Polynomiality of the structure coefficients of double-class algebras

Omar Tout
LaBRI, Bordeaux

72nd Séminaire Lotharingien de Combinatoire
Université Claude Bernard Lyon 1, March 2014

Plan.

I. Introduction: structure coefficients of an algebra
II. Partitions
III. Two polynomiality results

1. $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$
2. Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$
IV. Structure coefficients of the double-class algebra
V. Conclusions and further applications
I. Introduction: structure coefficients of an algebra

- Problem: Let \mathcal{A} be an algebra over a field F with basis $b_{1}, b_{2}, \cdots, b_{n}$. For two basis elements, say b_{i} and b_{j}, write:

$$
b_{i} b_{j}=\sum_{k} c_{i, j}^{k} b_{k},
$$

where $c_{i, j}^{k} \in F$. The elements $c_{i, j}^{k}$ are called the structure coefficients of \mathcal{A} and there is no explicit formula for them, even in the particular algebras we will consider.

- Problem: Let \mathcal{A} be an algebra over a field F with basis $b_{1}, b_{2}, \cdots, b_{n}$. For two basis elements, say b_{i} and b_{j}, write:

$$
b_{i} b_{j}=\sum_{k} c_{i, j}^{k} b_{k},
$$

where $c_{i, j}^{k} \in F$. The elements $c_{i, j}^{k}$ are called the structure coefficients of \mathcal{A} and there is no explicit formula for them, even in the particular algebras we will consider.

- Our work:

1- A framework in which one can obtain the form of the structure coefficients of the double-class algebra. ${ }^{1}$
2- A polynomiality property of these coefficients in some specific cases.

[^0]
II. Partitions

- A partition λ is a list of integers $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ where $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant 1$. The λ_{i} are called the parts of λ. The size of a partition λ (noted $|\lambda|$) is the sum of all its parts. Example: $\lambda=(3,2,1),|\lambda|=3+2+1=6$
- A partition λ is a list of integers $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ where $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant 1$. The λ_{i} are called the parts of λ. The size of a partition λ (noted $|\lambda|$) is the sum of all its parts.
Example: $\lambda=(3,2,1),|\lambda|=3+2+1=6$
- A proper partition is a partition without parts equal to one. Example: $\delta=(3,2,2)$, is a proper partition of size 7 .
- A partition λ is a list of integers $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ where $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant 1$. The λ_{i} are called the parts of λ. The size of a partition λ (noted $|\lambda|$) is the sum of all its parts.
Example: $\lambda=(3,2,1),|\lambda|=3+2+1=6$
- A proper partition is a partition without parts equal to one. Example: $\delta=(3,2,2)$, is a proper partition of size 7 .
- Let λ be a proper partition and $n \geqslant|\lambda|$. The partition $\lambda \cup\left(1^{n-|\lambda|}\right)$ is the partition of n obtained by adding $n-|\lambda|$ parts equal 1 to λ.
- A partition λ is a list of integers $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ where $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant 1$. The λ_{i} are called the parts of λ. The size of a partition λ (noted $|\lambda|$) is the sum of all its parts.
Example: $\lambda=(3,2,1),|\lambda|=3+2+1=6$
- A proper partition is a partition without parts equal to one. Example: $\delta=(3,2,2)$, is a proper partition of size 7 .
- Let λ be a proper partition and $n \geqslant|\lambda|$. The partition $\lambda \cup\left(1^{n-|\lambda|}\right)$ is the partition of n obtained by adding $n-|\lambda|$ parts equal 1 to λ.
- Partitions of n are in bijection with the proper partitions with size at most n.
- A partition λ is a list of integers $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ where $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant 1$. The λ_{i} are called the parts of λ. The size of a partition λ (noted $|\lambda|$) is the sum of all its parts.
Example: $\lambda=(3,2,1),|\lambda|=3+2+1=6$
- A proper partition is a partition without parts equal to one. Example: $\delta=(3,2,2)$, is a proper partition of size 7 .
- Let λ be a proper partition and $n \geqslant|\lambda|$. The partition $\lambda \cup\left(1^{n-|\lambda|}\right)$ is the partition of n obtained by adding $n-|\lambda|$ parts equal 1 to λ.
- Partitions of n are in bijection with the proper partitions with size at most n.
The proper partitions will be used to index bases of the algebras considered in this talk.

III. Two polynomiality results
 1. Center of the symmetric group algebra $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$

- The symmetric Group Algebra $\mathbb{C}\left[\mathcal{S}_{n}\right]$ is the algebra over \mathbb{C} with basis the elements of \mathcal{S}_{n} (the permutations of n).
- The symmetric Group Algebra $\mathbb{C}\left[\mathcal{S}_{n}\right]$ is the algebra over \mathbb{C} with basis the elements of \mathcal{S}_{n} (the permutations of n).
- Every element of \mathcal{S}_{n} can be written (in a unique way) as a product of disjoint cycles.
- The symmetric Group Algebra $\mathbb{C}\left[\mathcal{S}_{n}\right]$ is the algebra over \mathbb{C} with basis the elements of \mathcal{S}_{n} (the permutations of n).
- Every element of \mathcal{S}_{n} can be written (in a unique way) as a product of disjoint cycles.
- For a permutation $\omega \in \mathcal{S}_{n}$, we define the cycle-type of $\omega, \operatorname{ct}(\omega)$, to be the partition of n with parts equal to the lengths of the cycles that appear in its decomposition.
Example: $\omega=2$
65
4
$31=\left(\begin{array}{ll}1 & 2\end{array}\right.$

6) (5
7) (4). $\operatorname{ct}(\omega)=(3,2,1)$.

- The symmetric Group Algebra $\mathbb{C}\left[\mathcal{S}_{n}\right]$ is the algebra over \mathbb{C} with basis the elements of \mathcal{S}_{n} (the permutations of n).
- Every element of \mathcal{S}_{n} can be written (in a unique way) as a product of disjoint cycles.
- For a permutation $\omega \in \mathcal{S}_{n}$, we define the cycle-type of $\omega, \operatorname{ct}(\omega)$, to be the partition of n with parts equal to the lengths of the cycles that appear in its decomposition.
Example: $\omega=2 \begin{array}{llllll}6 & 5 & 4 & 3 & 1=\left(\begin{array}{lll}1 & 2 & 6\end{array}\right)\left(\begin{array}{ll}5 & 3\end{array}\right)(4) \text {. } . ~ . ~\end{array}$ $\operatorname{ct}(\omega)=(3,2,1)$.
- The center of the symmetric group algebra, $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$, is:

$$
\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)=\left\{x \in \mathbb{C}\left[\mathcal{S}_{n}\right] \mid x \cdot y=y \cdot x \forall y \in \mathbb{C}\left[\mathcal{S}_{n}\right]\right\}
$$

- The symmetric Group Algebra $\mathbb{C}\left[\mathcal{S}_{n}\right]$ is the algebra over \mathbb{C} with basis the elements of \mathcal{S}_{n} (the permutations of n).
- Every element of \mathcal{S}_{n} can be written (in a unique way) as a product of disjoint cycles.
- For a permutation $\omega \in \mathcal{S}_{n}$, we define the cycle-type of $\omega, \operatorname{ct}(\omega)$, to be the partition of n with parts equal to the lengths of the cycles that appear in its decomposition.
Example: $\omega=2 \quad 6 \quad 5 \quad 4 \quad 3 \quad 1=\left(\begin{array}{lll}1 & 2 & 6\end{array}\right)\left(\begin{array}{ll}5 & 3\end{array}\right)(4)$. $\operatorname{ct}(\omega)=(3,2,1)$.
- The center of the symmetric group algebra, $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$, is:

$$
\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)=\left\{x \in \mathbb{C}\left[\mathcal{S}_{n}\right] \mid x \cdot y=y \cdot x \forall y \in \mathbb{C}\left[\mathcal{S}_{n}\right]\right\}
$$

- The family $\left(S_{\lambda}(n)\right)_{|\lambda| \leqslant n}$ indexed by proper partitions of size at most n forms a basis for $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$, where,

$$
S_{\lambda}(n)=\sum_{\substack{\omega \in \mathcal{S}_{n}, c t(\omega)=\lambda \cup\left(1^{n-|\lambda|}\right)}} \omega
$$

- For λ and δ two proper partitions with size at most n,

$$
S_{\lambda}(n) \cdot S_{\delta}(n)=\sum_{\substack{\rho \text { proper partition } \\|\rho| \leqslant n}} c_{\lambda, \delta}^{\rho}(n) S_{\rho}(n),
$$

the numbers $c_{\lambda, \delta}^{\rho}(n)$ are the structure coefficients of the center of the symmetric group algebra $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$.

- For λ and δ two proper partitions with size at most n,

$$
S_{\lambda}(n) \cdot S_{\delta}(n)=\sum_{\substack{\rho \text { proper partition } \\|\rho| \leqslant n}} c_{\lambda, \delta}^{\rho}(n) S_{\rho}(n),
$$

the numbers $c_{\lambda, \delta}^{\rho}(n)$ are the structure coefficients of the center of the symmetric group algebra $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$.

- Motivation (Cori [1975]:) The structure coefficients of the center of the symmetric group algebra count the number of embedded graphs into orientable surfaces with some conditions.
- For λ and δ two proper partitions with size at most n,

$$
S_{\lambda}(n) \cdot S_{\delta}(n)=\sum_{\substack{\rho \text { proper partition } \\|\rho| \leqslant n}} c_{\lambda, \delta}^{\rho}(n) S_{\rho}(n),
$$

the numbers $c_{\lambda, \delta}^{\rho}(n)$ are the structure coefficients of the center of the symmetric group algebra $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$.

- Theorem (Farahat and Higman [1958]): Let λ, δ and ρ be three proper partitions, the function:

$$
n \longmapsto c_{\lambda, \delta}^{\rho}(n)
$$

defined for $n \geqslant|\lambda|,|\delta|,|\rho|$ is a polynomial in n.
Example: One can compute explicitly:

$$
S_{(2)}(n) \cdot S_{(2)}(n)=\frac{n(n-1)}{2} S_{\varnothing}(n)+3 S_{(3)}(n)+2 S_{\left(2^{2}\right)}(n) .
$$

III. Two polynomiality results
 2. Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$

- The Hyperoctahedral group \mathcal{B}_{n} is the subgoup of $\mathcal{S}_{2 n}$ consisting of all permutations of $\mathcal{S}_{2 n}$ which takes every pair of the form $\{2 k-1,2 k\}$ of [2n] to another pair with the same form. Example: $\beta=43875621 \in \mathcal{B}_{4}$
- The Hyperoctahedral group \mathcal{B}_{n} is the subgoup of $\mathcal{S}_{2 n}$ consisting of all permutations of $\mathcal{S}_{2 n}$ which takes every pair of the form $\{2 k-1,2 k\}$ of [2n] to another pair with the same form.
Example: $\beta=43875621 \in \mathcal{B}_{4}$
- To each permutation ω of $2 n$ we associate a graph $\Gamma(\omega)$. Example: Take $\omega=24931105867 \in \mathcal{S}_{10}$.

- The Hyperoctahedral group \mathcal{B}_{n} is the subgoup of $\mathcal{S}_{2 n}$ consisting of all permutations of $\mathcal{S}_{2 n}$ which takes every pair of the form $\{2 k-1,2 k\}$ of [2n] to another pair with the same form.
Example: $\beta=43875621 \in \mathcal{B}_{4}$
- To each permutation ω of $2 n$ we associate a graph $\Gamma(\omega)$. Example: Take $\omega=24931105867 \in \mathcal{S}_{10}$.

- The coset-type of a permutation x of $\mathcal{S}_{2 n}$ is a partition of n with parts equal to half of lengths of the cycles of $\Gamma(x)$.
Example: coset-type $(\omega)=(3,2)$.
- Proposition: Let $x \in \mathcal{S}_{2 n}$, we have:

$$
\begin{aligned}
\mathcal{B}_{n} \times \mathcal{B}_{n} & :=\left\{b x b^{\prime} \mid b, b^{\prime} \in \mathcal{B}_{n}\right\} \\
& =\left\{y \in \mathcal{S}_{2 n} \mid \operatorname{coset}-\operatorname{type}(y)=\operatorname{coset}-\operatorname{type}(x)\right\}
\end{aligned}
$$

- Proposition: Let $x \in \mathcal{S}_{2 n}$, we have:

$$
\begin{aligned}
\mathcal{B}_{n} \times \mathcal{B}_{n} & :=\left\{b x b^{\prime} \mid b, b^{\prime} \in \mathcal{B}_{n}\right\} \\
& =\left\{y \in \mathcal{S}_{2 n} \mid \operatorname{coset}-\operatorname{type}(y)=\operatorname{coset}-\operatorname{type}(x)\right\}
\end{aligned}
$$

- The Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$ denoted by $\mathbb{C}\left[\mathcal{B}_{n} \backslash \mathcal{S}_{2 n} / \mathcal{B}_{n}\right]$ is the algebra over \mathbb{C} with basis the elements $\left(S_{\lambda}^{\prime}(n)\right)_{|\lambda| \leqslant n}$ indexed by proper partitions with size at most n, where

$$
S_{\lambda}^{\prime}(n)=\sum_{\substack{\omega \in \mathcal{S}_{2 n} \\ \operatorname{coset}-\text { type }(\omega)=\lambda \cup\left(1^{n-|\lambda|}\right)}} \omega
$$

- For λ and δ two proper partitions with size at most n,

$$
S_{\lambda}^{\prime}(n) \cdot S_{\delta}^{\prime}(n)=\sum_{\substack{\rho \text { proper partition } \\|\rho| \leqslant n}} c_{\lambda, \delta}^{\prime \rho}(n) S_{\rho}^{\prime}(n),
$$

the numbers $c_{\lambda, \delta}^{\prime \rho}(n)$ are the structure coefficients of the Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$.

- For λ and δ two proper partitions with size at most n,

$$
S_{\lambda}^{\prime}(n) \cdot S_{\delta}^{\prime}(n)=\sum_{\substack{\rho \text { proper partition } \\ \rho \rho \leqslant n}} c_{\lambda, \delta}^{\prime \rho}(n) S_{\rho}^{\prime}(n),
$$

the numbers $c_{\lambda, \delta}^{\prime \rho}(n)$ are the structure coefficients of the Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$.

- Motivation (Goulden and Jackson [1996]): These coefficients count the number of embedded graphs into non-orientable surfaces with some conditions.
- For λ and δ two proper partitions with size at most n,

$$
S_{\lambda}^{\prime}(n) \cdot S_{\delta}^{\prime}(n)=\sum_{\substack{\rho \text { proper partition } \\ \text { lp } \leqslant n}} c_{\lambda, \delta}^{\prime \rho}(n) S_{\rho}^{\prime}(n),
$$

the numbers $c_{\lambda, \delta}^{\prime \rho}(n)$ are the structure coefficients of the Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$.

- Theorem (Dołęga and Féray [2012], T. [2013]): Let λ, δ and ρ be three proper partitions, we have:

$$
{c^{\prime}}_{\lambda \delta}^{\rho}(n)= \begin{cases}2^{n} n!f_{\lambda \delta}^{\rho}(n) & \text { if } \quad n \geqslant|\rho|, \\ 0 & \text { if } \quad n<|\rho|,\end{cases}
$$

where $f_{\lambda \delta}^{\rho}(n)$ is a polynomial in n.
Example: For every $n \geqslant 4$, we have:

$$
S_{(2)}^{\prime}(n) \cdot S_{(2)}^{\prime}(n)=2^{n} n!\left(n(n-1) S_{\varnothing}^{\prime}(n)+1 S_{(2)}^{\prime}(n)+3 S_{(3)}^{\prime}(n)+2 S_{\left(2^{2}\right)}^{\prime}(n)\right)
$$

IV. Structure coefficients of the double-class algebra

- Let $\left(G_{n}, K_{n}\right)_{n}$ be a sequence where G_{n} is a group and K_{n} is a sub-group of G_{n} for each n.
- Let $\left(G_{n}, K_{n}\right)_{n}$ be a sequence where G_{n} is a group and K_{n} is a sub-group of G_{n} for each n.
- A double-class of K_{n} in G_{n} is a set $\bar{g}^{n}:=K_{n} g K_{n}$, for a $g \in G_{n}$,

$$
K_{n} g K_{n}=\left\{k g k^{\prime} ; k, k^{\prime} \in K_{n}\right\} .
$$

- Let $\left(G_{n}, K_{n}\right)_{n}$ be a sequence where G_{n} is a group and K_{n} is a sub-group of G_{n} for each n.
- A double-class of K_{n} in G_{n} is a set $\bar{g}^{n}:=K_{n} g K_{n}$, for a $g \in G_{n}$,

$$
K_{n} g K_{n}=\left\{k g k^{\prime} ; k, k^{\prime} \in K_{n}\right\} .
$$

- Let $\Re_{n}=\left\{{\overline{x_{1}}}^{n}, \cdots,{\overline{X_{I(n)}}}^{n}\right\}$ be the set of representative elements of the set of double-classes $K_{n} \backslash G_{n} / K_{n}$.
- Let $\left(G_{n}, K_{n}\right)_{n}$ be a sequence where G_{n} is a group and K_{n} is a sub-group of G_{n} for each n.
- A double-class of K_{n} in G_{n} is a set $\bar{g}^{n}:=K_{n} g K_{n}$, for a $g \in G_{n}$,

$$
K_{n} g K_{n}=\left\{k g k^{\prime} ; k, k^{\prime} \in K_{n}\right\} .
$$

- Let $\Re_{n}=\left\{{\overline{X_{1}}}^{n}, \cdots,{\overline{x_{l(n)}}}^{n}\right\}$ be the set of representative elements of the set of double-classes $K_{n} \backslash G_{n} / K_{n}$.
- Let ${\overline{x_{i}}}^{n}$ be the sum of the elements in ${\overline{x_{i}}}^{n}$. The double-class algebra of K_{n} in G_{n}, denoted $\mathbb{C}\left[K_{n} \backslash G_{n} / K_{n}\right]$, is the algebra with basis the elements $\overline{x_{i}}$.
Example: The Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right), \mathbb{C}\left[\mathcal{B}_{n} \backslash \mathcal{S}_{2 n} / \mathcal{B}_{n}\right]$, is a double-class algebra.
- The product ${\overline{X_{i}}}^{n} \cdot{\overline{X_{j}}}^{n}$ can be written as follows:

$$
{\overline{\mathbf{x}_{\mathbf{i}}}}^{n} \cdot{\overline{\mathrm{x}_{\mathbf{j}}}}^{n}=\sum_{1 \leqslant r \leqslant l(n)} c_{i, j}^{r}(n){\overline{\mathrm{x}_{\mathbf{r}}}}^{n} .
$$

The coefficients $c_{i, j}^{r}(n)$ are the structure coefficients of the double class algebra $\mathbb{C}\left[K_{n} \backslash G_{n} / K_{n}\right]$.

- The product ${\overline{\mathbf{X}_{\mathbf{i}}}}^{n} \cdot{\overline{\mathbf{x}_{\mathbf{j}}}}^{n}$ can be written as follows:

$$
{\overline{\mathbf{x}_{\mathbf{i}}}}^{n} \cdot{\overline{\mathrm{x}_{\mathbf{j}}}}^{n}=\sum_{1 \leqslant r \leqslant l(n)} c_{i, j}^{r}(n){\overline{\mathrm{x}_{\mathbf{r}}}}^{n} .
$$

The coefficients $c_{i, j}^{r}(n)$ are the structure coefficients of the double class algebra $\mathbb{C}\left[K_{n} \backslash G_{n} / K_{n}\right]$.

- There is no explicit formula for these coefficients.
- The product ${\overline{\mathbf{X}_{\mathbf{i}}}}^{n} \cdot{\overline{\mathbf{x}_{\mathbf{j}}}}^{n}$ can be written as follows:

$$
{\overline{\mathbf{x}_{\mathbf{i}}}}^{n} \cdot{\overline{\mathrm{x}_{\mathbf{j}}}}^{n}=\sum_{1 \leqslant r \leqslant l(n)} c_{i, j}^{r}(n){\overline{\mathrm{x}_{\mathbf{r}}}}^{n} .
$$

The coefficients $c_{i, j}^{r}(n)$ are the structure coefficients of the double class algebra $\mathbb{C}\left[K_{n} \backslash G_{n} / K_{n}\right]$.

- There is no explicit formula for these coefficients.
- Goals:

1. The form of these structure coefficients under some conditions.
2. Applications to the two specific cases: $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$ and the Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$.

Define

$$
k(X):=\min _{\substack{k \\ x \cap G_{k} \neq \varnothing}} k
$$

Under some conditions, we have:
Theorem (T.): For $k_{1}=k\left(\bar{x}_{i}^{n}\right), k_{2}=k\left(\bar{x}_{j}^{n}\right)$ and $k_{3}=k\left(\bar{x}_{r}^{n}\right)$ there exists rational numbers $a_{i, j}^{r}(k)$ all independent of n such that:

$$
c_{i j}^{r}(n)=\frac{\left|\bar{x}_{i}^{n}\right|\left|\bar{x}_{j}^{n}\right|\left|K_{n-k_{1}}\right|\left|K_{n-k_{2}}\right|}{\left|K_{n}\right|\left|\bar{x}_{r}^{n}\right|} \sum_{k_{3} \leqslant k \leqslant \min \left(k_{1}+k_{2}, n\right)} \frac{a_{i, j}^{r}(k)}{\left|K_{n-k}\right|}
$$

Define

$$
k(X):=\min _{\substack{k \\ x \cap \sigma_{k} \neq \varnothing}} k
$$

Under some conditions, we have:
Theorem (T.): For $k_{1}=k\left(\bar{x}_{i}^{n}\right), k_{2}=k\left(\bar{x}_{j}^{n}\right)$ and $k_{3}=k\left(\bar{x}_{r}^{n}\right)$ there exists rational numbers $a_{i, j}^{r}(k)$ all independent of n such that:

$$
c_{i j}^{r}(n)=\frac{\left|\bar{x}_{i}^{n}\right|\left|\bar{x}_{j}^{n}\right|\left|K_{n-k_{1}}\right|\left|K_{n-k_{2}}\right|}{\left|K_{n}\right|\left|\bar{x}_{r}^{n}\right|} \sum_{k_{3} \leqslant k \leqslant \min \left(k_{1}+k_{2}, n\right)} \frac{a_{i, j}^{r}(k)}{\left|K_{n-k}\right|}
$$

Remark: We have a similar theorem for the structure coefficients of the centres of groups algebras.

Application to the Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$: Let λ be a proper partition of size at most n. The size of its associated double class $S_{\lambda}^{\prime}(n)$ is:

$$
\left|S_{\lambda}^{\prime}(n)\right|=\frac{\left(2^{n} n!\right)^{2}}{z_{2 \lambda} 2^{n-|\lambda|}(n-|\lambda|)!},
$$

where, $z_{\lambda}=\prod_{i \geqslant 1} i^{m_{i}(\lambda)} m_{i}(\lambda)!$.
Let δ and ρ be two proper partitions with size at most n, we have:

$$
{c^{\prime}}_{\lambda, \delta}^{\rho}(n)=2^{n} n!\frac{z_{2 \rho}}{z_{2 \lambda} z_{2 \delta}} \sum_{|\rho| \leqslant k \leqslant|\lambda|+|\delta|} a_{\lambda \delta}^{\rho}(k) 2^{k-|\rho|} \frac{(n-|\rho|)!}{(n-k)!} .
$$

Polynomial!

Application to the Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$: Let λ be a proper partition of size at most n. The size of its associated double class $S_{\lambda}^{\prime}(n)$ is:

$$
\left|S_{\lambda}^{\prime}(n)\right|=\frac{\left(2^{n} n!\right)^{2}}{z_{2 \lambda} 2^{n-|\lambda|}(n-|\lambda|)!}
$$

where, $z_{\lambda}=\prod_{i \geqslant 1} i^{m_{i}(\lambda)} m_{i}(\lambda)$!.
Let δ and ρ be two proper partitions with size at most n, we have:
${c^{\prime}}_{\lambda, \delta}^{\rho}(n)=2^{n} n!\frac{z_{2 \rho}}{z_{2 \lambda} z_{2 \delta}} \sum_{|\rho| \leqslant k \leqslant|\lambda|+|\delta|} a_{\lambda \delta}^{\rho}(k) 2^{k-|\rho|} \frac{(n-|\rho|)!}{(n-k)!}$.
Application to $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$: Let λ be a proper partition of size at most n. The size of its associated conjugacy class $S_{\lambda}(n)$ is:

$$
\left|S_{\lambda}(n)\right|=\frac{n!}{z_{\lambda} \cdot(n-|\lambda|)!}
$$

Let δ and ρ be two proper partitions with size at most n, we have:

$$
c_{\lambda, \delta}^{\rho}(n)=\frac{z_{\rho}}{z_{\lambda} z_{\delta}} \sum_{|\rho| \leqslant k \leqslant|\lambda|+|\delta|} a_{\lambda \delta}^{\rho}(k) \frac{(n-|\rho|)!}{(n-k)!} \quad \quad \text { Polynomial! }
$$

V. Conclusions and further applications

Conclusions:
Under technical conditions,

1. Form of the structure coefficients of double-class algebras.
2. Form of the structure coefficients of centers of groups algebras.
3. We re-obtain the polynomiality property for $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$ and the Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$.

Conclusions:
Under technical conditions,

1. Form of the structure coefficients of double-class algebras.
2. Form of the structure coefficients of centers of groups algebras.
3. We re-obtain the polynomiality property for $\mathcal{Z}\left(\mathbb{C}\left[\mathcal{S}_{n}\right]\right)$ and the Hecke algebra of $\left(\mathcal{S}_{2 n}, \mathcal{B}_{n}\right)$.
Work in progress:
4. $\mathcal{Z}\left(\mathbb{C}\left[G L_{n}\left(\mathbb{F}_{q}\right)\right]\right)$, where $G L_{n}\left(\mathbb{F}_{q}\right)$ is the group of invertible $n \times n$ matrices.
5. Superclasses of unitriangular groups...

[^0]: ${ }^{1}$ These coefficients "contain" structure coefficients of centres of groups algebras.

