Isomorphisms of Hecke modules and parabolic Kazhdan-Lusztig polynomials

Paolo Sentinelli

Università degli Studi di Roma "Tor Vergata"

72nd Séminaire Lotharingien de Combinatoire

Main results

Theorem

Let $I, J \subseteq S, u \in{ }^{\prime} W^{J}$ and $v, w \in\left(W_{l}\right)^{I \cap u^{-1} J u}$; then

$$
\begin{aligned}
& R_{u v, u w}^{J, x}=R_{v, w}^{I \cap u^{-1} J u, x}, \\
& P_{u v, u w}^{J, x}=P_{v, w}^{\prime \cap u^{-1} J u, x} .
\end{aligned}
$$

Main results

Theorem

Let $J \subseteq S$; then there exists a Coxeter system $\left(W^{\prime}, S \cup\left\{s^{\prime}\right\}\right)$, where $s^{\prime} \notin S$, such that

$$
R_{v, w}^{J, x}[W]=R_{s^{\prime}, s^{\prime} w}^{S, x}\left[W^{\prime}\right]
$$

and

$$
P_{v, w}^{J, x}[W]=P_{s^{\prime} v, s^{\prime} w}^{S, x}\left[W^{\prime}\right],
$$

for all $v, w \in W^{J}$.

Coxeter groups

Let S be a finite set and $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$ be a map such that

$$
\begin{gathered}
m(s, t)=1, \text { if } s=t \\
m(s, t)=m(t, s)
\end{gathered}
$$

for every $s, t \in S$.

Coxeter groups

Let S be a finite set and $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$ be a map such that

$$
\begin{gathered}
m(s, t)=1, \text { if } s=t, \\
m(s, t)=m(t, s),
\end{gathered}
$$

for every $s, t \in S$.
We define the Coxeter group W relative to the Coxeter matrix m by the presentation

$$
(s t)^{m(s, t)}=e
$$

for every $s, t \in S$, where e is the identity of the group and S is its generator set.

Coxeter groups

Let S be a finite set and $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$ be a map such that

$$
\begin{gathered}
m(s, t)=1, \text { if } s=t, \\
m(s, t)=m(t, s),
\end{gathered}
$$

for every $s, t \in S$.
We define the Coxeter group W relative to the Coxeter matrix m by the presentation

$$
(s t)^{m(s, t)}=e
$$

for every $s, t \in S$, where e is the identity of the group and S is its generator set.

We call (W, S) a Coxeter system.

Coxeter groups - Bruhat order

Given a Coxeter system (W, S), an element $w \in W$ is a word in the alphabet S and we indicate with $\ell(w)$ the length of w.

Coxeter groups - Bruhat order

Given a Coxeter system (W, S), an element $w \in W$ is a word in the alphabet S and we indicate with $\ell(w)$ the length of w.

We define a partial order on W, and we call it the Bruhat order of W, in the following way: given $u, v \in W$ and $v=s_{1} s_{2} \ldots s_{q}$ a reduced expression for v,

$$
\begin{aligned}
& u \leqslant v \Leftrightarrow \text { there exists a reduced expression } \\
& \qquad u=s_{i_{1}} \ldots s_{i_{k}}, 1 \leqslant i_{1}<\ldots<i_{k} \leqslant q .
\end{aligned}
$$

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(w s)<\ell(w)$.

$$
D_{R}(w):=\{s \in S \mid \ell(w s)<\ell(w)\} .
$$

Analogously we define the left descent set of $w, D_{L}(w)$.

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(w s)<\ell(w)$.

$$
D_{R}(w):=\{s \in S \mid \ell(w s)<\ell(w)\} .
$$

Analogously we define the left descent set of $w, D_{L}(w)$.
For any $J \subseteq S$ we define

$$
\begin{aligned}
& W^{J}:=\{w \in W \mid \ell(s w)>\ell(w) \forall s \in J\}, \\
& { }^{J} W:=\{w \in W \mid \ell(w s)>\ell(w) \forall s \in J\} .
\end{aligned}
$$

Coxeter groups - Descent sets and quotients

A right descent of $w \in W$ is an element $s \in S$ such that $\ell(w s)<\ell(w)$.

$$
D_{R}(w):=\{s \in S \mid \ell(w s)<\ell(w)\} .
$$

Analogously we define the left descent set of $w, D_{L}(w)$.
For any $J \subseteq S$ we define

$$
\begin{aligned}
& W^{J}:=\{w \in W \mid \ell(s w)>\ell(w) \forall s \in J\}, \\
& { }^{J} W:=\{w \in W \mid \ell(w s)>\ell(w) \forall s \in J\} .
\end{aligned}
$$

For $J \subseteq S$, each element $w \in W$ has a unique expression

$$
w=w\lrcorner w^{J},
$$

where $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$, and the subgroup $W_{J} \subseteq W$ is the group with $J \subseteq S$ as generator set. In particular $W_{S}=W$ and $W_{\varnothing}=\{e\} \cdot{ }_{\text {E }}$

Coxeter groups - Quotients and projections

On W^{J} we consider the induced order. With $[u, v]^{J}$ we denote an interval in W^{J}, i.e., if $v, w \in W^{J}$,

$$
[v, w]^{J}:=\left\{z \in W^{J} \mid v \leqslant z \leqslant w\right\} .
$$

Coxeter groups - Quotients and projections

On W^{J} we consider the induced order. With $[u, v]^{J}$ we denote an interval in W^{J}, i.e., if $v, w \in W^{J}$,

$$
[v, w]^{J}:=\left\{z \in W^{J} \mid v \leqslant z \leqslant w\right\} .
$$

Define the canonical projection $P^{J}: W \rightarrow W^{J}$ by

$$
P^{J}(w)=w^{J}
$$

and analogously $Q^{J}: W \rightarrow{ }^{J} W$.

Coxeter groups - Projections

P^{J} and Q^{J} are morphisms of posets, i.e.

$$
u \leqslant v \Rightarrow P^{J}(u) \leqslant P^{J}(v)
$$

and

$$
u \leqslant v \Rightarrow Q^{J}(u) \leqslant Q^{J}(v)
$$

Coxeter groups - Projections

P^{J} and Q^{J} are morphisms of posets, i.e.

$$
u \leqslant v \Rightarrow P^{J}(u) \leqslant P^{J}(v)
$$

and

$$
u \leqslant v \Rightarrow Q^{J}(u) \leqslant Q^{J}(v)
$$

Moreover, for any $I, J \subseteq S$,

$$
P^{J} \circ Q^{\prime}=Q^{\prime} \circ P^{J}
$$

Hecke algebras

Let $A:=\mathbb{Z}\left[q^{-1 / 2}, q^{1 / 2}\right]$ be the ring of Laurent polynomials in the indeterminate $q^{1 / 2}$. Recall that the Hecke algebra $\mathcal{H}(W)$ is the free A-module generated by the set $\left\{T_{w} \mid w \in W\right\}$ with product defined by

$$
T_{w} T_{s}= \begin{cases}T_{w s}, & \text { if } s \notin D_{R}(w) \\ q T_{w s}+(q-1) T_{w}, & \text { otherwise }\end{cases}
$$

for all $w \in W$ and $s \in S$.

Hecke algebras

Let $A:=\mathbb{Z}\left[q^{-1 / 2}, q^{1 / 2}\right]$ be the ring of Laurent polynomials in the indeterminate $q^{1 / 2}$. Recall that the Hecke algebra $\mathcal{H}(W)$ is the free A-module generated by the set $\left\{T_{w} \mid w \in W\right\}$ with product defined by

$$
T_{w} T_{s}= \begin{cases}T_{w s}, & \text { if } s \notin D_{R}(w) \\ q T_{w s}+(q-1) T_{w}, & \text { otherwise }\end{cases}
$$

for all $w \in W$ and $s \in S$.

For $s \in S$ we can easily see that

$$
T_{s}^{-1}=\left(q^{-1}-1\right) T_{e}+q^{-1} T_{s}
$$

and then use this to invert all the elements T_{w}, where $w \in W$.

Hecke algebras - Involution

On $\mathcal{H}(W)$ there is an involution ι such that

$$
\iota\left(q^{\frac{1}{2}}\right)=q^{-\frac{1}{2}}, \quad \iota\left(T_{w}\right)=T_{w^{-1}}^{-1},
$$

for all $w \in W$.

Hecke algebras - Involution

On $\mathcal{H}(W)$ there is an involution ι such that

$$
\iota\left(q^{\frac{1}{2}}\right)=q^{-\frac{1}{2}}, \quad \iota\left(T_{w}\right)=T_{w^{-1}}^{-1}
$$

for all $w \in W$. Furthermore this map is a ring automorphism, i.e.

$$
\iota\left(T_{v} T_{w}\right)=\iota\left(T_{v}\right) \iota\left(T_{w}\right) \quad \forall v, w \in W
$$

Hecke algebras - Kazhdan-Lusztig polynomials

The expansion of $\iota\left(T_{w}\right)$ in terms of the basis $\left\{T_{w} \mid w \in W\right\}$ and the introduction of a ι-invariant basis $\left\{C_{w}\right\}_{w \in W}$ of $\mathcal{H}(W)$ have lead to the definition of two families of polynomials $\left\{R_{y, w}\right\}_{y, w \in W} \subseteq \mathbb{Z}[q]$ and $\left\{P_{y, w}\right\}_{y, w \in W} \subseteq \mathbb{Z}[q]$ such that

$$
\begin{gathered}
\iota\left(T_{w}\right)=q^{-\ell(w)} \sum_{y \leqslant w}(-1)^{\ell(y, w)} R_{y, w}(q) T_{y}, \\
C_{w}=q^{\frac{\ell(w)}{2}} \sum_{y \leqslant w}(-1)^{\ell(y, w)} q^{-\ell(y)} P_{y, w}\left(q^{-1}\right) T_{y},
\end{gathered}
$$

for all $w \in W$.

Parabolic Kazhdan-Lusztig and R-polynomials

Theorem (V. Deodhar)

Let (W, S) a Coxeter system, and $J \subseteq S$. Then, for each $x \in\{-1, q\}$, there is a unique family of polynomials $\left\{R_{v, w}^{J, x}\right\}_{v, w \in W^{J}} \subseteq \mathbb{Z}[q]$ such that, for all $v, w \in W^{J}$:
(1) $R_{v, w}^{J, x}=0$ if $v \nless w$;
(2) $R_{w, w}^{J, x}=1$;
(3) if $v<w$ and $s \in D_{R}(w)$ then

$$
R_{v, w}^{J, x}= \begin{cases}R_{v s, w s}^{J, x}, & \text { if } s \in D_{R}(v), \\ q R_{v s, w s}^{J, x}+(q-1) R_{v, w s}^{J, x}, & \text { if } s \notin D_{R}(v) \text { and } v s \in W^{J}, \\ (q-1-x) R_{v, w s}^{J, x}, & \text { if } s \notin D_{R}(v) \text { and } v s \notin W^{J} .\end{cases}
$$

Parabolic Kazhdan-Lusztig and R-polynomials

Theorem (V. Deodhar)

Let (W, S) a Coxeter system, and $J \subseteq S$. Then, for each $x \in\{-1, q\}$, there is a unique family of polynomials $\left\{P_{v, w}^{J, x}\right\}_{v, w \in W^{J}} \subseteq \mathbb{Z}[q]$ such that, for all $v, w \in W^{J}$:
(1) $P_{v, w}^{J, x}=0$ if $v \nless w$;
(2) $P_{w, w}^{J, x}=1$;
(3) $\operatorname{deg}\left(P_{v, w}^{J, x}\right) \leqslant \frac{\ell(v, w)-1}{2}$, if $v<w$;
(1)

$$
q^{\ell(v, w)} P_{v, w}^{J, x}\left(q^{-1}\right)=\sum_{z \in[v, w]^{J}} R_{v, z}^{J, x}(q) P_{z, w}^{J, x}(q),
$$

if $v \leqslant w$.

The Hecke modules $M_{u, x}^{J, I}$

$I, J \subseteq S$ and $u \in{ }^{\prime} W^{J}$, where ${ }^{\prime} W^{J}:={ }^{\prime} W \cap W^{J}$

The Hecke modules $M_{u, x}^{J, I}$

$I, J \subseteq S$ and $u \in{ }^{\prime} W^{J}$, where ${ }^{\prime} W^{J}:={ }^{\prime} W \cap W^{J}$

$$
W_{u}^{J, l}:=W^{J} \cap u W_{l} .
$$

The Hecke modules $M_{u, x}^{J, I}$

$I, J \subseteq S$ and $u \in{ }^{\prime} W^{J}$, where ${ }^{\prime} W^{J}:={ }^{\prime} W \cap W^{J}$

$$
\begin{aligned}
& W_{u}^{J, I}:=W^{J} \cap u W_{l} . \\
& W_{u}^{J, I}=u\left(W_{l}\right)^{\cap \cap u^{-1} J u} .
\end{aligned}
$$

The Hecke modules $M_{u, x}^{J, I}$

$I, J \subseteq S$ and $u \in{ }^{\prime} W^{J}$, where ${ }^{\prime} W^{J}:={ }^{\prime} W \cap W^{J}$

$$
\begin{aligned}
& W_{u}^{J, l}:=W^{J} \cap u W_{l} . \\
& W_{u}^{J, I}=u\left(W_{l}\right)^{I \cap u^{-1} J u} . \\
& W_{u}^{J, l} \simeq\left(W_{l}\right)^{\cap \cap u^{-1} J u} .
\end{aligned}
$$

The Hecke modules $M_{u, x}^{J, I}$

$I, J \subseteq S$ and $u \in{ }^{\prime} W^{J}$, where ${ }^{\prime} W^{J}:={ }^{\prime} W \cap W^{J}$

$$
\begin{gathered}
W_{u}^{J, I}:=W^{J} \cap u W_{l} . \\
W_{u}^{J, I}=u\left(W_{l}\right)^{I \cap u^{-1} J u} . \\
W_{u}^{J, I} \simeq\left(W_{l}\right)^{I \cap u^{-1} J u} . \\
M_{u}^{J, I}:=\operatorname{span}_{A}\left\{m_{v}^{J, I} \mid v \in W_{u}^{J, I}\right\} .
\end{gathered}
$$

The Hecke module $M_{u, x}^{J, I}$

For all $w \in W_{l}$, there is an A-module morphism $\phi_{u}^{J, x}: \mathcal{H}\left(W_{l}\right) \rightarrow M_{u}^{J, l}$ defined by

$$
\phi_{u}^{J, x}\left(T_{w}\right)=x^{\ell\left(P_{J}(u w)\right)} m_{P^{J}(u w)}^{J, l},
$$

where x is any element of the ring A.

The Hecke module $M_{u, x}^{J, l}$

For all $w \in W_{l}$, there is an A-module morphism $\phi_{u}^{J, x}: \mathcal{H}\left(W_{l}\right) \rightarrow M_{u}^{J, l}$ defined by

$$
\phi_{u}^{J, x}\left(T_{w}\right)=x^{\ell\left(P_{J}(u w)\right)} m_{P^{J}(u w)}^{J, l},
$$

where x is any element of the ring A.

Definition (P. Sentinelli)

If $I, J \subseteq S, u \in{ }^{\prime} W^{J}$ and $x \in\{-1, q\}$, we call $M_{u, x}^{J, I}$ the right $\mathcal{H}\left(W_{l}\right)$-module with A-basis indexed by the set $W_{u}^{J, I}$ and with $\mathcal{H}\left(W_{l}\right)$-action defined by

$$
m_{u v}^{J, I} T_{w}:=\phi_{u}^{J, x}\left(T_{v} T_{w}\right)
$$

where $s_{1} \cdots s_{k}$ is a reduced expression of $w \in W_{l}$ and $v \in\left(W_{l}\right)^{I \cap u^{-1} J u}$.

The Hecke module $M_{u, x}^{J, I}$

The isomorphism $W_{u}^{J, I} \simeq\left(W_{l}\right)^{I \cap u^{-1} J u}$ induces an isomorphism of A-modules $\psi: M_{u, x}^{J, I} \rightarrow M_{e, x}^{I \cap u^{-1} J u, I}$ defined by

$$
\psi\left(m_{u v}^{J, l}\right)=m_{v}^{I \cap u^{-1} J u, l}
$$

for all $v \in\left(W_{l}\right)^{I \cap u^{-1} J u}$.

The Hecke module $M_{u, x}^{J, l}$

The isomorphism $W_{u}^{J, I} \simeq\left(W_{l}\right)^{I \cap u^{-1} J u}$ induces an isomorphism of A-modules $\psi: M_{u, x}^{J, I} \rightarrow M_{e, x}^{I \cap u^{-1} J u, I}$ defined by

$$
\psi\left(m_{u v}^{J, l}\right)=m_{v}^{I \cap u^{-1} J u, l}
$$

for all $v \in\left(W_{l}\right)^{I \cap u^{-1} J u}$.

Theorem (P. Sentinelli)

The isomorphism of A-modules $\psi: M_{u, x}^{J, I} \rightarrow M_{e, x}^{I \cap u^{-1} J u, I}$ is an isomorphism of right $\mathcal{H}\left(W_{l}\right)$-modules, for $x \in\{-1, q\}$. Moreover there is an isomorphism of $\mathcal{H}\left(W_{l}\right)$-modules

$$
M_{e, x}^{J, S} \simeq \bigoplus_{v \in{ }^{\prime} W^{J}} M_{e, x}^{I \cap v^{-1} J v, I}
$$

for $x \in\{-1, q\}$.

The Hecke module $M_{u, x}^{J, I}$ - An involution

We define a map $\iota^{x}: M_{u, x}^{J, I} \rightarrow M_{u, x}^{J, I}$ by

$$
\iota^{x}\left(m_{u v}^{J, l}\right):=\phi_{u}^{J, x}\left(\iota\left(T_{v}\right)\right)
$$

for all $v \in\left(W_{l}\right)^{I \cap u^{-1} J u}$.

The Hecke module $M_{u, x}^{J, I}$ - An involution

We define a map $\iota^{x}: M_{u, x}^{J, I} \rightarrow M_{u, x}^{J, I}$ by

$$
\iota^{x}\left(m_{u v}^{J, l}\right):=\phi_{u}^{J, x}\left(\iota\left(T_{v}\right)\right)
$$

for all $v \in\left(W_{l}\right)^{I \cap u^{-1} J u}$.

$$
\iota^{x} \circ \phi_{u}^{J, x}=\phi_{u}^{J, x} \circ \iota .
$$

The Hecke module $M_{u, x}^{J, I}$ - An involution

We define a map $\iota^{x}: M_{u, x}^{J, I} \rightarrow M_{u, x}^{J, I}$ by

$$
\iota^{x}\left(m_{u v}^{J, l}\right):=\phi_{u}^{J, x}\left(\iota\left(T_{v}\right)\right)
$$

for all $v \in\left(W_{l}\right)^{I \cap u^{-1} J u}$.

$$
\iota^{x} \circ \phi_{u}^{J, x}=\phi_{u}^{J, x} \circ \iota .
$$

Moreover ι^{x} is an involution and

The Hecke module $M_{u, x}^{J, I}$ - An involution

We define a map $\iota^{x}: M_{u, x}^{J, I} \rightarrow M_{u, x}^{J, I}$ by

$$
\iota^{x}\left(m_{u v}^{J, l}\right):=\phi_{u}^{J, x}\left(\iota\left(T_{v}\right)\right)
$$

for all $v \in\left(W_{l}\right)^{I \cap u^{-1} J u}$.

$$
\iota^{x} \circ \phi_{u}^{J, x}=\phi_{u}^{J, x} \circ \iota .
$$

Moreover ι^{x} is an involution and

$$
\iota^{\times}\left(m_{u v}^{J, I} T_{w}\right)=\iota^{x}\left(m_{u v}^{J, l}\right) \iota\left(T_{w}\right),
$$

for all $w \in W_{l}, v \in\left(W_{l}\right)^{I \cap u^{-1} J u}$.

Polynomials

Definition

If $I, J \subseteq S$ and $u \in{ }^{\prime} W^{J}$ we define, for each $v, w \in\left(W_{l}\right)^{I \cap u^{-1} J u}$, elements $R_{u v, u w}^{u, J, I, x} \in A$ by

$$
\iota^{x}\left(m_{u v}^{J, l}\right)=q^{-\ell(v)} \sum_{w \in\left(W_{l}\right)^{1 \cap u^{-1} J u}}(-1)^{\ell(w, v)} R_{u w, u v}^{u, J, l, x} m_{u w}^{J, l} .
$$

Polynomials

Definition

If $I, J \subseteq S$ and $u \in{ }^{\prime} W^{J}$ we define, for each $v, w \in\left(W_{l}\right)^{I \cap u^{-1} J u}$, elements $R_{u v, u w}^{u, J, I, x} \in A$ by

$$
\iota^{\chi}\left(m_{u v}^{J, l}\right)=q^{-\ell(v)} \sum_{w \in\left(W_{l}\right)^{\wedge n} u^{-1} J u}(-1)^{\ell(w, v)} R_{u \omega, u v}^{u,,,, x} m_{u w}^{J, l} .
$$

Theorem (P. Sentinelli)

Let $I, J \subseteq S, u \in{ }^{\prime} W^{J}$ and $v, w \in\left(W_{l}\right)^{I \cap u^{-1} J u}$; then

$$
R_{u v, u w}^{u, J, I, x}=R_{u v, u w}^{J, x}=R_{v, w}^{I \cap u^{-1} J u, x} .
$$

Polynomials

Corollary

Let $I, J \subseteq S$ and $v, w \in W^{J}$ be such that $Q^{\prime}(v)=Q^{\prime}(w)=u$. Then

$$
P_{v, w}^{J, x}=P_{Q_{l}(v), Q_{l}(w)}^{I \cap u^{-1} J u, x}
$$

Polynomials

Theorem (P. Sentinelli)

Let $J \subseteq S$; then there exists a Coxeter system $\left(W^{\prime}, S \cup\left\{s^{\prime}\right\}\right)$, where $s^{\prime} \notin S$, such that

$$
R_{v, w}^{J, x}[W]=R_{s^{\prime} v, s^{\prime} w}^{S, x}\left[W^{\prime}\right]
$$

and

$$
P_{v, w}^{J, x}[W]=P_{s^{\prime} v, s^{\prime} w}^{S, x}\left[W^{\prime}\right],
$$

for all $v, w \in W^{J}$.

Polynomials

Dimostrazione.

Let m be the Coxeter matrix of (W, S) and let $\left(W^{\prime}, S \cup\left\{s^{\prime}\right\}\right)$ be the Coxeter system defined by the following Coxeter matrix m^{\prime} :

$$
m^{\prime}(s, t)= \begin{cases}m(s, t), & \text { if } s, t \in S \\ 2, & \text { if } s=s^{\prime} \text { and } t \in J, \\ 3, & \text { if } s=s^{\prime} \text { and } t \in S \backslash J .\end{cases}
$$

Now take $u=s^{\prime}$. Then $u \in{ }^{S} W^{\prime} S$ and $S \cap u^{-1} S u=S \cap s^{\prime} S s^{\prime}=J$.

Corollaries

Definition

Let $\left(W^{\prime}, S\right)$ be an irreducible and nearly finite Coxeter system. We let

$$
S_{f}:=\{s \in S \mid(W, S \backslash\{s\}) \text { is irreducible and finite }\} .
$$

Corollaries

Definition

Let $\left(W^{\prime}, S\right)$ be an irreducible and nearly finite Coxeter system. We let

$$
S_{f}:=\{s \in S \mid(W, S \backslash\{s\}) \text { is irreducible and finite }\} .
$$

Definition

Let $\left(W^{\prime}, S\right)$ be an affine Coxeter system with Coxeter matrix m. Let $s \in S_{f}$ and $J=\{t \in S \mid m(s, t)=2\}$. The quotient W^{J} of the finite Coxeter system $(W, S \backslash\{s\})$ is then called quasi-minuscule.

Corollaries

Corollary

Let W^{J} be a quasi-minuscule quotient of a finite Coxeter system (W, S). Then

$$
P_{v, w}^{J, x}[W]=P_{s_{0} v, s_{0} w}^{S, x}\left[W^{\prime}\right]
$$

for all $v, w \in W^{J}$, where $\left(W^{\prime}, S \cup\left\{s_{0}\right\}\right)$ is the affine Coxeter system of W.

Corollaries

Corollary (from results of P. Mongelli)
Let (W, S) be an affine Coxeter system and $s \in S_{f}$. Then the polynomial $P_{s v, s w}^{S \backslash\{s\}, q}$ is either zero or a monic power of q, for all $v, w \in W_{S \backslash\{s\}}$.

Corollaries

Corollary

Take the Coxeter system A_{n} with generators $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and B_{n+1} with generators $S^{\prime}=S \cup\left\{s_{0}\right\}$. Then, for all $j \in\{2, \ldots, n\}$,

$$
P_{v, w}^{S \backslash\left\{s_{1}, s_{j}\right\}, x}\left[A_{n}\right]=P_{u v, u w}^{S^{\prime} \backslash\left\{s_{j-1}\right\}, x}\left[B_{n+1}\right],
$$

for all $v, w \in A_{n}^{S \backslash\left\{s_{1}, s_{j}\right\}}$, where $u=s_{j-1} s_{j-2} \ldots s_{1} s_{0}$.

THE END

