map such that

m(s,t) = 1, if s = t, m(s,t) = m(t,s),

for every $s, t \in S$.

We define the Coxeter group W relative to the Coxeter matrix m by the presentation

$$(st)^{m(s,t)}=e,$$

for every $s, t \in S$, where e is the identity of the group and S is its generator set.

We call (W, S) a Coxeter system.

《曰》 《圖》 《臣》 《臣》

Given a Coxeter system (W, S), an element $w \in W$ is a word in the alphabet S and we indicate with $\ell(w)$ the length of w.

· · · · · · · · ·

Given a Coxeter system (W, S), an element $w \in W$ is a word in the alphabet S and we indicate with $\ell(w)$ the length of w.

We define a partial order on W, and we call it the Bruhat order of W, in the following way: given $u, v \in W$ and $v = s_1 s_2 \dots s_q$ a reduced expression for v,

 $u \leq v \Leftrightarrow$ there exists a reduced expression $u = s_{i_1} \dots s_{i_k}, \ 1 \leq i_1 < \dots < i_k \leq q.$

・ 御 ト ・ ヨ ト ・ ヨ ト

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(ws) < \ell(w)$.

$$D_R(w) := \{ s \in S \mid \ell(ws) < \ell(w) \}.$$

Analogously we define the left descent set of w, $D_L(w)$.

6 / 26

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(ws) < \ell(w)$.

$$D_R(w) := \{ s \in S \mid \ell(ws) < \ell(w) \}.$$

Analogously we define the left descent set of w, $D_L(w)$.

For any $J \subseteq S$ we define

$$W^{J} := \{ w \in W \mid \ell(sw) > \ell(w) \forall s \in J \},$$

$$^{J}W := \{ w \in W \mid \ell(ws) > \ell(w) \forall s \in J \}.$$

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(ws) < \ell(w)$.

$$D_R(w) := \{ s \in S \mid \ell(ws) < \ell(w) \}.$$

Analogously we define the left descent set of w, $D_L(w)$.

For any $J \subseteq S$ we define

$$W^{J} := \{ w \in W \mid \ell(sw) > \ell(w) \forall s \in J \},$$

$$^{J}W := \{ w \in W \mid \ell(ws) > \ell(w) \forall s \in J \}.$$

For $J \subseteq S$, each element $w \in W$ has a unique expression

$$w = w_J w^J$$
,

where $w^J \in W^J$ and $w_J \in W_J$, and the subgroup $W_J \subseteq W$ is the group with $J \subseteq S$ as generator set. In particular $W_S = W$ and $W_{\emptyset} = \{e\}$. On W^J we consider the induced order. With $[u, v]^J$ we denote an interval in W^J , i.e., if $v, w \in W^J$,

$$[v,w]^J := \left\{ z \in W^J \mid v \leqslant z \leqslant w \right\}.$$

On W^J we consider the induced order. With $[u, v]^J$ we denote an interval in W^J , i.e., if $v, w \in W^J$,

$$[v,w]^J := \left\{ z \in W^J \mid v \leqslant z \leqslant w \right\}.$$

Define the canonical projection $P^J: W \to W^J$ by

$$P^J(w)=w^J,$$

and analogously $Q^J: W \to {}^JW.$

 P^{J} and Q^{J} are morphisms of posets, i.e.

$$u \leqslant v \Rightarrow P^J(u) \leqslant P^J(v)$$

and

$$u \leqslant v \Rightarrow Q^J(u) \leqslant Q^J(v)$$

æ

(人間) トイヨト イヨト

 P^{J} and Q^{J} are morphisms of posets, i.e.

$$u \leqslant v \Rightarrow P^J(u) \leqslant P^J(v)$$

and

$$u \leqslant v \Rightarrow Q^J(u) \leqslant Q^J(v)$$

Moreover, for any $I, J \subseteq S$,

$$P^J \circ Q^I = Q^I \circ P^J.$$

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

Hecke algebras

Let $A := \mathbb{Z}[q^{-1/2}, q^{1/2}]$ be the ring of Laurent polynomials in the indeterminate $q^{1/2}$. Recall that the Hecke algebra $\mathcal{H}(W)$ is the free *A*-module generated by the set { $T_w \mid w \in W$ } with product defined by

$$T_w T_s = \begin{cases} T_{ws}, & \text{if } s \notin D_R(w), \\ q T_{ws} + (q-1)T_w, & \text{otherwise,} \end{cases}$$

for all $w \in W$ and $s \in S$.

- 4 同下 4 国下 4 国下

Let $A := \mathbb{Z}[q^{-1/2}, q^{1/2}]$ be the ring of Laurent polynomials in the indeterminate $q^{1/2}$. Recall that the Hecke algebra $\mathcal{H}(W)$ is the free A-module generated by the set { $T_w \mid w \in W$ } with product defined by

$$T_w T_s = egin{cases} T_{ws}, & ext{if } s
ot\in D_R(w), \ q T_{ws} + (q-1)T_w, & ext{otherwise}, \end{cases}$$

for all $w \in W$ and $s \in S$.

For $s \in S$ we can easily see that

$$T_s^{-1} = (q^{-1} - 1)T_e + q^{-1}T_s$$

and then use this to invert all the elements T_w , where $w \in W$.

On $\mathcal{H}(W)$ there is an involution ι such that

$$\iota(q^{\frac{1}{2}}) = q^{-\frac{1}{2}}, \ \iota(T_w) = T_{w^{-1}}^{-1},$$

for all $w \in W$.

æ

・聞き ・ ヨキ・ ・ ヨキ

On $\mathcal{H}(W)$ there is an involution ι such that

$$\iota(q^{\frac{1}{2}}) = q^{-\frac{1}{2}}, \ \iota(T_w) = T_{w^{-1}}^{-1},$$

for all $w \in W$. Furthermore this map is a ring automorphism, i.e.

$$\iota(T_{v}T_{w}) = \iota(T_{v})\iota(T_{w}) \quad \forall \ v, w \in W.$$

> < 물 > < 물 >

The expansion of $\iota(T_w)$ in terms of the basis { $T_w \mid w \in W$ } and the introduction of a ι -invariant basis { C_w } $_{w \in W}$ of $\mathcal{H}(W)$ have lead to the definition of two families of polynomials { $R_{y,w}$ } $_{y,w \in W} \subseteq \mathbb{Z}[q]$ and { $P_{y,w}$ } $_{y,w \in W} \subseteq \mathbb{Z}[q]$ such that

$$\ell(T_w) = q^{-\ell(w)} \sum_{y \leq w} (-1)^{\ell(y,w)} R_{y,w}(q) T_y,$$

 $C_w = q^{rac{\ell(w)}{2}} \sum_{y \leq w} (-1)^{\ell(y,w)} q^{-\ell(y)} P_{y,w}(q^{-1}) T_y,$

for all $w \in W$.

Theorem (V. Deodhar)

Let (W, S) a Coxeter system, and $J \subseteq S$. Then, for each $x \in \{-1, q\}$, there is a unique family of polynomials $\left\{R_{v,w}^{J,x}\right\}_{v,w\in W^J} \subseteq \mathbb{Z}[q]$ such that, for all $v, w \in W^J$:

$$R_{v,w}^{J,x} = 0 \quad if \ v \leq w;$$

2
$$R_{w,w}^{J,x} = 1;$$

3 if v < w and $s \in D_R(w)$ then

$$R_{v,w}^{J,x} = \begin{cases} R_{vs,ws}^{J,x}, & \text{if } s \in D_R(v), \\ qR_{vs,ws}^{J,x} + (q-1)R_{v,ws}^{J,x}, & \text{if } s \notin D_R(v) \text{ and } vs \in W^J, \\ (q-1-x)R_{v,ws}^{J,x}, & \text{if } s \notin D_R(v) \text{ and } vs \notin W^J. \end{cases}$$

Theorem (V. Deodhar)

Let (W, S) a Coxeter system, and $J \subseteq S$. Then, for each $x \in \{-1, q\}$, there is a unique family of polynomials $\left\{ P_{v,w}^{J,\chi} \right\}_{\chi,w \in W^J} \subseteq \mathbb{Z}[q]$ such that, for all $v, w \in W^J$: • $P_{v,w}^{J,x} = 0$ if $v \leq w$; **2** $P_{w,w}^{J,x} = 1$: 3 deg $(P_{v,w}^{J,x}) \leq \frac{\ell(v,w)-1}{2}$, if v < w; 4 $q^{\ell(v,w)}P^{J,x}_{v,w}(q^{-1}) = \sum R^{J,x}_{v,z}(q)P^{J,x}_{z,w}(q),$ $z \in [v,w]^J$ if $v \leq w$.

$I, J \subseteq S$ and $u \in {}^{I}W^{J}$, where ${}^{I}W^{J} := {}^{I}W \cap W^{J}$

14 / 26

$$I, J \subseteq S$$
 and $u \in {}^{I}W^{J}$, where ${}^{I}W^{J} := {}^{I}W \cap W^{J}$

$$W_u^{J,I} := W^J \cap uW_I.$$

æ

イロト イ団ト イヨト イヨト

$$I, J \subseteq S$$
 and $u \in {}^{I}W^{J}$, where ${}^{I}W^{J} := {}^{I}W \cap W^{J}$

$$W_u^{J,I} := W^J \cap uW_I.$$

$$W_u^{J,I} = u(W_I)^{I \cap u^{-1}Ju}.$$

æ

イロト イ団ト イヨト イヨト

$$I, J \subseteq S$$
 and $u \in {}^{I}W^{J}$, where ${}^{I}W^{J} := {}^{I}W \cap W^{J}$

$$W_u^{J,I} := W^J \cap uW_I.$$

$$W_u^{J,I} = u(W_I)^{I \cap u^{-1}Ju}.$$

$$W_u^{J,I}\simeq (W_I)^{I\cap u^{-1}Ju}.$$

3

イロト イ理ト イヨト イヨト

$$I, J \subseteq S$$
 and $u \in {}^{I}W^{J}$, where ${}^{I}W^{J} := {}^{I}W \cap W^{J}$

$$W_u^{J,I} := W^J \cap uW_I.$$

$$W_u^{J,I} = u(W_I)^{I \cap u^{-1}Ju}.$$

$$W_u^{J,I}\simeq (W_I)^{I\cap u^{-1}Ju}.$$

$$M^{J,I}_u := \operatorname{span}_A \left\{ \left. m^{J,I}_v \right| \, v \in W^{J,I}_u
ight\}.$$

3

イロト イロト イヨト イヨト

For all $w \in W_I$, there is an A-module morphism $\phi_u^{J,x} : \mathcal{H}(W_I) \to M_u^{J,I}$ defined by

$$\phi_u^{J,x}(T_w) = x^{\ell(P_J(uw))} m_{P^J(uw)}^{J,I},$$

where x is any element of the ring A.

For all $w \in W_I$, there is an *A*-module morphism $\phi_u^{J,x} : \mathcal{H}(W_I) \to M_u^{J,I}$ defined by

$$\phi_{u}^{J,x}(T_{w}) = x^{\ell(P_{J}(uw))} m_{P^{J}(uw)}^{J,I},$$

where x is any element of the ring A.

Definition (P. Sentinelli)

If $I, J \subseteq S$, $u \in {}^{I}W^{J}$ and $x \in \{-1, q\}$, we call $M_{u,x}^{J,I}$ the right $\mathcal{H}(W_{I})$ -module with A-basis indexed by the set $W_{u}^{J,I}$ and with $\mathcal{H}(W_{I})$ -action defined by

$$m_{uv}^{J,I}T_w := \phi_u^{J,x}(T_vT_w)$$

where $s_1 \cdots s_k$ is a reduced expression of $w \in W_I$ and $v \in (W_I)^{I \cap u^{-1}Ju}$.

The Hecke module $M_{u,x}^{J,I}$

The isomorphism $W_u^{J,l} \simeq (W_l)^{l \cap u^{-1}Ju}$ induces an isomorphism of *A*-modules $\psi : M_{u,x}^{J,l} \to M_{e,x}^{l \cap u^{-1}Ju,l}$ defined by

$$\psi(m_{uv}^{J,I})=m_v^{I\cap u^{-1}Ju,I},$$

for all $v \in (W_I)^{I \cap u^{-1}Ju}$.

The Hecke module $M_{u,x}^{J,I}$

The isomorphism $W_u^{J,l} \simeq (W_l)^{l \cap u^{-1}Ju}$ induces an isomorphism of *A*-modules $\psi : M_{u,x}^{J,l} \to M_{e,x}^{l \cap u^{-1}Ju,l}$ defined by

$$\psi(m_{uv}^{J,I})=m_v^{I\cap u^{-1}Ju,I},$$

for all $v \in (W_I)^{I \cap u^{-1}Ju}$.

Theorem (P. Sentinelli)

The isomorphism of A-modules $\psi : M_{u,x}^{J,l} \to M_{e,x}^{l \cap u^{-1}Ju,l}$ is an isomorphism of right $\mathcal{H}(W_l)$ -modules, for $x \in \{-1, q\}$. Moreover there is an isomorphism of $\mathcal{H}(W_l)$ -modules

$$M_{e,x}^{J,S} \simeq \bigoplus_{v \in {}^{I}W^{J}} M_{e,x}^{I \cap v^{-1}Jv,I},$$

for $x \in \{ -1, q \}$.

< □ > < □ > < □ > < □ > < □ > < □ >

We define a map $\iota^{x}: M_{u,x}^{J,I} \to M_{u,x}^{J,I}$ by

$$\iota^{\mathsf{x}}(m_{uv}^{J,I}) := \phi_{u}^{J,\mathsf{x}}(\iota(T_{v}))$$

for all $v \in (W_I)^{I \cap u^{-1}Ju}$.

・ロト ・聞 ト ・ ヨト ・ ヨトー

We define a map $\iota^{x}: M_{u,x}^{J,I} \to M_{u,x}^{J,I}$ by

$$\iota^{\mathsf{x}}(m_{uv}^{J,I}) := \phi_{u}^{J,\mathsf{x}}(\iota(T_{v}))$$

for all $v \in (W_I)^{I \cap u^{-1}Ju}$.

$$\iota^{\mathbf{x}} \circ \phi_{\mathbf{u}}^{\mathbf{J},\mathbf{x}} = \phi_{\mathbf{u}}^{\mathbf{J},\mathbf{x}} \circ \iota.$$

・ロト ・聞 ト ・ ヨト ・ ヨトー

We define a map $\iota^{x}: M_{u,x}^{J,I} \to M_{u,x}^{J,I}$ by

$$\iota^{\mathsf{x}}(m_{uv}^{J,I}) := \phi_{u}^{J,\mathsf{x}}(\iota(T_{v}))$$

for all $v \in (W_l)^{l \cap u^{-1}Ju}$.

$$\iota^{\mathbf{x}} \circ \phi_{\mathbf{u}}^{\mathbf{J},\mathbf{x}} = \phi_{\mathbf{u}}^{\mathbf{J},\mathbf{x}} \circ \iota.$$

Moreover ι^{x} is an involution and

(4 何) (4 日) (4 日)

We define a map $\iota^{x}: M_{u,x}^{J,I} \to M_{u,x}^{J,I}$ by

$$\iota^{\mathsf{x}}(m_{uv}^{J,I}) := \phi_{u}^{J,\mathsf{x}}(\iota(T_{v}))$$

for all $v \in (W_I)^{I \cap u^{-1}Ju}$.

$$\iota^{\mathsf{x}} \circ \phi_{\mathsf{u}}^{\mathsf{J},\mathsf{x}} = \phi_{\mathsf{u}}^{\mathsf{J},\mathsf{x}} \circ \iota.$$

Moreover ι^{x} is an involution and

$$\iota^{\mathsf{x}}(m_{uv}^{J,I}T_{w}) = \iota^{\mathsf{x}}(m_{uv}^{J,I})\iota(T_{w}),$$

for all $w \in W_I$, $v \in (W_I)^{I \cap u^{-1}Ju}$.

▲圖▶ ▲ 国▶ ▲ 国▶ …

Definition

If $I, J \subseteq S$ and $u \in {}^{I}W^{J}$ we define, for each $v, w \in (W_{I})^{I \cap u^{-1}Ju}$, elements $R_{uv,uw}^{u,J,I,x} \in A$ by

$$\iota^{x}(m_{uv}^{J,I}) = q^{-\ell(v)} \sum_{w \in (W_{I})^{I \cap u^{-1}J_{u}}} (-1)^{\ell(w,v)} R_{uw,uv}^{u,J,I,x} m_{uw}^{J,I}$$

3

イロト イポト イヨト イヨト

Definition

If $I, J \subseteq S$ and $u \in {}^{I}W^{J}$ we define, for each $v, w \in (W_{I})^{I \cap u^{-1}Ju}$, elements $R_{uv,uw}^{u,J,I,x} \in A$ by

$$\iota^{x}(m_{uv}^{J,I}) = q^{-\ell(v)} \sum_{w \in (W_{I})^{I \cap u^{-1}J_{u}}} (-1)^{\ell(w,v)} R_{uw,uv}^{u,J,I,x} m_{uw}^{J,I}$$

Theorem (P. Sentinelli)

Let
$$I, J \subseteq S$$
, $u \in {}^{I}W^{J}$ and $v, w \in (W_{I})^{I \cap u^{-1}Ju}$; then

$$R_{uv,uw}^{u,J,I,x} = R_{uv,uw}^{J,x} = R_{v,w}^{I \cap u^{-1} J u, x}$$

3

イロト 不得下 イヨト イヨト

Corollary

Let $I,J\subseteq S$ and $v,w\in W^J$ be such that $Q^I(v)=Q^I(w)=u.$ Then

$$P_{v,w}^{J,x} = P_{Q_{l}(v),Q_{l}(w)}^{I \cap u^{-1}Ju,x}$$

æ

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (P. Sentinelli)

Let $J \subseteq S$; then there exists a Coxeter system $(W', S \cup \{ s' \})$, where $s' \notin S$, such that

$$R^{J,x}_{v,w}[W] = R^{S,x}_{s'v,s'w}[W']$$

and

$$P_{v,w}^{J,x}[W] = P_{s'v,s'w}^{S,x}[W'],$$

for all $v, w \in W^J$.

э

> < 3 > < 3 >

Dimostrazione.

Let *m* be the Coxeter matrix of (W, S) and let $(W', S \cup \{s'\})$ be the Coxeter system defined by the following Coxeter matrix *m*':

$$m'(s,t) = \begin{cases} m(s,t), & \text{if } s,t \in S, \\ 2, & \text{if } s = s' \text{ and } t \in J, \\ 3, & \text{if } s = s' \text{ and } t \in S \setminus J. \end{cases}$$

Now take u = s'. Then $u \in {}^{S}W'{}^{S}$ and $S \cap u^{-1}Su = S \cap s'Ss' = J$.

Definition

Let (W', S) be an irreducible and nearly finite Coxeter system. We let

 $S_f := \{ s \in S \mid (W, S \setminus \{ s \}) \text{ is irreducible and finite } \}.$

3

イロト イ理ト イヨト イヨト

Definition

Let (W', S) be an irreducible and nearly finite Coxeter system. We let

 $S_f := \{ s \in S \mid (W, S \setminus \{ s \}) \text{ is irreducible and finite } \}.$

Definition

Let (W', S) be an affine Coxeter system with Coxeter matrix m. Let $s \in S_f$ and $J = \{ t \in S \mid m(s, t) = 2 \}$. The quotient W^J of the finite Coxeter system $(W, S \setminus \{ s \})$ is then called quasi-minuscule.

・ロト ・聞 ト ・ ヨト ・ ヨト …

Corollary

Let W^J be a quasi-minuscule quotient of a finite Coxeter system (W, S). Then

$$P_{v,w}^{J,x}[W] = P_{s_0v,s_0w}^{S,x}[W'],$$

for all $v, w \in W^J$, where $(W', S \cup \{s_0\})$ is the affine Coxeter system of W.

- - E + - - E +

Corollary (from results of P. Mongelli)

Let (W, S) be an affine Coxeter system and $s \in S_f$. Then the polynomial $P_{sv,sw}^{S \setminus \{s\},q}$ is either zero or a monic power of q, for all $v, w \in W_{S \setminus \{s\}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary

Take the Coxeter system A_n with generators $S = \{s_1, ..., s_n\}$ and B_{n+1} with generators $S' = S \cup \{s_0\}$. Then, for all $j \in \{2, ..., n\}$,

$$P_{v,w}^{S\setminus \{s_1,s_j\},x}[A_n] = P_{uv,uw}^{S'\setminus \{s_{j-1}\},x}[B_{n+1}]$$

for all $v, w \in A_n^{S \setminus \{s_1, s_j\}}$, where $u = s_{j-1}s_{j-2}...s_1s_0$.

THE END

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -